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Abstract. The primary objective of this article is to introduce an inmotepidemiological model of paratuberculosis (Johne’s
disease). To develop the immuno-epidemiological modelfisedevelop an immunological model and an epidemiological
model. Then, we link the two models through time-sincegtif structure and parameters of the epidemiological hode
We use the nested approach to compose the immuno-epidgisalionodel. Our immunological model captures the switch
between the T-cell immune response and the antibody respodshne’s disease. The epidemiological model is a timeesi
infection model and captures the variability of transnuasiate and the vertical transmission of the disease. We atamp
the immune-response-dependent epidemiological reptieducumber. Our immuno-epidemiological model can be used f
investigation of the impact of the immune response on theespiology of Johne’s disease.
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INTRODUCTION

Johne’s disease, also called paratuberculosis, is a fastaintestinal disease in animals. The disease is caysad b
bacterium name#lycobacterium avium ssp. paratuberculosifien abbreviated tM AP. The infection happens in
the first few months of an animal’s life but the animal may staymptomatic for a long time. Symptoms of disease
may show many months to years later. Johne’s disease phyraffects ruminant species (cattle, sheep, goats, deer,
antelope, and bison) and occurs most frequently in domagticultural herds with the size of the herd playing an
important role. It is particularly common in dairy cattl®hhe’s disease causes reduction of milk production, weight
loss, and early culling of clinically affected animals. hetU.S., Johne’s disease has been found in 68% of dairy herds
and causes an estimated annual loss of $220 million to thedaify industry.

MAP has some zoonotic potential, although the full extenthef ramifications that result of human exposure to
MAP is still controversial. Humans can become exposed to Ntam (1) raw milk from MAP-infected dairy herds;
(2) beef originating from MAP-infected cattle; (3) domestiater contaminated with MAP; (4) pasteurized milk.
Studies [1, 2] suggest that MAP has infected humans althedmgther these infections subsequently were the direct
cause of disease is an open question. In the cases when MAdPhmisolated from humans, there is evidence that
these infections were obtained from infected animals. M&fund more often in people with Crohn’s disease than
in other humans. However, it is unknown if MAP causes Croldisgase or not. Arguments both “for” and “against”
exist [17].

The interplay of MAP with the immune systems has not this feerbinvestigated through mathematical models.
However, Johne's disease epidemiology has been addrdssedjlh mathematical models since the early 1990s.
Mathematical models have been composed to investigateytiemcs of the disease in infected herds [12, 15] and to
evaluate control strategies for Johne’s disease [9, 10].

In this note our primary objective is to introduce an immwmedemiological model of Johne’s disease. We build
this model based on the nested approach which links immgieaband epidemiological models through time-
since-infection and parameters. We discuss the nestedagipin the next section. In section 3 we introduce an
immunological model of Johne’s disease. In section 4 weihice a time-since-infection epidemiological model of
Johne’s disease, and we link that model to the immunologicalel. In section 5 we summarize our results and the
advantages and disadvantages of the nested approach tmovepidemiological modeling.
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FIGURE 1. Diagram of the nested approach for immuno-epidemiologivadeling.

NESTED APPROACH TO THE IMMUNO-EPIDEMIOLOGICAL MODELING

Immunology and epidemiology of a given disease are trathifiy separate disciplines, studied by different sci¢sitis
Following this separation of disciplines in biology, mathegical modelers have also concentrated only on immuno-
logical modeling or epidemiological modeling. Immunolcgfimodeling is concerned with the within-host dynamics
of the parasite. Typical components of the immunologicatlel@re the amount of pathogen, uninfected target cells,
infected target cells, differentiated elements of the imentesponse: T-cells, B-cells, antibodies. Mathematicalets

of the within-host interaction of the pathogen with the immawsystem abound in the literature. Those models mostly
target human diseases such as HIV [14], Hepatitis C [13]an&[6], and human TB [16]. Immunological models
within animal hosts are also widely used in the literature [Aost immunological models are self contained and do
not incorporate links to the epidemiology of the diseasefo&sised units, these type of models ignore the amount of
pathogen transmitted and the status of the immune systanfeation.

