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Abstract To investigate the imitation dynamics of vaccine uptake, age-structured model is intro-

duced, based on a model proposed by Bauch. The model is derived under the assumption that the

potential infection risk depends on the infection age. The existence and local stability of equilibria

are analyzed. A Hopf bifurcation may occur from the endemic and vaccinator equilibrium. Our study

shows that imitation behavior is one factor that destabilizes the system and brings about oscillations

in the case when non-vaccinators imitate vaccinators more readily. Infection-age is another factor that

produces limit cycles if the latency period is long enough. The results show how the prevalence of the

infection changes with respect to the infection age.
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1 Introduction

Infectious diseases are one of the main enemies threatening human’s health. Every year millions

of people die as a result of various infectious diseases. Mathematical modeling plays an important role

in studying and discovering the transmission mechanisms of important diseases. Ample theoretical

work exists that investigates infectious diseases and obtains very valuable results for the control of

epidemic spread. In some of the studies [1, 2, 3, 4, 5, 6] on childhood diseases, one eminent feature is

that the transmission rates have salient differences since children have different immunities.

Vaccination has been widely considered as one of the effective methods to reducing the morbidity

and mortality from infectious diseases. There are two key vaccination policies: voluntary vaccination

and mandatory vaccination. There has been a vigorous debate about voluntary vaccination policy

failing to protect population adequately. A rational vaccine decision-making is determined by various

factors, such as perceived infection risk, potential side effects from vaccination, and vaccinating be-

haviors of other individuals. Because of the declining familiarity with the interplay between perceived

infection risk and potential side effects from vaccination, parents have various reasons for avoiding the

potential side effects for their children, instead relying on enough other children being vaccinated to
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provide herd immunity. Therefore, rational decision may lead to a reduced number of vaccine intakes.

This is a free-riding dilemma between individuals and the public good. Game theory builds a bridge

connecting the epidemic models with individual behaviors.

Vaccine decision-making based on game theory has been extensively investigated (see, for example,

[7]-[23]). In these articles, it is usually assumed that individuals have full information for perceived

infection risk and potential vaccine health risk. Under this assumption, rational vaccine decision-

making will get the highest personal utilities, i.e., there exists a Nash equilibrium where no individuals

could be better off by unilaterally changing to a different strategy [8, 9]. In [10], Xia and Liu employed

a computational approach to characterize the impact of social influence on individuals’ vaccination

decision-making while in [11] they also investigated the impact of the two factors, information of

the disease prevalence and the perceived vaccination risk, and fading coefficient of awareness spread.

Recently, Xu and Cresmman [12] built a nonlinear epidemic model with the smoothed best response

by game-theory based decisions on vaccination. Their results showed that if there is a perceived cost

for vaccination, the smoothed best response is very effective in controlling the disease spread, but if

vaccination is free, the best response is a good control. Zhang et al. [13] investigated the “double-edged

sword” effect on public health conditions for rational decision-making. Shim et al used game dynamic

models to gain insight into the decision-making between vaccine skeptics and vaccine believers [36]

and the decision making with regard to antiviral intervention during an influenza pandemic [37],

respectively.

The above-mentioned references focus on vaccine uptake based on the perfect information the

parents mastered on perceived infection risk and potential vaccine side effects. In fact, the vaccine

uptake behaviors evolve with respect to time. Individuals’ decision on vaccination or non-vaccination

is conducted by imitating others who appear to have adopted more successful strategies. The process

is called “imitation dynamics” and it has been studied by some researchers. Bauch [14] investigated

parents’ vaccinating decisions for their children with the assumption that the susceptibles behave

strategically in accordance with imitation dynamics and studied the dependence of epidemic prevalence

and coverage of vaccination on these strategic decisions. Fu et al. [15] proposed an agent based

model on social network with game theory to shed light on how imitation of peers shapes individual

vaccination choices. d’Onofrio et al. [16] assumed that the perceived risk of vaccination is a function

of the incidence and studied an SIR transmission model with dynamic vaccine demand based on

an imitation mechanism. A common assumption in these existing vaccination models on imitation

dynamics is that individuals are homogeneously mixed or heterogeneously mixed on social networks

[17, 18, 38]. This can not capture the feature of different transmission rates for childhood diseases

which we mentioned earlier. In order to address the imitation behaviors on vaccination decision-

making, we develop an age-structured epidemic model based on the game theory. We assume that the

transmission incidence rate varies according to the infection age and individuals act their behaviors

with imperfect information about perceived infection risk and potential vaccine side effects. The payoff

of the perceived infection risk is also dependent on the infection age. Parents imitate the vaccination

decision-making of their neighbors and then adopt the vaccine policy.

The rest of the paper is organized as follows. Based on the game theory, an SIR epidemic model
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with infection age is introduced in Section 2. We study the existence of equilibria and their local

stability in Section 3. A local Hopf bifurcation may occur. Section 4 is devoted to the global stability

of boundary equilibria based on the fluctuation lemma and the results for the case without vaccination.

We also consider the persistence of the disease in Section 4. In Section 5, numerical simulations are

provided to demonstrate the theoretical results. The paper concludes with discussion.

2 The model formulation

Chris T Bauch in [14] proposed an epidemic model to predict vaccinating behavior based on game

theory. He divided the total population into three classes: the Susceptible S(t), the Recovered R(t),

and the Infected I(t) at time t. He assumed that all newborns are susceptible; all the groups decrease

due to natural death; susceptible individuals are infected by infectious individuals and enter the

infected group; infectious individuals exit the group due to natural death and recovery; recovered

group increases due to recovered infectious individuals and the vaccinated newborns and decreases due

to natural death; recovered individuals acquire permanent immunity from the disease or vaccination

and never leave this group. The incidence rate used is in bilinear form. In order to understand

a strategic interaction between individuals when they are deciding whether or not to vaccinate, he

introduced a replicator equation for an evolution population game, and the payoff function varied

according to time. In the replicator equation a proportion x of the children are vaccinated at birth.

The equation formally reads as
dx

dt
= kx(1 − x)[−rv + rimI]

where the vaccination cost is −rv, non-vaccination cost is rimI. ri denotes the perceived probability

of suffering significant morbidity upon infection, m qualifies the sensitivity of vaccinating behavior to

changes in prevalence, k denote the imitation rate. He proposed an epidemic model based on game

theory given by the following equations.



















































dS(t)

dt
= Λ(1− x)− βS(t)I(t)− µS(t),

dI(t)

dt
= βS(t)I(t) − (µ+ γ)I(t),

dR(t)

dt
= Λx+ γI(t)− µR(t),

dx(t)

dt
= kx(1 − x)[−rv + rimI],

(2.1)

where Λ is the input rate, β is the transmission rate, µ is the natural death rate, γ is recovered rate.

The incubation period of some childhood disease varies, for measles ranging from 7 to 21 days[33],

for mumps ranging from 16 to 25 days[34], for pertussis ranging from 4 to 21 days [35]. It is easy to

note that different diseases have different latency period. We introduce the infection age to describe

this feature as well as the variability of infectivity shown by infectious individuals in many diseases.

Therefore, we assume that the incidence rate depends on the infectious age a in the following way,

λ(t) = S(t)

∫ ∞

0

β(a)i(t, a)da.
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where β(a) is the transmission rate with infection age a.

For convenience, the perceived vaccination cost is −r; while the potential risk cost for non-

vaccinator mainly depends on the epidemic transmission, so its cost is −
∫∞

0 β(a)i(t, a)da, or the payoff

benefit is
∫∞

0 β(a)i(t, a)da. The payoff gain for vaccinator compared non-vaccinator is
∫∞

0 β(a)i(t, a)da−

r. This is formally familiar with [12]. Then the derivation of x is described as a replicator equation

dx

dt
= δx(1 − x)

(
∫ ∞

0

β(a)i(t, a)da− r

)

.

