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Abstract

In this paper, we consider global stability for a heroin model with two distributed de-

lays. The basic reproduction number of the heroin spread is obtained, which completely

determine the stability of equilibria. Using the direct Lyapunov method with Volterra

type Lyapunov function, we show that the drug use-free equilibrium is globally asymp-

totically stable if the basic reproduction number is less than one, and the unique drug

spread equilibrium is globally asymptotically stable if the basic reproduction number is

greater than one.
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1 Introduction

It is well-known that Heroin is an opiate drug that is synthesized from morphine [1].

It is more soluble in the fat cells so it crosses the blood-brain barrier within 15-20 seconds,

rapidly achieving a high level syndrome in the brain and the central nervous system. Its

rapid action causes both the ‘rush’ experience by users and the toxicity [2]. Heroin users

are at high risk for addiction. It is estimated that about 23 percent of individuals who use

heroin become dependent on it. Over the past two decades, China has faced a dramatic
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increase in illicit drug abuse accompanying rapid economic reform and development [3]. In

addition to their deleterious somatic and psychological effects, heroin abuse and dependence

constitute one of the most important modes of transmission of human immunodeficiency

virus (HIV) and Hepatitis C virus (HCV) [4, 5]. This brings tremendous pressures and

damages to social and public health. However, treatment of heroin users or users of other

drugs such as cocaine not only is a costly procedure but also is a major burden on the health

system of any country. And it is unrealistic to repeat the experiment on the human body for

obtaining the statistic data. In fact, the spread of heroin habituation and addiction can be

well modeled by epidemic-type models as “transmission” occurs in the form of peer pressure

where establish users recruit susceptible individuals into trying and using the drug [6, 7, 8],

that is, mathematical modelling is a means to provide a general insight for how classes of

drug takers behave, and as such, could hopefully becomes a useful device to aid specialist

teams in devising treatment strategies.

Modeling heroin addiction and spread in epidemic fashion is not new [9]. More recently,

the spread of heroin addiction has already stimulated a number of works using mathemati-

cal modeling ([10]-[13]). Heroin epidemic models typically divide the population into three

classes, namely susceptibles, heroin drug users not in treatment, and heroin drug users under-

going treatment. The authors in [10, 11] considered susceptibles, untreated users, and treated

users model with standard incidence rate and showed that the steady states of the model of

the heroin epidemic are stable. Wang et al in [12] considered the mass action incidence

rate and proved that the drug use-free equilibrium and the unique endemic equilibrium are

globally asymptotically stable under some conditions by using the second compound matrix.

Samanta [13] considered a non-autonomous heroin epidemic model, and got the global asymp-

totic stability of the system under some sufficient conditions with the method of Lyapunov

functional.

However, the models considered in these articles are ODE models and the effects of the

time delay is not taken into account. In fact, as many infectious disease epidemics, the heroin

epidemic also shows the effects of the delay. Recognizing the delay experienced by a treated

heroin user who returns to use, [14, 15] introduced distributed delay in the relapse term. [15]

established the global stability for their heroin epidemic model by using a Lyapunov function.

Reportedly, most users begin using heroin out of curiosity [16] which may peak and lead to

use long after the first encounter with a user. Furthermore, heroin users rarely begin use with

heroin, undergoing several stages of drug use before switching to heroin [17]. To account for

this delay in heroin use after the contact with a user, in this article we incorporate time delay

to describe the time needed for a susceptible individual to become an infectious heroin user.
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In particular, in this paper we present a heroin epidemic model with two distributed delays,

based on the principles of mathematical epidemiology. First, we introduce the progression to

use time delay to describe the time needed for a susceptible individual to become an infectious

heroin user. For more realistic consideration, we assume that this delay is a distributed

parameter over a finite interval. Second, we introduce the relapse delay to describe the time

needed for a treated drug user to return to untreated drug user which varies according to

the drug users’ different temporal, social, and physical contexts. We also assumed it to be

a distributed parameter over a finite interval. We analyze the existence and stability of the

equilibria of the model. It is shown that the existence, local and global asymptotical stability

of equilibria is completely determined by the basic reproduction number. Using a Lyapunov

function, we establish the global asymptotic stability of the heroin epidemic model with two

distributed delays.

The paper is organized as follows. A heroin epidemic model with two distributed delays is

formulated in Section 2. The existence of a unique drug spread equilibrium is also established

in this section. The local asymptotic stability of the drug use-free equilibrium and the drug

spread equilibrium is discussed in Section 3. The global asymptotic stability of the drug

use-free equilibrium and the drug spread equilibrium is investigated in Section 4 by the use

of a Lyapnuov function. Finally in the section 5 we summarize our results.

