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Abstract. Vector-borne disease transmission is a common dissemination mode used
by many pathogens to spread in a host population. Similar to directly transmitted
diseases, the within-host interaction of a vector-borne pathogen and a host’s immune
system influences the pathogen’s transmission potential between hosts via vectors. Yet
there is much less theoretical studies on virulence-transmission tradeoffs and evolution
in vector-borne pathogen-host systems. Here we consider an immuno-epidemiological
model that links the within-host dynamics to between-host circulation of a vector-
borne disease. On the immunological scale, the model mimics antibody-pathogen dy-
namics for arbovirus diseases, such as Rift Valley Fever and West Nile Virus. The
within-host dynamics govern transmission and host mortality and recovery in an age-
since-infection structured host-vector-borne pathogen epidemic model. By considering
multiple pathogen strains and multiple competing host populations differing in their
within-host replication rate and immune response parameters, respectively, we derive
evolutionary optimization principles for both pathogen and host. Invasion analysis
shows that the R0 maximization principle holds for the vector-borne pathogen. For
the host, we prove that evolution favors minimizing case fatality ratio (CFR), which is
consistent with a very recent work by Martcheva et al. [14]. These results are utilized
to compute host and pathogen evolutionary trajectories, and to determine how model
parameters affect evolution outcomes. We find that increasing the vector inoculum size
increases the pathogen R0, but can either increase or decrease the pathogen virulence
(the host CFR), suggesting that vector inoculum size can contribute to virulence of
vector-borne diseases in distinct ways.
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1. Introduction

Parasites and hosts exert selective pressure on each other, leading to reciprocal adap-
tation. This phenomenon is a driving force in important topics such as how to control
epizootics in nature, the source of new strains, and the mechanisms behind evolving
host resistance and parasite virulence. Many medically relevant diseases are caused by
coevolving parasites, making understanding the evolution and coevolution of host and
parasites in general very important [16]. Although there are empirical studies, only a
scare amount of them manage to explicitly study the virulence of viruses to test hypothe-
ses on the evolution of pathogen virulence [35, 36]. As a result, many theoretical studies
have been motivated by the questions: Why do parasites harm their hosts? What is the
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evolutionary trajectory of virus strategy? The tradeoff between virulence and the trans-
mission has been studied extensively by many researchers [21, 13, 57, 58, 60]. Later these
studies extended to host evolution since its know that parasites exert selective pressure
on their hosts[39].

Early models of host-pathogen evolution, reviewed in [21], were mostly systems of
ODEs and studied tradeoffs between transmission and virulence with specifying a priori
particular trade-off between epidemiological parameters. Bremermann and Thieme [24]
provided rigorous support for the principle of R0 maximization, i.e. pathogens evolve
toward maximizing their reproduction number, by proving competitive exclusion in a
general multi-strain SIR model. These and similar results have been utilized by other
researchers to explore evolution of virulence [21, 13, 57, 58, 60]. Gilchrist and Sasaki
[17] introduced a nested modeling approach which directly displayed the transmission-
virulence tradeoff by explicitly linking an epidemiological model for directly transmitted
pathogens to a within-host system depicting simple pathogen-immune dynamics. In
addition, the within-host model can potentially be parameterized using data collected
for individual-level experiments, thereby allowing extrapolation to the between-host level
on the basis of empirical data [49]. Moreover, linking within-host and between-host scales
offers a natural setting for investigating the evolution of both pathogen and host.

In addition to employing the principle of R0 maximization for pathogen evolution,
Gilchrist and Sasaki [17] used the lifespan of the host in the infectious class as a criterion
for host evolution, assuming no natural mortality. Pugliese [15] later analytically show
that, even in the presence of natural mortality, the host evolves towards maximizing
its lifespan in the infectious class. Bowers [41] derived a principle for host evolution
states that the host evolves toward minimizing a dimensionless quantity called the basic
depression number D0. In a very recent work, Martcheva et al. [14] show that for the
directly transmitted diseases with recovery or chronic infection mode, the host evolves
toward minimizing its case fatality ratio (CFR). However, evolution of both host and
pathogen has not been investigated in the context of vector-borne pathogen transmitted
diseases.

Vector-borne disease spread is the most common dissemination mode, causing many
diseases and epidemics in the history. A vast majority of vector-borne vertebrate-
infecting viruses (arboviruses) are responsible for a number of severe diseases in hu-
mans (yellow fever, dengue, various encephalitides, etc.) and livestock (West Nile en-
cephalomyelitis, Rift Valley fever, vesicular stomatitis, etc.). So in general it is important
to understand how vector-borne pathogens evolve. In verbal arguments, Ewald [37, 38]
suggested that due to the mobility of their intermediate hosts such as mosquitos, flees,
etc., vector-borne pathogens might evolve toward higher virulence. Then in a theoretical
study, in response to this claim, Day [50] provided an alternative hypothesis, suggesting
that the vector-born pathogen virulence evolution may depend on vector inoculum size.
Yet, there has not been a sophisticated vector-host model that links within-host and
epidemiological dynamics and investigates how vector inoculum size affects the evolu-
tion of vector-borne diseases. Here we provide a nested approach to study vector-borne
pathogen and host evolution, allowing us to examine virulence evolution in response to
vector inoculum size.

The existing theoretical studies in vector-borne diseases only focus on viral evolution
and show R0 maximization under limited assumptions [25, 30]. However none of the
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studies have been extended to co-evolution of hosts in response to vector-borne parasite
infection. Here in this study, we ask: what are the optimal evolutionary host and
virus strategies and how vectors can influence coevolutionary trajectories of host and
parasites? In particular, we obtain the evolutionary principle of CFR minimization for
hosts by analyzing an infection-age structured vector-borne epidemiological model with
multiple competing host populations with distinct immunological traits (analogously
we obtain pathogen evolutionary principle; R0 maximization). Furthermore, with our
established fitness optimization principles, we compute evolutionary trajectories of the
host immune defense trait and within-host pathogen replication rate. This allows us to
detail how relevant within-host parameters, in the paradigm of vector-borne diseases,
affect pathogen-host evolution; in particular, we determine the impact of vector inoculum
size on evolution of virulence.

The paper is organized as follows: In Section 2, we introduce a structured immunoepi-
demiological vector-host model, in which the epidemic parameters are governed by the
arbovirus within-host pathogen-immune response. In our immunological system, we in-
corporate the specific antibody dynamics that are most measured in the laboratory and
the field and utilize vector-host disease transmission, which pertains particularly well
to arbovirus diseases, such as Rift Valley Fever (RVF), Dengue, and West Nile Virus
(WNV), mosquito-borne diseases infecting many different mammal species, including
livestock and humans [3, 1]. In Section 3, we rigorously derive the host evolution cri-
terium and virus criterium by vector-borne diseases. Through numerical approaches,
we investigate the co-evolutionary evolutionarily stable strategies of both host and their
viruses, in particular exploring how variable vector inoculum size affects evolution of
virulence. In the last section, we discuss our results.

2. Immuno-Epidemiological Modeling In Vector-Host Sytems

2.1. Immunological scale pathogen-immune Interactions. Mammals have a hu-
moral immune system which responds to pathogen invasion by creating memory cells
and antibodies. These components of the immune system decrease the waiting time of
an immune response upon subsequent exposure to additional pathogen. Typically, once
immune cells learn the structural make up of an invading pathogen, they can produce
antibodies that are specific to the pathogen and bind to the pathogen, signaling for rapid
destruction. Initially during a viral infection, there is a rapid production of Immunoglob-
ulin M (IgM) antibodies, followed by a longer lasting production of Immunoglobulin G
(IgG) antibodies [33]. These two antibodies are often measured in laboratory settings
to determine how a host is fighting an administered pathogen.

