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Abstract. We introduce a model of avian influenza in domestic birds with imper-
fect vaccination and age-since-vaccination structure. The model has four components:
susceptible birds, vaccinated birds (stratified by vaccination-age), asymptomatically
infected birds, and infected birds. The model includes reduction of probability of infec-
tion, decreasing severity of disease of vaccinated birds and vaccine waning. The basic
reproduction number, R0, is calculated. The disease-free equilibrium is found to be
globally stable under certain conditions when R0 < 1. When R0 > 1, existence of an
endemic equilibrium is proved (with uniqueness for the ODE case and local stability
under stricter conditions) and uniform persistence of the disease is established. The
inclusion of reduction in susceptibility of vaccinated birds, reduction in infectiousness
of asymptomatically infected birds and vaccine waning can have important implications
for disease control. We analytically and numerically demonstrate that vaccination can
paradoxically increase the total number of infected, resulting in the “silent spread” of
the disease. We also study the effects of vaccine efficacy on disease prevalence and the
minimum critical vaccination coverage, a threshold value for vaccination coverage to
avoid an increase in total disease prevalence due to asymptomatic infection.
Keywords: mathematical models, vaccination, waning immunity, imperfect vaccine,
vaccine efficacy, vaccination coverage, asymptomatic infection, differential equations,
reproduction number, culling, H5N1, avian influenza, global stability, local stability.

AMS Subject Classification: 92D30, 92D40

1. Introduction

Vaccination and culling are the main control strategies employed in poultry for erad-
ication of H5N1 highly pathogenic avian influenza (HPAI) disease. Culling has proved
successful in isolated areas, however, employment of mass culling of poultry has never
been a favorable control strategy because of ethical, economical and ecological reasons
[1]. Thus, vaccination is employed in the countries where the disease is endemic.

An avian influenza vaccine for poultry produces immune protection for vaccinated
birds. This immune protection decreases the probability of infection of vaccinated birds.
Besides lowering the chance of infection, a vaccine can also reduce virus shedding and
decrease the severity of the disease for an individual. The reduction in virus shedding
induced by immune response to the antigen may prevent disease symptoms [10, 12].
Thus, a possible infection after vaccination may lead to asymptomatic infection of poul-
try birds, in which case vaccinated birds get infected, but do not show symptoms and
can still spread the disease to susceptible individuals with a reduction in the probability
of successful transmission.
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In general, vaccination does not lead to perfect immunity in populations; instead
providing partial immunity which has three parameters to consider: reduction in the
susceptibility of vaccinated individuals, reduction in the infectiousness of asymptomat-
ically infected individuals and the rate at which immunity wanes. The magnitude
of these parameters depends on the time passed after vaccination and the vaccine
type. Inactivated whole AI virus vaccines and live recombinant vaccines are currently
two types of AI vaccines in use. The minimum onset of immune protection provided
by an inactivated vaccine starts 2 weeks after vaccination and can last up to 1 year
post vaccination. Recombinant vaccines are able to provide long term protection up to
24 weeks after a single dose in the absence of previous infection with fowlpox virus of
poultry [1]. In a field setting, it has also been observed that infection spread to the
recently vaccinated birds with low rates of H5N1 mortality in poultry when chickens
are between 9 and 18 days post-vaccination [11]. Some of the studies also suggest that
an earlier infection of poultry with H9N2 subtype provides short term partial protective
immunity so that it increases the resistance of birds against infection in the early stage
of H5N1 AI infection [2]. Hemagglutinin (HA)-based AI vaccines are mostly generated
from H5, H7 and H9 AI viruses [10]. In the case of vaccination with vaccines generated
from H9N2 virus, the immunity may last for a shorter duration after vaccination as
compared with immunity gained after natural infection [4].

In mathematical models of vaccination, an imperfect vaccine is usually modeled by
assuming constant rates of infection and waning for vaccinated individuals [3, 6, 21, 18,
7, 22]. However, the waning immunity and probability of infection after vaccination
may have a more general form, and age-since-vaccination structure can capture this
complexity. To the best of our knowledge, Arino et al. [6] is the only work that has
studied imperfect vaccine in an age-since-vaccination model. The “leaky vaccine” is
modeled with a general waning function depending on time passed after vaccination
and a reduction in probability of infection. However, Arino et al. assumes that once
vaccinated individuals become infected, they have the same infectivity as unvaccinated
individuals which become infected. Biologically this may not be a reasonable assumption
since vaccine-induced partial immune protection reduces the severity of infection.

In the context of avian influenza, vaccine-induced asymptomatic infection among poul-
try birds causes difficulties in preventing circulation of virus in co-existing unvaccinated
poultry [16]. It weakens the surveillance system, which is an essential component of AI
disease control. Detection problems for H5N1 HPAI virus in the vaccinated poultry can
drastically increase the likelihood of a possible outbreak [8]. Asymptomatically infected
birds are capable to spread the disease to healthy unvaccinated birds, which poses a large
threat to disease control. Asymptomatic infection in poultry also represents a threat to
mamalians including humans.

Mathematical modeling of avian influenza can give important insights on how vacci-
nation affects disease dynamics and prevalence. Iwami et al. considered a differential
equation model with a vaccine-sensitive and vaccine-resistant strain of avian influenza,
and found that increasing vaccination can increase the total number of infected birds
[18]. Even in the absence of a vaccine-resistant strain, vaccination may result in negative
outcomes as a result of “silent spread” of the AI virus. Savill et al. [8] considered an
individual based model to show how detection problems with asymptomatically infected
vaccinated birds can lead to outbreaks when vaccination coverage is not sufficiently large.
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However, they do not investigate other mechanisms which can cause negative impact of
vaccination, such as increased infectious period of asymptomatic birds, which occurs be-
cause previously vaccinated birds do not die due to disease. In addition, individual based
models may be sensitive to parameter values, and do not provide general mathematical
results and explicit threshold quantities.

In this study we introduce a partial differential equation model of avian influenza
in domestic birds with imperfect vaccination and age-since-vaccination structure. The
main objective is to understand the epidemiology of H5N1 HPAI disease in the context
of vaccination and to draw some conclusions about mechanisms causing asymptomatic
spread of the virus, an increase in total disease prevalence due to asymptomatic infection.
In the terms of epidemiological implications, we derive an explicit threshold value for
the minimum critical vaccination coverage and we also study the impact of high and
low vaccine efficacy on the critical vaccination coverage and total disease prevalence. In
addition, we numerically study culling effect on disease dynamics.

This paper is organized as follows. In the next section we introduce a model of
avian influenza in domestic birds with imperfect vaccination and age-since-vaccination
structure, which includes reduction of the probability of infection, decreasing severity of
disease of vaccinated birds and vaccine waning. We find the basic reproduction number
R0, and investigate the globally stability of disease-free equilibrium when R0 < 1. We
also investigate existence of an endemic equilibrium and show uniform persistence of the
disease. In section 3, for further analysis of the model, we consider the ODE version of
the model and show uniqueness of the endemic equilibrium. Under certain conditions,
we also establish the local stability of the unique endemic equilibrium. In section 4, we
analytically study the mechanisms that causes asymptomatic spread and derive some
critical vaccination rates including a vaccination rate that indicates the minimum rate
of vaccination to avoid asymptomatic spread of the disease. In section 5, we study the
impact of vaccine efficacy on the minimum critical vaccination coverage and total disease
prevalence. In the last section, we summarize our results and give the conclusion.

2. A model with vaccination and culling

In this section, we introduce a model of avian influenza in domestic birds, with vacci-
nation and age-since-vaccination structure in the vaccinated compartment. We consider
a population N(t) whose demography is given by a constant recruitment rate Λ and
a natural mortality rate µ. The susceptible domestic bird population S(t) moves to
the vaccinated domestic bird compartment with a vaccination rate ψS(t). The vaccine
wanes at a rate dependent upon the age-since-vaccination in order to take into account
the loss of protective antibodies over time. Here the waning function w(a) corresponds
to the per capita rate at which vaccinated birds with age a (age-since-vaccination) move
to the susceptible class. By incorporating age-since-vaccination in the model, we aim to
capture possible variable waning w(a) of immunity in the population.

Moreover, infectious birds are separated into two classes: asymptomatic and infected
class, denoted by A(t) and I(t), respectively. We assume that vaccinated birds with
age a become asymptomatically infected, i.e. move to the A(t) compartment, at the
rate ρ(a)βI(t)v(a, t), where v(a, t) denotes the density of vaccinated birds and a is time
since vaccination. The parameter ρ(a) denotes the reduction in susceptibility of vacci-
nated domestic birds. The parameter ρ(a) is assumed to be function of vaccination-age
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a since the loss of protective antibodies over time can be seen as receding protection
against infection. Note that ρ(a) can model decreasing partial immunity offered by
the vaccine, whereas the waning rate, ω(a), describes the complete loss of immunity.
Asymptomatic birds, A(t), recover with a per capita rate γ. Note that immu-
nity is boosted after asymptomatic infection. For simplicity, we assume that
the immunity gained after asymptomatic infection is similar to the immune
protection generated after vaccination. So with per capita recovery rate γ,
asymptomatic birds are added to the vaccinated class in the boundary condi-
tion, i.e. their vaccination age is reset to zero. Also susceptible birds are infected
at the total rate βS(t)(I(t) + qA(t)), where q < 1 gives the reduction in the infectivity
of asymptomatic individuals for susceptible birds, and move to the infected class I(t).
Vaccination increases resistance to infection which leads to reduction in susceptibility
of vaccinated individuals against AI disease. Vaccination also reduces virus shedding
after a possible infection of vaccinated birds [10]. So asymptomatically infected birds
are less infectious to susceptible birds, that is implemented in the model by multiplying
the transmission term βA(t)S(t) with the reduction constant q. Considering how vaccine
works in general and the process of asymptomatic infection of vaccinated birds, it can be
more reasonable to assume that asymptomatic birds do not transmit the disease to the
vaccinated birds because of reduction in susceptibility of vaccinated birds and reduction
in infectiousness of asymptomatic birds.