2 The Model

White and Comiskey [10] have produced an interesting model for the dynamics of heroin

users. Mainly motivated by this work, in this paper we have introduced two distributed

delays and considered the effects of distributed time delays in the following modified White-

Comiskey mathematical model for the dynamics of heroin users. The model is formulated on

the premise that drug use follows a process that can be modeled in a similar way to modeling

of infectious disease spread ([18]-[22]):




dS(t)
dt

= Λ− βS(t)
∫ h1

0
f ′(τ)U1(t− τ)e−(µ+δ1+p)τdτ − µS(t),

dU1(t)
dt

= βS(t)
∫ h1

0
f ′(τ)U1(t− τ)e−(µ+δ1+p)τdτ − (µ + δ1 + p)U1(t)

+p

∫ h2

0
g′(τ)U1(t− τ)e−(µ+δ2)τdτ,

dU2(t)
dt

= pU1(t)− (µ + δ2)U2(t)− p

∫ h2

0
g′(τ)U1(t− τ)e−(µ+δ2)τdτ.

(2.1)

Here N(t) = S(t) + U1(t) + U2(t) denotes the total number of high-risk human population at

time t. The meanings of all parameters in the above model are as follows:
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¨ S(t): the number of susceptible individuals at time t in the population;

¨ U1(t): the number of drug users not in treatment; initial and relapsed drug users;

¨ U2(t): the number of drug users in treatment;

¨ Λ: the number of individuals in the general population entering the susceptible popu-

lation;

¨ β: the rate of becoming a drug user;

¨ p: the rate of drug users who enter treatment;

¨ δ1: a removal rate that includes drug-related deaths of users not in treatment and a

spontaneous recovery rate; individuals not in treatment who stop using drugs but are no

longer susceptible;

¨ δ2: a removal rate that includes the drug-related deaths of users in treatment and a

rate of successful “cure” that corresponds to recovery to a drug free life and immunity to

drug addiction for the duration of the modeling time period;

¨ k: the probability of a drug user in treatment relapsing to untreated use;

¨ µ: the natural death rate of the general population.

All parameters in model (2.1) are non-negative, Λ > 0, and µ > 0.

Usually, there are stages of involvement with drugs. Most users after exposure to a user

begin using first alcohol, tobacco or inhalants. Then they progress through one or more less

potent drugs before they try and start using stronger drugs like heroin [17]. To account for

this delay in the start of heroin use, we incorporate a distributed delay in the progression of

a susceptible individual to a habitual use. Based on more realistic consideration, therefore,

in our model (2.1) the first time delay was incorporated and used to describe the time a

susceptible individual to become an infectious heroin user. In reality, however, the delay

period given by the stages of progression is not a fixed amount of time but varies from

individual to individual, i.e., this delay is not the same for the whole heroin use population.

Hence, we assume that this delay τ is a distributed parameter [22, 23, 24] over the interval

[0, h1], where h1 is the maximum of the delay and h1 > 0 . As a result, the force of infection

becomes βS(t)
∫ h1

0 f ′(τ)U1(t−τ)e−(µ+δ1+p)τdτ , where the kernel function f ′(τ) represents the

distribution of the infectivity of heroin users in susceptible individuals where the time taken

to become infectious heroin users is τ , that is, those infected at time t−τ become infectious at

time τ (0 ≤ τ ≤ h1) later with different probabilities. We assume that f ′(τ) is non-negative

and continuous, and satisfies
∫ h1

0 f ′(τ)dτ = 1. e−(µ+δ1+p)τ denotes the probability that a

susceptible individual will survive the stages of progression to be an infectious heroin user.

Similarly, drug users would return to untreated drug user class after cessation of a drug

treatment programme after a period of time. Therefore, in model (2.1) the second time delay
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was incorporated and used to describe the time needed that a drug user returns to untreated

drug user. This delay varies according to drug users’ different characteristics and external

influence. We also assumed it to be a distributed parameter over the interval [0, h2], where h2

is the maximum of the delay and h2 > 0. We assume that g′(τ) is the distribution function

of τ , which is non-negative and continuous, and satisfies
∫ h2

0 g′(τ)dτ = 1. By the last term

in the equations of model (2.1), we have

p

∫ h2

0
g′(τ)U1(t− τ)e−(µ+δ2)τdτ =

∫ t

t−h2

g′(t− η)pU1(η)e−(µ+δ2)(t−η)dη.

At time t, the rate that the individuals in treatment have each acquired treatment at time

η ∈ (t− h2, t) is pU1(η), and the probability that the individuals will survive from becoming

treated at time η until relapsing to heroin users at time t is e−(µ+δ2)(t−η). Therefore, when

η running from t− h2 to t, the last term in the equations of model (2.1) represents from all

possible times at which heroin users in treatment might have relapsed to the users not in

treatment.

The system is equipped with the following initial conditions:

S(0) = S0, U1(θ) = ϕ(θ), U2(0) = U0
2 , θ ∈ [−h, 0], h = max{h1, h2}. (2.2)

For biological reasons, we further assume that S0 > 0, ϕ(0) > 0, U0
2 > 0. And for the conti-

nuity of the solutions to system (2.1), in this paper, we require

U2(0) = p

∫ h2

0

∫ 0

−τ
g′(τ)U1(η)e(µ+δ2)ηdηdτ. (2.3)

By the third equation of system (2.1) and the initial conditions (2.3), we have

U2(t) = p

∫ h2

0

∫ t

t−τ
g′(τ)U1(η)e−(µ+δ2)(t−η)dηdτ. (2.4)

We define the following space of functions

X = R+ × C([−h, 0],R+)× R+.

