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Abstract. This chapter introduces an avian influenza model which includes the dy-
namics of low pathogenic avian influenza (LPAI) and high pathogenic avian influenza
(HPAI). The model structures the LPAI-recovered individuals by time-since-recovery
and involves the cross-immunity that LPAI infection generates toward the HPAI. Repro-
duction numbers (RLw

0
,RHw

0
) and invasion reproduction numbers (R̂Hw

, R̂Lw
) of LPAI

and HPAI are computed. It is shown that the system has a unique disease-free equilib-
rium that is locally and globally stable if RLw

0
< 1 and RHw

0
< 1. If RLw

0
> 1 a unique

LPAI dominance equilibrium exists. Similarly, if RHw

0
> 1 a unique HPAI dominance

equilibrium exists. The equilibria are locally stable if R̂Hw
< 1 (R̂Lw

< 1 correspond-
ingly). A unique coexistence equilibrium is present if both invasion numbers are larger
than one. Simulations show that this coexistence equilibrium can lose stability and
coexistence in the form of sustained oscillations is possible. Cross-immunity and dura-
tion of protection increase the probability of coexistence. Simulations also show that
increasing LPAI transmission increases LPAI prevalence and decreases HPAI preva-
lence. This observation in part may explain why wild birds which have much higher
transmission of LPAI compared to domestic birds also have much lower prevalence of
HPAI.
Keywords: mathematical models, age-structured differential equations, reproduction
number, invasion number, LPAI, HPAI, H5N1, avian influenza.
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1. Introduction

Avian (bird) Influenza (flu) viruses belong to a group of viruses called Influenza A.
There are three types of influenza viruses: Influenza A, B and C. Influenza A viruses
infect many different avian and mammalian species including humans [13]. Humans can
be infected with all three types of influenza viruses while birds can be only infected
with Influenza A virus [45]. Influenza A strains are classified by their surface proteins:
haemagglutinin (HA) and neuraminidase (NA). Majority of all HA/NA combinations
have been isolated in wild birds especially waterfowls and shorebirds [1, 45]. The subtype
HA has 16 distinct molecules (H1-H16) and NA has 9 distinct molecules (N1-N9). The
H and N combination names the subtype, for instance the virus that caused one of the
deadliest pandemics in the history, which is known as the “Spanish Flu,” was H1N1
subtype. Two other major influenza pandemics have occurred in the 20th century :
“Asian Influenza” caused by H2N2 subtype in 1957 and “Hong Kong Influenza” caused
by H3N2 subtype in 1968.
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An influenza pandemic happens when a new influenza subtype spreads in the human
population. Influenza viruses have the capability of evolving rapidly and jumping be-
tween species. They evolve through two evolutionary mechanisms: drift and shift. Drift
is small and gradual changes on the surface proteins (antigens) which occur both in
Influenza A and Influenza B viruses. Shift evolution occurs through reassortment which
is the mixing of two influenza strains into a new strain with capabilities of both strains.
Since Influenza A viruses infect many different species, shift occurs only in Influenza A
type viruses. The research on influenza subtypes H2N2 and H3N2 which caused Asian
and Hong Kong influenza respectively, recovered that these subtypes had surface pro-
tein genes almost certainly from both influenza virus of avian and human origins [4, 37].
This evidence indicates that antigenic shift occurred through reassortment of both avian
and human influenza viruses. On the other hand, influenza subtype H1N1 that caused
the “Spanish Flu” was more related to avian influenza than to influenza from any other
species which suggested that an avian influenza virus was adapted to human-to-human
transmissible pathogen and caused a pandemic [2]. It is highly possible that the next
pandemic influenza can be caused by avian influenza.
The pandemic potential of highly pathogenic avian influenza of subtype H5N1 leads

to continued concerns. The first human avian influenza case of subtype H5N1 appeared
in Hong Kong in 1997, which caused the death of a boy. Since then, as of September
2012, there are total of 608 reported H5N1 human cases worldwide, out of which 359
resulted in death. Even though, the number of H5N1 infected human cases is small, the
case fatality rate, which is approximately 60% is very high. Highly pathogenic avian
influenza of subtype H5N1 is currently at the top of the list for a pandemic threat.
The main reason for the high pandemic potential is that the virus is capable of rapid
evolution and at some point might emerge as an effective human-to-human transmissible
pathogen and cause a pandemic.
Avian influenza viruses are further classified into two groups based on their ability