Here we develop an immunological model (2.1) describing the interaction between
pathogen and IgM, IgG immune response antibodies. M(τ) and G(τ) denote the within-
host IgM and IgG antibody concentrations at time-since-infection τ , respectively. We
assume that the pathogen, P (τ), replicates with a rate r. IgM and IgG immune response
antibodies contribute to the elimination of the pathogen at rates ε and δ, respectively.
The IgM immune response antibodies proliferate at a rate proportional to the viremia
level in the host, represented by the activation rate a, and decays at rate c. The IgM
immune response antibodies are mainly responsible for rapid destruction of invading
pathogen. B cells switch production of IgM immune response antibodies to production
of a longer lasting class, IgG, at rate q. IgG immune response antibodies activate at
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a per-capita rate b. The definition of parameters and variables for our immunological
model are given in Table 1. This within-host pathogen-immune response dynamics are
described by the coupled differential equations:

(2.1)



dP

dτ
= (r − εM(τ)− δG(τ))P (τ)

dM

dτ
= aM(τ)P (τ)− (q + c)M(τ)

dG

dτ
= qM(τ) + bG(τ)P (τ).

In the absence of immune response (M0 = 0, G0 = 0), the pathogen grows exponentially,
in which case it is expected that the infected host dies since the parasite damages the
host. However, when immune response is active (M0 > 0 or G0 > 0), then the pathogen
eventually clears (limτ→∞ P (τ) = 0), the IgM immune response antibodies decays to
zero after viral clearance and subsequently the IgG immune memory antibodies reach a
steady-state; i.e. limτ→∞M(τ) = 0 and limτ→∞G(τ) = G∗, where G∗ > 0 (See Ap-
pendix). The Figure (1) illustrates the within-host pathogen-immune response antibody
dynamics.

Table 1. Definition of the variables in the within-host modeling framework

Variable/Parameter Meaning

P (τ) Pathogen concentration at τ days postinfection

M(τ) The concentration of IgM immune response antibodies at infec-
tion age τ,

G(τ) The concentration of IgG immune memory antibodies at infec-
tion age τ,

r Parasite growth rate,

ε The efficiency of the IgM immune response at killing the parasite,

δ The efficiency of the IgG immune response at killing the parasite,

a The IgM immune response activation rate,

q The per-capita rate at which the IgM immune response anti-
body production switches to the IgG immune response antibody
production,

b The IgG activation rate upon coming into contact with the
pathogen,

c IgM immune response antibody decay rate,

2.2. Epidemiological scale between-host transmission. In epidemiological setting,
we introduce an age-since infection structured vector-host model, in which vectors are
the only mechanism transmitting the disease to susceptible hosts and the infected host
compartment is structured by age-since-infection τ . τ indicates the time passed after
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infection. In the host model, S(t), I(t), R(t) denote the total number of susceptible,
infected and recovered host population at time t, respectively, and in the vector model,
SV (t), IV (t) indicate the number of susceptible and infected vectors, respectively. The
host population has growth rate f(N), where f(N) is a function of the total population

size, N = S+I+R. We utilize the logistic growth term f(N) = b̃N(1−N
K

), with carrying

capacity K and net growth rate b̃ Logistic growth rate in the host population provides
a good foundation for host competition, which is used to investigate host evolution in
the next section in a multi-host version of the vector-host age-since-infection structured
model (see (3.2). In the model, i(τ, t) represents the density of infected hosts who
have infection age τ at time t. A portion of the susceptible hosts move to the infected
compartment with a rate β1IV (t) through a bite by an infected vector IV . Infected hosts
recover with a rate γ and die due to natural causes with a rate d and due to disease with
a rate α (death due to pathogen resource use) and κ (due to immune cell resource use).

(2.2)



dS

dt
= f(N(t))− β1S(t)IV (t)− dS(t)

∂i

∂t
+
∂i

∂τ
= −(α(τ) + κ(τ) + γ(τ) + d)i(τ, t),

i(0, t) = β1S(t)IV (t),

dR

dt
=

∫ ∞
0

γi(τ)i(τ, t)dτ − dR(t),

Integrating with respect to τ over the density i(τ, t) of infected host population with
infection age τ at time t, we obtain the total infected host population at time t,

I(t) =

∫ ∞
0

i(τ, t)dτ.

Moreover, a portion of the susceptible vectors move to the infected vector compartment

with a rate SV (t)

∫ ∞
0

βH(τ)i(τ, t)dτ . The parameter η gives vector birth rate and vectors

leave the compartment with a natural death rate µ. The vector model is as follows:

(2.3)


dSV
dt

= η − SV (t)

∫ ∞
0

βH(τ)i(τ, t)dτ − µSV (t),

dIV
dt

= SV (t)

∫ ∞
0

βH(τ)i(τ, t)dτ − µIV (t),

The definitions of parameters and variables for the vector-host model are given in Table
2.

To link epidemiological parameters to within-host pathogen-immune dynamics, we
assume a simple form of disease induced death rates α + κ, depending on infection age
τ, (similar to [17]) that is,

α(τ) = rσP (τ) and κ(τ) = aνM(τ)P (τ),

where α(τ) represents host mortality due to the pathogen and κ(τ) gives the addi-
tional host mortality due to the immune response and σ, ν are cost coefficients. The
transmission rate β(τ) is also dependent on the within-host pathogen load. Here, as
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Figure 1. Distinct within-host pathogen-immune response antibody dy-
namics (a) An increase in viral load triggers an immune response of IgM
which causes the viremia levels to drop, and persistence of long-term im-
munity by IgG follows after host clears the virus. Immuniological model
parameter values for the simulation are: r = 0.4, ε = 0.1, δ = 0.1, a =
0.1, q = 0.08, c = 0.000002 and b = 0.04. Immunological model initial
values are P (0) = 0.5, M(0) = 0.01, G(0) = 0.001 (b) In this simulation,
an immune response of IgM drops the viremia level. However the immune
system does not handle the virus well enough and a rebound in viremia
load occurs. In the second phase of the infection which starts after viral
rebound, the IgG immune memory response kill the rest of virus popula-
tion. The immunological parameter values are identical to the parameter
values in part (a), except ε = 3. We observe that increasing the IgM
immune response killing efficacy parameter, ε, increases the likelihood of
viral relapse.

data suggested [11, 10, 12], we formulate the transmission rate β(τ) as Holling type II
function with respect to the pathogen load P (τ) at a given time-since-infection τ :

(2.4) β(τ) = φ
P 2(τ)

C0 + P 2(τ)
,

where C0, φ are half saturation and transmission constants, respectively.
Here, we formulate the recovery rate γ(τ) as a function of immune response G(τ) and

inversely related to the viral load:

γ(τ) = ψ
G(s)

G(s) + ε0
e−P (τ),

where ε0 > 0 is proportionality constant and a small number. In our modeling frame-
work, this notion of recovery translates into low pathogen load with sufficient IgG mem-
ory antibodies to prevent subsequent rise in pathogen load. Therefore recovery rate
should be a decreasing function of P (τ) and increasing function of G(τ). While a sim-
pler form of γ(τ) can be specified with these properties [1], we utilize the above form of
γ(τ) in order to reduce sensitivity of the recovery rate to the magnitude of the within-
host variables. Here, as P (τ) decreases to zero and G(τ) reaches a large enough level,
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Figure 2. Parasite evolution, with trait r, w.r.t. costly immune re-
sponse and parasite invasion cost. a) R0 maximization at an interme-
diate parasite growth rate r. b) Parasite optimality curve, r∗(a), vs. a.
Here the cost coefficients are fixed at σ = 0.1 and ν = 0.0009. c) Op-
timal replication rate curve, r∗(a), vs. host immune response rate a,
for various values of the parasite damage coefficient σ and the host im-
mune response coefficient ν (d).The epidemiological model parameter val-

ues: b̃ = 1, K = 36500 (in units 104 hosts per day), µ = 1/10, η =
0.02 (in units 108 vectors per day), d = 1/(365× 10), β1 = 1. The linking
parameter constants and the values of the remaining linking parameters
are φ = 0.03, C0 = 100, ψ = 2, ε0 = 1.

the recovery rate increases to a maximum rate ψ. The term

1− e−
∫ τ
0 γ(s)ds,

gives the probability of being recovered at infection age τ assuming that individuals can
only leave the infected compartment through recovery. Definitions of the parameters
linking within-host and between host model are given in Table 3.