The Banach space C([−h, 0],R+) of continuous functions mapping the interval [−h, 0] into R
is equipped with the sup-norm ‖ ϕ ‖= sup−h≤θ≤0 |ϕ(θ)|. By the standard theory of functional

differential equation [25], with initial conditions (2.2) that belong to the positive cone X and

equation (2.4), it can be verified that the system (2.1) has a unique solution (S(t), U1(t), U2(t))

which remains non-negative for all t ≥ 0 [14]. Moreover, we can show the solutions of system

(2.1) are ultimately uniformly bounded in X. To see that fact, we add all equations of system

(2.1) and we have

d

dt

(
S(t) + U1(t) + U2(t)

)
= Λ− µ

(
S(t) + U1(t) + U2(t)

)
− δ1U1(t)− δ2U2(t),
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hence

lim sup
t

(
S(t) + U1(t) + U2(t)

)
≤ Λ

µ
.

Let

Ω =
{

(S,U1, U2) ∈ X|S(t) + U1(t) + U2(t) ≤ Λ
µ

}
.

It is easy to see that the set Ω is positively invariant for system (2.1). We note that U2(t)

can be removed from the equations of system (2.1), it is sufficient to analyze the dynami-

cal behavior of solutions to system (2.1) without the equation of U2(t). For simplicity, we

introduce the following notation:

f(τ) = f ′(τ)e−(µ+δ1+p)τ , g(τ) = g′(τ)e−(µ+δ2)τ .

Furthermore, we impose the following assumptions:

Assumption 2.1 Let h be the same definition in (2.2). We assume that:

1. f(τ) and g(τ) are continuous on [0, h].

2. f(τ) ≥ 0 and g(τ) ≥ 0 for all 0 ≤ τ ≤ h .

3. f(τ) and g(τ) satisfy
∫ h1

0
f(τ)dτ = a,

∫ h2

0
g(τ)dτ = b.

Obviously, we have 0 < a, b < 1.

Next, we investigate the dynamics of the following system




dS(t)
dt

= Λ− βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ − µS(t),

dU1(t)
dt

= βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ − (µ + δ1 + p)U1(t).

(2.5)

Now we introduce the reproduction number of the heroin epidemic model, which is given

by the following expression:

R0 =
β Λ

µ a

(µ + δ1 + p)− pb
. (2.6)

To interpret formula (2.6) as a secondary number of heroin users produced by one heroin

user, that is R0, we note that the average time in the drug users not in treatment class on

the first pass is 1
µ+δ1+p and the probability of surviving this class is p

µ+δ1+p . Since b is the

probability of surviving the drug users in treatment class, thus, the total average time in the

drug users not in treatment class (on multiple passes) is

1
µ + δ1 + p

[
1 +

pb

µ + δ1 + p
+

(
pb

µ + δ1 + p

)2

+ · · ·
]

=
1

(µ + δ1 + p)− pb
. (2.7)
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Multiplying this by β Λ
µ a gives R0, which is the average number of new drug users produced

by a typical drug users not in treatment introduced into a susceptible population [26]. Thus,

R0 is the basic reproduction number, and acts as a threshold as is shown in the following

result.

System (2.5) always has the drug use-free equilibrium. The drug use-free equilibrium, in

which the drug users are not present, is given by

E0 = (S∗0 , 0), S∗0 =
Λ
µ

.

Now we show that there exists a drug spread equilibrium whose components are positive. For

system (2.5), the drug spread equilibrium (S∗, U∗
1 ) needs to satisfy the equations:

{
Λ− βS∗U∗

1 a− µS∗ = 0,

βS∗U∗
1 a + pU∗

1 b− (µ + δ1 + p)U∗
1 = 0.

(2.8)

Solving the last equation of (2.8), we get

S∗ =
1
βa

[(µ + δ1 + p)− pb] =
Λ
µ

1
R0

.

Substituting it into the first equation of (2.8), yields

U∗
1 =

1
βa

(
Λ
S∗

− µ) =
µ

βa
(R0 − 1).

Therefore, there is a unique drug spread equilibrium E∗(S∗, U∗
1 ) if R0 > 1. So we have the

following result.

Theorem 2.1 System (2.5) always has the drug use-free equilibrium E0(S∗0 , 0). Further-

more, system (2.5) also has a unique drug spread equilibrium E∗(S∗, U∗
1 ) if R0 > 1.

In the next section, we investigate the local stability of the equilibria of system (2.5).

3 Local stability of the equilibria

First, we investigate the local stability of the drug use-free equilibrium.

Theorem 3.1 The drug use-free equilibrium E0 is locally asymptotically stable if R0 < 1

and is unstable if R0 > 1.

Proof. Taking the linearization of system (2.5) at the point E0, i.e., letting

S(t) =
Λ
µ

+ X(t), U1(t) = Y (t),

we get




dX(t)
dt

= −β
Λ
µ

∫ h1

0
f(τ)Y (t− τ)dτ − µX(t),

dy(t)
dt

= β
Λ
µ

∫ h1

0
f(τ)Y (t− τ)dτ + p

∫ h2

0
g(τ)Y (t− τ)dτ − (µ + δ1 + p)Y (t).

