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Abstract. The primary objective of this article is to introduce an immuno-epidemiological model of paratuberculosis (Johne’s
disease). To develop the immuno-epidemiological model, wefirst develop an immunological model and an epidemiological
model. Then, we link the two models through time-since-infection structure and parameters of the epidemiological model.
We use the nested approach to compose the immuno-epidemiological model. Our immunological model captures the switch
between the T-cell immune response and the antibody response in Johne’s disease. The epidemiological model is a time-since-
infection model and captures the variability of transmission rate and the vertical transmission of the disease. We compute
the immune-response-dependent epidemiological reproduction number. Our immuno-epidemiological model can be used for
investigation of the impact of the immune response on the epidemiology of Johne’s disease.
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INTRODUCTION

Johne’s disease, also called paratuberculosis, is a fatal gastrointestinal disease in animals. The disease is caused by a
bacterium namedMycobacterium avium ssp. paratuberculosis, often abbreviated toMAP. The infection happens in
the first few months of an animal’s life but the animal may stayasymptomatic for a long time. Symptoms of disease
may show many months to years later. Johne’s disease primarily affects ruminant species (cattle, sheep, goats, deer,
antelope, and bison) and occurs most frequently in domesticagricultural herds with the size of the herd playing an
important role. It is particularly common in dairy cattle. Johne’s disease causes reduction of milk production, weight
loss, and early culling of clinically affected animals. In the U.S., Johne’s disease has been found in 68% of dairy herds
and causes an estimated annual loss of $220 million to the U.S. dairy industry.

MAP has some zoonotic potential, although the full extent ofthe ramifications that result of human exposure to
MAP is still controversial. Humans can become exposed to MAPfrom (1) raw milk from MAP-infected dairy herds;
(2) beef originating from MAP-infected cattle; (3) domestic water contaminated with MAP; (4) pasteurized milk.
Studies [1, 2] suggest that MAP has infected humans althoughwhether these infections subsequently were the direct
cause of disease is an open question. In the cases when MAP could be isolated from humans, there is evidence that
these infections were obtained from infected animals. MAP is found more often in people with Crohn’s disease than
in other humans. However, it is unknown if MAP causes Crohn’sdisease or not. Arguments both “for” and “against”
exist [17].

The interplay of MAP with the immune systems has not this far been investigated through mathematical models.
However, Johne’s disease epidemiology has been addressed through mathematical models since the early 1990s.
Mathematical models have been composed to investigate the dynamics of the disease in infected herds [12, 15] and to
evaluate control strategies for Johne’s disease [9, 10].

In this note our primary objective is to introduce an immuno-epidemiological model of Johne’s disease. We build
this model based on the nested approach which links immunological and epidemiological models through time-
since-infection and parameters. We discuss the nested approach in the next section. In section 3 we introduce an
immunological model of Johne’s disease. In section 4 we introduce a time-since-infection epidemiological model of
Johne’s disease, and we link that model to the immunologicalmodel. In section 5 we summarize our results and the
advantages and disadvantages of the nested approach to immuno-epidemiological modeling.



FIGURE 1. Diagram of the nested approach for immuno-epidemiologicalmodeling.

NESTED APPROACH TO THE IMMUNO-EPIDEMIOLOGICAL MODELING

Immunology and epidemiology of a given disease are traditionally separate disciplines, studied by different scientists.
Following this separation of disciplines in biology, mathematical modelers have also concentrated only on immuno-
logical modeling or epidemiological modeling. Immunological modeling is concerned with the within-host dynamics
of the parasite. Typical components of the immunological model are the amount of pathogen, uninfected target cells,
infected target cells, differentiated elements of the immune response: T-cells, B-cells, antibodies. Mathematical models
of the within-host interaction of the pathogen with the immune system abound in the literature. Those models mostly
target human diseases such as HIV [14], Hepatitis C [13], malaria [6], and human TB [16]. Immunological models
within animal hosts are also widely used in the literature [4]. Most immunological models are self contained and do
not incorporate links to the epidemiology of the disease. Asfocused units, these type of models ignore the amount of
pathogen transmitted and the status of the immune system at infection.

Between host dynamical models, usually called epidemiological models, also abound in the literature. Epidemio-
logical models target many more diseases, but a large proportion of them are also focused on human diseases or animal
diseases with zoonotic potential. Epidemiological modelsare often structured in a way that captures at least at discrete
level the immunological status of individuals. Epidemiological models often include compartments of susceptible
(immunologically naive) individuals, latent individuals(infected but not showing symptoms), infectious individuals,
recovered (immune) individuals. Models that include time-since-infection structure to account for variable infectivity
during infection implicitly account for the pathogen load of the individuals [18]. Models, structured by time-since-
recovery implicitly account for the gradual loss of immunity after recovery [19]. Yet, epidemiological models do not
take into account the pathogen load of infected individualsand the detailed immune status during infection.