Table 1. Parameters and dependent variable list

Parameter/Variable Description

S(t) Number of susceptible birds at time t

v(a, t) The density of vaccinated birds with vaccination age a at time t

I(t) Number of infected birds at time t
A(t) Number of asymptomatically infected birds at time t

Λ Constant recruitment rate

β Transmission rate

µ Constant per-capita natural death rate

ν Constant per-capita disease induced death rate

ψ Constant per-capita vaccination rate

c Culling coefficient for susceptible and infected birds

ĉ Culling coefficient for vaccinated and asymptomatically infected
birds

w(a) Per-capita waning rate at vaccination age a

γ Per-capita recovery rate for asymptomatically infected birds

ρ(a) The reduction in susceptibility of vaccinated birds at vaccination
age a

q The reduction in infectivity of asymptomatic birds
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In the model, infected birds leave the compartment with a H5N1 disease-induced
death rate ν. Also culling in this model is carried out at a rate proportional to infected
poultry to assure that culling is not performed when there is no infection: at a rate cI
for susceptible and infected poultry, and at a rate ĉI for vaccinated and asymptomatic
poultry. Dependent variables and parameters and their descriptions are listed in Table
1.

The model is formulated as follows:

(2.1)



dS

dt
= Λ− β(I + qA)S − (µ+ ψ + cI)S

+

∫ ∞
0

ω(a)v(a, t)da,

∂v

∂t
+
∂v

∂a
= −ρ(a)βIv − (µ+ ω(a) + ĉI)v,

v(0, t) = ψS + γA,

dA

dt
= βI

∫ ∞
0

ρ(a)vda− (µ+ γ + ĉI)A,

dI

dt
= β(I + qA)S − (µ+ ν + cI)I

We assume that all parameters of the model are non-negative, in addition to the
following assumptions for the parameters of the model that will be valid through this
article:

ρ(.), ω(.) ∈ L∞(0,∞),
0 ≤ ρ(a) ≤ 1, ∀a ∈ (0,∞).

We introduce

φI(a, σ) = e−
∫ a
0 [ρ(u)βI(u+σ)+(µ+w(u)+ĉI(u+σ))]du, with a ≥ 0, σ ∈ R

Integrating the second equation of the system (2.1) along the characteristic lines, we
obtain

(2.2) v(a, t) =


φI(a, t− a)v(0, t− a), if t > a ≥ 0,

φI(a, t− a)

φI(a− t, t− a)
v(a− t, 0), if a > t ≥ 0,

where φI(a, σ) can be interpreted as the probability of still being in the vaccinated class
at vaccination age a having entered the vaccinated stage at time σ (Thieme, 2013 p.
215) [28]. Then

lim
a→∞

v(a, t) = 0, ∀ t ∈ [0,∞).

Therefore for the vaccinated bird population, we obtain the following ODE :

(2.3) V ′ = ψS + γA−
∫ ∞
0

ρ(a)βIv(a, t)da−
∫ ∞
0

(µ+ ω(a) + ĉI)v(a, t)da,
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Figure 1. Model structure for asymptomatic infection during a vac-
cination program: Susceptible birds (S) become vaccinated (v) with a
constant vaccination rate ψ. Some of the vaccinated birds move to the
susceptible compartment with waning rate w(a) depending on vaccination
age a. After introduction of infection, a portion of vaccinated birds become
asymptomatically infected (A) with a reduction ρ(a) in the susceptibility
of vaccinated birds. Asymptomatically infected birds recover with a rate
γ and moved to the vaccinated compartment because of their previous
exposure to the infection and induced partial immunity through vaccina-
tion. After getting contact with infected birds, a portion of susceptible
birds move to the infected compartment with a rate β(I + qA), where q is
reduction in the infectiousness of asymptomatically infected birds.

where V (t) =
∫∞
0
v(a, t)da. The solutions of the system (2.1) are non-negative for all

time t. After adding all equations V ′, S ′, A′, I ′ in the system (2.1), we obtain

N ′(t) ≤ Λ− µN,

which implies

lim sup
t→∞

N(t) ≤ Λ

µ
.

In the following subsection, we will discuss existence and stability of equilibria, namely
infection-free equilibrium and endemic equilibria.

2.1. Existence and Stability of Equilibria. The long term behavior of solutions is
determined in part by the equilibria that are time-independent solutions of the system
(2.1). An equilibrium is called disease-free equilibrium if infected compartments in this
equilibrium are zero. Otherwise it is called endemic equilibrium. In this section, we will
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investigate existence and stability of equilibria under certain conditions. We will also
show that the disease is weakly uniform persistent.

The system (2.1) has a DFE E0 = (S0, v0(a), A0, I0), where

S0 =
Λ

µ+ ψ − ψ
∫∞
0
ω(a)φ0(a)

, v0(a) = ψS0φ0(a), A0 = 0, I0 = 0,

with φ0(a) = e−
∫ a
0 (µ+w(u))du. Notice that

∫∞
0
ω(a)φ0(a) < 1 (by integration by parts) so

that the DFE is positive. In addition, φ0(a) gives the probability of being in vaccinated
compartment at vaccination age a in the absence of disease.
We define the reproduction number as follows:

(2.4) R0 =
βS0

µ+ ν
+
qβS0

µ+ γ
.
β
∫∞
0
ρ(a)v0(a)da

(µ+ ν)
.

In interpreting this expression, notice that
1

µ+ ν
,

1

µ+ γ
are the average time spent in

the infectious stage and in the asymptomatic stage, respectively. The first term
βS0

µ+ ν
is the average number of infected individuals produced by an infected individual during
its infectious period among whole susceptible population through direct transmission

between infected and susceptible birds.
β
∫∞
0
ρ(a)v0(a)da

(µ+ ν)
is the average number of

secondary asymptomatically infected birds produced by an infected individual during

its infectious period among whole vaccinated bird population.
qβS0

µ+ γ
is the number of

secondary infected birds produced by an asymptomatic birds during its asymptomatic
infectious period among whole susceptible birds population. Hence the second term in
(2.4) is the average number of secondary infected birds produced by an infected indi-
vidual during its infectious period through indirect transmission, which involves asymp-
tomatically infected birds as a mechanism which causes the transmission of infection for
susceptible birds. Hence the total expression in (2.4) represents the average number of
infected birds caused by an infected individual during its infectious period among total
susceptible and vaccinated bird population. The following theorem gives a condition on
local stability of disease free equilibrium:

Theorem 2.1. If R0 < 1, then the DFE E0 is locally asymptotically stable and it is
unstable if R0 > 1.

Proof. By taking S(t) = S0 + x(t), v(a, t) = v0(a) + y(a, t), A(t) = A0 + z(t) and I(t) =
I0+i(t), we linearize the system (2.1) about the DFE and look for eigenvalues of the linear
operator - that is we look for solutions of the form x(t) = xeλt, y(a, t) = y(a)eλt, z(t) =
zeλt and i(t) = ieλt, where x, y(a), z, i are arbitrary constants at least one of which is
non-zero (a function of a in the case of y), but the eigenvalue λ is common. This process
results in the following system (the bars have been omitted):
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(2.5)



λx = −β(i+ qz)S0 − (µ+ ψ)x− ciS0

+

∫ ∞
0

ω(a)y(a)da,

λy(a) +
∂y(a)

∂a
= −ρβiv0(a)− ĉiv0(a)− (µ+ ω(a))y(a),

y(0) = ψx+ γz,

λz = βi
∫∞
0
ρ(a)v0(a)da− (µ+ γ)z,

λi = β(i+ qz)S0 − (µ+ ν)i

By the third equation in (2.5), we obtain

(2.6) z =
βi
∫∞
0
ρ(a)v0(a)da

(λ+ µ+ γ)
.

By the last equation in (2.5), we also have

(2.7) (λ+ µ+ ν − βS0)i = βqzS0.

Substituting (2.6) into (2.7), we obtain the following equation:

(2.8) (λ+ µ+ ν − βS0)i = βqS0

βi
∫∞
0
ρ(a)v0(a)da

λ+ µ+ γ
.

From the equation above, we derive the following quadratic equation of λ (assuming
i 6= 0):

λ2 + (µ+ ν + µ+ γ − βS0)λ+ (µ+ ν)(µ+ γ)(1−R0) = 0.(2.9)

Note that when R0 < 1, then

µ+ ν − βS0 >
β2S0q

∫∞
0
ρ(a)v0(a)da

µ+ γ
.

Hence wheneverR0 < 1, we have µ+ν−βS0 > 0, which also implies µ+ν+µ+γ−βS0 >
0. Then when R0 < 1, the quadratic equation (2.9) has two complex roots λ1, λ2 either
with negative real parts or two negative real roots.
Now consider that i = 0. Then z = 0. Therefore from the equation system (2.5), we
obtain

(2.10)


λx = −(µ+ ψ)x+

∫ ∞
0

ω(a)y(a)da,

λy(a) +
∂y(a)

∂a
= −(µ+ ω(a))y(a),

y(0) = ψx,

Solving this equation system, we obtain λ = −µ+ ψ(−1 +
∫∞
0
w(a)e−

∫ a
0 (µ+w(s)+λ)dsda).