(3.1)
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To analyze the asymptotic behavior around E0, we look for solutions of the form X(t) =

X̄eλt, Y (t) = Ȳ eλt, where X̄ and Ȳ are to be determined. Thus, we can consider the

following eigenvalue problem:




(λ + µ)X̄ = −β
Λ
µ

∫ h1

0
f(τ)e−λτdτ · Ȳ ,

(λ + µ + δ1 + p)Ȳ = β
Λ
µ

∫ h1

0
f(τ)e−λτdτ · Ȳ + p

∫ h2

0
g(τ)e−λτdτ · Ȳ .

(3.2)

The characteristic equation of system (2.5) at E0 is

(λ + µ)
{

λ + (µ + δ1 + p)− β
Λ
µ

∫ h1

0
f(τ)e−λτdτ − p

∫ h2

0
g(τ)e−λτdτ

}
= 0. (3.3)

Hence, one characteristic root λ = −µ is a negative, and another characteristic root is

determined by the following equation:

H(λ) = λ + µ + δ1 + p− β
Λ
µ

∫ h1

0
f(τ)e−λτdτ − p

∫ h2

0
g(τ)e−λτdτ = 0. (3.4)

(i) Assume that R0 =
β Λ

µ a

(µ + δ1 + p)− pb
> 1, then

H(0) = µ + δ1 + p− β
Λ
µ

a− pb < 0, and H(+∞) = +∞.

Hence H(λ) has at least one positive root. Thus, if R0 > 1, then E0 is unstable.

(ii) Assume now that R0 =
β Λ

µ a

(µ + δ1 + p)− pb
< 1. Let

G(λ) =
β Λ

µ

∫ h1

0 f(τ)e−λτdτ

λ + µ + δ1 + p− p
∫ h2

0 g(τ)e−λτdτ
= 1. (3.5)

Taking λ = x + yi (x, y ∈ R), and assuming that x ≥ 0 gives

1 = |G(λ)| =
|β Λ

µ

∫ h1

0 f(τ)e−λτdτ |
|λ + µ + δ1 + p− p

∫ h2

0 g(τ)e−λτdτ |

≤
|β Λ

µ

∫ h1

0 f(τ)e−xτdτ |
|x + µ + δ1 + p− p

∫ h2

0 g(τ)e−xτdτ |

≤
|β Λ

µ

∫ h1

0 f(τ)dτ |
|µ + δ1 + p− p

∫ h2

0 g(τ)dτ |

≤
|β Λ

µ a|
|µ + δ1 + p− pb|

= R0 < 1.

(3.6)
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This is impossible, Thus, if R0 < 1, then x < 0, and E0 is locally asymptotically stable.

Now we investigate the local stability of the drug spread equilibrium E∗. We have the

following result.

Theorem 3.2 The drug spread equilibrium E∗ is locally asymptotically stable if R0 > 1.

Proof. We linearize the system (2.5) about E∗, by defining the perturbation variables:

S(t) = s(t) + S∗, U1(t) = u1(t) + U∗
1 . (3.7)

We have




ds(t)
dt

= −βS∗
∫ h1

0
f(τ)u1(t− τ)dτ − βU∗

1 as(t)− µs(t),

du1(t)
dt

= βS∗
∫ h1

0
f(τ)u1(t− τ)dτ + βU∗

1 as(t) + p

∫ h1

0
g(τ)u1(t− τ)dτ − (µ + δ1 + p)u1(t).

(3.8)

To analyze the asymptotic behavior around E∗, we look for solutions of the form s(t) =

ŝeλt, u1(t) = û1e
λt, where ŝ and û1 are to be determined. Thus, we can consider the

following eigenvalue problem:




(λ + µ + βU∗
1 a)ŝ = −βS∗

∫ h1

0
f(τ)e−λτdτ û1,

βU∗
1 a ŝ =

(
λ + µ + δ1 + p− βS∗

∫ h1

0
f(τ)e−λτdτ − p

∫ h2

0
g(τ)e−λτdτ

)
û1.

(3.9)

The characteristic equation of system (2.5) at E∗ is

(λ + µ + βU∗
1 a) ·

(
λ + µ + δ1 + p− βS∗

∫ h1

0
f(τ)e−λτdτ − p

∫ h2

0
g(τ)e−λτdτ

)

+βU∗
1 a · βS∗

∫ h1

0
f(τ)e−λτdτ = 0.

(3.9)

We also have

λ + µ + δ1 + p =
(λ + µ)βS∗

∫ h1

0
f(τ)e−λτdτ + (λ + µ + βU∗

1 a)p
∫ h2

0
g(τ)e−λτdτ

λ + µ + βU∗
1 a

.
(3.10)

We set

LHS = λ + µ + δ1 + p,

RHS =
(λ + µ)βS∗

∫ h1

0
f(τ)e−λτdτ + (λ + µ + βU∗

1 a)p
∫ h2

0
g(τ)e−λτdτ

λ + µ + βU∗
1 a

.