Based on the above assumptions, the model with game theory is given by the following system of

ordinary and partial differential equations,























































dS(t)

dt
= Λ(1− x)− S(t)

∫ ∞

0

β(a)i(t, a)da− µS(t),

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −(µ+ γ(a))i(t, a),

dR(t)

dt
= Λx+

∫ ∞

0

γ(a)i(t, a)da− µR(t),

dx(t)

dt
= δx(1 − x)

(
∫ ∞

0

β(a)i(t, a)da− r

)

,

(2.2)

with the boundary condition

i(t, 0) = S(t)

∫ ∞

0

β(a)i(t, a)da, t > 0

and initial conditions

S(0) = S0 ≥ 0, i(0, a) = i0(a) ∈ L1
+, R(0) = R0 ≥ 0, x(0) = x0 ∈ [0, 1],

where L1
+ is the set of all integrable functions from R+ = [0,∞) into R+. γ(a) is the age-dependent

recovery rate with infection age a, δ is the imitation rate which has the familiar biological meaning

with k in (2.1).

Due to the biological meaning, Λ, µ, δ and r are all positive, and β 6= 0 and k belong to

CBU (R+,R+) with β being not identically zero, where CBU (R+,R+) denotes the set of all bounded

and uniformly continuous functions from R+ into R+.

Note that the third equation of (2.2) is decoupled from the others. Then we can ignore it and only

consider the following system,



































dS(t)

dt
= Λ(1− x)− S(t)

∫ ∞

0

β(a)i(t, a)da− µS(t),

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −(µ+ γ(a))i(t, a),

dx(t)

dt
= δx(1 − x)

(
∫ ∞

0

β(a)i(t, a)da− r

)

(2.3)

with the boundary condition

i(t, 0) = S(t)

∫ ∞

0

β(a)i(t, a)da, t > 0
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and initial conditions

S(0) = S0 ≥ 0, i(0, a) = i0(a) ∈ L1
+, x(0) = x0 ∈ [0, 1].

Due to [24, 25], if i0 satisfies the coupling equation

i(0, 0) = S0

∫ ∞

0

β(a)i0(a)da

then (2.3) is well-posed. In what follows, whenever we refer to the solution of (2.3), the above

assumptions on the boundary and initial conditions are satisfied.

Proposition 2.1. Let (S(t), i(t, a), x(t)) be a solution of (2.3) with the maximal interval of existence

[0, ρ) (ρ is allowed to be ∞). Then S(t) ≥ 0, i(t, a) ≥ 0, and x(t) ∈ [0, 1] for t ∈ [0, ρ) and a ∈ R+.

Proof. Firstly, from the third equation of (2.3), we have

x(t) =
x0e

δ
∫

t

0
(
∫

∞

0
β(a)i(s,a)da−r)ds

1− x0 + x0e
δ
∫

t

0
(
∫

∞

0
β(a)i(s,a)da−r)ds

for t ∈ [0, ρ). (2.4)

Since x0 ∈ [0, 1], it follows that x(t) ∈ [0, 1] for t ∈ [0, ρ).

Secondly, by the first equation of (2.3), we see that

S(t) = S0e
−µt−

∫
t

0

∫
∞

0
β(a)i(s,a)dads + Λ

∫ t

0

(1− x(s))e−µ(t−u)−
∫

t

u

∫
∞

0
β(a)i(s,a)dadsdu

for t ∈ [0, ρ). Clearly, S(t) ≥ 0 for t ∈ [0, ρ) as S0 ≥ 0 and x(t) ∈ [0, 1] for t ∈ [0, ρ).

Now, for any ξ ∈ [0, ρ), we claim that i(t, a) ≥ 0 for t ∈ [0, ξ] and a ∈ R+ (the idea of the

proof is borrowed from Browne and Pilyugin [26]). By way of contradiction, assume that there exists

t0 ∈ [0, ξ] and a0 ∈ R+ such that i(t0, a0) < 0. Integrating the second equation of (2.3) with the

boundary condition yields that, for t ∈ [0, ξ] and a ∈ R+, we have

i(t, a) =

{

B(t− a)π(a), t ≥ a,

i0(a− t) π(a)
π(a−t) , t < a,

(2.5)

where B(t) = i(t, 0) = S(t)
∫∞

0
β(a)i(t, a)da for t ∈ [0, ξ] and π(a) = e−

∫
a

0
k(s)ds for a ∈ R+. Since

i0 ∈ L1
+, we have a0 < t0 and B(t0 − a0) < 0. Let t∗ = inf{t ∈ [0, ξ] : B(t) < 0}. Then t∗ ∈ [0, ξ). By

the continuity of B(t) and the definition of t∗, we know that B(t) ≥ 0 for t ∈ [0, t∗) and B(t∗) = 0.

Note that, with the help of (2.5),

B(t) = S(t)

∫ t

0

β(a)B(t − a)π(a)da+ S(t)

∫ ∞

t

β(a)i0(a− t)
π(a)

π(a− t)
da

= S(t)

∫ t

0

β(t− a)B(a)π(t − a)da+ S(t)

∫ ∞

t

β(a)i0(a− t)
π(a)

π(a− t)
da

for t ∈ [0, ξ]. Since B is continuous on [0, ξ] and B(t∗) = 0, there exists an ε1 ∈ (0, ξ − t∗) such

that − 1
2 ≤ B(t) ≤ 1

2 for t ∈ [t∗, t∗ + ε1]. Let Ŝ = max{S(t) : t ∈ [0, ξ]} and β̄ = sup{β(a) :

a ∈ R+}(> 0). Denote ε = min{ε1,
1

3β̄(Ŝ+1)
}. Let Y = C([0, t∗ + ε],R+) and S = {ϕ ∈ Y :
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ϕ(t) = B(t) for t ∈ [0, t∗] and ϕ(t) ∈ [0, 1] for t ∈ [t∗, t∗ + ε]}. Then Y is a complete distance space

with the supremum distance and S is a closed subset of Y . Define L on S by

(Lϕ)(t) = S(t)

∫ t

0

β(t− a)ϕ(a)π(a)da + S(t)

∫ ∞

t

β(a)i0(a− t)
π(a)

π(a− t)
da.

Obviously, L(S) ⊂ Y . Note that Lϕ|[0,t∗] = B|[0,t∗] for ϕ ∈ S and LB = B. Then, for ϕ ∈ S and

t ∈ [t∗, t∗ + ε], we have

0 ≤ (Lϕ)(t) = [(Lϕ)(t) − (LB)(t)] + (LB)(t)

= [(Lϕ)(t)− (LB)(t)] +B(t)

= S(t)

∫ t

t∗

β(t− a)(ϕ(a) −B(a))π(t− a)da+B(t)

≤
3

2
Ŝβ̄ε+

1

2
≤ 1

and this shows that L is a mapping from S into itself. Moreover, for ϕ1, ϕ ∈ S, we have

‖Lϕ1 − Lϕ2‖ = max{|(Lϕ1)(t)− (Lϕ2)(t)| : t ∈ [t∗, t∗ + ε]}

= max{|S(t)
∫ t

t∗
β(t − a)(ϕ1(a)− ϕ2(a))π(a)da| : t ∈ [t∗, t∗ + ε]}

≤ Ŝβ̄ε‖ϕ1 − ϕ2‖

<
1

3
‖ϕ1 − ϕ2‖,

that is, L is a contraction mapping on S. By the Banach Fixed Point Theorem, there exists a unique

ϕ̂ ∈ S such that

ϕ̂(t) = S(t)

∫ t

0

β(t− a)ϕ̂(a)π(t− a)da+ S(t)

∫ ∞

t

β(a)i0(a− t)
π(a)

π(a− t)
da

for t ∈ [0, t∗ + ε]. By the uniqueness of solutions, we have B(t) = ϕ̂(t) for t ∈ [0, t∗ + ε]. This

contradicts with the definition of t∗ and hence we have proved the claim. Since ξ is arbitrary, we see

that i(t, a) ≥ 0 for t ∈ [0, ρ) and a ∈ R+. This completes the proof.

Proposition 2.1 implies that i(t, ·) ∈ L1
+ for t ∈ [0, ρ). Setting

N(t) = S(t) +

∫ ∞

0

i(t, a)da

for t ∈ [0, ρ). With the help of Proposition 2.1, we can obtain

dN(t)

dt
≤ Λ− µN(t) (2.6)

for t ∈ [0, ρ), which implies that lim sup
t→ρ−

N(t) < ∞. Therefore, the maximal interval of existence for

every solution of (2.3) is R+. Let Φ : R+ × (R+ × L1
+ × [0, 1]) → R+ × L1

+ × [0, 1] be the solution

semiflow associated with (2.3), that is,

Φ(t, (S0, i0, x0)) = (S(t), i(t, ·), x(t)) for (S0, i0, x0) ∈ R+ × L1
+ × [0, 1].
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Note that, by (2.6), lim sup
t→∞

N(t) ≤ Λ
µ
. Moreover, if N(t0) ≤

Λ
µ
for some t0 ∈ R+ then N(t) ≤ Λ

µ

for all t ≥ t0. Define

Γ = {(S, i, x) ∈ R+ × L1
+ × [0, 1] : S +

∫∞

0 i(a)da ≤ Λ
µ
}.