Between host dynamical models, usually called epidemicddgnodels, also abound in the literature. Epidemio-
logical models target many more diseases, but a large piopaf them are also focused on human diseases or animal
diseases with zoonotic potential. Epidemiological modetsoften structured in a way that captures at least at diéscre
level the immunological status of individuals. Epidemmgial models often include compartments of susceptible
(immunologically naive) individuals, latent individualiefected but not showing symptoms), infectious indivitya
recovered (immune) individuals. Models that include tisigee-infection structure to account for variable infeityi
during infection implicitly account for the pathogen loafitbe individuals [18]. Models, structured by time-since-
recovery implicitly account for the gradual loss of immuyrdtfter recovery [19]. Yet, epidemiological models do not
take into account the pathogen load of infected individaal$ the detailed immune status during infection.

To overcome this division, scientists have started to bidgggther immunological and epidemiological models of a
given disease. The resulting linked immunological and epidlogical models are called “immuno-epidemiological
models”. Actually the term “immuno-epidemiology” is notwebut has traditionally been used in connection with
macroparasitic (helminth) infections [20] and malaria. [Bbday, immuno-epidemiology is used in wider context,
and immuno-epidemiological approach or modeling can bertak connection to any disease. More specifically,
immuno-epidemiology combines immunological and epidéogjical approaches and bridges the gap between the
two disciplines in empirical studies and mathematical dvetetical approaches [5]. Immuno-epidemiology:

« Investigates the influence of individuals’ immunologidaltss on epidemiological patterns.

- Translates individual characteristics like immune statnd pathogen load to population level and traces their
epidemiological significance.

- Combines individual and population based approaches akslthem based on their interdependence.



TABLE 1. List of dependent variables in the immunological model

Notation Meaning

B(1) number of bacteria at time-since-infection

M(T) number of non-infected macrophages at time-since-irdeati
Mi(T) number of infected macrophages at time-since-infection
T(1) number of T-cells at time-since-infectian

A(T) number of antibodies at time-since-infection

Individual-based epidemiological modeling has a longdmistwith the development of trait-structured (or size-
structured) models in the 1980s. But until recently immuogatal and epidemiological models have not been linked
in simple differential equations models. The nested apgrodeveloped in [3], links an ODE immunological model
to a time-since-infection epidemiological model. The twodals are linked by two mechanisms (see Figure 1).

« Link through a structural variable. The epidemic model is structured through time-sinceeitida, denoted by
1. The time-since-infection is used as an independent Varialthe immunological model which is valid only in
the infected epidemiological class.

- Link through parameters. Parameters of the epidemiological model are expressashasdns of the dependent
variables of the immunological model. For instance, th@gmaission rate is proportional to the within-host
parasite load, disease-induced virulence depends on tiasifgaload and the immune response (cost to the
individual).

The nested approach provides a simple framework for linkimgunological and epidemiological models.

THE IMMUNOLOGICAL MODEL OF PARATUBERCULQOSIS

Johne’s disease is characterized by two phases: subatlamd clinical. In an entirely epidemiological model those
two phases can be incorporated in different compartmentgeber, in an immuno-epidemiological model specifics
of the immune response should be captured by the immunelogiadel.

Johne’s disease is one of the diseases for which immunalbgiodels have not been developed this far. We
compose a simple immunological model to capture the mairpoorants of the within-host dynamics. The infection
always starts with the sub-clinical phase.

Initially M.paratuberculosi@MAP) targets the lower part of the intestine, called therite Later in the infection
it spreads through the entire body. We will denote the nunolbdracteria in an individual b(1) wherert is the
time since the start of the infection. The wall of the ileurm@ins pockets of tissue known as Peyer’'s patches.
Peyer’s patches are rich with macrophages. M cells, whictercthe Peyer’s patches, pass the bacteria through the
wall to the macrophages of the Peyer’s patch. In other wavdsells present MAP to the macrophages. As a result,
M.paratuberculosis is engulfed by the macrophages but diknown reasons, the macrophages fail to destroy the
bacteria. From the perspective of immunological modelinglohne’s disease the target cells are the macrophages
which could be uninfected or infected by the bacteria. Wédehote the number of uninfected macrophagebioy)
and the number of infected macrophagesMyyt). Infected macrophages then promote formation of micrascop
granulomas, a characteristic feature of Johne’s diseas@nddthe sub-clinical stage of Johne’s disease, whichsstar
several months after MAP infection and lasts 2-5 years onaans various kinds of activated T cells attack MAP-
infected macrophages and keep the infection under coMf@lwill denote the integrated cell-immune response by
T(1) — the number of T-cells in the body. The list of dependentaldés in the immunological model is given in
Table 1.