Notice that the left hand side of the equality above is an increasing function of λ (and
at 0, it is zero) and the right hand side of the equation is a decreasing function of λ (and
at 0, it is negative since

∫∞
0
w(a)e−

∫ a
0 (µ+w(s)+λ)dsda < 1). So if λ is a real number, these

two functions do not intersect on the interval [0,+∞). However they have to intersect
on the interval (−∞, 0) since as λ → −∞, the left hand side of the equation decreases



Vaccination and Culling in H5N1 9

and the right hand side of the equation increases.
Now, let λ be a complex number such that λ = α+ iη, with α ≥ 0. Then by rearranging
the equality above, we obtain

α + µ+ ψ + iη = ψ

∫ ∞
0

w(a)e−
∫ a
0 (µ+w(s)+α)dse−iηada

Now taking the absolute value of both sides, we get

α + µ+ ψ ≤ ψ

∫ ∞
0

w(a)e−
∫ a
0 (µ+w(s)+α)dsda.

If α ≥ 0, this inequality does not hold. Hence, we have a contradiction. Therefore α < 0.
Considering both cases (i = 0 or i 6= 0), we can conclude that all eigenvalues λ of the
system (2.1) have a negative real part if R0 < 1. Then when R0 < 1, the DFE is locally
asymptotically stable. However if R0 > 1, then (2.9) has two real roots with opposite
signs in the case of i 6= 0. Hence when R0 > 1, the DFE is unstable.

�

In the following theorem, we show the existence of endemic equilibrium under the con-
dition R0 > 1, moreover the condition γ = 0 leads to uniqueness of endemic equilibrium
when R0 > 1.

Theorem 2.2. When R0 > 1, the system (2.1) has a positive endemic equilibrium
(S∗, v∗(a), A∗, I∗), where

S∗ =
Λ− (µ+ ν + cI∗)I∗

(µ+ ψ + cI∗ − ψ(1 + γf(I∗))Ω(I∗))
, v∗(a) = (ψS∗+γA∗)φI(a), A∗ = ψf(I∗)S∗,

with

f(I∗) =
βI∗K(I∗)

(µ+ γ + ĉI∗)− βγI∗K(I∗)
, Ω(I∗) =

∫ ∞
0

ω(a)φI∗(a)da, K(I∗) =

∫ ∞
0

ρ(a)φI∗(a)da,

and
φI∗(a) = e−

∫ a
0 [ρ(u)βI∗+(µ+w(u)+ĉI∗)]du.

If γ = 0, then this equilibrium is unique.

Proof. To compute the steady states of the system (2.1), we set the derivatives with
respect to time in the system (2.1) equal zero. In this way we obtain the following
system (the stars have been omitted because these are generic values of S, v(a), A and
I, not necessarily the equilibrium):

(2.11)



0 = Λ− β(I + qA)S − (µ+ ψ + cI)S

+

∫ ∞
0

ω(a)v(a)da,

∂v

∂a
= −ρ(a)βIv − (µ+ ω(a) + ĉI)v,

v(0)= ψS + γA,

0 = βI

∫ ∞
0

ρ(a)vda− (µ+ γ + ĉI)A,

0 = β(I + qA)S − (µ+ ν + cI)I,
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which includes three algebraic equations and an ODE.
By the third equation (initial condition not counted) in the system (2.11), we have

(2.12) A =
βI
∫∞
0
ρ(a)v(a)da

(µ+ γ + ĉI)
.

Also by the second equation and boundary condition in the system (2.11), we obtain

(2.13) v(a) = (ψS + γA)φI(a).

Then by substituting (2.13) into the equation (2.12), we get

A =
βI(ψS + γA)K(I)

(µ+ γ + ĉI)
.(2.14)

(K(I), Ω(I) and f(I) are defined in the statement of Theorem (2.2).)
By arranging the equality (2.14), we obtain

A = ψS
βIK(I)

(µ+ γ + ĉI − βIγK(I))
(2.15)

We note that the denominator is positive since βIK(I) < 1. Then by the third equality
in the system (2.11), we have

βS(1 +
qβψSK(I)

(µ+ γ + ĉI − βIγK(I))
) = (µ+ ν + cI)(2.16)

By the fourth equation in the system (2.11),

β(I + qA)S = (µ+ ν + cI)I.(2.17)

Substituting the equations (2.13), (2.15), and (2.17) into the first equality in the system
(2.11), we obtain

S =
Λ− (µ+ ν + cI)I

(µ+ ψ + cI − ψ(1 + γf(I))Ω(I))
= F (I).(2.18)

Notice that the denominator D(I) of F (I) is positive if

(µ+ ψ + cI) [(µ+ γ + ĉI)− γβIK(I)]− ψ(µ+ γ + ĉI)Ω(I) > 0.(2.19)

By the fact that 0 < (βIK(I) + Ω(I)) < 1, we can reduce the left hand side of the
inequality (2.19) and obtain D(I) > µ2, which implies D(I) > 0 for all I ≥ 0. Therefore
F (I) is a decreasing function of I for all I ≥ 0 for which S(I) ≥ 0.

Substituting the equality (2.18) into the equation (2.16) in the system above, we get

βF (I)(1 +
qβψF (I)K(I)

(µ+ γ + ĉI − γβIK(I))
) = (µ+ ν + cI)(2.20)

Let G(I) := βF (I)(1 +
qβψF (I)K(I)

(µ+ γ + ĉI − γβIK(I))
) and L(I) := (µ + ν + cI). First note

that ∃ Ĩ : F (Ĩ) = 0. So G(Ĩ) = 0. Also notice that L(I) is an increasing function of I and
G(I) is a continuous function of I. Therefore since G(0) > L(0), where R0 = G(0)/L(0),

then there exists a solution Î ∈ (0, Ĩ) : G(Î) = L(Î). Notice that if γ = 0, then G(I) is
a decreasing function of I since F (I) decreases as I increases. So if R0 > 1, then there
is a unique solution I∗, since L(I) increases as I increases (when γ = 0).
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�

In the main model (2.1), we assume that the asymptomatic infected birds recover at
a rate γ and move to the vaccinated compartment. In the case of γ = 0, we establish
global extinction of the disease when R0 < 1.

Theorem 2.3. Let γ = 0. IfR0 < 1, then the disease free equilibrium E0 = (S0, v0(a), 0, 0)
is globally asymptotically stable.

Proof. By the equation (2.2), we have∫ ∞
t

v(a, t)da =

∫ ∞
t

φI(a, a− t)
φI(a− t, t− a)

v(a− t, 0)da

=

∫ ∞
t

e−
∫ a
a−t[ρ(u)βI(u+t−a)+(µ+w(u)+ĉI(u+t−a))]duv(a− t, 0)da

= e−µt
∫ ∞
t

e−
∫ a
a−t[ρ(u)βI(u+t−a)+(w(u)+ĉI(u+t−a))]duv(a− t, 0)da

≤ e−µt
∫ ∞
t

v(a− t, 0)da

= e−µt
∫ ∞
0

v(a, 0)da

Then limt→∞
∫∞
t
v(a, t)da = 0, since v(a, t) ∈ L1. Also by the first equation in the system

(2.1), we have

S ′ ≤ Λ− (µ+ ψ)S +

∫ ∞
0

w(a)v(a, t)da.

Then for t > 0 large enough, we obtain

S ′ ≤ Λ− (µ+ ψ)S +

∫ t

0

w(a)v(a, t) + ε

≤ Λ− (µ+ ψ)S +

∫ t

0

w(a) [ψS(t− a) + γA(t− a)]φI(a, t− a)da+ ε

Hence by the assumption γ = 0, we have

S ′ ≤ Λ− (µ+ ψ)S +

∫ t

0

w(a)ψS(t− a)φI(a, t− a)da+ ε.

Let S∞ = lim supt S(t). Then there exists τ > 0 such that S(t) ≤ S∞ + ε, ∀t ≥ τ. By
the semigroup property, without loss of generality we can assume that τ = 0. Then
S(t) ≤ S∞ + ε, ∀t ≥ 0. Therefore

S ′ ≤ Λ− (µ+ ψ)S + ψ(S∞ + ε)

∫ t

0

w(a)φI(a, t− a)da



12

For x′ ≤ a−bx, with constants a, b, we know that lim supt x ≤
a

b
. Then by the inequality

above, we have

(2.21) S∞ ≤
Λ + ψ(S∞ + ε)

∫∞
0
w(a)φ0(a)da

µ+ ψ
.

After rearranging the inequality (2.21), we obtain

S∞ ≤ Λ

µ+ ψ − ψ
∫∞
0
w(a)φ0(a)da

+ ε

[
ψ
∫∞
0
w(a)φ0(a)da

µ+ ψ − ψ
∫∞
0
w(a)φ0(a)da

]
Since the inequality above is true for all ε > 0 and the second term is bounded, we
have

S∞ ≤ Λ

µ+ ψ − ψ
∫∞
0
w(a)φ0(a)da

= S0,(2.22)

Also by the last equation in the system (2.1), we have

I ′ ≤ β [(I∞ + ε) + q(A∞ + ε)] (S∞ + ε)− (µ+ ν)I.

Then by the inequality (2.22) and the similar argument above, we obtain

I∞ ≤
[

βΛ

(µ+ ν)(µ+ ψ − ψ
∫∞
0
w(a)φ0(a)da)

]
I∞ +

[
qβΛ

(µ+ ν)(µ+ ψ − ψ
∫∞
0
w(a)φ0(a)da)

]
A∞.

(2.23)

Moreover by the third equation in the system (2.1), we have

(2.24) A∞ ≤
βψS∞I∞

∫∞
0
ρ(a)φ0(a)da

µ
.

Substituting the equation (2.24) into the equation (2.23) and using the inequality (2.22),
we obtain

I∞ ≤
[

βS0

(µ+ ν)
+
qβ2S0

∫∞
0
ρ(a)v0(a)da

(µ+ ν)µ

]
I∞

= R0I
∞.