Then we have proved the following result.

Proposition 2.2. Γ is an attractive and positively invariant set for (2.3).

To end this section, we mention that, by (2.4), both sets {(S, i, x) ∈ Γ : x = 0} and {(S, i, x) ∈

Γ : x = 1} are also positively invariant subsets of (2.3). It is clear that for solutions in {(S, i, x) ∈ Γ :

x = 1} we have lim
t→∞

(S(t), i(t, a), x(t)) = (0, 0, 1) for a ∈ R+. On the other invariant set {(S, i, x) ∈

Γ : x = 0}, (2.3) reduces to the case without vaccination, that is,















dS(t)

dt
= Λ− S(t)

∫ ∞

0

β(a)i(t, a)da− µS(t),

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −(mu+ γ(a))i(t, a).

(2.7)

This model has been studied by Magal et al. [27] and their main results are as follows.

Theorem 2.3 ([27, Theorem 1.2 and Theorem 1.3]). (i) If
Λ
∫

∞

0
β(a)π(a)da

µ
≤ 1 then the disease free

equilibrium (Λ
µ
, 0) is globally asymptotically stable for the semiflow generated by (2.7).

(ii) Let

ā = sup{a ≥ 0 : β(a) > 0}

and

M0 = R+ × {i ∈ L1
+ :
∫ ā

0 i(a)da > 0} and ∂M0 = (R+ × L1
+) \M0.

Assume
Λ
∫

∞

0
β(a)π(a)da

µ
≤ 1. Then every solution of (2.7) with the initial value in ∂M0 (respec-

tively in M0) stays in ∂M0 (respectively in M0). Moreover, each solution with initial value in

∂M0 converges to (Λ
µ
, 0). Furthermore, every solution with an initial value in M0 converges to

the endemic equilibrium ( 1∫
∞

0
β(a)π(a)da

, (Λ− µ∫
∞

0
β(a)π(a)da

)π(a)), which is locally asymptotically

stable.

The attractivity of the endemic equilibrium in Theorem 2.3(ii) is established by the approach of

Lyapunov functionals. We also mention that Theorem 2.3 will play an important role in dealing with

the attractivity of the boundary equilibria of (2.3).

3 Existence of equilibria and their local stability

Recall that π(a) = e−
∫

a

0
k(s)ds for a ∈ R+. Define

K =

∫ ∞

0

β(a)π(a)da

and

R0 =
ΛK

µ
.
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In fact, R0 is called the basic reproduction number and it denotes the average number of cases that

one typical infected individual can produce during the infectious period. As we will see soon, the

structure of equilibria of (2.3) depends on the values of R0.

(S∗, i∗, x∗) ∈ R+ × L1
+ × [0, 1] is an equilibrium of (2.3) if it satisfies



























0 = Λ(1− x∗)− S∗
∫∞

0 β(a)i∗(a)da− µS∗,

di∗(a)
da

= −(mu+ γ(a))i∗(a),

i∗(0) = S∗
∫∞

0
β(a)i∗(a)da,

0 = δx∗(1 − x∗)(
∫∞

0 β(a)i∗(a)da− r).

(3.1)

By direct computation, we easily see that (3.1) has four equilibria, E1 = (0, 0, 1), E2 = (Λ
µ
, 0, 0),

E3 = (S∗, i∗1(0)π(a), 0), E4 = (S∗, i∗(0)π(a), x∗), where

S∗ =
1

K
, i∗1(0) =

µ

K
(R0 − 1), i∗(0) =

r

K
, x∗ =

µ(R0 − 1)− r

ΛK
.

The existence of equilibria of (2.3) is summarized below.

Theorem 3.1. (i) If R0 ≤ 1 then (2.3) has two equilibria E1 and E2.

(ii) If 1 < R0 ≤ 1 + r
µ
then (2.3) has three equilibria E1, E2, and E3.

(iii) If R0 > 1 + r
µ
then (2.3) has four equilibria E1, E2, E3, and E4.

From the biological perspective, E1 is the disease-free and pure vaccinator strategy equilibrium,

E2 is the disease-free and non-vaccinator strategy equilibrium, E3 is the endemic and non-vaccinator

strategy equilibrium, and E4 is the endemic and vaccinator strategy equilibrium.

Let Ē∗ = (S̄∗, ī∗, x̄∗) be an equilibrium of (2.3). Then the linearized system at Ē∗ is



























dS(t)
dt

= −Λx− S̄∗
∫∞

0 β(a)i(t, a)da− S
∫∞

0 β(a)̄i∗(a)da− µS,

∂i(t,a)
∂t

+ ∂i(t,a)
∂a

= −(mu+ γ(a))i(t, a),

i(t, 0) = S(t)
∫∞

0
β(a)̄i∗(a)da+ S̄∗

∫∞

0
β(a)i(t, a)da,

dx(t)
dt

= δ(1− 2x̄∗)x(
∫∞

0
β(a)̄i∗(a)da− r) + δx̄∗(1− x̄∗)

∫∞

0
β(a)i(t, a)da.

Letting S(t) = s0e
λt, i(t, a) = y(a)eλt, and x(t) = x0e

λt leads to the characteristic equation at Ē∗,

which is

0 =

∣

∣

∣

∣

∣

∣

λ+ µ+
∫∞

0 β(a)̄i∗(a)da S̄∗K̂(λ) Λ
∫∞

0
β(a)̄i∗(a)da S̄∗K̂(λ)− 1 0

0 −δx̄∗(1− x̄∗)K̂(λ) λ− δ(1− 2̄x∗)(
∫∞

0 β(a)̄i∗(a)da− r)

∣

∣

∣

∣

∣

∣

,

where K̂(λ) =
∫∞

0 β(a)π(a)e−λada. Then we can get the local stability of E1, E2, and E3 as follows.

Theorem 3.2. (i) The disease free and pure vaccinator equilibrium E1 is always unstable.

(ii) The disease free and non-vaccinator equilibrium E2 is locally asymptotically stable if R0 < 1

and it is unstable if R0 > 1.
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(iii) The endemic and non-vaccinator equilibrium E3 is locally asymptotically stable if 1 < R0 < 1+ r
µ

and it is unstable if R0 > 1 + r
µ
.

Proof. (i) The characteristic equation for E1 is

∣

∣

∣

∣

∣

∣

λ+ µ 0 Λ
0 −1 0
0 0 λ− δr

∣

∣

∣

∣

∣

∣

= (λ+ µ)(λ − δr) = 0,

which has a positive root δr. This implies that E1 is unstable.

(ii) The characteristic equation at E2 is

∣

∣

∣

∣

∣

∣

∣

λ+ µ Λ
µ
K̂(λ) Λ

0 Λ
µ
K̂(λ) − 1 0

0 0 λ+ δr

∣

∣

∣

∣

∣

∣

∣

= (λ+ µ)(λ + δr)

(

Λ

µ
K̂(λ)− 1

)

= 0.

Besides the two negative roots −µ and −δr, the other roots are given by the equation

Λ

µ
K̂(λ) = 1. (3.2)

Since Λ
µ
K̂(0) = R0 and lim

λ→∞

K̂(λ) = 0, it follows that (3.2) has a positive root if R0 > 1. If R0 < 1,

we claim that all roots of (3.2) have negative real parts. Otherwise, if λ0 is a root of (3.2) with

nonnegative real part, then

1 =

∣

∣

∣

∣

Λ

µ
K̂(λ)

∣

∣

∣

∣

=

∣

∣

∣

∣

Λ

µ

∫ ∞

0

β(a)π(a)e−λ0ada

∣

∣

∣

∣

≤
Λ

µ

∫ ∞

0

β(a)π(a)da =
Λ

µ
K = R0 < 1,

a contradiction. This proves the claim. Therefore, E2 is stable if R0 < 1 and it is unstable if R0 > 1.