To overcome this division, scientists have started to bringtogether immunological and epidemiological models of a
given disease. The resulting linked immunological and epidemiological models are called “immuno-epidemiological
models”. Actually the term “immuno-epidemiology” is not new, but has traditionally been used in connection with
macroparasitic (helminth) infections [20] and malaria [8]. Today, immuno-epidemiology is used in wider context,
and immuno-epidemiological approach or modeling can be taken in connection to any disease. More specifically,
immuno-epidemiology combines immunological and epidemiological approaches and bridges the gap between the
two disciplines in empirical studies and mathematical and theoretical approaches [5]. Immuno-epidemiology:

• Investigates the influence of individuals’ immunological status on epidemiological patterns.
• Translates individual characteristics like immune statusand pathogen load to population level and traces their

epidemiological significance.
• Combines individual and population based approaches and links them based on their interdependence.



TABLE 1. List of dependent variables in the immunological model

Notation Meaning

B(τ) number of bacteria at time-since-infectionτ
M(τ) number of non-infected macrophages at time-since-infection τ
Mi(τ) number of infected macrophages at time-since-infectionτ
T(τ) number of T-cells at time-since-infectionτ
A(τ) number of antibodies at time-since-infectionτ

Individual-based epidemiological modeling has a long history with the development of trait-structured (or size-
structured) models in the 1980s. But until recently immunological and epidemiological models have not been linked
in simple differential equations models. The nested approach, developed in [3], links an ODE immunological model
to a time-since-infection epidemiological model. The two models are linked by two mechanisms (see Figure 1).

• Link through a structural variable. The epidemic model is structured through time-since-infection, denoted by
τ. The time-since-infection is used as an independent variable in the immunological model which is valid only in
the infected epidemiological class.

• Link through parameters. Parameters of the epidemiological model are expressed as functions of the dependent
variables of the immunological model. For instance, the transmission rate is proportional to the within-host
parasite load, disease-induced virulence depends on the parasite load and the immune response (cost to the
individual).

The nested approach provides a simple framework for linkingimmunological and epidemiological models.

THE IMMUNOLOGICAL MODEL OF PARATUBERCULOSIS

Johne’s disease is characterized by two phases: sub-clinical and clinical. In an entirely epidemiological model those
two phases can be incorporated in different compartments; however, in an immuno-epidemiological model specifics
of the immune response should be captured by the immunological model.

Johne’s disease is one of the diseases for which immunological models have not been developed this far. We
compose a simple immunological model to capture the main components of the within-host dynamics. The infection
always starts with the sub-clinical phase.

Initially M.paratuberculosis(MAP) targets the lower part of the intestine, called the ileum. Later in the infection
it spreads through the entire body. We will denote the numberof bacteria in an individual byB(τ) whereτ is the
time since the start of the infection. The wall of the ileum contains pockets of tissue known as Peyer’s patches.
Peyer’s patches are rich with macrophages. M cells, which cover the Peyer’s patches, pass the bacteria through the
wall to the macrophages of the Peyer’s patch. In other words,M-cells present MAP to the macrophages. As a result,
M.paratuberculosis is engulfed by the macrophages but for unknown reasons, the macrophages fail to destroy the
bacteria. From the perspective of immunological modeling,in Johne’s disease the target cells are the macrophages
which could be uninfected or infected by the bacteria. We will denote the number of uninfected macrophages byM(τ)
and the number of infected macrophages byMi(τ). Infected macrophages then promote formation of microscopic
granulomas, a characteristic feature of Johne’s disease. During the sub-clinical stage of Johne’s disease, which starts
several months after MAP infection and lasts 2-5 years on average, various kinds of activated T cells attack MAP-
infected macrophages and keep the infection under control.We will denote the integrated cell-immune response by
T(τ) – the number of T-cells in the body. The list of dependent variables in the immunological model is given in
Table 1.

However, the cell-mediated immune responses disappear at the subclinical stage of Johne’s disease and during the
clinical stage are replaced primarily by antibody-mediated immune responses. The number of the antibodies in the
animal is denoted byA(τ). The switch between the cell-mediated immune response (Th1response) and the antibody-
mediated immune response (Th2 response) marks the beginning of the clinical stage. The trigger for transition to
clinical stage is not known. Antibody immune response against MAP are not protective and cannot contain the
infection. Surge and spread of the MAP occurs which triggersthe influx of millions of macrophages. The wall of
the lumen thickens and the animal shows visible signs of disease. Many of the diseased animals die [11].
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FIGURE 2. Left figure shows the T-Cell response within a host. During the subclinical phase the T-Cell load is high and it
non-existent during the clinical phase. Right figure shows the antibodies response within a host. During the subclinical phase the
antibody load is non-existent and it grows fast during the clinical phase