However, the cell-mediated immune responses disappelae aubclinical stage of Johne’s disease and during the
clinical stage are replaced primarily by antibody-medidtemune responses. The number of the antibodies in the
animal is denoted bj\(7). The switch between the cell-mediated immune responser@gbnse) and the antibody-
mediated immune response (Th2 response) marks the begiohihe clinical stage. The trigger for transition to
clinical stage is not known. Antibody immune response agaMAP are not protective and cannot contain the
infection. Surge and spread of the MAP occurs which triggleesinflux of millions of macrophages. The wall of
the lumen thickens and the animal shows visible signs obdiseMany of the diseased animals die [11].
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FIGURE 2. Left figure shows the T-Cell response within a host. During siabclinical phase the T-Cell load is high and it
non-existent during the clinical phase. Right figure shdwesantibodies response within a host. During the subcliplbase the
antibody load is non-existent and it grows fast during theichl phase

The T-cell/antibody switch that occurs in Johne’s diseassgnts the main modeling difficulty. Th1/Th2 switches,
which are responsible for the corresponding immune regmrismve been considered by Yagtsl. [21, 22]. We
capture the switch by a much simpler model and incorporatavidiele functionH () to “turn off” the T cell
production, and “turn on” the antibody production (see FigR). That requires the moment when the switch occurs
to be postulated. We call that momeapt The immunological model of Johne’s disease is introduasovia
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where A is the recruitment rate of healthy macrophagess the natural death rate of macrophages (healthy or
infected) ¢ is the rate of infection of healthy macrophagess the rate at which T-cells destroy infected macrophages,
p is the number of bacteria produced by infected macrophageghe rate at which antibodies kill bacterfajs the
rate at which infected macrophages stimulate T-cell prodngn is the rate at which bacteria stimulate antibody
production, and, anddr are the natural death rates of antibodies and T-cells. Trempeters of the immune model
are summarized in Table 2.

TABLE 2. List of parameters for the immunological model

Notation Meaning

recruitment rate of healthy macrophages

natural death rate of macrophages (healthy or infected)

rate of infection of healthy macrophages by bacteria

rate at which T-cells destroy infected macrophages

number of bacteria produced by dying infected macrophages
rate at which antibodies kill bacteria

rate at bacteria stimulate antibody production

natural death rates of antibodies

natural death rates of antibodies and T-cells

S saoc e >

We simulated with model (1) to confirm that it exhibits the ®libetween the T-cell immune response and the
antibody immune response. Figure 3 shows that during thelisidal phase the bacterial load is low, while during
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FIGURE 3. Figure shows the free bacteria within a host. During the knibal phase the bacterial load is low and it grows
rapidly during the clinical phase.
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the clinical phase the bacterial load grows fast. The switcthe immune response is also captured and illustrated in
Figure 2.

EPIDEMIOLOGICAL MODEL AND PARAMETER LINKING

MAP infects intestinal tissues usually of young animalse @iisease progresses in two stages — latent, which lasts 2-10
years, and diseased stage. These correspond to the sigdaind clinical phases of the immune infection. During
the long sub-clinical phase, when the infected animals jppai@ntly healthy, they are still capable of transmittimeg t
infection by shedding MAP in milk and manure. When infectadrals enter the clinical phase, the rate and amount
of shedding increases. Recent research evidence sudugdfsare is a peak in shedding shortly after the initial MAP
infection in calves, and the shedding continues througtihauinfection. This variability in shedding/infectivityao be
captured by an time-since-infection epidemiological mode

Transmission of MAP infection typically occurs through fleeal-oral route when animals ingest manure or milk,
contaminated with the bacteria. Calves younger than oneojéare considered most susceptible to MAP infections,
however, recent evidence indicate that MAP infections inltazhttle (2 year old or more) may also occur. Itis unknown
whether infected animals recover, or whether they retamumity after recovery. Consequently, we consider an Sl
model. Typically in an infected herd only a small proportminthe animals develops clinical signs; most animals
remain asymptomatic. Once the symptoms appear, paratubsisis progressive and affected animals eventually die.
The disease-induced mortality rate is approximately 3% [7]

In addition to the horizontal transmission through MAP-@ninated environment, vertical transmission of MAP
also occurs in an estimated 20-40% of offspring from animétls clinical Johne’s disease.

Control of Johne’s disease is primarily through maintagnimAP-free environment and culling. Treatment with
multiple antibiotics is possible but since it is expensinel dhe medications have to be given every day, it is cost-
prohibitive and infeasible.