(iii) The characteristic equation at E3 is

0 =

∣

∣

∣

∣

∣

∣

λ+ µ+ i∗1(0)K S∗K̂(λ) Λ

i∗1(0)K S∗K̂(λ) − 1 0
0 0 λ− δi∗1(0)K + δr

∣

∣

∣

∣

∣

∣

= (λ− δi∗1(0)K + δr)[(λ + µ)(S∗K̂(λ) − 1)− i∗1(0)K].

First, the root of λ−δi∗1(0)K+δr = 0 is δi∗1(0)K−δr = δµ(R0−1− r
µ
), which is positive (respectively,

negative) if R0 > 1 + r
µ
(respectively, R0 < 1 + r

µ
). Second, we claim that 0 = (λ + µ)(S∗K̂(λ) −

1)− i∗1(0)K has no root with nonnegative real part. By contradiction, suppose it has a root λ1 with

nonnegative real part. Then

0 = (λ1 + µ)(S∗K̂(λ1)− 1)− i∗1(0)K = λ1 + µR0 −
λ1 + µ

K
K̂(λ1).

It follows that

|λ1 + µR0| =

∣

∣

∣

∣

λ1 + µ

K
K̂(λ1)

∣

∣

∣

∣

≤ |λ1 + µ|,

which is a contradiction since

|λ+ µR0|
2 − |λ1 + µ|2 = 2Re(λ1)µ(R0 − 1) + µ2(R2

0 − 1)

and Re(λ1) ≥ 0 and R0 > 1. This proves the claim. To summarize, we have proved (iii).
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Theorem 3.2 tells us that the disease free and pure vaccinator equilibrium E1 is always unstable.

This means that if the level of the vaccinated children is very high then the unvaccinated children

have no incentives to vaccinate since the herd immunity can protect them and they do not care about

the potential risk from vaccination.

The analysis for the stability of E4 is not so easy. In fact, the characteristic equation at E4 is

0 =

∣

∣

∣

∣

∣

∣

λ+ µ+ i∗(0)K S∗K̂(λ) Λ

i∗(0)K S∗K̂(λ)− 1 0

0 −δx∗(1− x∗)K̂(λ) λ− δ(1− 2x∗)(i∗(0)K − r)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

λ+ µ 1 Λ

r
K̂(λ)
K

− 1 0

0 −δx∗(1 − x∗)K̂(λ) λ

∣

∣

∣

∣

∣

∣

∣

(3.3)

= λ

[

(λ+ µ)

(

K̂(λ)

K
− 1

)

− r

]

− CK̂(λ),

where C = Λrδx∗(1 − x∗). Obviously, 0 is not a root to (3.3) when R0 > 1 + r
µ
. Then (3.3) is

equivalent to
K̂(λ)

K
= 1 +

r

λ+ µ
+

C

λ(λ + µ)
K̂(λ).

It follows easily that (3.3) has no nonnegative real roots. However, it is hard to see whether (3.3) has

roots with nonnegative real part or not. Actually, it may have roots with nonnegative real parts as

we will see soon.

In order to have a clear picture of the dynamics of (2.3), we make the following further assumption.

Assumption 3.1. Assume that the transmission rate and the transfer rate are

β(a) =

{

β if a ≥ τ

0 if a < τ
and γ(a) =

{

γ if a ≥ τ ,
0 if a < τ .

Assumption 3.1 means that when the infection age is larger than τ the infected is also infectious and

the infectivity is the same for all such infected individuals. We call τ the latent period. Assumption 3.1

also implies that the self-healing only occurs when the infected become infectious. If we add a constant

recovery rate for infection age a ∈ [0, τ) then the analysis is reasonably simple and we can still gain

further insight into the dynamics. However, if we assume that the recovery rates differ at an infection

age other than the latent period τ then the analysis will be very complicated. In the following we

analyze the role played by τ .

Under Assumption 3.1, K̂(λ) = βe−(λ+µ)τ

λ+µ+γ
. It follows that

R0 =
Λβe−µτ

µ(µ+ γ)
.

Let τmin = 1
µ
ln Λβ

(µ+r)(µ+γ) and τmax = 1
µ
ln Λβ

µ(µ+γ) . Then R0 > 1 if and only if Λβ
µ(µ+γ) > 1 and

0 ≤ τ < τmax; R0 > 1 + r
µ
if and only if Λβ

(µ+r)(µ+γ) > 1 and 0 ≤ τ < τmin. Moreover,

E4 =

(

(µ+ γ)eµτ

β
,
r(µ+ γ)eµτ

β
π(a), 1 −

(r + µ)(µ+ γ)eµτ

Λβ

)
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and (3.3) becomes

λ(λ+ µ+ γ)(λ+ µ+ r) = [(µ+ γ)λ(λ+ µ)−D(τ)]e−λτ , (3.4)

where D(τ) = βCe−µτ = rδ(r+µ)(µ+γ)(Λβ−(r+µ)(µ+γ)eµτ )
Λβ

.

Assume τ = 0. Then (3.4) reduces to

λ3 + (µ+ r)λ2 + r(µ+ γ)λ+D(0) = 0.

Note that r(µ+ γ)(µ+ r)−D(0) = r(µ+ γ)(µ+ r)(1− δ(Λβ−(µ+r)(µ+γ))
Λβ

). Due to the Routh-Hurwitz

Criterion, E4 is locally asymptotically stable if δ(Λβ−(µ+r)(µ+γ))
Λβ

< 1 and unstable otherwise. By

Theorem 3.2, we know that E1, E2, and E3 all are unstable if R0 > 1 + r
µ
. Therefore, we make one

more assumption.

Assumption 3.2. δ < Λβ
Λβ−(µ+γ)(µ+r) , i.e, δx∗ < 1,. This last assumption can be interpreted as a

condition that the total number of non-vaccinators imitating vaccinators should be small enough.

Next, we consider the possibility of the stability switching for system (2.3). Note that (3.4) is a

special case of the transcendental equation considered by Beretta and Kuang [28], where they provided

practical guidelines that combine graphical information with analytical work to effectively study local

stability. The theory was also illustrated by them with first order and second order characteristic

equations. Here is an application to a third order characteristic equation. Let

P (λ, τ) = λ(λ + µ+ γ)(λ+ µ+ r),

Q(λ, τ) = D(τ) − (µ+ γ)λ(λ+ µ).

Then one can easily verify assumptions (i)–(iv) in Beretta and Kaung [28, p. 1145]. Under Assump-

tions 3.1 and 3.2, a stability change at E4 can only happen when there are eigenvalues crossing the

imaginary axis from left to right. Therefore, we seek a pair of purely imaginary eigenvalues λ = ±iw

with w > 0 for some 0 < τ < τmin since 0 is not an eigenvalue. Substituting λ = iw into (3.4) (we

only need to consider one of the roots) and separating the real and imaginary parts yields

−(2µ+ r + γ)w2 = −((µ+ γ)w2 +D(τ)) coswτ + µ(µ+ γ)w sinwτ,

ω[(µ+ γ)(µ+ r)− ω2] = ((µ+ γ)w2 +D(τ)) sinwτ + µ(µ+ γ)w coswτ.
(3.5)

Then
sinωτ = −w[(µ+γ)w4+(D(τ)+µ2(µ+γ)+µ(µ+γ)r−(µ+γ)2r)w2

−D(τ)(µ+γ)(µ+r)]
[µ(µ+γ)w]2+[(µ+γ)w2+D(τ)]2 ,

cosωτ = w2[(µ+γ)(µ+γ+r)w2+D(τ)(2µ+γ+r)+µ(µ+γ)2(µ+r)]
[µ(µ+γ)w]2+[(µ+γ)w2+D(τ)]2 .

(3.6)

We square both sides of the equations in (3.5) and add them up to obtain

F (w, τ) , w6 + (µ+ r)2w4 + (µ+ γ)[r(µ + γ)(r + 2µ)− 2D(τ)]w2 −D(τ)2 = 0,

or

z3 + (µ+ r)2z2 + (µ+ γ)[r(µ + γ)(r + 2µ)− 2D(τ)]z −D(τ)2 = 0 (3.7)
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with z = w2. According to Descartes’ Rule of Signs, equation (3.7) has at most a positive root. On

the other hand, it is easy to see that (3.7) has a positive root. Therefore, equation (3.7) has a unique

positive root, denoted by w2
0(τ) with w0(τ) > 0. As w2

0(τ) is a simple root of (3.7), we have

Fw(w0(τ), τ) > 0.