to cause disease: low pathogenic avian influenza (LPAI) and high pathogenic avian
influenza (HPAI). Viruses of most subtypes persist in low pathogenic form, typically
producing asymptomatic or mild illness in wild or domestic birds. Studies suggest that
LPAI strains from the H5 and H7 subtypes circulating in wild birds can evolve into strains
of Highly Pathogenic Avian Influenza (HPAI), after spillover infection to domestic birds
[1, 8, 38, 42]. The World Organization for Animal Health (OIE) defines a virus of the
H5 or H7 subtype as a highly pathogenic avian influenza virus if it can cause at least
75% mortality in 4-week to 8-week old chickens infected intravenously [47, 42].

1.1. Low Pathogenic Avian Influenza. The host range of AI in wild birds is not
known but some species of aquatic birds (such as ducks, geese, and shorebirds), serve
as natural reservoirs of AI viruses [8, 41]. All subtypes of AI viruses isolated this far
persist in wild birds as low pathogenic forms. LPAI viruses of the H5 subtype, which
is of primary interest here, are generally reported at very low prevalence rates in ducks
[23, 33], but the prevalence may vary by location or year. LPAI viruses have been
reported in domestic birds, most frequently turkeys, ducks and chickens. Although
LPAI viruses of many subtypes can be found in poultry, viruses from the H5 (and H7)
subtypes are most frequently reported there [43].
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1.2. High Pathogenic Avian Influenza. HPAI was first described in poultry in Italy
in 1878 [29]. Unlike the low pathogenic influenza, which mostly affects the respiratory
tract, the highly pathogenic form infects multiple organs and systems of infected birds.
In poultry, HPAI is characterized by high mortality rate, often over 80% within 48
hours. Before 2002, HPAI was rarely found in wild birds. For this reason, it is still an
open question whether HPAI viruses are endemic in wild birds. Since 2002, HPAI has
been isolated from multiple species of wild birds [41]. The HP H5N1, which is now the
main cause of concern, is believed to have emerged from an LPAI virus circulating in
chickens sometime in 1996 [46]. After potentially undergoing additional mutation, the
HPAI H5N1 virus infected 18 people in Hong Kong in 1997, six of whom died [9]. Since
2003 HPAI H5N1 has been regularly infecting humans primarily though bird-to-human
infection. The emergence of a virus that can pass directly from birds to humans showed
that pigs are not a necessary link in the chain. Since then, viruses of other subtypes
have also made the transition LPAI→HPAI and can pose a significant threat [37].

1.3. Cross Immunity. Infection with one strain of Influenza A type viruses provides
cross protection against infection with antigenically similar strains. The partial pro-
tection offered by the cross immunity is high only if the new strain infecting the host
and the strain responsible for immunity are closely related. The protection is ineffective
against viruses with major antigenic divergence [6, 7]. However, the unique evolution-
ary capabilities of Influenza type A viruses (drift and shift) still causes a concern, since
prior infection may only reduce the virus spread but can not prevent the infection [10].
Studies in [40] and [10] suggest that prior infection with LPAI provides cross protection
against infection with HPAI.
Just before the first H5N1 human case in 1997, there was H5N1 poultry outbreak

in chicken farms in Hong Kong. Even though, evidence showed the presence of H5N1
virus, most of the chickens in the poultry markets did not show any symptoms and
appeared healthy [39]. Seo and Webster, motivated by this puzzling situation, set up
an experiment to test the hypothesis that prior infection with H9N1 (which is LPAI)
provides partial protection against highly pathogenic avian H5N1 infections [40]. There
are mainly two types of immunity caused by prior infection: cell mediated immunity
and antibody mediated immunity. The prior infection with LPAI provides cell mediated
immunity toward HPAI [40, 10]. The protection mediated by cellular immune response
is established by CD8+ T cells. These findings of the research done by the authors in [40,
10] indicates that it is possible to induce cell mediated immunity toward high pathogenic
avian influenza viruses by low pathogenic avian influenza. In terms of control measures,
it is promising to develop vaccines that emphasize cell mediated cellular immunity.