Then if R0 < 1, we have I∞ = 0. It also implies A∞ = 0.
�

2.2. Disease Persistence. In the presence of a disease, one would like to understand
under what conditions the disease will remain endemic for large time. We say the
disease is uniformly weakly endemic if there exists some ε > 0 independent of the initial
conditions such that

lim sup
t→∞

I(t) > ε, whenever I(0) > 0,

for all solutions of the model. However the disease is uniformly strongly endemic if there
exists some ε > 0 independent of the initial conditions such that

lim inf
t→∞

I(t) > ε, whenever I(0) > 0,

for all solutions of the model. In the following results, we identify the conditions that
result in the prevalence being bounded away from zero.

Proposition 2.1. If R0 > 1, then the disease is uniformly weakly endemic.
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Proof. By the way of contradiction, assume that there exists a solution I(t), with I(0) >
0, such that

lim sup
t→∞

I(t) ≤ ε0, ∀ ε0 > 0.

Fix ε0 > 0 and let ε1 > 0 be given. Then ∃ t0 > 0: I(t) ≤ ε0+ε1, ∀ t ≥ t0. Consequently,
the semiflow properties of a solution imply that without loss of generality, we have the
above inequality valid for all t ≥ 0.
Next note that ∫ ∞

0

ρ(a)v(a, t) ≤ K

for some positive real number K, since ρ(a) ∈ [0, 1] and lim supt→∞N(t) ≤ Λ

µ
.

Then by the third equation of the system (2.1),

(2.25) A′ ≤ βε2K − (µ+ γ)A,

with ε2 = ε0 + ε1. Then lim supt→∞A(t) ≤ βε2K

(µ+ γ)
. Hence by the inequality above, we

have A(t) ≤ βε2K

(µ+ γ)
+ δ0 , for given δ0 > 0 and ∀ t ≥ 0, by semigroup property. Then

A(t), I(t) ≤ ε3, where ε3 =
βε2K

(µ+ γ)
+ δ0 + ε2, ∀ t ≥ 0, by similar argument above. Let

ε4 = ε3 + qε3. Next by the first equation in the system (2.1), we obtain

S ′ ≥ Λ− ε4S − (µ+ ψ + ĉε2)S +
∫∞
0
w(a)v(a, t)da,

≥ Λ− ε4S − (µ+ ψ + ĉε2)S +
∫ t
0
w(a)e−

∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]du(ψS(t− a))da,

≥ Λ− ε4S − (µ+ ψ + ĉε2)S

+(lim inft→∞ S(t)− ε5)ψ
∫ t
0
w(a)e−

∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]duda,

≥ Λ− ε4S − (µ+ ψ + ĉε2)S

+(lim inft→∞ S(t)− ε5)ψ
[∫∞

0
w(a)e−

∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]duda− δ1

]
,

≥ Λ− ε4S − (µ+ ψ + ĉε2)S

+(lim inft→∞ S(t)− ε5)ψ
[∫∞

0
w(a)e−

∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]duda− δ1

]
.

Notice that we can choose δ1, ε5 as small as we want. Then

S ′ ≥ Λ− ε4S − (µ+ ψ + ĉε2)S + (lim inf
t→∞

S(t))ψ

[∫ ∞
0

w(a)e−
∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]duda

]
.

For the inequality x′(t) ≥ a−bx(t), with positive constants a, b, we have lim inft→∞ x(t) ≥
a

b
. Then by the inequality above, we obtain

lim inft→∞ S(t) ≥ Λ

ε4 + (µ+ ψ + ĉε2)− ψ
∫∞
0
w(a)e−

∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]duda

= Sε20 .

Note that ε4 is a function of ε2 and we can choose ε2 as small as we want (as well as δ0).
By applying Dominated Convergence Theorem, we obtain limε2→0 S

ε2
0 = S0. Therefore

lim inft→∞ S(t) ≥ S0. Hence for given ε6 > 0, ∃ t1 : S(t) ≥ S0 − ε6, ∀ t ≥ t1. Again, by
semigroup property, without loss of generality, the inequality above is valid for all t > 0.
Next note that by the third and fourth equation in the system (2.1), we have
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(2.26)

{
A′≥ ψβI

∫∞
0
ρ(a)φε20 (a)(S0 − ε6)da− (µ+ γ)A,

I ′ ≥ βI(S0 − ε6) + qβ(S0 − ε6)A− (µ+ ν)I,

where φε20 = e−
∫ a
0 [ρ(u)βε2+w(u)+µ+ĉε2]du. We can write (2.26) in the following form:

(2.27)

 A′

I ′

 ≥
 −(µ+ γ) ψβ

∫∞
0
ρ(a)φε20 (a)(S0 − ε6)da

qβ(S0 − ε6) β(S0 − ε6)− (µ+ ν)

 A

I

 .
Let

(2.28) M =:

 −(µ+ γ) ψβ
∫∞
0
ρ(a)φε20 (a)(S0 − ε6)da

qβ(S0 − ε6) β(S0 − ε6)− (µ+ ν).


We have

detM = (µ+ γ)(µ+ ν) [1−Rε2
0 ] + ε6

[
β(µ+ γ) + 2qβS0ψβ

∫ ∞
0

ρ(a)φε20 (a)da

]
−ε26

[
qβ2ψ

∫ ∞
0

ρ(a)φε20 (a)da

]
,

where

Rε2
0 =

βS0

(µ+ ν)

[
1 +

qβS0ψ
∫∞
0
ρ(a)φε20 (a)da

(µ+ γ)

]
and limε2→0Rε2

0 = R0.
We can choose ε6 as small as we want. Hence when Rε2

0 > 1, we have detM < 0.
Then the matrix M has a positive eigenvalue λ, when Rε2

0 > 1. The matrix M is a
quasi-positive matrix. Then by Theorem A.43 [Thieme 2003, p.447], its spectral bound
(modulus of stability) is an eigenvalue of M associated with a positive eigenvector of M,

denoted by
−→
V , with λ > 0 an eigenvalue of M . Then c

−→
V , with a positive constant c, is

also an eigenvector of M. Note that eλtc
−→
V is a solution of the system y′ = My. Next

taking the constant c sufficiently small, we get

c
−→
V ≤

 A0

I0

 .
Then by the Theorem B.1 [Smith & Waltman 2003, p. 261], we obtain

eλtc
−→
V ≤

 A(t)

I(t)

 .
for all t > 0. Note that left hand side of the inequality goes to infinity as t→∞, which
also implies A(t), I(t) go to infinity, as t→∞. This is a contradiction. �
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3. Further Analysis of the Model: The ODE case

In the model (2.1), the waning rate w(a) and the reduction in the susceptibility of
vaccinated birds ρ(a) depend on vaccination age a (the time passed post-vaccination).
Even though in the avian influenza context, susceptibility of vaccinated birds depends
on vaccination age a and vaccine type (for further information, see Introduction section),
for the purpose of further analysis of the model (2.1), in this section, we assume waning
rate and reduction in the susceptibility of vaccinated birds are constant; i.e. they do
not depend on a. Let ρ(a) = ρ and w(a) = w, for all a ≥ 0. Recall that the number of
vaccinated birds is V (t) and

V (t) =

∫ ∞
0

v(a, t)da(3.1)

Then under the assumptions ρ(a) = ρ and w(a) = w and from the equation (2.3), we
obtain

(3.2)
dV

dt
= ψS + γA− ρβIV (t)− (µ+ w + ĉI)V (t),

The resulting ODE model is as follows:

(3.3)



dS

dt
= Λ− β(I + qA)S − (µ+ ψ + cI)S + wV ,

dV

dt
= ψS + γA− ρβIV − (µ+ w + ĉI)V ,

dA

dt
= ρβIV − (µ+ γ + ĉI)A,

dI

dt
= β(I + qA)S − (µ+ ν + cI)I

The disease-free equilibrium of the ODE system is E = (S0, V0, 0, 0), where S0 =
Λ(µ+ w)

µ(µ+ w + ψ)
and V0 =

Λψ

µ(µ+ w + ψ)
and the reproduction number for this case is:

R0 =
βS0

(µ+ ν)
+

ρqβ2S0V0
(µ+ ν)(µ+ γ)

.(3.4)

Notice that the ODE models are the specific case of PDE models. Therefore the results
that hold for the PDE version of the model must also hold for the ODE case.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium of the system (3.3) is locally
asymptotically stable.

Proof. The proof of Theorem 2.1 also implies the local asymptotical stability of DFE
when R0 < 1. �

In PDE case, it has been difficult to prove uniqueness of the endemic equilibrium
without any simplifying assumption though we have shown existence. The following
result gives uniqueness of endemic equilibrium in the ODE case.

Theorem 3.2. If R0 ≤ 1, then the system (3.3) does not have an endemic equilibrium.
However, if R0 > 1, then there is a unique endemic equilibrium.
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Proof. An endemic equilibrium of the system (3.3) must satisfy the following equation
system:

(3.5)



0= Λ− β(I + qA)S − (µ+ ψ + cI)S + wV ,

0= ψS + γA− ρβIV − (µ+ w + ĉI)V ,

0= ρβIV − (µ+ γ + ĉI)A,

0= β(I + qA)S − (µ+ ν + cI)I,

By the third equation in the system (3.5), we have

(3.6) A =
ρβIV

µ+ γ + ĉI
.

After substituting the equation (3.6) into the second equation in (3.5), we get

ψS =

[
−γρβI

µ+ γ + ĉI
+ ρβI + µ+ w + ĉI

]
V.

Hence

(3.7) V =
ψS

µ+ ĉI

µ+ γ + ĉI
ρβI + µ+ w + ĉI

By the fourth equation in the system (3.5), we have

β(I + qA)S = (µ+ ν + cI)I(3.8)

Substituting the equations (3.7) and (3.8) into the first equation in the system (3.5), we
obtain

Λ− (µ+ ν + cI)I = [µ+ ψ + cI − ψf(I)]S,(3.9)

where
f(I) =

w

µ+ ĉI

µ+ γ + ĉI
ρβI + µ+ w + ĉI

.