Let θ(τ) ∈ [0, 2π] be the solution of

sin θ(τ) = −w0(τ)[(µ+γ)w4
0(τ)+(D(τ)+µ2(µ+γ)+µ(µ+γ)r−(µ+γ)2r)w2

0(τ)−D(τ)(µ+γ)(µ+r)]

[µ(µ+γ)w0(τ)]2+[(µ+γ)w2
0(τ)+D(τ)]2

,

cos θ(τ) =
w2

0(τ)[(µ+γ)(µ+γ+r)w2
0(τ)+D(τ)(2µ+γ+r)+µ(µ+γ)2(µ+r)]

[µ(µ+γ)w0(τ)]2+[(µ+γ)w2
0(τ)+D(τ)]2

.

(obtained by substituting w0(τ) into the right hand sides of (3.6)). For any n ∈ N0 = {0, 1, 2 . . .},

define Sn : [0, τmin) → R by

Sn(τ) = τ −
θ(τ) + 2nπ

w0(τ)
for τ ∈ [0, τmin).

The following result is deduced from Theorem 2.2 of Beretta and Kuang [28].

Proposition 3.3. Suppose that there exist n0 ∈ N0 and τ∗ ∈ (0, τmin) such that Sn0(τ
∗) = 0.

Then (3.4) has a pair of simple conjugate pure imaginary roots λ±(τ
∗) = ±iw0(τ

∗) at τ = τ∗.

Moreover, the pair of simple conjugate imaginary roots crosses the imaginary axis from left to right if

sn0(τ
∗) > 0 and crosses the imaginary axis from right to left if sn0(τ

∗) < 0, where

sn0(τ
∗) = sign

(

dReλ(τ∗)

dτ

)

= sign

(

dSn0(τ
∗)

dτ

)

.

Denote

S = {τ ∈ (0, τmin) : Sn(τ)(τ) = 0 for some n(τ) ∈ N0}.

The set S is finite though it is a little bit long and difficult to show here. If S 6= ∅, let S =

{τ0, τ1, . . . , τn0} for some n0 ∈ N0 with τ0 < τ1 < · · · < τn0 . It is easy to deduce sn(τ0)(τ0) ≥ 0

as (2.3) is stable when τ is small enough. The following result follows from Proposition 3.3 and the

above discussion.

Theorem 3.4. Suppose Assumptions 3.1 and 3.2 hold and τ < τmin. Then the following statements

are true.

(i) If S = ∅ then the endemic and vaccinator equilibrium E4 is locally asymptotically stable for all

τ ∈ [0, τmin).

(ii) If S = {τ0, τ1, . . . , τn0} with τ0 < τ1 < · · · < τn0 then the endemic and vaccinator equilibrium

E4 is locally asymptotically stable for all τ ∈ [0, τ0). Moreover, if sn(τ0)(τ0) > 0 then a Hopf

bifurcation occurs at τ = τ0.

Under the condition in Theorem 3.4, there may be a stability switch for E4. A stability switch

may occur if there exists m0 ≤ n0 such that
m0
∑

n=0
s(τn) ≤ 0.
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4 The attractivity of boundary equilibria and disease persis-

tence

In this section, we first study the attractivity of the boundary equilibria E2 and E3 by applying

Theorem 2.3 and the comparison principle.

To establish the attractivity of E2, we need the fluctuation lemma. For a function ϕ : R+ → R,

we denote

ϕ∞ = lim inf
t→∞

ϕ(t) and ϕ∞ = lim sup
t→∞

ϕ(t).

Lemma 4.1 (Fluctuation Lemma [29]). Let ϕ : R+ → R be a bounded and continuously differentiable

function. Then there exist sequences {sn} and {tn} such that sn → ∞, tn → ∞, ϕ(sn) → ϕ∞,

ϕ′(sn) → 0, ϕ(tn) → ϕ∞, and ϕ′(tn) → 0 as n → ∞.

Theorem 4.2. Suppose that R0 ≤ 1. Then the equilibrium E2 attracts all solutions of (2.3) with

(S0, i0, x0) ∈ {(S, i, x) ∈ Γ : x ∈ [0, 1)}.

Proof. Let (S(t), i(t, a), x(t)) be any solution of (2.3) with initial condition and boundary conditions

from {(S, i, x) ∈ Γ : x ∈ [0, 1)}. Then x(t) ∈ [0, 1) for t ∈ R+ and hence (S(t), i(t, x)) satisfies

{

dS(t)
dt

≤ Λ− S(t)
∫∞

0
β(a)i(t, a)da− µS(t),

∂i(t,a)
∂t

+ ∂i(t,a)
∂a

= −(mu+ γ(a))i(t, a).

Let (S̄(t), ī(t, a)) be the solution of the auxiliary system

{

dS(t)
dt

= Λ− S(t)
∫∞

0 β(a)i(t, a)da − µS(t)

∂i(t,a)
∂t

+ ∂i(t,a)
∂a

= −(mu+ γ(a))i(t, a)
(4.1)

with (S̄0, ī0) = (S0, i0) and ī(t, 0) = S̄(t)
∫∞

0 β(a)̄i(t, a)da. With the help of the comparison principle,

it is easy to see that 0 ≤ S(t) ≤ S̄(t) and i(t, a) ≤ ī(t, a) for (t, a) ∈ R2
+. Since R0 ≤ 1, it follows from

Theorem 2.3 that (S̄(t), ī(t, a)) converges to (Λ
µ
, 0). Then

0 ≤ lim sup
t→∞

∫ ∞

0

i(t, a)da ≤ lim sup
t→∞

∫ ∞

0

ī(t, a)da = 0,

which implies that

lim
t→∞

∫ ∞

0

i(t, a)da = 0.

Next, we show lim
t→∞

x(t) = 0. Choose ε ∈ (0, r). Since β ∈ CBU (R+,R+), lim
t→∞

∫∞

0 i(t, a)da = 0

implies that lim
t→∞

∫∞

0
β(a)i(t, a)da = 0. Then there exists a t0 ∈ R+ such that

∫∞

0
β(a)i(t, a)da ≤ ε

for t ≥ t0. By the third equation of (2.3), we get

dx

dt
≤ δx(1 − x)(ε− r) for t ≥ t0.

Recalling that x(t) ∈ [0, 1) for t ∈ R+ and ε < r, we easily see that lim
t→∞

x(t) = 0.

Finally, we show lim
t→∞

S(t) = Λ
µ
. By Lemma 4.1, choose {sn} such that sn → ∞, S(sn) → S∞,

and dS(sn)
dt

→ 0 as n → ∞. Taking limit in

dS(sn)

dt
= Λ(1− x(sn))− S(sn)

∫ ∞

0

β(a)i(sn, a)da− µS(sn)
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produces

0 = Λ− µS∞

or S∞ = Λ
µ
. This, combined with S∞ ≤ Λ

µ
, yields lim

t→∞
S(t) = Λ

µ
.

To summarize, we have shown that (S(t), i(t, a), x(a)) converges to E2. This completes the proof.

For the attractivity of E3, we define

Γ0 = {(S, i, x) ∈ Γ :
∫ ā

0
i(a)da > 0, x ∈ [0, 1)},

where ā = sup{a ∈ R+ : β(a) > 0}. With the integrated semigroup approach, one can show (similarly

as in Magal et al. [27], for example) that Γ0 is a positively invariant subset for (2.3).

Theorem 4.3. Suppose that 1 < R0 < 1+ r
µ
. Then the equilibrium E3 attracts all solutions of (2.3)

with (S0, i0, x0) ∈ Γ0.

Proof. Let (S(t), i(t, a), x(t)) be a solution of (2.3) with (S0, i0, x0) ∈ Γ0.

We first show lim
t→∞

x(t) = 0. From the proof of Theorem 4.2, we know that

0 ≤ S(t) ≤ S̄(t) and 0 ≤ i(t, a) ≤ ī(t, a) (4.2)

for (t, a) ∈ R2
+. Since R0 > 1, it follows from Theorem 2.3 that

S̄(t) → S∗ and ī(t, ·) → i∗1(0)π(·) in L1
+ as t → ∞. (4.3)

Then we can obtain

lim sup
t→∞

∫ ∞

0

β(a)i(t, a)da ≤ lim sup
t→∞

∫ ∞

0

β(a)̄i(t, a)da

≤ lim sup
t→∞

[
∫ ∞

0

β(a)i∗1(0)π(a)da+

∫ ∞

0

β(a)|̄i(t, a)− i∗1(0)π(a)|da

]

= µ(R0 − 1).