The T-cell/antibody switch that occurs in Johne’s disease presents the main modeling difficulty. Th1/Th2 switches,
which are responsible for the corresponding immune responses, have been considered by Yateset al. [21, 22]. We
capture the switch by a much simpler model and incorporate Heaviside functionH(τ) to “turn off” the T cell
production, and “turn on” the antibody production (see Figure 2). That requires the moment when the switch occurs
to be postulated. We call that momentτ0. The immunological model of Johne’s disease is introduced below.

dM
dτ

= Λ− εBM− µM,

dMi

dτ
= εBM−αMiT − µMi,

dT
dτ

= ρ(1−H(τ− τ0))MiT − δTT,

dA
dτ

= ηH(τ − τ0)B− δAA,

dB
dτ

= rB(1−B/K)− εBM+ pµMi −qBA.

(1)

whereΛ is the recruitment rate of healthy macrophages,µ is the natural death rate of macrophages (healthy or
infected),ε is the rate of infection of healthy macrophages,α is the rate at which T-cells destroy infected macrophages,
p is the number of bacteria produced by infected macrophages,q is the rate at which antibodies kill bacteria,ρ is the
rate at which infected macrophages stimulate T-cell production, η is the rate at which bacteria stimulate antibody
production, andδA andδT are the natural death rates of antibodies and T-cells. The parameters of the immune model
are summarized in Table 2.

TABLE 2. List of parameters for the immunological model

Notation Meaning

Λ recruitment rate of healthy macrophages
µ natural death rate of macrophages (healthy or infected)
ε rate of infection of healthy macrophages by bacteria
α rate at which T-cells destroy infected macrophages
p number of bacteria produced by dying infected macrophages
q rate at which antibodies kill bacteria
η rate at bacteria stimulate antibody production
δA natural death rates of antibodies
δT natural death rates of antibodies and T-cells

We simulated with model (1) to confirm that it exhibits the switch between the T-cell immune response and the
antibody immune response. Figure 3 shows that during the subclinical phase the bacterial load is low, while during
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FIGURE 3. Figure shows the free bacteria within a host. During the subclinical phase the bacterial load is low and it grows
rapidly during the clinical phase.

the clinical phase the bacterial load grows fast. The switchin the immune response is also captured and illustrated in
Figure 2.

EPIDEMIOLOGICAL MODEL AND PARAMETER LINKING

MAP infects intestinal tissues usually of young animals. The disease progresses in two stages – latent, which lasts 2-10
years, and diseased stage. These correspond to the sub-clinical and clinical phases of the immune infection. During
the long sub-clinical phase, when the infected animals are apparently healthy, they are still capable of transmitting the
infection by shedding MAP in milk and manure. When infected animals enter the clinical phase, the rate and amount
of shedding increases. Recent research evidence suggests that there is a peak in shedding shortly after the initial MAP
infection in calves, and the shedding continues throughoutthe infection. This variability in shedding/infectivity can be
captured by an time-since-infection epidemiological model.

Transmission of MAP infection typically occurs through thefecal-oral route when animals ingest manure or milk,
contaminated with the bacteria. Calves younger than one year old are considered most susceptible to MAP infections,
however, recent evidence indicate that MAP infections in adult cattle (2 year old or more) may also occur. It is unknown
whether infected animals recover, or whether they retain immunity after recovery. Consequently, we consider an SI
model. Typically in an infected herd only a small proportionof the animals develops clinical signs; most animals
remain asymptomatic. Once the symptoms appear, paratuberculosis is progressive and affected animals eventually die.
The disease-induced mortality rate is approximately 3% [7].

In addition to the horizontal transmission through MAP-contaminated environment, vertical transmission of MAP
also occurs in an estimated 20-40% of offspring from animalswith clinical Johne’s disease.

Control of Johne’s disease is primarily through maintaining MAP-free environment and culling. Treatment with
multiple antibiotics is possible but since it is expensive and the medications have to be given every day, it is cost-
prohibitive and infeasible.

Prior epidemiological models have divided the population in many classes, and have considered separate classes
corresponding to the latent stage and the disease stage. However, in our immuno-epidemiological model the variability
in infectivity corresponding to the different phases can beaccounted for by a time-since-infection transmission rate
dependent of the bacterial load. Hence, a simple SI model will capture the essential features and the variability in the
shedding during the various clinical stages. To introduce the model (see Figure 4), letS(t) be the number of susceptible
animals. The variablei(τ, t) denotes the density of infected animals with time-since-infectionτ. Infected individuals
in the i-stage pass through both the sub-clinical phase and the clinical phase. To account for the animals who remain
asymptomatic, we introduceJ(t) – the number of asymptomatic animals who do not progress to clinical stage.