The immune-response dependent epidemiological reproduction number is given by:
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Table 2. Definition of the variables in the between-host modeling framework

Variable/Parameter Meaning

SV (t) The number of susceptible vectors at time t,

IV (t) The number of infected vectors at time t,

S(t) The number of susceptible individuals at time t,

i(τ, t) The density of the infected individuals with infection age τ at
time t,

R(t) The number of recovered individuals at time t,

f(N) Host recruitment rate as a function of total host population N

η Susceptible vector recruitment rate

β1 Infected vector transmission rate

β(τ) Infected individual transmission rate at τ days postinfection

α(τ) Additional host mortality rate due to parasite resource use at τ
days postinfection

κ(τ) Additional host mortality rate due to immune response resource
use at τ days postinfection

γ(τ) Per capita host recovery rate τ days postinfection

d Host natural death rate

µ Vector natural death rate

Table 3. Definition of the parameters in linking within-host & between-
host modeling frameworks

Variable/Parameter Meaning

σ the parasite cost coefficient,

φ the transmission efficiency of the parasitic infection,

ν the immune response cost coefficient,

C0 half-saturation constant in transmission rate,

ψ saturation constant in recovery rate,

ε0 half-saturation constant in recovery rate,

R0 =
β1S

0

µ
·
∫ ∞
0

S0
V βj(τ)e

−

∫ τ

0

(α(s) + κ(s) + γ(s) + d)ds
dτ ,

where S0 = K(1 − d

b̃
). The constant

β1S
0

µ
in R0 represents the average number

of secondary infected hosts produced by one infected vector during its infectious time
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period among the whole susceptible host population. The term S0
V βj(τ) in R0 gives the

number of secondary infected vectors produced by one infectious host at infection age τ
among the whole susceptible vector population. The integral∫ ∞

0

S0
V β(τ)e

−

∫ τ

0

(α(s) + κ(s) + γ(s) + d)ds
dτ

accumulates all those quantities for all infection statuses of the host and gives the average
number of secondary infected vectors produced by one infected host during its infectious
time period when it is introduced into a completely susceptible vector population. The
basic reproduction number R0 keeps track of the number of secondary infectious hosts
produced by one infected host during its infectious time period in an entirely susceptible

host population. Also the terms e
−

∫ τ

0

(α(s) + κ(s) + γ(s))ds
, e−dτ give the probability

of still being infected at infection age τ and the probability of having survived to infec-
tion age τ , respectively.

The reproduction number R0 represents both a threshold between extinction and
persistence, and a measure of fitness, for the pathogen. Here, we summarize the role
of R0 in determining existence and stability of an endemic equilibrium of model (2.2)
with constant host growth rate f(N) = Λ. For the system with a constant host growth
rate, the analysis of the population dynamics is summarized as follows: The repro-
duction number R0 is strict threshold for disease eradication. Whenever R0 < 1, the
disease free equilibrium is globally asymptotically stable; i.e the disease always erad-
icate whenever R0 is below unity. However when R0 > 1, the endemic equilibrium
E∗ = (S∗H , i

∗
H(τ), R∗H , S

∗
V , I

∗
V ) (when f(N) = Λ,) where

S∗H =
1

β1
S∗V
µ

∫ ∞
0

β(τ)π(τ)dτ

, i∗H(τ) = i∗H(0)π(τ), R∗H =
i∗H(0)

d

∫ ∞
0

γ(τ)π(τ)dτ ,

S∗V =
η

i∗H(0)

∫ ∞
0

β(τ)π(τ)dτ + µ

, I∗V =
S∗V
µ

∫ ∞
0

β(τ)i∗H(τ)dτ ,

with

π(τ) = e
−dτ−

∫ τ

0

(α(s) + κ(s) + γ(s)) ds
, i∗H(0) =

Λ

d

(
1− 1

R0

)
(

1

d
+

µ

β1η

) ,
is globally asymptotically stable [45].

Although the vector-host system with constant host growth rate is a simpler model to
investigate the evolution of virus, it is not a good choice for studying the host evolution,
since the system can not account for host competition. Thus, the logistic growth, f(N) =

b̃N(1 − N

K
), will be utilized in our study. A major difficulty arises when analyzing the

stability of positive equilibria of the system because of the assumed logistic growth in the
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host population. Therefore we introduce the following conditions which ensure stability
of the endemic equilibrium.

Define

T̃0 = b̃(1− 2N∗1
K

),

T̂ (λ) = 1− T̃0
∫ ∞
0

(1 +
γ1(τ)

λ+ d
)e−λτπ1(τ)dτ ,

where N∗1 = S∗H + I∗H1
+R∗H and T̂ (λ) is a complex function.

Suppose that for any λ with <λ ≥ 0 we have:

< T̂ ≥ 0, = T̂ ≥ 0, and d− T̃0 > 0.(2.5)

The following theorem (proof in Appendix) characterizes existence and stability of an
endemic equilibrium for the system (2.2):

Theorem 2.1. If R0 > 1, then there exists an endemic equilibrium E. If we assume,
furthermore, that condition (2.5) holds, then E is locally asymptotically stable.

3. Pathogen and Host Evolution in Nested Vector-Borne Disease
Model

3.1. Pathogen evolution: R0 maximization. To study the pathogen evolution in
vector-host systems with limited resources, we describe one host-one vector-two strain
immuno-epidemiological system:

(3.1)



dSH
dt

= f(N)− SH(t)
2∑
i=1

βviIVi(t)− dSH(t)

∂iHi
∂t

+
∂iHi
∂τ

= −(αi(τ) + κi(τ) + γi(τ) + d)iHi(τ, t),

iHi(0, t) = βviSH(t)IVi(t),

dRH

dt
=

2∑
i=1

∫ ∞
0

γi(τ)iHi(τ, t)dτ − dRH(t),

dSV
dt

= η − SV (t)
2∑
i=1

∫ ∞
0

βhi(τ)iHi(τ, t)dτ − µSV (t),

dIVi
dt

= SV (t)

∫ ∞
0

βhi(τ)iHi(τ, t)dτ − µIVi(t),

where N = SH + IH1 + IH2 +RH with IHi =

∫ ∞
0

iHi(τ, t)dτ .

The existence of single strain type j equilibria is equivalent to existence of the endemic
equilibrium E in the underlying single host model. Indeed, if the reproduction number
for strain j is greater than one; i.e. Rj > 1, then the two-strain model (3.2) has a
unique single strain type j equilibrium Ej, where E1 = (S∗H , i

∗
H1

(τ), 0, R∗H , S
∗
V , I

∗
V1
, 0) and

E2 = (S∗H , 0, i
∗
H2

(τ), R∗H , S
∗
V , 0, I

∗
V2

) (See the proof (6.2) in Appendix).
We investigate pathogen evolution through considering Adaptive Dynamics approach.

A rare mutant strain, V2, can invade a resident strain, V1, if the single strain equilibrium



11

(a)
0.1 45 90

0.08

0.1

0.12

0.14

0.16

0.18

0.2

IgM immune response activation rate, a

Im
m
u
n
e-
re
sp

o
n
se

ep
id
em

io
lo
g
ic
a
l

ca
se

fa
ta
li
ty

ra
ti
o

Case fatality ratio minimization

(b)
0.1 10 20 30 40
0

1

2

3

4

5

6

7

8

IgM immune response activation rate, a

P
a
ra
si
te

g
ro
w
th

ra
te
,
r

Optimal host IgM immune response rate, a∗(r)

→

→

→

→

←

←

←

←

(c)
0 20 40 60

0

1

2

3

4

5

6

7

8

IgM immune response activation rate, a

P
a
ra
si
te

g
ro
w
th

ra
te
,
r

Optimal host immune response rate, a∗(r)

ν = 0.0005
ν = 0.002
ν = 0.0035
ν = 0.005

(d)
0 20 40 60

0

1

2

3

4

5

6

7

8

IgM immune response activation rate, a

P
a
ra
si
te

g
ro
w
th

ra
te
,
r

Optimal host immune response rate, a∗(r)

σ = 0.05
σ = 0.10
σ = 0.15
σ = 0.2

Figure 3. Host evolution, with trait a, with respect to immune response
cost and costly pathogen (a) CFR minimization at an intermediate a. (b)
The optimality curve, a∗(r), of host immune response rate w.r.t. r. Ar-
rows indicate that every point on r∗(a) is an evolutionary stable strategy
(ESS). Here the cost coefficients are fixed at σ = 0.1 and ν = 0.0009. c)
Optimality curve, a∗(r) for increasing values of the parasite damage co-
efficient σ and for increasing values of immune response cost coefficient
ν.(d)

E1 is unstable, and once established, V2 can defend against other strains if E2 is (locally)
asymptotically stable. The conventional wisdom is that a strain with maximal R0 can
both invade and defend against any other strain, and therefore the pathogen evolves
toward maximizing R0. The following theorem indeed establishes R0 maximization
(locally) for the structured vector-host system with logistic host growth.