(3.11)
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If λ is a root with Rλ ≥ 0, it follows from Equation (3.11) that

|LHS| = |λ + µ + δ1 + p| ≥ µ + δ1 + p,

|RHS| =

∣∣∣∣∣∣∣∣

(λ + µ)βS∗
∫ h1

0
f(τ)e−λτdτ + (λ + µ + βU∗

1 a)p
∫ h2

0
g(τ)e−λτdτ

λ + µ + βU∗
1 a

∣∣∣∣∣∣∣∣

≤
∣∣∣∣

λ + µ

λ + µ + βU∗
1 a

βS∗
∫ h1

0
f(τ)e−λτdτ

∣∣∣∣ + p

∣∣∣∣
∫ h2

0
g(τ)e−λτdτ

∣∣∣∣

<

∣∣∣∣βS∗
∫ h1

0
f(τ)dτ

∣∣∣∣ + p

∣∣∣∣
∫ h2

0
g(τ)dτ

∣∣∣∣

= βS∗a + pb

= µ + δ1 + p.

(3.12)

where for the last equality we used the equilibrium equation (2.8). Consequently, we have

|LHS| > |RHS| which is a contradiction. Hence, using Rouche’s Theorem ([27], Theorem

9.17.4), we show that Equation (3.11) cannot have any roots with a non-negative real part.

Therefore, if R0 > 1, the equilibrium E∗ is locally asymptotically stable. This completes the

proof of this theorem.

4 Global stability of the equilibria

In the previous section we established the local stability of the equilibria, that is, given

the required conditions on the parameters, if the initial conditions are close enough to the

equilibrium, the solution will converge to that equilibrium. In this section our objective is

to extend these results to global results. That is, given the conditions on the parameters,

convergence to the equilibrium occurs independently of the initial conditions. Next, we

address global asymptotic stability of system (2.5) by constructing appropriate Volterra type

Lyapunov functions.

4.1 Global stability of the drug use-free equilibrium

As a first step, we establish the global stability of the drug use-free equilibrium. We will

use Lyapunov functional to approach the problem.

Theorem 4.1. Assume R0 < 1. Then the drug use-free equilibrium is globally asymptot-

ically stable.

Proof. We will use a Lyapunov function. We adopt the Volterra type Lyapunov function

used in [28]-[34]. Define

H(x) = x− 1− lnx, x ∈ R+.
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We note that H(x) ≥ 0 for all x > 0. H(x) achieves its global minimum at one, with

H(1) = 0. Additionally, we also have

H ′(x) = 1− 1
x

.

Because of the complexity of the expressions, we define the Lyapunov function in com-

ponents and take the derivative of each component separately. We consider the following

Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t), (4.1)

where

V1(t) = S∗0H

(
S(t)
S∗0

)
+ U1(t),

V2(t) = S∗0β

∫ h1

0
F (τ)U1(t− τ)dτ,

V3(t) = p

∫ h2

0
G(τ)U1(t− τ)dτ,

(4.2)

and

F (τ) =
∫ h1

τ
f(s)ds, G(τ) =

∫ h2

τ
g(s)ds.

We now show that
d

dt
V is non-positive. For clarity, we first find the derivatives of

V1(t), V2(t) and V3(t), respectively, before combining. Calculating the derivative of V1(t)

in Equation (4.2) along the solutions of system (2.5), we obtain

V ′
1(t) = S∗0

(
1
S∗0

− 1
S(t)

)
dS(t)

dt
+

dU1(t)
dt

= S∗0

(
1
S∗0

− 1
S(t)

)(
Λ− βS(t)

∫ h1

0
f(τ)U1(t− τ)dτ − µS(t)

)

+
(

βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ − (µ + δ1 + p)U1(t)

)
.

(4.3)

Here by using Λ = µS∗0 , we have

V ′
1(t) = S∗0

(
1
S∗0

− 1
S(t)

)[
µ
(
S∗0 − S(t)

)− βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ

]

+
(

βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ − (µ + δ1 + p)U1(t)

)

= −µ(S − S∗0)2

S
+ βS∗0

∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ − (µ + δ1 + p)U1(t).

(4.4)
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Next, calculating the time derivative of V2(t) along the solutions of system (2.5) and using

integration by parts, we have

V ′
2(t) =

d

dt

(
S∗0β

∫ h1

0
F (τ)U1(t− τ)dτ

)
= S∗0β

∫ h1

0
F (τ)

d

dt
U1(t− τ)dτ

= −S∗0β

∫ h1

0
F (τ)

d

dτ
U1(t− τ)dτ

= −
[
S∗0βF (τ)U1(t− τ)

]τ=h1

τ=0
+ S∗0β

∫ h1

0
U1(t− τ)

d

dτ
F (τ)dτ

= S∗0β

∫ h1

0
f(τ)U1(t)dτ − S∗0β

∫ h1

0
f(τ)U1(t− τ)dτ.