Prior epidemiological models have divided the populativmiany classes, and have considered separate classes
corresponding to the latent stage and the disease stageMvdnpw our immuno-epidemiological model the variability
in infectivity corresponding to the different phases carabeounted for by a time-since-infection transmission rate
dependent of the bacterial load. Hence, a simple SI modetajiture the essential features and the variability in the
shedding during the various clinical stages. To introdbheenodel (see Figure 4), I8t) be the number of susceptible
animals. The variablg1,t) denotes the density of infected animals with time-sindeation 7. Infected individuals
in thei-stage pass through both the sub-clinical phase and thealliphase. To account for the animals who remain
asymptomatic, we introduckt) — the number of asymptomatic animals who do not progressrtical stage.
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The time-since-infection epidemiological model with veat transmission takes the form:
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whereA is the birth/recruitment ratey is the proportion of progeny of infected animals that is spsible,g, is the
proportion of newly infected animals who progress to theepuasymptomatic stag@, is the transmission rate of
asymptomatic animalgip is the natural death rate. The total infected populatiarsitage is

|@:Aﬂa@m.

The total population sizBl = S(t) + 1 (t) + J(t) satisfies the equatiod’ = ApN — ppN. We assume thatp = pp so
that the total population size is constant. Furthermoreaseeime that the initial conditions are chosen solthat1.

The time-since-infection dependent transmission rafé(1 and time-since-infection dependent disease-induced
death rate ig/(1). We link the time-since-infection epidemiological ratestie immunological dependent variables:

bacterial load and antibody response. In particular, theeince-infection dependent transmission 1afe) is
assumed proportional to the bacterial load:

B(1) = oB(1)
wherea is the transmission efficiency of the infection. Furthereave split the virulencg(1) into two components:
y(1) = ya(1) + ¥a(T)

wherey (T) is the additional host mortality due to parasite growth:

y(t) = erB(1)(1 - B(1)/K)



with ¢ being the parasite cost coefficient. Furthermesér) is the additional host mortality due to immune response:

yo(T) = KNA(T)

wherek is the immune response cost coefficient.
To compute the immune-response-dependent epidemiolagma@duction number, we compute the epidemiologi-
cal reproduction number of asymptomatic infection:
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and we assume that it is smaller than one. Furthermore, weedefi
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whereS is the disease-free susceptible population, \8ite= 1. Furthermore, we have

(T) = & HPTe g (CTB(1)(1-B(3)/K) +KnA(S)ds

Note thatr(t) depends on the bacterial load and the antibody immune respdie first term inZ, accounts for
the new infections caused by the vertical transmission stend — accounts for the cases caused by horizontal
transmission.

DISCUSSION

In this paper we introduce an immuno-epidemiological maxfelohne’s disease — a deadly disease of ruminants,
which has a significant impact on the dairy herd productioa. Wk a nested approach to compose the model. Our
immunological model is linked to the time-since-infectiepidemiological model through the time-since-infection
variable and the parameters of the epidemiological modghikvhost models of Johne’s disease do not exist in the
literature. In that sense our immunological model is noVele model captures the switch of the immune response
from T-cell mediated to antibody mediated. Epidemiolofymadels of Johne’s disease exist in the literature, but our
model is the first one that captures the latent and cliniegesthrough time-since-infection structure.

The nested approach for linking immunological to the epiddogical models that we have used has multiple
advantages:

1. The link with the time-since-infection allows the immuogical dynamics to have its own time-scale.
2. Linking through time-since-infection allows for unnésted increase in complexity of the immunological model.

3. The time-since-infection epidemic models are matheralyiwell studied — many things about their dynamics
are known.

4. The epidemiological reproduction number of the diseasean be computed in terms of the parasite load or
the immune response. In this article we compute the immespeanse-dependent epidemiological reproduction
number for our immuno-epidemiological model of Johne'sdee.

5. The mechanistic description of the within-host hostipgen dynamics is used to derive, rather than impose,
population-level life-history parameters.

6. The framework allows for easy incorporation of parasigmegic diversity in various regimes: competitive
exclusion, co-infection, super-infection.

At this point one particular disadvantage of the nested @augr is that all infected animals in thatage experience
the same immunological dynamics. This disadvantage caarbedied if a multi-group epidemic model is considered
but expanding model (2) to a multi-group model will incre#fse complexity of the immuno-epidemiological model
significantly.
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