Theorem 3.1. If R1
0 < R2

0, then the single strain equilibrium E1 is unstable, i.e. strain-2
invades the resident strain-1 equilibrium. Alternatively, if R1

0 > R2
0 and condition (2.5)

holds, then E1 is locally asymptotically stable.

(The proof of Theorem 3.1 is in Appendix.)
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Figure 4. a) Parasite fitness landscape across distinct immune activation
rate a and parasite growth rate r. b) Host fitness landscape w.r.t. a and
r.

Given the assumptions (2.5), Theorem 3.1 suggests that among strains with distinct
parasite growth rates, r, the one with largest reproduction number outcompetes the other
strains. The value of r∗(a) is the rate r at which reproduction number is maximized
with host immune activation rate a (Fig.2a). It represents the optimal balance between
parasite mediated and immune response mediated host mortality.

We observe that the optimal parasite replication rate r∗(a) is a monotonically increas-
ing function of a (Fig.2b). When the immune response is smaller, the optimal parasite
replication rate gets smaller and may result in larger parasite fitness (R0) (Fig.4a).

We also perceive that the optimal parasite replication curve r∗(a) is shallower for more
damaging parasites (Fig.2c), while it is steeper for more costly immune response (Fig.2d).
The parasite optimality curve, r∗(a), increases more drastically and monotonically when
parasite damage coefficient σ is smaller or when immune response cost coefficient ν is
larger. Thus larger immune response and more damaging immune system favor the
evolution of larger parasite replication rates. In contrast, more damaging parasites favor
the evolution of lower parasite replication rates.

Compare to the study [17], here we consider a different mode of infection trans-
mission and a within-host model describing arbovirus parasite-host immune response
antibody interactions. The numerical and analytical observations in this study shows
that the vector-borne pathogen might follow the same evolutionary trajectory with di-
rectly transmitted parasites. However, we show in Section 3.3 that vector inoculum size
affects the evolution of the pathogen and its virulence, which is a distinctive feature of
vector-borne systems. Also, in response to pathogen evolution, host evolution changes
the co-evolutionary trajectory resulting in different co-evolutionarily evolutionary stable
strategy (Co-ESS).

3.2. Host Evolution: Case-Fatality Minimization. Similar to pathogen adapta-
tion, the host also evolves in response to the endemic disease. The pathogen exerts
pressure on the host population, so that optimal host immune response properties are
evolutionarily favored. Here we consider two host populations differing only in their im-
mune response against the endemic pathogen which is transmitted by the intermediate
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vector population:

(3.2)



dSj
dt

= b̃Nj(1−
N

K
)− β1Sj(t)IV (t)− dSj(t)

∂ij
∂t

+
∂ij
∂τ

= −(αj(τ) + κj(τ) + γj(τ) + d)ij(τ, t),

ij(0, t) = β1Sj(t)IV (t),

dRj

dt
=

∫ ∞
0

γi(τ)ij(τ, t)dτ − dRj(t),

dSV
dt

= η − SV (t)
2∑
j=1

∫ ∞
0

βHj(τ)ij(τ, t)dτ − µSV (t),

dIV
dt

= SV (t)
2∑
j=1

∫ ∞
0

βHj(τ)ij(τ, t)dτ − µIV (t),

where Nj = (Sj + Ij +Rj) with Ij =

∫ ∞
0

ij(τ, t)dτ and N = N1 +N2. Thus we assume

the host populations, Nj = Sj +

∫ ∞
0

ij(τ, t)dτ + Rij, j = 1, 2, have distinct immune

parameters, leading to different infectivity, disease-induced mortality and recovery rates,
namely βj(τ), νj(τ) and γj(τ), respectively. The host evolutionary criterium will be
based on the case fatality ratio of the host type j, defined as

Fj =

∫ ∞
0

νj(τ)e
−

∫ τ

0

(νj(s) + γj(s) + d)ds
dτ,

for j = 1, 2. Our main result of this subsection is that hosts evolve toward minimiz-
ing the case fatality ratio, F , under selective pressure from the endemic vector-borne
pathogen. Prior works have investigated host evolutionary principles for directly trans-
mitted pathogens, however host evolution has not been considered for vector transmitted
pathogens. Here we find that minimization of CFR extends to vector-host models with
recovered state.

The existence of single host type j endemic equilibria is equivalent to existence of the
endemic equilibrium E in the underlying single host model. Indeed, if the reproduction
number for host type j is greater than one; i.e. Rj > 1, then two-host one-strain model
(3.2) has a unique host type j equilibrium Ej, where ER = (S∗1 , i

∗
1(τ), R∗1, 0, 0, 0, S

∗
V , I

∗
V )

and EM = (0, 0, 0, S∗2 , i
∗
2(τ), R∗2, S

∗
V , I

∗
V ).

The following theorem establishes the principle of host evolution in response to the
vector-borne pathogen, in particular the host with minimum case fatality ratio Fj invades
a resident host population and can stave off invasion from a rare mutant invader.

Theorem 3.2. If F2 < F1, then the mutant free equilibrium ER = (S∗1 , i
∗
1(τ), R∗1, 0, 0, 0, S

∗
V , I

∗
V )

is unstable i.e. the mutant host population invades the resident host population (local
invasion). Otherwise if F1 < F2 and condition (2.5) holds for the resident host, then ER
is locally asymptotically stable in the two-host one-strain system.

Proof. Let (x1(t), y1(τ, t), z1(t), x2(t), y2(τ, t), z2(t), u(t), v(t)) be the small perturbations
around the mutant free equilibrium ER. Linearizing the system (3.2) (with two host-one
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strain population) at the mutant free equilibrium ER, we get:



λx1 = −b̃(η1 + η2
K

)N∗1 + b̃(1− N∗1
K

)η1 − β1(x1I∗V + S∗1v)− dx1,

λy1 +
dy1
dτ

= − (γ1(τ) + α1(τ) + κ1(τ) + d) y1(τ),

y1(0) = β1(x1I
∗
V + S∗1v)

λz1 =

∫ ∞
0

γ1(τ)y1(τ)dτ − dz1

λu = −
∫ ∞
0

βH1(τ)(ui∗1(τ) + S∗V y1(τ))dτ −
∫ ∞
0

βH2(τ)S∗V y2(τ)dτ − µu,

λv =

∫ ∞
0

βH1(τ)(ui∗1(τ) + S∗V y1(τ))dτ +

∫ ∞
0

βH2(τ)S∗V y2(τ)dτ − µv,

λx2 = b̃(1− N∗
1

K
)η2 − β1x2I∗V − dx2,

λy2 +
dy2
dτ

= − (γ2(τ) + α2(τ) + κ2(τ) + d) y2(τ),

y2(0) = β1x2I
∗
V .

λz2 =

∫ ∞
0

γ2(τ)y2(τ)dτ − dz2,

(3.3)

where ηj = xj +

∫ ∞
0

yj(τ)dτ + zj.

Solving the differential equations, we obtain
(3.4)

y1(τ) = β1(x1I
∗
V + S∗1v)e−λτπH1(τ), where πH1(τ) = e

−

∫ τ

0

(γ1(s) + α1(s) + κ1(s) + d)ds

and

(3.5) y2(τ) = β1x2I
∗
V e
−λτπH2(τ), where πH2(τ) = e

−

∫ τ

0

(γ2(s) + α2(s) + κ2(s) + d)ds

Note that, any eigenvalue of the system (3.3) is also an eigenvalue of the following
decoupled subsystem

λx2 = b(1− N∗
1

K
)n2 − β1x2I∗V − dx2,

λy2 +
dy2(τ)

dτ
= − (γ2(τ) + α2(τ) + κ2(τ) + d) y2(τ),

y2(0) = β1x2I
∗
V .