(4.5)

Similarly, calculating the time derivative of V3(t) along the solutions of system (2.5) and

using integration by parts, we have

V ′
3(t) =

d

dt

(
p

∫ h2

0
G(τ)U1(t− τ)dτ

)
= p

∫ h2

0
G(τ)

d

dt
U1(t− τ)dτ

= −p

∫ h2

0
G(τ)

d

dτ
U1(t− τ)dτ

= −
[
pG(τ)U1(t− τ)

]τ=h2

τ=0
+ p

∫ h2

0
U1(t− τ)

d

dτ
G(τ)dτ

= p

∫ h2

0
g(τ)U1(t)dτ − p

∫ h2

0
g(τ)U1(t− τ)dτ.

(4.6)

Combining the equations (4.4), (4.5) and (4.6) above, we get

V ′(t) = −µ(S − S∗0)2

S
− (µ + δ1 + p)U1(t) + S∗0β

∫ h1

0
f(τ)U1(t)dτ + p

∫ h2

0
g(τ)U1(t)dτ

= −µ(S − S∗0)2

S
− (µ + δ1 + p)U1(t) + S∗0βaU1(t) + pbU1(t)

= −µ(S − S∗0)2

S
+

{
S∗0βa− [

(µ + δ1 + p)− pb
]}

U1(t)

= −µ(S − S∗0)2

S
+

[
(µ + δ1 + p)− pb

](R0 − 1
)
U1(t).

(4.7)

Therefore, if R0 < 1, it follows that the positive-definite functional V (t) has non-positive

derivative dV
dt . Let M be the largest invariant subset of {(S(t), U1(t))|dV

dt = 0}. In order to

have dV
dt equal to zero it has necessary to have S(t) = S∗0 , U1(t) = 0. Hence, M = {E0}.

By the LaSalle invariance principle [35, 36], every solution of (2.5) tends to the drug use-free

equilibrium E0, which is globally asymptotically stable. The proof is completed.
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4.2 Global stability of the drug spread equilibrium

Now we are ready to establish the global stability of the drug spread equilibrium E∗.

To demonstrate that with a suitable Lyapunov functional W (t), we have to establish that

W ′(t) ≤ 0 along the solution curves of system (2.5). The following Theorem summarizes the

result.

Theorem 4.2 Assume R0 > 1. Then, the drug spread equilibrium E∗ is globally asymp-

totically stable, that is, for any initial condition x0 ∈ X the solution of system (2.5) converges

to E∗.

Proof. We use again a Lyapunov function. With H(x) = x− 1− lnx (x ∈ R+), we take

the Lyapunov function as follows

W (t) = W1(t) + W2(t) + W3(t), (4.8)

where

W1(t) = S∗H
(

S(t)
S∗

)
+ U∗

1 H

(
U1(t)
U∗

1

)
,

W2(t) = βS∗U∗
1

∫ h1

0
F (τ)H

(
U1(t− τ)

U∗
1

)
dτ,

W3(t) = pU∗
1

∫ h2

0
G(τ)H

(
U1(t− τ)

U∗
1

)
dτ,

(4.9)

and

F (τ) =
∫ h1

τ
f(s)ds, G(τ) =

∫ h2

τ
g(s)ds.

First, calculating the derivative of W1(t) in Equation (4.9) along the solutions of the

system (2.5), we obtain

W ′
1(t) = S∗

(
1
S∗

− 1
S(t)

)
dS(t)

dt
+ U∗

1

(
1

U∗
1

− 1
U1(t)

)
dU1(t)

dt

= S∗0

(
1
S∗0

− 1
S(t)

)(
Λ− βS(t)

∫ h1

0
f(τ)U1(t− τ)dτ − µS(t)

)

+U∗
1

(
1

U∗
1

− 1
U1(t)

) (
βS(t)

∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ

−(µ + δ1 + p)U1(t)
)
.

(4.10)
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Here by using Λ = βS∗U∗
1 a + µS∗ , we have

W ′
1(t) = S∗0

(
1
S∗0

− 1
S(t)

)[
µ
(
S∗ − S(t)

)
+ βS∗U∗

1 a− βS(t)
∫ h1

0
f(τ)U1(t− τ)dτ

]

+U∗
1

(
1

U∗
1

− 1
U1(t)

) (
βS(t)

∫ h1

0
f(τ)U1(t− τ)dτ + p

∫ h2

0
g(τ)U1(t− τ)dτ

−(µ + δ1 + p)U1(t)
)

= −µ(S − S∗)2

S
+ βS∗U∗

1 a− S∗

S
βS∗U∗

1 a + βS∗
∫ h1

0
f(τ)U1(t− τ)dτ

+p

∫ h2

0
g(τ)U1(t− τ)dτ − (µ + δ1 + p)U1(t)− β

∫ h1

0
f(τ)

U1(t− τ)
U1(t)

U∗
1 S(t)dτ

−p

∫ h2

0
g(τ)

U1(t− τ)
U1(t)

U∗
1 dτ + (µ + δ1 + p)U∗

1 .