FIGURE 4. Flowchart of the time-since-infection epidemiological model.

The time-since-infection epidemiological model with vertical transmission takes the form:

dS
dt

= λp(S(t)+J(t))+ pvλpI(t)−S(t)
∫ ∞

0
β (τ)i(τ,t)dτ −βaS(t)J(t)− µpS,

dJ
dt

= qa

(

S(t)
∫ ∞

0
β (τ)i(τ,t)dτ + βaS(t)J(t)

)

− µpJ(t),

∂ i
∂τ

+
∂ i
∂ t

= −γ(τ)i(τ, t)− µpi(τ,t),

i(0, t) = (1− pv)λpI(t)+ (1−qa)

(

S(t)
∫ ∞

0
β (τ)i(τ,t)dτ + βaS(t)J(t)

)

(2)

whereλp is the birth/recruitment rate,pv is the proportion of progeny of infected animals that is susceptible,qa is the
proportion of newly infected animals who progress to the purely asymptomatic stage,βa is the transmission rate of
asymptomatic animals,µp is the natural death rate. The total infected population ini-stage is

I(t) =

∫ ∞

0
i(τ,t)dτ.

The total population sizeN = S(t)+ I(t)+ J(t) satisfies the equationN′ = λPN− µPN. We assume thatλP = µP so
that the total population size is constant. Furthermore, weassume that the initial conditions are chosen so thatN = 1.

The time-since-infection dependent transmission rate isβ (τ) and time-since-infection dependent disease-induced
death rate isγ(τ). We link the time-since-infection epidemiological rates to the immunological dependent variables:
bacterial load and antibody response. In particular, the time-since-infection dependent transmission rateβ (τ) is
assumed proportional to the bacterial load:

β (τ) = σB(τ)

whereσ is the transmission efficiency of the infection. Furthermore, we split the virulenceγ(τ) into two components:

γ(τ) = γ1(τ)+ γ2(τ)

whereγ1(τ) is the additional host mortality due to parasite growth:

γ1(τ) = crB(τ)(1−B(τ)/K)



with c being the parasite cost coefficient. Furthermore,γ2(τ) is the additional host mortality due to immune response:

γ2(τ) = κηA(τ)

whereκ is the immune response cost coefficient.
To compute the immune-response-dependent epidemiological reproduction number, we compute the epidemiologi-

cal reproduction number of asymptomatic infection:

Ra =
qaβaS∗

µP
< 1

and we assume that it is smaller than one. Furthermore, we define

R0 = (1− pv)λP

∫ ∞

0
π(τ)dτ +(1−qa)

S∗

1−Ra

∫ ∞

0
σB(τ)π(τ)dτ

whereS∗ is the disease-free susceptible population, withS∗ = 1. Furthermore, we have

π(τ) = e−µPτe−
∫ τ
0 (crB(τ)(1−B(s)/K)+κηA(s))ds.

Note thatπ(τ) depends on the bacterial load and the antibody immune response. The first term inR0 accounts for
the new infections caused by the vertical transmission, thesecond – accounts for the cases caused by horizontal
transmission.

DISCUSSION

In this paper we introduce an immuno-epidemiological modelof Johne’s disease – a deadly disease of ruminants,
which has a significant impact on the dairy herd production. We use a nested approach to compose the model. Our
immunological model is linked to the time-since-infectionepidemiological model through the time-since-infection
variable and the parameters of the epidemiological model. Within-host models of Johne’s disease do not exist in the
literature. In that sense our immunological model is novel.The model captures the switch of the immune response
from T-cell mediated to antibody mediated. Epidemiological models of Johne’s disease exist in the literature, but our
model is the first one that captures the latent and clinical stage through time-since-infection structure.

The nested approach for linking immunological to the epidemiological models that we have used has multiple
advantages:

1. The link with the time-since-infection allows the immunological dynamics to have its own time-scale.
2. Linking through time-since-infection allows for unrestricted increase in complexity of the immunological model.
3. The time-since-infection epidemic models are mathematically well studied – many things about their dynamics

are known.
4. The epidemiological reproduction number of the diseaseR0 can be computed in terms of the parasite load or

the immune response. In this article we compute the immune-response-dependent epidemiological reproduction
number for our immuno-epidemiological model of Johne’s disease.

5. The mechanistic description of the within-host host-pathogen dynamics is used to derive, rather than impose,
population-level life-history parameters.

6. The framework allows for easy incorporation of parasite genetic diversity in various regimes: competitive
exclusion, co-infection, super-infection.

At this point one particular disadvantage of the nested approach is that all infected animals in thei-stage experience
the same immunological dynamics. This disadvantage can be remedied if a multi-group epidemic model is considered
but expanding model (2) to a multi-group model will increasethe complexity of the immuno-epidemiological model
significantly.
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