Then

(3.10) S =
Λ− (µ+ ν + cI)I

µ+ ψ + cI − ψf(I)

Note that f(I) ∈ [0, 1] and it is a decreasing function of I. Hence S is also a nonnegative
decreasing function of I for all I, for which S ≥ 0 (3.10). After substituting (3.6), (3.7),
(3.10) into the last equation of the system (3.5) and canceling I from both sides of the
equation, we get the following equality:

(3.11) β

1 +
qρβ

µ+ γ + ĉI

ψS

µ+ ĉI

µ+ γ + ĉI
ρβI + µ+ w + ĉI

S = (µ+ ν + cI)

Let F (I) and G(I) be the left and right hand side of the equation (3.11), respectively.
Recall that S is a decreasing function of I, ∀I > 0 : S = S(I) ≥ 0. Hence F (I) is a
decreasing function of I. Also note that G(I) is increasing linearly respect to I. Then if
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these functions intersect, they must intersect at a unique positive point I.
The endemic equilibrium of the system (3.3) is the constant solution of this system with
at least one positive infected component. Hence the intersection point I > 0 of the
functions F (I) and G(I) is the endemic equilibrium of this system. This system has an
equilibrium in R4

+ with positive infected component I > 0 if and only if F (0) > G(0).
Notice that F (0) > G(0) if and only if R0 > 1, where

F (0) = β

[
1 +

qρβ

(µ+ γ)

ψΛ

µ(µ+ w + ψ)

]
Λ(µ+ w)

µ(µ+ w + ψ)
= βS0

[
1 +

qρβ

(µ+ γ)
V0

]
and

G(0) = µ+ ν.

�

3.0.1. The ODE model does not exhibit backward bifurcation. Vaccination models can
exhibit backward bifurcation due to mechanisms such as reinfection, vaccine induced
immune waning, vaccine failure, host’s disease induced mortality, multiple susceptible
groups and host susceptibility after recovery [7, 22, 21]. It seems that our model has these
mechanisms. However Theorem (3.2) excludes the existence of backward bifurcation; i.e
existence of stable and unstable endemic equilibria when R0 < 1. The absence of back-
ward bifurcation in this model can be explained with the following argument: The model
(3.3) has two susceptible compartments: Susceptible (S) and Vaccinated (V). However
in contrast to all vaccination models that exhibit backward bifurcation, the model has
multiple infected compartments: Asymptomatic (A) and Infected (I). When susceptible
poultry get infected they move to the infected compartment and when vaccinated birds
get infected, they become asymptomatically infected. The model does not assume that
asymptomatically infected birds move to the infected class. It basically distributes the
newly infected individuals to different infected compartments. Therefore the infected
individuals do not accumulate in one infected compartment, and this mechanism may
exclude the possibility of backward bifurcation.

Even though the non-existence of endemic equilibria when R0 < 1 is shown in the
ODE case, model (3.3), we can only prove global stability of DFE when γ = 0, as in
the general case (Theorem 2.3). The question of global stability of DFE when R0 < 1
and γ > 0 seems to be much more difficult. We have attempted proof using comparison
arguments, and also standard Lyapunov functions, but the result could not be established
when γ > 0. Thus, the question of global stability of DFE when γ > 0 and R0 < 1
remains open, and we cannot rule out oscillations in this case.

The following theorem proves local stability of the endemic equilibrium when R0 > 1
for a special case of the ODE model (3.3).

Theorem 3.3. Let ν = 0. Then in the absence of culling; i.e. c = ĉ = 0, the unique
endemic equilibrium of the system (3.3) is locally asymptotically stable when R0 > 1.

Proof. Assume c = ĉ = 0. Then we can analyze the local stability of the unique en-
demic equilibrium E∗ = (S∗, V ∗, A∗, I∗) by investigating the sign of the real part of the
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eigenvalues of the the Jocabian matrix J |E∗ of the ODE system evaluated at E∗:

J |E∗ =


−β(I∗ + qA∗)− (µ+ ψ) w −qβS∗ −βS∗
ψ −ρβI∗ − (µ+ w) γ −ρβV ∗
0 ρβI∗ −(µ+ γ) ρβV ∗

β(I∗ + qA∗) 0 qβS∗ βS∗ − (µ+ ν)


Let ν = 0 and define M∗ := J − λI|E∗ . Then

det(M∗) =

∣∣∣∣∣∣∣∣
−β(I∗ + qA∗)− (µ+ ψ)− λ w −qβS∗ −βS∗
ψ −ρβI∗ − (µ+ w)− λ γ −ρβV ∗
0 ρβI∗ −(µ+ γ)− λ ρβV ∗

β(I∗ + qA∗) 0 qβS∗ βS∗ − µ− λ

∣∣∣∣∣∣∣∣
(by the row operations: R1 +R4 7→ R1 and R2 +R3 7→ R2)

=

∣∣∣∣∣∣∣∣
−(µ+ ψ + λ) w 0 −(µ+ λ)
ψ −(µ+ w + λ) −(µ+ λ) 0
0 ρβI∗ −(µ+ γ + λ) ρβV ∗

β(I∗ + qA∗) 0 qβS∗ βS∗ − (µ+ λ)

∣∣∣∣∣∣∣∣
(by the row operation: R1 +R2 7→ R1)

= −(µ+ λ)

∣∣∣∣∣∣∣∣
1 1 1 1
ψ −(µ+ w + λ) −(µ+ λ) 0
0 ρβI∗ −(µ+ γ + λ) ρβV ∗

β(I∗ + qA∗) 0 qβS∗ βS∗ − (µ+ λ)

∣∣∣∣∣∣∣∣
Finally by the column operations (−1).C1 + Ci 7→ Ci, where i = 2, 3, 4, we obtain

det(M∗) = −(µ+ λ) det(N∗),

where

N =


1 0 0 0
ψ −(µ+ w + ψ + λ) −(µ+ ψ + λ) −ψ
0 ρβI∗ −(µ+ γ + λ) ρβV ∗

β(I∗ + qA∗) −β(I∗ + qA∗) −β(I∗ + qA∗) + qβS∗ βS∗ − β(I∗ + qA∗)− (µ+ λ)


Then we obtain the following characteristic equation F (λ):

F (λ) = −(µ+ λ)(a3λ
3 + a2λ

2 + a1λ+ a0) = 0,

where
a3 = 1,

a2 = (µ+ γ + µ+ w + ψ + β(I + qA) + (µ− βS) + ρβI),

a1 = (µ+ γ + µ+ w)(β(I + qA) + (µ− βS)) + ψ(µ− βS) + (µ+ w + ψ)(µ+ γ)

+ ρβI(µ+ ψ) + ρβI(β(I + qA) + (µ− βS))− ρβV qβS,
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a0 = (µ+ w)(µ+ γ)(β(I + qA) + (µ− βS)) + ψ(µ+ γ)(µ− βS) + ψρβIqβS

+ ρβIµ(β(I + qA) + (µ− βS)) + ρβIψ(µ− βS)

− ρβV qβS(µ+ w + ψ) + ρwβV β(I + qA).

By the equilibrium condition derived from the last equation in (3.5), we obtain

(µ− βS)I = qβAS > 0.(3.12)

Also by multiplying both side of the third equation in (3.5) with qβS and dividing
by I, we get

−ρβV qβS = −(µ+ γ)βS
qA

I
.(3.13)

Then by the equation (3.12), we have

−ρβV qβS = −(µ+ γ)(µ− βS).(3.14)

Now we will show that ai > 0 for all i ∈ {0, 1, 2, 3} . By the equation (3.14), we have

a1 = (µ+γ)β(I+qA)+(µ+w)(β(I+qA)+(µ−βS))+ψ(µ−βS)+(µ+w+ψ)(µ+γ)

+ρβI(µ+ ψ) + ρβI(β(I + qA) + (µ− βS)),

a0 = (µ+ w)(µ+ γ)β(I + qA) + ψρβIqβS

+ρβIµ(β(I + qA) + (µ− βS)) + ρβIψ(µ− βS) + ρwβV β(I + qA).

Notice that by (3.12), we have (µ − βS) > 0. Then ∀ i ∈ {0, 1, 2, 3} , we have
ai > 0. Now we want to show a2a1 > a3a0. (2nd condition for Routh-Hurwitz Stability
Criterion)

By the equation (3.7), we have V <
ψS

w
. Then by the last equality in the system 3.5,

we obtain

ρwβV β(I + qA) < ρβψµI < µψβI.(3.15)

Then
a0 < (µ + w)(µ + γ)β(I + qA) + ψρβIqβS + ρβIµ(β(I + qA) + (µ− βS)) + ρβIψ(µ−
βS) + µψβI.
Let us define the right hand side of the inequality above as ã0. Then a0 < ã0. Also it is
easy to see that a1a2− ã0a3 > 0. Then a1a2−a0a3 > 0. Then by Routh-Hurwitz stability
criterion, the endemic equilibrium is locally asymptotically stable whenever the endemic
equilibrium exists.

�

4. Asymptomatic Spread caused by Vaccination

Vaccination of poultry has been employed in many regions. However the outbreaks
have continued to occur without clear understanding of the mechanisms involved [16, 17].
One of the main objectives of this study is to understand the epidemiology of H5N1
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Figure 2. a)The total infected and asymptomatic equilibrium with re-
spect to varying vaccination rate ψ. Parameter values are: Λ = 120, µ =
0.5, β = 1, ν = 365/10, ρ = 0.4, γ = 0.5, q = 0.3, w = 1, c = 1.5,ĉ = 1.4.
The initial values are: S(0) = Λ/µ, V (0) = 0, A(0) = 0, I(0) = 10.
The units for state variables are taken to be 107 birds in order to re-
flect the world population of the poultry. b)The total number of infected
and asymptomatic birds with respect to time (years) for different vacci-
nation rate values ψ. Parameter values are identical with the parameter
values in part (a). Solutions are taken with respect to different ψ values:
ψ = 0 (blue), ψ = 3.2 (red), ψ = 9.6 (yellow), ψ = 16 (green).