(4.11)

Second, calculating the time derivative of W2(t) along the solutions of system (2.5) and

using integration by parts, we have

W ′
2(t) =

d

dt

(
βS∗U∗

1

∫ h1

0
F (τ)H

(
U1(t− τ)

U∗
1

)
dτ

)

= βS∗U∗
1

∫ h1

0
F (τ)

d

dt
H

(
U1(t− τ)

U∗
1

)
dτ

= −βS∗U∗
1

∫ h1

0
F (τ)

d

dτ
H

(
U1(t− τ)

U∗
1

)
dτ

= −
[
βS∗U∗

1 F (τ)H
(

U1(t− τ)
U∗

1

)]τ=h1

τ=0

+ βS∗U∗
1

∫ h1

0
H

(
U1(t− τ)

U∗
1

)
d

dτ
F (τ)dτ

= βS∗U∗
1

∫ h1

0
f(τ)H

(
U1(t)
U∗

1

)
dτ − βS∗U∗

1

∫ h1

0
f(τ)H

(
U1(t− τ)

U∗
1

)
dτ

= βS∗U∗
1

∫ h1

0
f(τ)

{
U1(t)
U∗

1

− U1(t− τ)
U∗

1

+ ln
U1(t− τ)

U1(t)

}
dτ

= βS∗U1(t)a− βS∗
∫ h1

0
f(τ)U1(t− τ)dτ + βS∗U∗

1

∫ h1

0
f(τ) ln

U1(t− τ)
U1(t)

dτ.

(4.12)

Similarly, calculating the time derivative of V3(t) along the solutions of system (2.5) and
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using integration by parts, we have

W ′
3(t) =

d

dt

(
pU∗

1

∫ h2

0
G(τ)H

(
U1(t− τ)

U∗
1

)
dτ

)

= pU∗
1

∫ h2

0
G(τ)

d

dt
H

(
U1(t− τ)

U∗
1

)
dτ

= −pU∗
1

∫ h2

0
G(τ)

d

dτ
H

(
U1(t− τ)

U∗
1

)
dτ

= −
[
pU∗

1 G(τ)H
(

U1(t− τ)
U∗

1

)]τ=h2

τ=0

+ pU∗
1

∫ h2

0
H

(
U1(t− τ)

U∗
1

)
d

dτ
G(τ)dτ

= pU∗
1

∫ h2

0
g(τ)H

(
U1(t)
U∗

1

)
dτ − pU∗

1

∫ h2

0
g(τ)H

(
U1(t− τ)

U∗
1

)
dτ

= pU∗
1

∫ h2

0
g(τ)

{
U1(t)
U∗

1

− U1(t− τ)
U∗

1

+ ln
U1(t− τ)

U1(t)

}
dτ

= pU1(t)b− p

∫ h2

0
g(τ)U1(t− τ)dτ + pU∗

1

∫ h2

0
g(τ) ln

U1(t− τ)
U1(t)

dτ.

(4.13)

Combining the equations (4.11), (4.12) and (4.13) above, we get

W ′(t) = −µ(S − S∗)2

S
+

{
βS∗U∗

1 a− S∗

S
βS∗U∗

1 a + (µ + δ1 + p)U∗
1

}

+
{

βS∗a + pb− (µ + δ1 + p)
}

U1(t)− β
U∗

1

U1(t)
S(t)

∫ h1

0
f(τ)U1(t− τ)dτ

−p
U∗

1

U1(t)

∫ h2

0
g(τ)U1(t− τ)dτ + βS∗U∗

1

∫ h1

0
f(τ) ln

U1(t− τ)
U1(t)

dτ

+pU∗
1

∫ h2

0
g(τ) ln

U1(t− τ)
U1(t)

dτ.

(4.14)

From the second equation of (2.8), we know that

[
βS∗a + pb− (µ + δ1 + p)

]
U1(t) = 0. (4.15)

We also have

(µ + δ1 + p)U∗
1 = βS∗U∗

1 a + pU∗
1 b. (4.16)
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Substituting (4.15) and (4.16) into (4.14), we get

W ′(t) = −µ(S − S∗)2

S
+

{
βS∗U∗

1 a− S∗

S
βS∗U∗

1 a +
(
βS∗U∗

1 a + pU∗
1 b

)}

−β
U∗

1

U1(t)
S(t)

∫ h1

0
f(τ)U1(t− τ)dτ − p

U∗
1

U1(t)

∫ h2

0
g(τ)U1(t− τ)dτ

+βS∗U∗
1

∫ h1

0
f(τ) ln

U1(t− τ)
U1(t)

dτ + pU∗
1

∫ h2

0
g(τ) ln

U1(t− τ)
U1(t)

dτ

= −µ(S − S∗)2

S
+ βS∗U∗

1 a

(
2− S∗

S
− S

S∗

)
+ pbU∗

1 + βU∗
1 S(t)a

−β
U∗

1

U1(t)
S(t)

∫ h1

0
f(τ)U1(t− τ)dτ − p

U∗
1

U1(t)

∫ h2

0
g(τ)U1(t− τ)dτ

+βS∗U∗
1

∫ h1

0
f(τ) ln

U1(t− τ)
U1(t)

dτ + pU∗
1

∫ h2

0
g(τ) ln

U1(t− τ)
U1(t)

dτ

= −µ(S − S∗)2

S
+ βS∗U∗

1

∫ h1

0
f(τ)

(
2− S∗

S
− S

S∗

)
dτ

+βS∗U∗
1

∫ h1

0
f(τ)

(
S(t)
S∗

− S(t)
S∗

U1(t− τ)
U1(t)