λz2 =

∫ ∞
0

γ2(τ)y2(τ)dτ − dz2.

(3.6)

Rearranging the first equation in (3.6) and substituting

∫ ∞
0

y2(τ)dτ and z2 =
1

d

∫ ∞
0

γ2(τ)y2(τ)dτ ,

we obtain

(λ− b̃(1− N∗1
K

) + d+ β1I
∗
V )x2 = b̃(1− N∗1

K
)

∫ ∞
0

(1 +
γ2(τ)

λ+ d
)y2(τ)dτ(3.7)
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Substituting the equation (3.5) into (3.7), we get

(λ− b̃(1− N∗1
K

) + d+ β1I
∗
V ) = b̃(1− N∗1

K
)β1I

∗
V (

∫ ∞
0

(1 +
γ2(τ)

λ+ d
)e−λτπH2(τ)dτ )(3.8)

(assuming x2 6= 0). Susceptible host type 1 when at equilibrium satisfy

(3.9) b̃N∗1 (1− N∗1
K

)− β1S∗1I∗V − dS∗V = 0

where N∗1 = S∗1 + i∗1(0)

∫ ∞
0

πH1(τ)dτ + i∗1(0)

∫ ∞
0

γ1(τ)

d
πH1(τ)dτ .

−b̃(1− N∗1
K

) + β1I
∗
V + d =

b̃(1− N∗
1

K
)

S∗1

∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ .(3.10)

Substituting the right hand side of the equation into (3.8), we obtain the characteristic
equation

(λ+
b̃(1− N∗

1

K
)

S∗1

∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ) = b̃(1− N∗1

K
)β1I

∗
V (

∫ ∞
0

(1 +
γ2(τ)

λ+ d
)e−λτπH2(τ)dτ)

(3.11)

Claim 3.1. Assume that F1 < F2. Then all eigenvalues of the system (3.3) have negative
real part.

Proof. By the way of contradiction, suppose that the system (3.3) has an eigenvalue λ
with nonnegative real part. Then λ also is an eigenvalue of the decoupled subsystem
(3.6). Then

∣∣∣∣∣λ+
b̃(1− N∗

1

K
)

S∗1

∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ

∣∣∣∣∣ ≥ b̃(1− N∗
1

K
)

S∗1

∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ

(3.12)

Also for the right hand side of the equation (3.11), we get

∣∣∣∣b̃(1− N∗1
K

)β1I
∗
V (

∫ ∞
0

(1 +
γ2(τ)

λ+ d
)e−λτπH2(τ)dτ)

∣∣∣∣ ≤ b̃(1− N∗1
K

)β1I
∗
V (

∫ ∞
0

(1 +
γ2(τ)

d
)πH2(τ)dτ).

(3.13)

Then by (3.12) and (3.13) if

∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ ≤ β1I

∗
V S
∗
1(

∫ ∞
0

(1 +
γ2(τ)

d
)πH2(τ)dτ ), where i∗1(0) = β1I

∗
V S
∗
1 .

(3.14)

Therefore, ∫ ∞
0

(
d+ γ1(τ)

d
)πH1(τ)dτ ≤

∫ ∞
0

(
d+ γ2(τ)

d
)πH2(τ)dτ .(3.15)

Subtracting and adding ν1(τ) on the left hand side of the equation above and ν2(τ)
on the right side of the equation, we obtain
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1−
∫ ∞
0

ν1(τ)πH1(τ)dτ ≤ 1−
∫ ∞
0

ν2(τ)πH2(τ)dτ .

Then ∫ ∞
0

ν1(τ)πH1(τ)dτ ≥
∫ ∞
0

ν2(τ)πH2(τ)dτ ,

which implies that F1 ≥ F2. It is a contradiction. This completes the proof for the case
x2 6= 0. Now assume that x2 = 0. Then η2 = 0, in which case we obtain the subsystem

λx1 = −b̃(η1N
∗
1

K
) + b̃(1− N∗

1

K
)η1 − β1(x1I∗V + S∗1v)− dx1,

λy1(τ) + dy1(τ)
dτ

= − (γ1(τ) + α1(τ) + κ1(τ) + d) y1(τ),

y1(0) = β1(x1I
∗
V + S∗1v)

λz1 =
∫∞
0
γ1(τ)y1(τ)dτ − dz1

λu = −
∫∞
0
βH1(τ)(ui∗1(τ) + S∗V y1(τ))dτ − µu,

λv =
∫∞
0
βH1(τ)(ui∗1(τ) + S∗V y1(τ))dτ − µv.

(3.16)

This is exactly the linearized system determining the local stability of E , the endemic
equilibrium for the single-host single-strain model. Thus, by Theorem 2.1, the conditions
(2.5) imply that the eigenvalues of subsystem (3.16) have negative real part. Then the
case x2 = 0 also contradicts the assumption that the system (3.3) has an eigenvalue with
nonnegative real part. �

Then, when F1 < F2 and boundary conditions hold, the mutant free equilibrium is
locally asymptotically stable.

Claim 3.2. (Local invasion) If F2 < F1. Then the mutant free equilibrium E∗R is unstable;
i.e. mutant population invades resident population.

Proof. Let define the left hand-side of the equation (3.11) as g(λ) and the right hand-side
as f(λ). Note that any λ solution of this system must be an eigenvalue of the decoupled
subsystem (3.16). Now we want to show that the equation (3.11) has a positive real root
λ, whenever F2 < F1. First note that g(λ) is an increasing function of λ and f(λ) is a
decreasing function of λ for λ ∈ R. Therefore, if g(0) < f(0), then the equality (3.11)
has a positive real root λ. Next we want to show that g(0) < f(0) ⇔ F2 < F1. Note
that

g(0) < f(0)

⇔∫ ∞
0

(1 +
γ1(τ)

d
)i∗1(0)πH1(τ)dτ < β1I

∗
V S
∗
1(

∫ ∞
0

(1 +
γ2(τ)

d
)πH2(τ)dτ ),

where i∗1(0) = β1I
∗
V S
∗
1 . Then the rest of the proof follows similar steps to the proof of

Claim (3.1) after the inequality (3.14). �

�

Remark 3.1. Condition (2.5) can be replaced by the more general condition that the
resident equilibrium ER is locally stable for the single host model (??), i.e. locally stable
on the boundary. If the resident endemic equilibrium in the one host system is unstable, it
is questionable to investigate what happens when mutant arrives at resident equilibrium.
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Figure 5. a) Evolutionary trajectories of host immune response and par-
asite growth rate and their Coevolutionary Evolutionarily Stable Strategy
(CoESS). b) CoESS vs. varying immune response cost coefficient, ν.

Most likely the instability will be in the form of sustained oscillations in which case the
analysis requires to use Floquet Theory (work in progress).

Theorem 3.2 suggests that a rare mutant host population with smaller F(a) can invade
the resident population. By way of adaptive dynamics, we infer that the host population
evolves toward minimizing the Case Fatality Ratio, F . Notice that the minimization of
CFR is newly observed phenomenon in host evolution. In a very recent study, Martcheva
et al. [14] show that in a directly transmitted disease with recovery or chronic stage,
host might evolve minimization the case fatality ratio. We see that this result extends
to the systems with vector-borne pathogen-host systems.

The Case Fatality Ratio (CFR):

Fj =

∫ ∞
0

νj(τ)e
−

∫ τ

0

(νj(s) + γj(s) + d)ds
dτ,

for j = 1, 2. is the ratio of host type-j death due to disease and it is clear that it depends
on pathogen-host immune response via parameters νj(τ), γj(τ) governing by within-host
pathogen-immune response. Assuming the IgG immune response activation rate a is a
trait of the host, numerical results suggest that, the unique optimal immune response
a∗ that minimizes CFR is an intermediate host response a (Fig.3(a)). For larger trade
off constants, we also observe that it is sometimes the best for the host not to have any
immune response (a∗ = 0), which is biologically reasonable.