HPAI disease in the context of vaccination and to draw some conclusions about mech-
anisms causing asymptomatic spread of the virus in domestic bird populations. In this
section, under certain simplifications, we derive an explicit condition for asymptomatic
spread in poultry population.
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Figure 3. In this figure, y-axis shows total disease prevalence A∗ + I∗

and the x-axis shows vaccination rate ψ. The initial and parameter values
are identical to Fig.(2). The different parameter values chosen are: c =
0.5, c1 = 0.1, w = 0, q = 0, ρ = 0.05. Also for the blue curve, the
recovery rate is chosen as γ = 0 and for the other one, γ = 6.

4.1. Derivation under simplifying assumptions. In this subsection, we will assume
that the reduction in infectiousness of asymptomatic birds (q), waning rate w and culling
rates c, ĉ to be 0. Recall that in the previous section, we showed that when R0(ψ) > 1,
the system (3.3) has a unique endemic equilibrium (S∗, V ∗, A∗, I∗); otherwise there is no
endemic equilibrium (Theorem 3.2). Under the given simplification, we have

R0(ψ) =
βΛ

(µ+ ν)(µ+ ψ)
.(4.1)

By the last equation in the system (3.5) and under simplifying assumptions, we also

obtain S∗ =
(µ+ ν)

β
. Similarly, by the first equation, we get S∗ =

Λ

(βI∗ + µ+ ψ)
. By

the equality of both equations, we obtain infected equilibrium I∗:

(4.2) I∗ =
(µ+ ψ)

β
[R0(ψ)− 1] .

R0(ψ) given by (4.1) is a decreasing function of vaccination rate ψ. By the equation

(4.2), we have a critical value ψ̂∗ = µ(R0(0)− 1) :

(4.3) I∗ > 0 if and only if ψ ∈ (0, ψ̂∗) if and only if R0(ψ) > 1.

If ψ ∈ (0, ψ̂∗), then we have the unique endemic equilibrium (S∗, V ∗, A∗, I∗), where

S∗ =
Λ

βI∗ + µ+ ψ
, V ∗ =

ψS∗ + γA∗

ρβI∗ + µ
, A∗ =

ρβI∗ψΛ

µ(ρβI∗ + µ+ γ)(βI∗ + µ+ ψ)
,(4.4)
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with I∗ given by (4.2). Notice that the total infected and asymptomatic equilibrium

A∗+ I∗ is differentiable ∀ ψ ∈ [0,∞) and A∗+ I∗ is positive only on the interval [0, ψ̂∗).
The next theorem gives a necessary and sufficient condition for existence of a threshold
vaccination rate value ψm, in which case if ψ < ψm, then the total disease prevalence
increases and it decreases when ψ > ψm.

Theorem 4.1. Let R0(ψ) > 1, where R0(ψ) is given by (4.1). If

R0(0) >
µ+ γ

ρν
+ 1,(4.5)

then A∗ + I∗ has a unique local maximum on the interval (0, ψ̂∗). Otherwise A∗ + I∗ is

a non-increasing function of ψ on the interval (0, ψ̂∗), when R0(ψ) > 1.

Proof. First note that

∂I∗

∂ψ
=
−1

β
.(4.6)

Hence it is a decreasing function of ψ, whenever it exists (i.e. R0(ψ) > 1).

Claim 4.1. Let R0(ψ) > 1. Then A∗ has a unique local maximum on the interval (0, ψ̂∗).

Proof. Notice that A∗, which is given in (4.4) is a differentiable function of ψ. Taking
the derivative of A∗ respect to the vaccination rate ψ, we obtain

∂A∗

∂ψ
= Λρβµ

[
(I∗ + ψ

∂I∗

∂ψ
)(ρβI∗ + µ+ γ)− ψI∗ρβ∂I

∗

∂ψ

]
1

[(ρβI∗ + µ+ γ)2µ2(βI∗ + µ+ ψ)]
,

Then whenever R0(ψ) > 1, by (4.2) and (4.6), we have

∂A∗

∂ψ
|ψ=0 > 0.

Next, we want to show that A∗(ψ) has a unique local maximum on the interval (0, ψ̂∗).

∂A∗

∂ψ
= 0⇔

[
(I∗ + ψ

∂I∗

∂ψ
)(ρβI∗ + µ+ γ)− ψI∗ρβ∂I

∗

∂ψ

]
= 0.

By substituting I∗ given by (4.2) in the equation above, we obtain the following quadratic
equation of ψ:

ψ2A+ ψB + C = 0,

where A = ρ(µ+ν)2, B = 2µA

[
1−R0(0)− (µ+ γ)

ρµ

]
, C =

µB

2
[1−R0(0)] . The roots

of this equation are

ψ1,2 =
(µ+ γ)

ρ

(1 +
ρψ̂∗

(µ+ γ)
)∓

√
1 +

ρψ̂∗

(µ+ γ)

 =

(µ+ γ)

ρ
+ ψ̂∗ ∓ (µ+ γ)

ρ

√
1 +

ρψ̂∗

(µ+ γ)


Then, A∗ has a unique local maximum at

ψ1 =

(µ+ γ)

ρ
+ ψ̂∗ − (µ+ γ)

ρ

√
1 +

ρψ̂∗

(µ+ γ)

(4.7)
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on the interval (0, ψ̂∗) since ψ2 > ψ̂∗ (ψ2 /∈ (0, ψ̂∗)). Recall that I∗, A∗ > 0 if and only if

ψ ∈ (0, ψ̂∗). �

In addition, we have

∂A∗

∂ψ
+
∂I∗

∂ψ
|ψ=0 = [ρµ(R0(0)− 1) + µ+ γ]µ2R0(0) [νρ(R0(0)− 1)− (µ+ γ)]

Then when R0(ψ) > 1, we obtain

∂A∗

∂ψ
+
∂I∗

∂ψ
|ψ=0 > 0⇔ [νρ(R0(0)− 1)− (µ+ γ)] > 0

Notice that limψ→∞A
∗ + I∗ = 0. Then the last two argument imply that the function

A∗ + I∗ has a local maximum under the condition

R0(0) >
µ+ γ

ρν
+ 1.

In fact it has a unique local maximum by the fact that I∗ is a linearly decreasing function
of ψ on the interval given and A∗, which is a differentiable function of ψ on the interval[
0, ψ̂∗

]
, has unique local maximum on the same interval. �

When the recovery rate of asymptomatically infected birds is sufficiently small, in-
creasing vaccination rate can actually increase the total disease prevalence, which we
call asymptomatic spread (4.5). One way to see the reasoning behind this fact is that
an extended infectious period in asymptomatically infected birds, i.e. small value of γ
due to lower virulence, leads to an accumulation of asymptomatically infected birds. A
larger value of γ (faster recovery) will decrease this effect, and for sufficiently large γ,
there will not be any asymptomatic spread. We also observe from condition (4.5) that
decreasing the value of ρ (reduction in the susceptibility of vaccinated birds), reduces
the likelihood of asymptomatic spread. If ρ is sufficiently small, then the total disease
prevalence decreases as vaccination rate ψ increases; i.e. vaccination reduces the total
disease prevalence. The parameter ρ can be interpreted as the efficacy of the vaccine
in preventing infection, with ρ = 0 implying complete protection against infection and
ρ = 1 being the case in which the vaccine has no effect on preventing infection (but it
does protect against the severity of infection; in the model, vaccinated birds can only
get asymptomatic infection). In the next section we will conduct a deeper analysis on
how vaccine efficacy impacts the success of the vaccination program.

Observe in Figure 2(a) that the total disease prevalence keeps increasing as the vac-
cination rate ψ increases until ψm. However, it starts to decrease with respect to vac-
cination rate ψ once ψ becomes larger than ψm. The Figure 2(b) shows the solutions
for the total asymptomatically infected and infected bird populations versus time. In
the absence of vaccination (ψ = 0), the total asymptomatic and infected bird popula-
tion converges to a low level endemic equilibrium in time. As vaccination rate ψ keeps
increasing to ψm = 4.1, the total disease prevalence also continues to increase. When
ψ = 16, then the total infected solution eventually decreases and goes to zero; i.e. the
disease dies out. Estimates of the parameters Λ, µ, and ν are derived in [18, 23]. In
order to consider a country poultry population instead of the world poultry population,
we alter the value of Λ compared to the values in [18, 23]. The transmission rate β
is chosen in order to have a reasonable reproduction number R0. For the rest of the
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Figure 4. Each subfigure shows the disease prevalence (or the fraction
I∗/N∗) versus vaccination rate ψ. The common parameter values consid-
ered for all subfigures are: Λ = 120, µ = 0.5, β = 1, ν = 365/10, c =
0, ĉ = 0, w = 0.4, q = 0.5, ρ = 0.5, γ = 0.5. The initial values are:
S(0) = Λ/µ, V (0) = 0, A(0) = 0, I(0) = 10. a)Asymptomatic dis-
ease prevalence (A∗)versus vaccination rate ψ. (The only parameter value,
which is different than given above is q = 0.1) b)Infected disease prevalence
(I∗) versus vaccination rate ψ. c)The fraction I∗/N∗ versus vaccination
rate ψ. d)Total prevalence (N∗) versus vaccination rate ψ. e)Susceptible
prevalence (S∗) versus vaccination rate ψ. f)Vaccinated prevalence (V ∗)
versus vaccination rate ψ.

parameter values, there is insufficient information, and these parameter values will be
varied in the simulations.
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Analytical and numerical results suggest that even though the prevalence
decreases when ψ > ψm, the prevalence at ψ, where ψ > ψm, can still be higher
than the prevalence in the absence of vaccination; i.e. when ψ = 0. It can be
seen in Figure 3. In the next section, we will introduce another threshold,
namely critical vaccination rate ψc, where (A ∗ +I∗)(ψ) < (A ∗ +I∗)(0), when
ψ > ψc and (A ∗+I∗)(ψ) > (A ∗+I∗)(0), when ψ < ψc.