+ ln
U1(t− τ)

U1(t)

)
dτ

+pU∗
1

∫ h2

0
g(τ)

(
1− U1(t− τ)

U1(t)
+ ln

U1(t− τ)
U1(t)

)
dτ

= −µ(S − S∗)2

S
+ βS∗U∗

1

∫ h1

0
f(τ)C(τ)dτ − pU∗

1

∫ h2

0
g(τ)H

(
U1(t− τ)

U1(t)

)
dτ,

(4.17)

where

C(τ) =
(

2− S∗

S(t)
− S(t)

S∗

)
+

(
S(t)
S∗

− S(t)
S∗

U1(t− τ)
U1(t)

+ ln
U1(t− τ)

U1(t)

)

= 2− S∗

S(t)
− S(t)

S∗
U1(t− τ)

U1(t)
+ ln

U1(t− τ)
U1(t)

=
(

1− S∗

S(t)
+ ln

S∗

S(t)

)
+

(
1− S(t)

S∗
U1(t− τ)

U1(t)
+ ln

S(t)
S∗

U1(t− τ)
U1(t)

)

= −H

(
S∗

S(t)

)
−H

(
S(t)
S∗

U1(t− τ)
U1(t)

)

≤ 0.

(4.18)

Hence, W ′(t) ≤ 0. Let

Υ̂ =
{
(S,U1, U2) ∈ Ω|W ′(t) = 0

}
. (4.19)

We want to show that the largest invariant set in Υ̂ is the singleton {E∗}. First, we notice

that equality W ′(t) = 0 occurs if and only if S(t) = S∗, U1(t− τ) = U1(t) for all τ such that
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f, g > 0. Thus, at each point in Υ̂ we have S(t) = S∗, and therefore
dS(t)

dt
= 0 in Υ̂, from

the first equation of (2.5), we obtain

0 = Λ− βS∗
∫ h1

0
f(τ)U1(t− τ)dτ − µS∗

= Λ− βS∗
∫ h1

0
f(τ)U1(t)dτ − µS∗

= Λ− βS∗U1(t)a− µS∗.

(4.20)

This holds for all t, which implies that U1(t) = U∗
1 for all t. Hence, we conclude that the

largest invariant set in Υ̂ is the singleton {E∗}. By the LaSalle invariance principle [35, 36],

every solution of (2.5) tends to the endemic equilibrium E∗, which is globally asymptotically

stable. Therefore, we conclude that the drug spread equilibrium E∗ is globally stable. The

proof is completed.

5 Discussion

Recently, several mathematical models (as mentioned in introduction) have been developed

to describe the heroin epidemic. Most of these heroin epidemic models are ODE models and

do not incorporate the effects of the delays. In this paper, we present a heroin epidemic model

with two distributed delays, based on the principles of mathematical epidemiology. First, we

introduce the progression to use delay into our model (2.1) to describe the time needed that

a susceptible individual becomes an infectious heroin user. To be more realistic, we assume

that this delay τ is a distributed parameter over the interval [0, h1], where h1 is the maximum

of the delay. In addition, we introduced a relapse delay to describe the time needed by a

drug user to return to drug use after treatment. This time also varies according to drug

users’ personal characteristics. We assumed it to be a distributed parameter over the interval

[0, h2], where h2 is the maximum of the delay. We analyze the existence and stability of

the equilibria of the model. We characterize the threshold conditions of the heroin epidemic

model with an explicit formula for the reproduction number of heroin use. The reproduction

number gives the number of secondary untreated users that one untreated user will cause in an

entirely susceptible population. The reproduction number is the threshold which completely

determines the stability of the equilibria. Using a suitable Lyapunov function, we show that

the drug use-free equilibrium is globally stable if R0 < 1. We also show that if R0 > 1 the

drug use-free equilibrium is unstable. In addition, there is a unique drug spread equilibrium

which suggests that the heroin use persists in the population. For R0 > 1 we show that the
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drug spread equilibrium is locally stable. Furthermore, using a suitable Lyapunov function,

we establish that the drug spread equilibrium is globally stable.

The reproduction number R0 is an increasing function of transmission coefficient β which

gives the rate of becoming a drug user, pb the probability of a drug user in treatment relapsing

to untreated use, and a decreasing function of p, the rate of drug users who enter treatment.

Our mathematical analysis suggest that the spread of the heroin use should be controlled

through stringent screening measures to reduce the values of β, through educational cam-

paigns at all social levels, and particularly to epidemiologists and treatment providers in

order to increase the values of p. Furthermore, we have

∂R0

∂b
=

β Λ
µ p

[(µ + δ1 + p)− pb]2
,

which signifies that as b increases, R0 increases. Since b is the probability of leaving the

treatment class and then entering the untreated class, then long time treatment is beneficial

to control the spread of habitual drug use.

For practical purposes, these results suggest that prevention is better than treatment.

Efforts to increase prevention are more effective in controlling the spread of habitual heroin

use than efforts to increase the number of individuals who have access to treatment. These

results provide with a view to inform and assist policy-makers in targeting prevention and

treatment resources for maximum effectiveness.
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