Choose ε > 0 such that µ(R0− 1)+ ε < r, which is possible since R0 < 1+ r
µ
. So there exists t0 ∈ R+

such that
∫ ∞

0

β(a)i(t, a)da ≤ µ(R0 − 1) + ε for t ≥ t0.

By the third equation of (2.3), we have

dx(t)

dt
≤ δx(t)(1 − x(t))(µ(R0 − 1) + ε) for t ≥ t0.

This, together with µ(R0 − 1) + ε− r < 0 and x(t) ∈ [0, 1) for t ∈ R+, gives lim
t→∞

x(t) = 0.

Next, we show that S(t) → S∗ and i(t, ·) → i∗1(0)π(·) in L1
+ as t → ∞. For any η ∈ (0, 1− 1

R0
), it

follows from lim
t→∞

x(t) = 0 that there exists t1 ∈ R+ such that

0 ≤ x(t) ≤ η for t ≥ t1.
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Then, for t ≥ t1, (S(t), i(t, a)) satisfies

{

dS(t)
dt

≥ Λ(1− η)− S(t)
∫∞

0 β(a)i(t, a)da− µS(t),

∂i(t,a)
∂t

+ ∂i(t,a)
∂a

= −(mu+ γ(a))i(t, a).

Let (Ŝ(t), î(t, a)) be the solution of the auxiliary system

{

dS(t)
dt

= Λ(1− η)− S(t)
∫∞

0
β(a)i(t, a)da− µS(t)

∂i(t,a)
∂t

+ ∂i(t,a)
∂a

= −(mu+ γ(a))i(t, a)

with (Ŝ0, î0) = (S(t1), i(t1, ·)) and î(t, 0) = Ŝ(t)
∫∞

0 î(t, a)da. Then applying the comparison principle

yields

0 ≤ Ŝ(t) ≤ S(t+ t1) and 0 ≤ î(t, a) ≤ i(t+ t1, a) (4.4)

for (t, a) ∈ R2
+. Since (1− η)R0 > 1, applying Theorem 2.3 again, we see that

Ŝ(t) → S∗ and î(t, ·) →
µ

K
(R0(1− η)− 1)π(·) in L+

1 as t → ∞. (4.5)

Notice that, for (t, a) ∈ R2
+,

|i(t, a)− i∗1(0)π(a)| ≤ |̄i(t, a)− i∗1(0)π(a)| + |̂i(t, a)− i∗1(0)π(a)|

≤ |̄i(t, a)− i∗1(0)π(a)| + |̂i(t, a)−
µ

K
(R0(1 − η)− 1)π(a)| + Ληπ(a).

By (4.2)–(4.5), we have

S∗ = Ŝ∞ ≤ S∞ ≤ S∞ ≤ S̄∞ = S∗

and

lim sup
t→∞

∫ ∞

0

i(t, a)da ≤ lim sup
t→∞

[
∫ ∞

0

|̄i(t, a)− i∗1(0)π(a)|da

+

∫ ∞

0

∣

∣

∣̂
i(t, a)−

µ

K
(R0(1 − η)− 1)π(a)

∣

∣

∣
da+

∫ ∞

0

Ληπ(a)da

]

≤
Λ

µ
η.

By the arbitrariness of η, we have lim supt→∞

∫∞

0
|i(t, a) − i∗1(0)π(a)|da = 0. Therefore, we have

proved that S(t) → S∗ and i(t, ·) → i∗1(0)π(·) in L1
+ as t → ∞. This completes the proof.

Finally, we study the disease persistence of (2.3). Define ρ : Γ ∋ (S, i, x) 7→
∫∞

0
β(a)i(a)da, which

is the same as
∫ ā

0 β(a)i(a)da. Let

D0 = {S0, i0, x0) ∈ Γ : there exists a t ∈ R+ such that ρ(Φ(t, (S0, i0, x0)) > 0 and x ∈ [0, 1)}.

We distinguish two kinds of persistence.

• The disease in (2.3) is uniformly weakly ρ-persistent if there exists an η > 0, independent

of the initial conditions, such that if (S0, i0, x0) ∈ D0 then

lim sup
t→∞

ρ(Φ(t, (S0, i0, x0)) > η.
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• The disease in (2.3) is uniformly strongly ρ-persistent if there exists an η > 0, independent

of the initial conditions, such that if (S0, i0, x0) ∈ D0 then

lim inf
t→∞

ρ(Φ(t, (S0, i0, x0)) > η.

Lemma 4.4. Assume R0 > 1 + r
µ
. Then (2.3) is uniformly weakly ρ-persistent.

Proof. Since R0 > 1 + r
µ
, there exists an ǫ such that 0 < ǫ < min(1, r) and

(

Λ(1− ǫ)

µ+ ǫ
− ǫ

)

K̂(ǫ) > 1. (4.6)

By way of contradiction, we assume that there exists (S0, i0, x0) ∈ D0 such that

lim sup
t→∞

ρ(Φ(t, (S0, i0, x0)) <
ǫ

2
.

Then there is a t1 ∈ R+ such that

ρ(Φ(t, (S0, i0, x0)) < ǫ for t ≥ t1.

As before, it follows from x(t) ∈ [0, 1) for t ∈ R+, ǫ < r, and

dx

dt
≤ δx(1 − x)(ǫ − r) for t ≥ t1

that lim
t→∞

x(t) = 0. Therefore, there is a t2 ≥ t1 such that

0 ≤ x(t) < ǫ for t ≥ t2.

As a result, we have
dS(t)

dt
≥ Λ(1− ǫ)− (µ+ ǫ)S(t) for t ≥ t2,

which implies that

lim inf
t→∞

S(t) ≥
Λ(1− ǫ)

µ+ ǫ
.

Then there exists t3 ≥ t2 such that

S(t) ≥
Λ(1− ǫ)

µ+ ǫ
− ǫ for t ≥ t3.

With the help of (2.5), we easily see that

B(t) ≥

(

Λ(1− ε)

µ+ ǫ
− ǫ

)
∫ t

0

β(a)B(t − a)π(a)da for t ≥ t3. (4.7)

By replacing the initial condition with (S(t3), i(t3, ·), x(t3)), we can assume that (4.7) holds for all

t ∈ R+. Note that both B(·) and β(·)π(·) are bounded functions on R+ and hence their Laplace

transforms exist at least on (0,∞). It follows from (4.7) (with t3 = 0) that

B̂(λ) ≥

(

Λ(1− ǫ)

µ+ ǫ
− ǫ

)

B̂(λ)K̂(λ) for λ > 0, (4.8)

where
∧
· denotes the Laplace transform of a function. As B(·) is not identically zero on R+, we know

that B̂(λ) > 0 for λ ∈ (0,∞). It follows from (4.8) that (Λ(1−ǫ)
µ+ǫ

− ǫ)K̂(λ) ≤ 1 for λ ∈ (0,∞). In

particular, (Λ(1−ǫ)
µ+ǫ

− ǫ)K̂(ǫ) ≤ 1, which contradicts with (4.6). This completes the proof.
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Next, we establish the uniform strong ρ-persistence. For this purpose, it is crucial to show Φ has a

global compact attractor in D0. A global compact attractor A is a maximal compact invariant set in

D0 such that for any open set that contains A, all solutions of (2.3) that start at zero from a bounded

set, are contained in that open set, at least for sufficiently large time. To establish the existence of

global attractors, we need the following three results.

Lemma 4.5 ([30, Theorem 3.4.6]). If T (t) : X → X, t ∈ R+ is asymptotically smooth, point

dissipative and orbits of bounded sets are bounded, then there exists a global attractor.

A semiflow is called asymptotically smooth if each forward invariant bounded closed set is attracted

by a nonempty compact set.

Lemma 4.6 ([30, Lemma 3.2.3]). For each t ∈ R+, suppose T (t) = S(t) + U(t) : X → X has the

property that U(t) is complete continuous and there is a continuous function k : R+ ×R+ → R+ such

that k(t, r) → 0 as t → ∞ and |S(t)x| ≤ k(t, r) if |x| < r. Then T (t), t ∈ R+, is asymptotically

smooth.