Numerical results displayed in Figure 4 suggest that in the case of q > 0 (asymp-
tomatically infected birds are infectious), if the vaccination rate ψ is not sufficiently
large, then I∗(ψ) > I∗(0), i.e. the prevalence of (symptomatic) infected birds obtained
with vaccination rate ψ is higher than the prevalence with no vaccination. This increase
in infected prevalence can be attributed to the longer infectious period of asymptomatic
birds when compared with infected birds, which can die in a short time period (usu-
ally within two days of symptom onset), and that the low vaccination coverage allows
asymptomatic infected birds to circulate in a relatively large susceptible bird population
and cause more infection. However, larger vaccination coverage reduces the amount of
the susceptible birds, which are the only class that asymptomatic birds can infect, and
I∗ decreases below the level obtained with no vaccination. Thus, it is crucial for vacci-
nation coverage to be sufficiently high in order to reduce the number of infected birds.
We can observe it from Fig 4(b). Low vaccination coverage also leads to an increase
in the proportion of infected in the population at equilibrium, I∗/N∗. However H5N1
HPAI virus has a high mortality rate, in which case the increase in the infected bird
population decreases the total population size N∗. This can be observed in Fig. 4(c)
and in Fig. 4(d).

Despite the fact that asymptomatic birds are less infectious than infected birds, they
still pose a significant threat and can lead to the “silent spread” of the disease. Asymp-
tomatically infected birds are difficult to detect and may provide a reservoir for the
virus which can cause an outbreak. Thus, it is important to quantify the total number
of infected - asymptomatic and (symptomatic) infected - when evaluating a vaccination
program. For mathematical models with vaccination, of primary interest has been to
assess the potential impact of vaccination program on disease dynamics. R. Smith and
S. Blower [19] and Gumel et al. [20] studied HIV vaccination models and addressed
perverse outcomes of HIV imperfect vaccination in population-level. They focused on
mechanisms that causes an increase in the reproduction number R0(ψ). The reproduc-
tion number R0(ψ) provides an important descriptor of the disease dynamics and the
effects of the parameters on R0(ψ) can be readily calculated, as we will do for our model
in Section 5.4. However, notice that (4.1) and Theorem 4.1 imply that under certain
conditions, R0(ψ) is a decreasing function of ψ, but A∗ + I∗ increases with ψ. So our
study suggests that reduction in reproduction number due to vaccination may not rule
out a possible increase in total disease prevalence A∗ + I∗. Therefore, investigation of
the potential positive and negative outcomes of a vaccination program in the population
may require more rigorous arguments than solely considering the reproduction number
in order to find possible “silent” reservoirs of the virus in the form of asymptomatic
infection.



26

5. Epidemiological Implications: Vaccine Efficacy and Critical
Vaccination Coverage

5.1. Vaccine Efficacy. Vaccine efficacy in individual birds can be quantified by the
following three parameters: the degree of reduction in susceptibility of vaccinated birds
(ρ), the degree of reduction of morbidity and mortality given infection occured (γ, ν)
and the level of reduction in virus shed by infected poultry (q) [14]. In the model (2.1),
the parameter q ranges between 0 and 1 and q = 0 implies that asymptomatic birds are
not infectious at all, while q = 1 indicates that asymptomatic birds are as infectious
as infected birds. The reduction parameter ρ(a) = 0 can be interpreted in an analogous
way with susceptibility of vaccinated birds to asymptomatic infection.

Vaccine efficacy is an important consideration for the control of AI in poultry [12]. In
the previous section, under certain simplifications: w = q = 0 and c = ĉ = 0, we derived
a condition (4.5), which suggests that low vaccine efficacy may cause asymptomatic
spread of the disease. In this section, we will first derive the minimum critical vaccination
coverage and later, in the rest of this section through numerical simulations of the
model, we will show how the quantities addressing vaccine efficacy can affect the critical
vaccination rate and disease prevalence.

5.2. Derivation of critical vaccination rate. In the presence of vaccination, the
reproduction number R0(ψ) and the total disease prevalence A∗(ψ) + I∗(ψ) depend on
the vaccination rate ψ. Under certain conditions, analytical results in section 4.1 suggest

that if R0(0) > 1+ (µ+γ)
ρν

, then the total disease prevalence A∗(ψ)+I∗(ψ) is greater than

A∗(0) + I∗(0) for some ψ ∈
(

0, ψ̂∗
)

(in this interval R0(ψ) > 1, otherwise R0(ψ) ≤ 1)

and have a unique local maximum at ψm ∈
(

0, ψ̂∗
)
. A∗(0) + I∗(0) denotes the disease

prevalence in the absence of vaccination when R0(0) > 1. The critical vaccination rate
is given by the vaccination rate ψc, which satisfies (A∗ + I∗)(ψ) < (A∗ + I∗)(0) for all
ψ > ψc and (A∗ + I∗)(ψ) > (A∗ + I∗)(0) if ψ ∈ [0, ψc). To find critical vaccination rate
ψc, we set the following equality:

(A∗ + I∗)(ψc) = (A∗ + I∗)(0).(5.1)

By the equalities (4.1), (4.2), (4.4), we have

A∗(ψc) + I∗(ψc) =
ρΛψc (µ(R0(0)− 1)− ψc)

µ2R0(0) [ρµ(R0(0)− 1)− ρψc + µ+ γ]
+
µ(R0 − 1)− ψc

β
(5.2)

and

A∗(0) + I∗(0) =
µ(R0(0)− 1)

β
(5.3)

By (5.1), (5.2) and (5.3), we obtain a quadratic polynomial of ψc with roots:

ψc = 0 and ψc = µ(R0(0)− (1 +
(µ+ γ)

ρν
)).

Then the critical vaccination rate is as follows:

ψc = µ(R0(0)− (1 +
(µ+ γ)

ρν
)).(5.4)



Vaccination and Culling in H5N1 27

a)
0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

ψ (Vaccination rate)

I
∗
(
I
n
f
e
c
.
d
is
e
a
s
e
p
r
e
v
a
le
n
c
e
)

 

 

q=0.1

q=0.5

q=0.9

x107

b)
0 50 100 150

0

5

10

15

20

25

ψ (Vaccination rate)

A
∗
+
I
∗
(
T
o
t
a
l
D
is
e
a
s
e
P
r
e
v
a
le
n
c
e
)

 

 

q=0.1

q=0.5

q=0.9

(A∗ + I
∗)(0)

ψ1 ψ2 ψ3

x107

c)
0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

8

ψ (Vaccination rate)

A
∗
+
I
∗
(
T
o
t
a
l
d
is
e
a
s
e
p
r
e
v
a
le
n
c
e
)

 

 

ρ = 0.05
ρ = 0.1
ρ = 0.11

x107

d)
0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

18

20

ψ (Vaccination rate)

A
∗
+
I
∗
(
T
o
t
a
l
d
is
e
a
s
e
p
r
e
v
a
le
n
c
e
)

 

 

w=0

w=1

w=3.5

x107

Figure 5. In this figure, y axis is as noted and the x-axis shows vac-
cination rate ψ. In each figure, only one vaccine efficacy parameter (
ρ, γ, w, q) is varied to see how the quantities addressing vaccine effi-
cacy changes the total or only infected disease prevalence with respect to
increasing vaccination rate. For all figures, fixed parameter values are:
Λ = 120, µ = 0.5, β = 1, ν = 365/10, c = 0.5, ĉ = 0.1. a) Here, the
value of the vaccine efficacy parameter q(the reduction in infectiousness of
asymp. infected birds) is varied as q = 0.1, 0.5, 0.9. The other parameters
are fixed as: w = 0, ρ = 0.5, γ = 0.5. b)Similar to part (a) the efficacy
parameter q is varied with the identical parameter values above (part (a))
in A∗ + I∗. c) The efficacy parameter ρ (the reduction in susceptibility of
vaccinated birds) values are taken as ρ = 0.05, 0.1, 0.11 for the total dis-
ease prevalence. The other parameters are: w = 0, ρ = 0.5, q = 0. d)The
efficacy parameter w (waning rate) is varied as w = 0, 1, 3.5 for the total
disease prevalence. The other parameters are: q = 0, ρ = 0.5, γ = 0.5.

If R0(0) > (1 +
(µ+ γ)

ρν
) (4.5), then ψc is given by (5.4). Notice that ψc is unique

and can be shifted toward zero by taking γ sufficiently large or ρ sufficiently small.
This suggests that increasing vaccine efficacy can be crucial for cost-effectiveness of
vaccination program in the terms of reducing the scale of minimum vaccination coverage
to avoid asymptomatic spread of the disease in the poultry.
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Figure 6. In the first subfigure, y-axis shows the reproduction number
R0(ψ) and x-axis shows vaccination rate ψ (part (a)). In part (b),(c),(d),
y-axis shows the critical value ψ0

c and x-axis shows waning rate w or ρ
along with varying vaccine efficacy parameters. The initial values and pa-
rameter values are identical to Fig.(4 with only changes in varying efficacy
parameters in blue, green and red curves.

5.3. The Impact of Vaccine Efficacy on Disease Prevalence and Critical Vac-
cination Coverage. In the previous section, we showed that vaccination may cause
asymptomatic spread of the disease if the scale of the vaccination is not sufficiently
large. Field studies [8] suggest that a sufficiently large-scale vaccination coverage can re-
duce the total asymptomatic and infected disease prevalence, which mimics our results.
However, how large the vaccination coverage must be is a question depending
on vaccine efficacy. The minimum requirements for the vaccine efficacy are not clearly
defined under laboratory experiments. A prediction for the minimum requirements for
a vaccine to be efficient in the terms of controlling the disease in the field is still a
difficult and open question [1]. In this subsection, through numerical simulations, we
will address how the parameters that determine vaccine efficacy increase or decrease the
critical vaccination coverage and how these parameters affect disease prevalence.