1.4. Mathematical Modeling of Avian Influenza. Avian influenza is perhaps the
most dangerous disease linking humans and animals at present. Because of its deadly
pandemic potential, even in its current pre-pandemic stage it has caused significant
hardship and economic loss [35]. In the last 5-10 years avian influenza has enjoyed
significant attention from mathematical modelers, largely due to its key position among
infectious diseases.
Early models of avian influenza focused on humans, investigating the potential impact

of a hypothetical pandemic and exploring strategies for its possible mitigation [12, 15, 14,
27, 32]. Other models focused on the present status quo centered on infection of domestic
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birds, and current control strategies which primarily target poultry. For example, a
spatial farm-based model treating poultry-farms as units [24] and SIR models for within-
flock transmission of H5N1 [44] were developed. Despite the importance of a number
of emergent diseases, many of which arise from spillover infections from animals, few
models to date involve both animals and humans linked by a pathogen. This situation
has been changing recently, particularly in relation to AI. The simplest model that
captures a bird-to-human transmission pathway of HPAI involves domestic birds and
humans [18]. The dynamics of HPAI in poultry are given by a simple SI model, as
infected domestic birds either die from the infection or are culled to prevent further
spread. To introduce the model, we denote the number of susceptible domestic birds by
Sd(t), and the number of domestic birds infected by HPAI by IHd

(t). Furthermore, we
denote susceptible humans by S(t), and humans infected with HPAI by I(t). The AI
model consists of the following two systems:

(1.1) Domestic birds:















dSd

dt
= Λd − βHd

IHd
Sd − µdSd,

dIHd

dt
= βHd

IHd
Sd − (µd + νHd

)IHd

where the parameters for the domestic bird population are: Λd – the recruitment rate
of domestic birds, µd – the natural death rate of domestic birds, βHd

– the transmission
coefficient of HPAI among domestic birds, and νHd

– the death rate of domestic birds
due to HPAI.

(1.2) Humans:















dS

dt
= Λ− βIHd

S − µS

dI

dt
= βIHd

S − (ν + α + µ)I

The parameters related to human dynamics are: Λ – the birth/recruitment rate of
humans, µ – the natural death rate of humans, β – the transmission coefficient of HPAI
from birds to humans, ν – the death rate of humans due to HPAI, and α – the recovery
rate. Model (1.1-1.2) has very simple dynamics. However, it fails to capture most of the
complexity and characteristic features of AI transmission and evolution. Recognizing
the importance of both birds and humans in the transmission and evolution of AI, a
number of models involving domestic birds and humans [18, 20, 19, 22] were developed.
Some more elaborate models even involve wild birds, as well as domestic birds and
humans [28, 26, 16, 3]. These models typically incorporate the hypothetical scenario in
which HP H5N1 avian influenza becomes adapted to humans and starts transmitting
efficiently from human-to-human. This models the shift evolutionary mechanism. The
drift evolutionary mechanism was originally modeled by Pease [36]. Pease’s drift model
has recently been extensively studied [17, 30]. A novel model combining effects of both
drift and shift evolution of influenza A was discussed by Martcheva [31], where it was
found that drift evolution may be responsible for the 365-day oscillation of human flu,
as well as 365-day oscillations of the number of humans infected with HP H5N1, as
observed in data.
In this chapter we investigate the dynamics of LPAI and HPAI in birds. The interac-

tion between LPAI and HPAI in birds has been priorly studied by several authors [?, 5]
but the effect of cross-immunity that LPAI gives to HPAI has not been investigated.
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2. The Model

Influenza strains can compete in two ways: depletion of susceptible hosts, and cross-
immunity [6, 7, 34]. Cross-immunity is a mechanism by which infection with one strain
provides partial protection against infection with another. A number of references in
the biological literature suggest that infection with LPAI can provide partial protection
against HP H5N1 both in poultry and in wild birds. Seo and Webster [40] infected a
group of chickens with LPAI H9N2 influenza virus. They found that the group infected
by H5N1 within 30 days of inoculation by LPAI had a 100% survival rate and reduced
clinical signs. As time between the two infections grew, the protection started to fade
and the morbidity of infection with HPAI grew. This study suggests that the immunity
provided by prior infection with LPAI is temporary, declining with time-since-recovery
from LPAI. To incorporate this variability of cross-immunity in wild birds, we let τ be
the time-since-recovery from low pathogenic influenza and qw(τ) be the variable cross-
immunity (high cross-immunity is modeled by low qw) imparted from LPAI to infection
with HPAI. To introduce the model, let the birth/recruitment rate of wild birds be
denoted by Λw and the natural mortality rate for wild birds by µw. The number of
susceptible wild birds is Sw(t), the number of LPAI infected wild birds is ILw