The next result will be need in the discussion of Φ being asymptotically smooth.

Lemma 4.7. For any ε > 0, there exists δ > 0 such that

|B(t+ h)−B(t)| ≤ ε for all t ∈ R+, 0 < h < δ, and (S0, i0, x0) ∈ Γ. (4.9)

Proof. It is easy to see that B(t) ≤ β̄(Λ
µ
)2 for t ∈ R+. Now, let t ∈ R+ and h > 0. Then

|B(t+ h)−B(t)| =

∣

∣

∣

∣

S(t+ h)

∫ ∞

0

β(a)i(t+ h, a)da− S(t)

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

≤

∣

∣

∣

∣

[S(t+ h)− S(t)]

∫ ∞

0

β(a)i(t+ h, a)da

∣

∣

∣

∣

+S(t)

∣

∣

∣

∣

∫ ∞

0

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

≤

(

2Λ + β̄

(

Λ

µ

)2
)

hβ̄
Λ

µ
+

Λ

µ

∫ h

0

β(a)i(t+ h, a)da

+
Λ

µ

∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

=

(

2Λ + β̄

(

Λ

µ

)2
)

hβ̄
Λ

µ
+

Λ

µ

∫ h

0

β(a)B(t + h− a)π(a)da

+
Λ

µ

∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

≤

(

2Λ + β̄

(

Λ

µ

)2
)

hβ̄
Λ

µ
+

Λ

µ
β̄β̄

(

Λ

µ

)2

h

+
Λ

µ

∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

,

or

|B(t+ h)−B(t)| ≤ 2β̄
Λ

µ

[

Λ +

(

Λ

µ

)2
]

h+
Λ

µ

∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

. (4.10)
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We now come to estimate
∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

[β(a+ h)i(t+ h, a+ h)− β(a)i(t, a)]da

∣

∣

∣

∣

.

Note that, by (2.5), we have

i(t+ h, a+ h) = i(t, a)
π(a+ h)

π(a)
for all (a, t, h) ∈ R

3
+.

Therefore,
∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

(

β(a+ h)
π(a+ h)

π(a)
− β(a)

)

i(t, a)da

∣

∣

∣

∣

≤

∫ ∞

0

β(a+ h)
(

1− e−
∫

a+h

a
k(s)ds

)

i(t, a)da+

∫ ∞

0

|β(a+ h)− β(a)|i(t, a)da.

Since −k̄h ≤ −
∫ a+h

a
k(s)da ≤ 0 and e−x ≥ 1− x for x ∈ R+, we can get

∣

∣

∣

∣

∫ ∞

h

β(a)i(t+ h, a)da−

∫ ∞

0

β(a)i(t, a)da

∣

∣

∣

∣

≤ β̄k̄h
Λ

µ
+

∫ ∞

0

|β(a + h)− β(a)|i(t, a)da.

This, together with (4.10) and the fact that β is uniformly continuous, immediately produces (4.9).

By Lemma 4.4, we know that Φ(t,D0) ⊆ D0 for t ∈ R+. So it induces a semiflow on D0.

Lemma 4.8. If R0 > 1 + r
µ
, then there exists a global attractor for the solution semiflow Φ of (2.3)

in D0.

Proof. With the help of Proposition 2.2 and Lemma 4.5, we only need to show that the restricted

semiflow on D0 is asymptotically smooth. This is done by applying Lemma 4.6 as follows.

For t ∈ R+ and (S0, i0, x0) ∈ D0, let

Φ̂(t, (S0, i0, x0)) = (0, î(t, ·), 0),

Φ̃(t, (S0, i0, x0)) = (S(t), ĩ(t, ·), x(t)),

where

ĩ(t, a) =

{

i(t, a) for 0 ≤ a ≤ t

0 for t < a

}

=

{

B(t− a)π(a) for 0 ≤ a ≤ t

0 for t < a

}

(4.11)

and

î(t, a) = i(t, a)− ĩ(t, a) =

{

0 for 0 ≤ a ≤ t,

i0(a− t) π(a)
π(a−t) for t < a.

(4.12)

Then Φ = Φ̂ + Φ̃. Clearly, both î and ĩ are nonnegative. It follows from (4.12) that

‖Φ̂(t, (S0, i0, x0))‖ = ‖î(t, ·)‖1

=

∫ ∞

t

i0(a− t)
π(a)

π(a − t)
da

=

∫ ∞

0

i0(a)
π(a+ t)

π(a)
da

≤ e−µt

∫ ∞

0

i0(a)da

= e−µt‖i0‖1

≤ e−µt‖(S0, i0, x0)‖
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and hence Φ̂ satisfies the assumption in Lemma 4.6.

Now, we show that Φ̃ is completely continuous, that is, the set {Φ̃(t, (S0, i0, x0)) : (S0, i0, x0) ∈

B} is precompact for any fixed t ∈ R+ and any bounded set B ⊆ D0. This is done by applying

the Fréchet-Kolmogorov Theorem [31]. First, it follows easily from the definitions of Φ̃, D0, and

Γ that {Φ̃(t, (S0, i0, x0)) : (S0, i0, x0) ∈ B} is bounded and this verifies the first condition of the

Fréchet-Kolmogrov Theorem. Second, by (4.11), the third condition of Fréchet-Kolmogorov Theorem

is satisfied. Finally, we verify the second condition of the Fréchet-Kolmogrov Theorem. It suffices to

show that

lim
h→0+

‖ĩ(t, ·)− ĩ(t, ·+ h)‖1 = 0 uniformly in ĩ(t, ·) ∈ {Φ̃(t, (S0, i0, x0)) : (S0, i0, x0) ∈ B}. (4.13)

If t = 0 then (4.13) holds automatically since ĩ(0, ·) = 0 by (4.11). Without loss of generality, we

assume that t > 0. Since we concern with the limit as h tends to 0+, we only consider h ∈ (0, t). Then

‖ĩ(t, ·)− ĩ(t, ·+ h)‖1 =

∫ ∞

0

|̃i(t, a)− ĩ(t, a+ h)|da

=

∫ t−h

0

|B(t− a− h)π(a+ h)−B(t− a)π(a)|da +

∫ t

t−h

B(t− a)π(a)da

≤ β̄

(

Λ

µ

)2

h+

∫ t−h

0

|B(t− a− h)π(a+ h)−B(t− a)π(a)|da

≤ β̄

(

Λ

µ

)2

h+

∫ t−h

0

B(t− a− h)|π(a+ h)− π(a)|da

+

∫ t−h

0

|B(t− a− h)−B(t− a)|π(a)da

≤ β̄

(

Λ

µ

)2

h(1 + tk̄) +

∫ t−h

0

|B(t− a− h)−B(t− a)|π(a)da

as we know B(t) ≤ β̄(Λ
µ
)2 for t ∈ R+ and |π(a + h) − π(a)| = π(a)

[

1− e−
∫

a+h

a
k(s)ds

]

≤ k̄h. This,

combined with Lemma 4.7, immediately gives (4.13) and hence we have completed the proof.

Now, with the assistance of Lemma 4.4, Lemma 4.8, and [32, Theorem 2.3], we can obtain the

following result.

Theorem 4.9. If R0 > 1 + r
µ
, then (2.3) is uniformly strongly ρ-persistent.

5 Numerical simulations

In this section, we always assume that Assumption 3.1 holds. We provide some simulations to illustrate

the theoretical results obtained in the previous sections. Here I(t) =
∫∞

0
i(t, a)da for t ∈ R+.

First, set Λ = 0.4, r = 0.9, δ = 0.8, τ = 1.25, β = 0.001, µ = 0.01, and γ = 0.1. Then

R0 = 0.3591 < 1. By Theorem 4.2, E2 attracts all solutions with initial conditions in {(S, i, x) ∈

Γ : x ∈ [0, 1)}. Fig. 1(a) supports this with the initial condition (S0, i0, x0) = (0.5, 50e−.4a, 0.1). In

Fig. 1(b), we plot the phase diagram in the SI-plane with five different initial conditions.