A successful transmission between infected and susceptible birds depends on the in-
fectiousness of the infected bird and susceptibility of the uninfected bird. An indication
for infectiousness is the amount of virus shed by an infected individual [13]. Vaccination
reduces the amount of virus shed in (asymptomatically) infected birds, however it does
not necessarily provide complete lack of infectivity. Vaccines with high efficacy may re-
duce the virus shed recognizably and cause low infectiousness of the asymptomatic birds.
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As asymptomatically infected birds become more infectious, numerical results displayed
in Fig. 5(a) suggest that infected prevalence I∗ may increase as the vaccination rate ψ
increases. In contrast, when q gets smaller, asymptomatic infection does not cause ad-
ditional infected prevalence I∗ and I∗ decreases with increasing vaccination coverage. In
Fig.5(b), the critical vaccination rate (for reduction in total disease prevalence A∗ + I∗)
shifts toward zero as asymptomatic birds get less infectious, i.e. as q gets smaller. In the
same figure, we also observe that for small vaccination rates ψ, A∗ + I∗ is a decreasing
function of q for the values of q chosen. As the vaccination rate increases, A∗ + I∗ will
begin to decrease for the smaller values of q, but A∗ + I∗ can keep increasing for larger
values of q. Increasing the waning rate w (Fig.5(d)) gives an analogous result to the
case of varying q for the parameters utilized in the simulations. These figures show some
of the complexities in determining how vaccination coverage, asymptotic infectiousness,
and waning, affect the total disease prevalence.

The ultimate goal of a vaccine is to provide immune protection to the birds that
completely prevents infection. Numerical simulations illustrated in Fig.5(c) suggest that
decreasing ρ (the vaccine-induced reduction in susceptibility to asymptomatic infection)
decreases the critical vaccination coverage ψc and the total disease prevalence A∗ + I∗.
The remaining vaccine parameter in the model is the recovery rate of asymptomatically
infected birds, γ. An extended infectious period (smaller γ) leads to an accumulation
of asymptomatically infected birds, which causes an increase in the critical vaccination
coverage and in the total disease prevalence. However a larger value of γ (faster recovery)
will decrease this effect, and for sufficiently large γ, there will not be any asymptomatic
spread (Fig. 3).

In the following section, we also study the imperfect vaccine effect on the epidemio-
logical threshold reproduction number R0.

5.4. Reproduction Number and Vaccine Efficacy.

Proposition 5.1. Let

ψ0
m =

µqβΛ
∫∞
0
ρ(a)φ0(a)da+ µ(µ+ γ)(

∫∞
0
w(a)φ0(a)da− 1)

(1−
∫∞
0
w(a)φ0(a)da)

[
(µ+ γ)(1−

∫∞
0
w(a)φ0(a)da) + βΛq

∫∞
0
ρ(a)φ0(a)da

] .
Then R0(ψ) given by (2.4) has a unique local maximum at ψ0

m :
dR0(ψ)

dψ
> 0, ∀ψ < ψ0

m

and
dR0(ψ)

dψ
< 0, ∀ψ > ψ0

m. Notice that ψ0
m > 0 if and only if

1 <
qβΛ

∫∞
0
ρ(a)φ0(a)da

(µ+ γ)(1−
∫∞
0
w(a)φ0(a)da)

.(5.5)

Proof. Taking derivative of R0(ψ) with respect to ψ, we obtain that

(5.6)
dR0(ψ)

dψ
= 0⇔ ψ = ψm.

Notice that by integration by parts, we have that (1−
∫∞
0
w(a)φ0(a)da) > 0. Then the

denominator of ψ0
m is positive. So ψ0

m > 0⇔ the condition (5.5) is satisfied. �
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Figure 7. In this figure, y-axis shows the total disease prevalence A∗+I∗

and x-axis shows vaccination rate ψ. In each figure, we assume that we
either only cull infected and susceptible birds with different culling coef-
ficient c (part (a)) or only cull asymptomatically infected and vaccinated
birds with distinct culling coefficients ĉ (part (b)). The parameters values
and initial conditions are identical to the Fig.(4) with exceptions ρ = q =
0.2.

For the ODE case, one can obtain the critical vaccination coverage ψ0
c by setting

R0(ψ
0
c ) = R0(0), where R0(ψ) is given by (3.4). We obtain

ψ0
c = (µ+ w)

[
(µ+ ν)

(µ+ γ)
ρqR0(0)− 1

]
.(5.7)

Notice that depending on vaccine efficacy parameters (ρ, q, w, γ), the parameter value
ψ0
c changes. If ρ or q is sufficiently small, then ψ0

c becomes negative; i.e. R0 decreases
as ψ increases. However if γ is sufficiently small, then ψ0

c > 0 so that R0(ψ) > R0(0) for
all ψ < ψ0

c and R0(ψ) < R0(0) when ψ > ψ0
c . Increasing γ, similiarly decreasing ρ or q

shifts ψ0
c toward zero. Increasing or decreasing waning rate w does not change the sign

of ψ0
c , but the magnitude of it. These can be observed in Figure 6 part (b),(c) and (d).

5.5. Culling Effect on disease prevalence and critical vaccination coverage.
One of the main control measures applied to poultry is culling, i.e the targeted elim-
ination of a portion of the poultry population in areas affected by avian influenza, to
save the rest of the birds and reduce the possibility of further outbreaks. Gulbudak and
Martcheva [23] modeled different culling scenarios to understand the dynamics of avian
influenza under different culling approaches: mass culling, selective culling and modified
culling.

In this study, for simplicity, we consider only mass culling per-capita rate proportional
to I. In Fig.7(a), we assume that only infected and susceptible birds are culled at the
per-capita rate cI, whereas in Fig.7(b), vaccinated and asymptomatic birds are the only
birds culled, which occurs at the per-capita rate ĉI. It is not realistic to assume culling
only of asymptomatically infected and vaccinated classes and leave out the infected class.
However, it can be instructive to know which infected population class is most effective
to cull in order to reduce disease prevalence and reduce the minimal critical vaccination
coverage to avoid asymptomatic spread. In Fig.7(a), infected and susceptible birds are
culled at different culling coefficients c = 0, 1, 2. In Fig.7(b), asymptomatically infected
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birds and vaccinated birds are culled with again the same varying culling coefficients with
part (a). In both cases, culling reduces the total disease prevalence and the minimum
critical vaccination coverage. However, numerical simulations suggest that compared to
case (a), when only infected and susceptible birds are culled, culling of asymptomatically
infected and vaccinated birds can more drastically decrease the disease prevalence and
reduce ψc. These results show that the detection problems caused by asymptomatic
infection can have a negative impact on culling efforts in terms of reducing the total
disease prevalence.

6. Discussion

Vaccination of poultry is a powerful tool for control of AI, but there are many factors
to consider when evaluating the overall effect of vaccination on disease dynamics. On
the individual level, the vaccine generates an immune response protective against AI,
however, both the efficacy of the vaccine and the strength and duration of the immune
protection can be highly variable. Thus, even though the vaccine provides protection
against disease, since it is not a complete protection, vaccinated birds can still become
infected and infectious, but their partial immunity will decrease viral shedding, reduce
the severity of infection and, often, these birds will be asymptomatic. In the context
of such a virulent virus as AI, this asymptomatic infection may actually lead to an ex-
tended infectious period and, also, detection of the disease can be compromised. Hence,
the population level effects of imperfect vaccination are unclear and it is important to
quantify the effectiveness of vaccination. To capture this complexity of vaccination, we
analyzed an avian flu model which includes imperfect vaccination, age-since vaccination
structure, and asymptomatically infected birds.

Through analysis of our model, the reproduction number R0, is calculated. The DFE
is globally stable when R0 < 1 and asymptomatic recovery rate, γ = 0. If R0 > 1, then
there exists endemic equilibrium and it is unique in certain cases (ODE case or γ = 0)
and in ODE case, it is locally asymptotically stable when ν = 0. If R0 > 1, then the
disease is uniformly weakly persistent.

The analytical results also interestingly suggest that spread of the infection through
the asymptomatic compartment is possible and vaccination helps eradication of the dis-
ease only when vaccination coverage is sufficiently large or vaccine efficacy is high. More
specifically, under certain simplifications in ODE case, we analytically and numerically
show that insufficient vaccination coverage can cause increase in total infected equilib-
rium A∗ + I∗, while sufficiently large-scale vaccination can eradicate the disease. The
vaccine efficacy is a vital parameter in determining how a given vaccination coverage
affects total disease prevalence. Numerical results also suggest that as asymptomatic
birds get more infectious (as q increases), the critical vaccination coverage, which is a
threshold for avoiding perversity of vaccination, increases. An improvement in vaccine
efficacy can reduce the critical vaccination coverage and even ultimately eradicate the
disease.

The detailed description of vaccination in this model can help to more accurately
quantify the efficacy of a vaccine and the epidemiological implications of a vaccination
program. In future work, we will incorporate data from experimental and observational
studies on AI vaccination in order to get reliable estimates for the vaccination parame-
ters in the model. Then, the dynamical consequences of the complex structure induced
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by imperfect vaccination can be more fully explored. In addition, we will incorporate
multiple patches in the model to see how asymptomatic infection affects spread of the
disease through a network of coupled regions with distinct control strategies. In conclu-
sion, the importance and complexity of applying control strategies, such as vaccination,
in poultry to control or eradicate AI magnify the need for detailed mathematical models
of the impact of control measures. The modeling work contained in this paper can help
to understand the effect of vaccination on AI disease dynamics and help to guide policies
on strategy for disease control.
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