The optimal host immune response a∗(r), is the IgM immune response activation rate
a that minimizes the CFR in response to pathogen evolution trait r. We observe that
small parasite growth rates,r, reduce the optimal host immune response a∗(r), leading
reduction in F (Fig.3(b)). The biological reasoning is that when the parasite replication
rate is small, the larger immune response can only harm the host, leading to death. Thus
the optimal host strategy is to have less and effective immune response, when parasite
is less invasive.
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The optimal immune response rate a∗(r) is a monotonically increasing function of
r, given that the immune cost is small. Yet, when damage due to immune response is
large, the host optimality curve a∗(r) is a concave down function of r, which suggests that
when immune cost is large, host evolution favors smaller immune response in response
to large pathogen replication rate r as well (Fig. 3(c)). This suggests that when the
immune response becomes more costly (increasing ν), the optimal host strategy evolves
toward using less resources toward clearing the parasitic infection. Numerical results
also suggest that larger parasite growth and more damaging pathogen (higher σ) favor
the evolution of larger immune response rate (Fig.3(d)); in contrast to more damaging
host immune response (higher ν) favoring evolution of lower immune response rates.
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Figure 6. The affect of changing vector inoculum size on the evolution-
ary trajectories of the coevolving host-parasite systems. Increase in the
inoculum size decreases coevolutionary attractor (a∗CoESS, r

∗
CoESS).

3.3. Coevolution of Host-Vector Borne Pathogen. Host evolution favors mini-
mization of F , and the pathogen population can also evolve toward maximizing R0.
With both processes occuring, the pathogen and host engage in evolutionary arms race.
Assuming that this evolutionary process continues until the optimal parasite growth rate
and the optimal host immune response rate reach a coevolutionary attractor (a∗, r∗) such
that r∗(a∗) = r∗ and a∗(r∗) = a∗. The intersection of the curves r∗(a) and a∗(r) gives the
values for (a∗Co−ESS, r

∗
Co−ESS), where at this pair (coevolutionary evolutionarily stable

strategy), host and parasite have the optimal host response, and optimal parasite growth
rate, respectively (See Fig.5a).

The coevolutionary trajectory of the whole system is governed by the trajectories of the
system ȧ = ∂F

∂a
, ṙ = k ∂R0

∂r
, in the ar plane (similar to [17]) where k is the ratio of the par-

asite’s rate of evolutionary change to its host’s rate of evolutionary change. Most likely
k > 1 since the pathogen turn over rate is higher than the host’s, as indicated in [17].
Thus trajectories will more closely follow the optimality curve r∗(a). The coevolutionary
attractor (a∗Co−ESS, r

∗
Co−ESS) is the point where both ∂F

∂a
|a=a∗Co−ESS = 0, ∂R0

∂r
|r∗Co−ESS = 0.
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Figure 7. a) Optimal parasite growth rate r∗ w.r.t. vector inoculum size
P0. b) R0 w.r.t P0 and r∗(P0). c) CFR F w.r.t. P0 and r∗(P0).

Here, we observe that the location of the Co-ESS point (a∗CoESS, r
∗
CoESS

) changes
with respect to the cost coefficients σ and ν. The cost coefficients σ and ν are the
constants weighting the disease induced death rate w.r.t. parasite resource use or ag-
gressive immune response, respectively. For fixed value of σ, for smaller immune cost,
a small increase in immune cost coefficient ν decreases the Co-ESS pathogen growth
rate r∗Co−ESS; yet for larger immune cost, a small increase in immune cost coefficient
increases or stabilizes r∗Co−ESS (Fig.5). However increase in the immune cost always
decreases Co-ESS immune response a∗Co−ESS. For large immune cost, immune response
evolves toward vanishing.

An interesting outcome is that a pathogen and a host, initially with low virulence
and a less active immune response, can be driven toward the more virulent and immune
active coevolutionary attractor. We observe that at the CoESS parasite growth and host
immune response rate (a∗Co−ESS, r

∗
Co−ESS) in Fig.5(a), the reproduction number R0 is

smaller and F is larger then initially. For example, in the darkest region in the Fig.4(a),
R0 has the largest value and the Case Fatality Ratio F is smaller; yet at the coevolu-
tionary attractor (a∗Co−ESS, r

∗
Co−ESS), F has a larger value and R0 has a smaller value
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(See Fig.9 in Appendix). Thus the nature of virus-host interactions can lead the system
to evolve toward a less favorable outcome for both pathogen and host. Indeed, for both
directly transmitted and vector transmitted, the antagonism of virus and host can lead
to this result where the coevolutionary attractor is “less optimal” for both populations.

The vector transmitted parasite inoculum, defined by (average) initial pathogen con-
centration P0, does affect the coevolutionary attractor, and provides a distinction from
nested models with direct transmission. A previous study [50] suggests that evolution to
higher virulences for vector-borne pathogens might be caused by larger initial inoculum
sizes that vectors inject into hosts. The vector transmitted inoculum is likely to be in-
dependent of the pathogen load of the host infector, as opposed to direct transmission,
thereby fitting the assumptions of the nested model and providing a particularly nice
parameter to study its affect on coevolution. Therefore we vary vector parasite inocu-
lum and investigate its influence on the coevolutionary attractor. There are multiple
theories on how the vector-borne pathogen may affect the vector[53, 54, 55, 56, 51], but
here we do not impose any costs to vectors carrying the virus. We numerically observe
that increase in vector inoculum reduces a and r in the coevolutionary attractor (See
Fig.6(a)).

How CFR and R0 at the Co-ESS immune response and parasite growth rate scales
across different inoculum size is an important question. Mathematically, the CFR,
F(a∗CoESS, r

∗
CoESS, P0), and the reproduction number, R0(a

∗
CoESS, r

∗
CoESS, P0), are highly

nonlinear functions of Co-ESS immune response and parasite growth rate (a∗CoESS, r
∗
CoESS, P0),

and these coevolutionary attractors are also highly nonlinear functions of the optimal
ESS, (a∗(P0), r

∗(P0)), where at fixed inoculum size P0, a
∗ is the optimal host immune

activation rate minimizing the CFR and r∗ maximizes the pathogen reproduction num-
ber.

Our numerical results suggest that inoculum size changes (a∗Co−ESS, r
∗
Co−ESS) signif-

icantly. The Fig.8(a) shows the CoESS attractors, (a∗Co−ESS, r
∗
Co−ESS), w.r.t. vector

inoculum size P0 and the Fig.8(a) displays how CFR and R0 change at these range of
P0. In part (b), we observe that there are multiple critical vector inoculum sizes, namely
P c1
0 and P c2

0 , such that between these two critical points, an increase in inoculum size
results in lower CFR. Otherwise when P0 < P c1

0 , or P0 > P c2
0 , it results in higher CFR.

There might be more critical inoculum size points as P0 increases further, but there
should also be a physiological limit to vector inoculum size. Our results show that
larger inoculums transmitted by vectors can result in higher virulence up to a point
(P0 ≤ P c1

0 ), which lends support to the claim in [] that higher virulences observed in
vector-borne diseases may be due to larger inoculum size. However, further increase in
P0 substantially decreases host CFR, which might be a favorable outcome for the vector
population since vectors feed on the host population. Thus it may be the case that
evolution drives vectors toward being more and more efficient in carrying and injecting
the pathogen, resulting in less virulence.

In the absence of host evolution, the Figure 7(a) shows that the optimal growth rate,
r∗, decreases as vector inoculum size P0 increases. Yet, the parasite reproductive fitness
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R0(r
∗, P0) increases (Fig. 7(b)). The CFR F(r∗, P0) is non-monotone function of P0,

as similar to at CoESS parasite growth and host immune response rates (Fig. 7(c)).
These results suggest that pathogen evolution might be a more driving force on the
co-evolution of both host and parasites.

We remark that the birth and death parameters along with vector to host transmission
rate, β1, do not influence the coevolutionary pathogen-host attractor (a∗Co−ESS, r

∗
Co−ESS).

One way to see this is by looking at the R0 formula, where the optimal replication rate
r∗ does not change with vector growth or death rate. However, these parameters may
influence abundance of vectors, which can play a crucial role on disease persistence and
prevalence.
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Figure 8. Host Case Fatality Ratio F and Parasite Reproduction num-
ber R0 v.s. inoculum size P0. a) (a∗CoESS, r

∗
CoESS) w.r.t. vector inoculum

size P0. b) R0 and F w.r.t. ((a∗CoESS, r
∗
CoESS), P0).