Second, enlarge the transmission rate to β = 0.02 while keeping the other parameters at the same

values as in the first case. Then R0 = 7.1824, which is between 1 and 1 + r
µ

= 91. It follows
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Figure 1: With Λ = 0.4, r = 0.9, δ = 0.8, τ = 1.25, β = 0.001, µ = 0.01, and γ = 0.1, the equilibrium
E2 attracts all solutions with initial conditions in {(S, i, x) ∈ Γ : x ∈ [0, 1)}. (a) Time series of S, I,
and x with five different initial conditions; (b) The phase diagram in the SI-plane with five different
initial conditions.

from Theorem 3.2 and Theorem 4.3 that the endemic and vaccinator equilibrium E3 is globally

asymptotically stable. Figure 2 indicates that (2.3) evolves towards E3.
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Figure 2: With Λ = 0.4, r = 0.9, δ = 0.8, τ = 1.25, β = 0.02, µ = 0.01, and γ = 0.1, the equilibrium
E3 is locally asymptotically stable. (a) Times series of S (blue), I (green), and x (red) with five
different initial conditions, (b) the corresponding phase diagram in the SI-plane.

Suppose the cost for the vaccination is too small and let r = 0.000001. From the third equation of

(2.3) we know that x monotonously increases to 1. Then (2.3) has a pure vaccinator equilibrium E1,

which is unstable by Theorem 3.2 (see Figure 3(a)). If the cost of the vaccination is free or low, then

the coverage of the proportion vaccinated is towards high values. However, persons have no incentives

to vaccinate and the pure vaccinator equilibrium is unstable.

We rise the cost for vaccination to r = 0.01 (which is between 0.000001 (lower cost) and 1.2

(higher cost)) and keep the other parameters unchanged as in the second case. Note that δ = 0.5 <

1 < βΛ
βΛ−(µ+γ)(µ+r) . Theorem 3.2 implies that the endemic and vaccinator equilibrium E4 is locally

asymptotically stable, which is supported in Figure 3(b).

Theorem 3.2, Proposition 3.3, and Theorem 3.4 imply that δ, τ , and r play an important role in

the evolution of (2.3). Recall that δ represents the imitation rate describing the imitation behaviors

and the vaccination behavior for children. Let Λ = 0.4, r = 0.01, τ = 1.25, β = 0.05, µ = 1
50×365 ,
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Figure 3: Representative time series of S (blue), I (green), and x (red). (a) E1 is unstable, hereΛ = 0.4,
r = 0.000001, δ = 0.5, τ = 1.25, β = 0.005, µ = 1

50×365 , and γ = 0.1; (b) E4 is locally asymptotically

stable with Λ = 0.4, r = 0.01, δ = 0.5, τ = 1.25, β = 0.005, µ = 1
50×365 , and γ = 0.1.

and γ = 0.1. For some larger imitation rate δ, system (2.3) exhibits limit cycles and hence it can

be destabilized by the imitation rate δ. Fig. 4(a) shows the bifurcation diagram by taking δ as a
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Figure 4: With Λ = 0.4, r = 0.01, τ = 1.25, β = 0.05, µ = 1
50×365 , and γ = 0.1, the imitation rate

δ can destabilize (2.3). (a) The bifurcation diagram showing I with respect to the imitation rate δ

with δ varying from 0 to 6; (b) Representative phase diagram in the Ix-plane with δ being 0.5(blue),
1.5(green), and 2.5(red), respectively and the same initial condition (S0, i0, x0) = (0.5, 5e−0.4a, 0.1)

bifurcation parameter, which indicates that the amplitude of the oscillations increases as the imitation

rate does; while Fig. 4(b) shows the phase diagram in the Ix-plane with δ = 0.5, 1.5, and 2.5, and the

initial condition (S0, i0, x0) = (0.5, 5e−0.4a, 0.1).

The perceived vaccine risk r impacts the prevalence of the disease spread. If the cost of the

vaccination is high, such as a vaccine scare or a strong side effect, the frequency of the vaccination

will gradually decrease and the prevalence of the disease will increase. Fig. 5(a) shows the infection

equilibrium structure of (2.3) in terms of the disease prevalence vs r with Λ = 0.4, δ = 0.5, τ = 1.25,

β = 0.05, µ = 1
50×365 , and γ = 0.1. We can see that the disease prevalence increases when the cost of

vaccination increases. Moreover, the equilibrium E4 changes stability with r in the interval [0, 0.2] at

r = 0.01 from stable to unstable.

The latent period τ is also a key parameter for controlling the disease. For a childhood disease,
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Figure 5: With Λ = 0.4, δ = 0.5, β = 0.05, µ = 1
50×365 , and γ = 0.1, (a) infection equilibrium structure

of (2.3) with τ = 1.25; (b) bifurcation diagram with the latent period τ as bifurcation parameter and
r = 0.01.

if some medicine can extend the latent period of the disease, the prevalence of the disease can be

lowered. Figure 5(b) shows that τ can destabilize (2.3) and oscillations occur when τ is from 100 to

500. Here r = 0.01 and the other parameters except τ have the same values as above for the impact

of r. Also, the prevalence of the disease gradually increases with respect to τ .

6 Discussion

From the theoretical analysis in the above sections, the pure vaccinator equilibrium E1 is always

unstable. Parents have no incentive to vaccinate if the vaccination coverage is high. The disease-free

and non-vaccinator equilibrium E2 is globally asymptotically stable if and only if R0 < 1. If 1 < R0,

then there is an endemic and non-vaccinator equilibrium E3, which is locally asymptotically stable

if 1 < R0 < 1 + µ
r
. The endemic and vaccinator equilibrium E4 is locally asymptotically stable if

R0 > 1 + µ
r
, δ < Λβ

βΛ−(µ+γ)(µ+r) and S = ∅. If S = {τ0, . . . , τn0} with sn(τ0)(τ0) > 0, then a Hopf

bifurcation occurs from the equilibrium E4, which implies that (2.3) can be destabilized.

The imitation rate δ is the main parameter that leads to destabilization of the system and to a Hopf

bifurcation, which is proved in [14, 16]. The amplitude of the oscillations increases with the increase

of the imitated behaviors. Rational decision-making individuals, depending on updated information

about the perceived vaccine risk compared with the prevalence of the disease, decide whether or not

to vaccinate their children. As mentioned earlier in Section 5, individuals imitate others more readily

as the amount of information for the significant side effects of vaccination increases, which in turn

enhances the difficulties in disease control. The difference in immunity, characteristic for childhood

diseases, is incorporated through β(a), the different transmission ability for the different values of the

infection age a. For special cases, different transmissibility can be described by the parameters τ and

β. Suitable higher value of τ will produce a limit cycle.

When there is no cost for vaccination, i.e., r = 0, the payoff benefit is larger than the cost of

vaccination as long as
∫∞

0 β(a)i(t, a)da is not zero. From the third equation of (2.3), the frequency of

vaccination monotonously increases. It follows from the first two equations in combination with the
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third equation of (2.3) that system (2.3) evolves to E2. On the other hand, if the cost of vaccination

is not free, and the initial conditions satisfy
∫∞

0
β(a)i(t0, a)da > r, the frequency of the vaccination

monotonously increases. It follows from the first and second equation of (2.3) that infected indi-

viduals decrease until
∫∞

0 β(a)i∗(a)da = r. System (2.3) evolves to the endemic and non-vaccinator

equilibrium E3 or a stable endemic and vaccinator equilibrium E4 which depends on whether the

initial vaccinated proportion is equal or larger than 0. When
∫∞

0
β(a)i(t, a)da < r, it follows from the

third equation of (2.3) that the proportion vaccinated x decreases. Prevalence of the disease increases

until
∫∞

0
β(a)i∗(a)da = r. This implies that (2.3) also evolves to the endemic and non-vaccinator

equilibrium E3 or the endemic and vaccinator equilibrium E4 which depends on the initial vaccinated

proportion x0.

In summary, parents can make rational decisions in favor of disease control if they understand the

interplay between the perceived vaccination risk, prevalence of the disease, and the variable trans-

mission abilities of the children. Our investigation implies that high vaccination coverage can not

guarantee the elimination of the disease for a voluntary vaccination policy. On the other hand, lim-

ited vaccination may be harmful for the control of the disease spread. The amount of up-to-date

information for the vaccine use has two opposite effects: knowledge about the disease prevalence en-

courages parents to take the vaccine for their children, on the other hand the potential side effects

discourage them to take vaccine for their children. Based on the game theory, we conclude that it is

important that parents make rational decision whether or not to vaccinate their children.
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