4. Discussion

Highly dynamic host and parasite interactions give rise to their evolution. Parasite
fitness is determined by its ability to infect and multiply within a host while it must
leave its current host and become transmitted to the next host individual. However, the
actions of the parasite may harm the host – either directly or as a consequences of the
host’s defense reactions. In both cases, the parasite becomes virulent to its host. On
the other hand, hosts defend themselves against infection through an immune response,
leading to coevolution of parasites and hosts. Here, we particularly study evolution of
host and vector-borne pathogens.

Our analytical results suggest that host evolution tends to minimize the case fatal-

ity ratio (CFR): F =

∫ ∞
0

ν(τ)e
−

∫ τ

0

(ν(s) + γ(s) + d)ds
dτ , where the epidemiological

parameter functions ν and γ are governed by pathogen and immune response antibody
dynamics. Considering immune response activation rate a as a host trait, we numerically
and analytically found that hosts evolution trait a evolve toward an intermediate value.
We obtain that the host response optimality curve a∗(r) is a monotonically increasing
function of r when immune cost is small. Yet, when immune response is too costly, the
optimal host strategy evolves toward using less resources to clear the parasitic infection,
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even when r is large. When the parasite growth rate,r, is smaller, the optimal host
immune response a∗(r) becomes smaller resulting in smaller F and smaller R0, which
is a better outcome for the host population. We find that the pathogen evolves towards
maximizing its reproduction number, R0, agreeing with previous studies. The parasite
replication optimality curve r∗(a) = argmax

r
R0 is also an increasing monotone function

of host trait a. When the immune response is smaller, the optimal parasite replication
rate gets smaller, resulting in larger parasite fitness (R0) and less host mortality (smaller
F) (better outcome for both host and parasite).

The characterization of the coevolutionary attractor (aCo ESS, rCo ESS) = (a, r) :
r∗(a) = a∗(r) for this system is a computationally difficult question. By using a nu-
merical scheme, we observe that in vector-borne systems, the coevolutionary dynamics
can result in trajectories which moves toward decreased values of R0 and increased val-
ues of F (an inferior outcome for both pathogen and host). Interestingly, we observe
that vector inoculum size, P0, has significant affect on the coevolutionary attractor of
host and vector-borne pathogens. While the R0 observed at the coevolutionary attrac-
tor always increases as P0 increases, the evolution of the CFR, F , has a more complex
relationship with P0. Increasing P0 causes an evolutionary attractor with higher CFR
(virulence) up to a critical value of P0, which may support the hypothesis in [] that
vector-borne diseases can evolve higher virulence due to larger inoculum sizes injected
in the hosts. However, increasing vector inoculum size larger than this critical value
results in a CoESS host immune response and pathogen growth rate (a∗Co−ESS, r

∗
Co−ESS)

that reduces CFR, which is beneficial to host and may be favorable for vector population
also. We also demonstrate that vector birth and death rates do not affect the coevolu-
tionary attractor, despite the fact that these parameters play a crucial role on disease
persistence. Further studies in more biologically detailed vector-borne pathogen-host
models may delineate the effects of vector parameters on vector-borne pathogen-host
evolution.

More readily available within-host data motivates us to development of better immuno-
epidemiological models in order to potentially predict the impact of control strategies
such as vaccination or treatment [59, 66, 67]. Future work will also address both impact
of vaccination in immuno-epidemiological parasite-host systems and further computation
of evolutionary stable strategies (ESS), especially for cases when the resident population
is undergoing sustained oscillations.
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6. Appendix

6.1. Analysis of immunological model: Virus ultimately clears. Notice that in
the system (2.1), in the absence of immune response (M0 = 0, G0 = 0), the pathogen
grows exponentially, in which case it is expected that the infected host dies since the
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parasite damages the host. However, when immune system is active, we establish the
following result:

Theorem 6.1. If initial immune response is active (M0 > 0 or G0 > 0), then the
pathogen eventually clears (limτ→∞ P (τ) = 0), the IgM immune response antibodies
decays to zero after viral clearance and subsequently the IgG immune memory antibodies
reach a steady-state; i.e. limτ→∞M(τ) = 0 and limτ→∞G(τ) = G∗, where G∗ > 0.

Proof. Let P (0) > 0. By the first equation in the immunological model (2.1), we obtain
the following inequality:

P (τ) ≤ P (0)e
∫ τ
0 [r−δG(s)]ds.(6.1)

Also note that if M0 > 0 or G0 > 0, then by comparison principle (similar argument to
above), after some time, namely ε̃, we obtain

G(τ) ≥ G(ε̃)eb
∫ τ
ε̃ P (s)ds > 0.(6.2)

By the way of contradiction assume that lim supτ→∞ P (τ) 6= 0. Then the right hand side
of the inequality (6.2) goes to infinity. Therefore limτ→∞G(τ) =∞. Then ∃τ ∗ : ∀τ > τ ∗,
G(τ) > r

δ
. Then as τ → ∞, the right handside of the inequality (6.1) goes to zero.

It is a contradiction. Then limτ→∞ P (τ) = 0, subsequently limτ→∞M(τ) = 0 and
limτ→∞G(τ) = G∗, for some G∗ > 0. �

In summary, for any solution (P (τ),M(τ), G(τ)) of the immunological model (2.1),
with nonzero initial condition (P (0),M(0), G(0)), we have limτ→∞ P (τ) = 0, limτ→∞M(τ) =
0, limτ→∞G(τ) = G∗, where G∗ is a positive real number and depends on the initial
condition.

6.2. Existence and Uniqueness of Equilibrium.

Proof. (Proof of Theorem (2.1)) The proof is omitted. However, a sketch of the proof is
as follows. It can be shown that the system is dissipative and asymptotically compact.
In addition, the system is uniformly persistent when R0 > 1 (it is not hard to show
that DFE is unstable when R0 > 1; then by a similar approach to Proposition 4.4 in
[29], it can be shown that the system is uniform persistent). Then by [26], there exists
at least one positive steady-state. Subsequently, by the argument of Proposition 3.1 in
[14], it can be shown that this positive equilibrium has to be unique. The proof of local
stability under the condition (2.5) is contained in the proof of R0 maximization in the
next subsection. �

6.3. Virus Evolution:R0 maximization.

Proof. By taking SH(t) = S∗H+xH(t), iH1(τ, t) = i∗H1
(τ)+yH1(τ, t), iH2(τ, t) = yH2(τ, t), RH(t) =

R∗H +zH(t), SV (t) = S∗V +xV (t), IV1(t) = I∗V1 +yV1(t), and IV2(t) = yV2(t), we linearize the
one host-two strain model (3.1) about the equilibrium E1 = (S∗H , i

∗
H1

(τ), 0, R∗H , S
∗
V , I

∗
V1
, 0)

and look for eigenvalues of the linear operator, that is we look for solutions of the
form xH(t) = xHe

λt, yH1(τ, t) = yH1
(τ)eλt, yH2(τ, t) = yH2

(τ)eλt, zH(t) = zHe
λt, xV (t) =

xV e
λt, yV1(t) = yV1e

λt, and yV2(t) = yV2e
λt, where xH , yH1

, yH2
, zH , xV , yV1 and yV2 are

arbitrary nonzero constants (a function of τ in the case of yHi), but the eigenvalue λ is
common. This process results in the following system (the bars have been ommitted):
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(6.3)

λxH = T̃0

(
xH +

∑2
i=1

∫ ∞
0

(1 +
γi(τ)

(λ+ d)
)yHi(τ)dτ

)
−
∑2

i=1 βviS
∗
HyVi − βv1xHI∗V1 − dxH ,

dyH1

dτ
+ λyH1(τ)= − (α1(τ) + κ1(τ) + γ1(τ) + d) yH1(τ),

yH1(0) = βv1S
∗
HyV1 + βv1xHI

∗
V1
,

dyH2

dτ
+ λyH2(τ)= − (α2(τ) + κ2(τ) + γ2(τ) + d) yH2(τ),

yH2(0) = βv2S
∗
HyV2 ,

λxV = −S∗V
∑2

i=1

∫ ∞
0

βhi(τ)yHi(τ)dτ − xV
∑2

i=1

∫ ∞
0

βhi(τ)i∗Hi(τ)dτ − µxV ,

λyV1 = S∗V

∫ ∞
0

βh1(τ)yH1(τ)dτ + xV

∫ ∞
0

βh1(τ)i∗H1
(τ)dτ − µyV1

λyV2 = S∗V

∫ ∞
0

βh2(τ)yH2(τ)dτ − µyV2 ,

Note that by fourth and fifth equation in (6.3), we have yH2 = yH2(0)e−λτπ2(τ), where

π2(τ) = e
−

∫ τ

0

(α2(s) + κ2(s) + γ2(s) + d)
. Then rearranging the last equation in (6.3),

we obtain

yV2 =

S∗V yH2(0)

∫ ∞
0

βh2(τ)e−λτπ2(τ)dτ

(λ+ µ)
(6.4)

Substituting (6.4) into the fifth equation (boundary condition for strain type 2), we
obtain

1 = S∗V βv2S
∗
H

∫ ∞
0

βh2(τ)
e−λτ

λ+ µ
π2(τ)dτ .(6.5)

Suppose that yV2 6= 0, then the eigenvalues of the system will be determined by the
characteristic equation G(λ) = 1, where G(λ) is the right-hand side of the equation
(6.5).

Note by the equilibrium condition, we have

1

S∗V S
∗
H

= βv1

∫ ∞
0

βh1(τ)
1

µ
π1(τ)dτ ,(6.6)
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where π1(τ) = e
−

∫ τ

0

(α1(s) + κ1(s) + γ1(s) + d)ds
. Substituting (6.6) into (6.5), we

obtain

G(λ) =

βv2

∫ ∞
0

βh2(τ)
e−λτ

λ+ µ
π2(τ)dτ

βv1

∫ ∞
0

βh1(τ)
1

µ
π1(τ)dτ

(6.7)

Notice that G(0) =
R2

0

R1
0

, where Ri
0 is reproduction number for strain type i. If R2

0 >

R1
0, then G(0) > 1. Since G(λ) is a decreasing function of λ,where λ is restricted to

real numbers, and limλ→∞G(λ) = 0, by intermediate value theorem, there exists a
positive real number λ∗ such that G(λ∗) = 1. Therefore if R2

0 > R1
0, then the strain-one

equilibrium E1 is unstable.
Assume R2

0 < R1
0, that is G(0) < 1. Suppose that the system (6.3) has a solution

λ = a+ ib such that a ≥ 0. Then by the equation (6.5), we have

|G(λ)| =
∣∣∣∣S∗V βv2S∗H ∫ ∞

0

βh2(τ)
e−λτ

λ+ µ
π2(τ)dτ

∣∣∣∣ < S∗V
µ
βv2S

∗
H

∫ ∞
0

βh2(τ)π2(τ)dτ = G(0) < 1,

(6.8)

Hence, the characteristic equation G(λ) = 1 does not have solutions with nonnegative
real part.

Now assume that yV2 = 0. Then the stability of E1 depends on the eigenvalues of the
following system:

(6.9)



λxH = T̃0

(
xH +

∫ ∞
0

(1 +
γ1(τ)

(λ+ d)
)yH1(τ)dτ

)
−βv1S∗HyV1 − βv1xHI∗V1 − dxH ,

dyH1

dτ
+ λyH1(τ)= − (α1(τ) + κ1(τ) + γ1(τ) + d) yH1(τ),

yH1(0) = βv1S
∗
HyV1 + βv1xHI

∗
V1
,

λxV = −S∗V
∫ ∞
0

βh1(τ)yH1(τ)dτ − xV
∫ ∞
0

βh1(τ)i∗H1
(τ)dτ − µxV ,

λyV1 = S∗V

∫ ∞
0

βh1(τ)yH1(τ)dτ + xV

∫ ∞
0

βh1(τ)i∗H1
(τ)dτ − µyV1 .

Since yH1(τ) = yH1(0)e−λτπ1(τ), we have∫ ∞
0

(1 +
γ1(τ)

(λ+ d)
)yH1(τ)dτ = (βv1S

∗
HyV1 + βv1xHI

∗
V1

)

∫ ∞
0

(1 +
γ1(τ)

(λ+ d)
)e−λτπ1(τ)dτ .
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Then the first equation in (6.9) is an equality in the terms of xH , yV1 and λ obtained
as follows:

xH

(
λ+ d− T̃0 + βv1I

∗
V1

(1− T̃0
∫ ∞
0

(1 +
γ1(τ)

λ+ d
)e−λτπ1(τ)dτ)

)
+yV1βv1S

∗
H

(
1− T̃0

∫ ∞
0

(1 +
γ1(τ)

λ+ d
)e−λτπ1(τ)dτ

)
= 0.

Also from the last two equations in (6.9) we obtain an equation in term of xH , yV1 and
λ.

yV1

(
(λ+ µ+ T1)− βv1S∗HS∗V

∫ ∞
0

βh1(τ)e−λτπ1(τ)dτ

)
−xH

(
S∗V βv1I

∗
V1

∫ ∞
0

βh1(τ)e−λτπ1(τ)dτ

)
= 0,

where T1 =

∫ ∞
0

βh1(τ)i∗H1
(τ)dτ(> 0). The second equality is also in the terms of xH , yV1

and λ. Then the characteristic equation is as follows:

λ+ d+ βv1I
∗
V1
T̂ − T̃0

λ+ d− T̃0
=

βv1S
∗
HS
∗
V

∫ ∞
0

βh1e
−λτπ1(τ)dτ

λ+ µ+ T1
,

Suppose that λ = a+bi with a ≥ 0 is a solution of the characteristic equation. Taking
the absolute value of both side of the equality above, we get∣∣∣∣∣∣∣∣

βv1S
∗
V S
∗
H

∫ ∞
0

βh1(τ)e−λτπ1(τ)dτ

λ+ µ+ T1

∣∣∣∣∣∣∣∣ ≤
βv1S

∗
V S
∗
H

∫ ∞
0

βh1(τ)e−aτπ1(τ)dτ√
(a+ µ+ T1)2 + b2

≤
βv1S

∗
V S
∗
H

∫ ∞
0

βh1(τ)e−aτπ(τ)dτ

µ

≤ βv1
S∗V
µ
S∗H

∫ ∞
0

βh1(τ)π1(τ)dτ = 1

Moreover,∣∣∣∣∣λ+ d+ βv1I
∗
v1
T̂ − T̃0

λ+ d− T̃0

∣∣∣∣∣ =

√
(a+ d+ βv1I

∗
V1
< T̂ − T̃0)2 + (b+ βv1I

∗
V1
= T̂ )2√

(a+ d− T̃0)2 + b2
.

Note that for λ with nonnegative real part, when < T̂ ≥ 0 and = T̂ ≥ 0 the left-hand
side remains strictly greater than one, while the right-hand side is strictly smaller than
one. Thus, such λ’s cannot satisfy the characteristic equation (??). Hence the one
strain endemic equilibrium E1 is locally asymptotically stable whenever it exists given
the assumptions on T̂ . We notice that the conditions < T̂ ≥ 0 and = T̂ ≥ 0 for any λ
with <λ ≥ 0 may not always hold. �
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(a) (b)

Figure 9. Host and parasite fitness landscape across distinct immune ac-
tivation rate a and parasite growth rate r and the coevolutionary attractor
(a∗CoESS, r

∗
CoESS).

School of Biological Sciences and School of Mathematics, Georgia Institute of
Technology, 310 Ferst Dr., Atlanta, GA 30332

E-mail address: Hayriye.Gulbudak@asu.edu

Department of Biology, University of Florida, 220 Bartram Hall, PO Box 118525,
Gainesville, FL 32611–8525

E-mail address: vcannataro@ufl.edu

Department of Mathematical Sciences, Florida Atlantic University, Science Build-
ing, Room 234 777 Glades Road Boca Raton, FL 33431

E-mail address: ntuncer@fau.edu

Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105,
Gainesville, FL 32611–8105

E-mail address: maia@math.ufl.edu