(t), and
the number of HPAI infected wild birds is IHw

(t). The density of individuals that have
recovered from LPAI is rLw

(τ, t) and the number of individuals that have recovered from
HPAI is RHw

(t). The dynamics of LPAI and HPAI in wild birds are captured by the
following model

(2.1)



























































































dSw

dt
= Λw − βL

11ILw
Sw − βH

11IHw
Sw − µwSw,

dILw

dt
= βL

11ILw
Sw − (µw + αLw

)ILw

∂rLw

∂t
+

∂rLw

∂τ
= −qw(τ)β

H
11IHw

rLw
− µwrLw

rLw
(0, t) = αLw

ILw

dIHw

dt
= βH

11IHw
Sw

+βH
11IHw

∫

∞

0

qw(τ)rLw
(τ, t)dτ − (µw + αHw

+ νHw
)IHw

dRHw

dt
= αHw

IHw
− µwRHw

.

where αLw
and αHw

are the recovery rates for wild birds, and νHw
is the HPAI-induced

mortality. A simplifying assumption is that most wild birds that recover from HPAI
do so because they may have had prior exposure to LPAI. This assumption is justified
based on the experimental studies that suggest that LPAI strains of the same subtype
or different subtype induce partial cross-immunity toward infection with HPAI strains
[11, 21]. We make the simplifying assumption that recruitment does not depend upon
focal bird numbers. This could be relaxed in future, for instance by introducing a logistic
growth term.
In the following section we analyze the dynamics of low pathogenic and high pathogenic

avian influenza within the wild bird population. The model that models the interaction
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of LPAI and HPAI in poultry is quite similar. Therefore, symmetrical results are true
for the domestic bird population.

3. LPAI-HPAI dynamics in wild birds

We study the existence and stability of equilibria of the wild bird system (2.1). To
determine the equilibria, we solve the following system which is obtained by setting the
time derivatives in (2.1) equal to zero.

(3.1)







































































0 = Λw − βL
11ILw

Sw − βH
11IHw

Sw − µwSw,

0 = βL
11ILw

Sw − (µw + αLw
)ILw

∂rLw

∂τ
= −qw(τ)β

H
11IHw

rLw
− µwrLw

rLw
(0)= αLw

ILw

0 = βH
11IHw

Sw

+βH
11IHw

∫

∞

0

qw(τ)rLw
(τ, t)dτ − (µw + αHw

+ νHw
)IHw

0 = αHw
IHw

− µwRHw
.

The wild bird system has 4 equilibria. The first is the disease-free equilibrium. The sec-
ond and the third are the LPAI-only and HPAI-only equilibria (i.e. boundary equilibria).
The fourth one is the coexistence equilibrium (i.e. interior equilibrium) which represents
the state in which both LPAI and HPAI are present in the wild bird population.

3.1. Disease-Free Equilibrium. The wild-bird-model (2.1) has a disease-free equilib-
rium (DFE) ε0 given by

ε0 = (S∗

w, 0, 0, 0, 0) ,

where S∗

w = Λw

µw
. The basic reproduction number for LPAI in wild birds, denoted by

RLw

0 , is given by

RLw

0 =
βL
11Λw

µw(µw + αLw
)
,

and the basic reproduction number for HPAI in wild birds, denoted by RHw

0 , is given by

RHw

0 =
βH
11Λw

µw(µw + αHw
+ νHw

)
.

These basic reproduction numbers are threshold values which determine whether LPAI
or HPAI can invade the disease-free equilibrium.

Theorem 1. If RLw

0 < 1 and RHw

0 < 1 then the DFE, ε0, is locally asymptotically stable.

Proof. Let (u, v, x, y, z) be the perturbations around the steady state. Expressing the
perturbations as

Sw(t) = S∗

w+u(t) , ILw
(t) = v(t) , rLw

(τ, t) = x(τ, t) , IHw
(t) = y(t) , RHw

(t) = z(t) ,

we substitute into the PDE system (2.1). Using the equation for the disease-free equi-
librium and dropping the quadratic terms in the perturbations, we obtain the following
linear system involving only perturbations.
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du

dt
= βL

11S
∗

wv − βH
11S

∗

wy − µwu,

dv

dt
= βL

11S
∗

wv − βH
11S

∗

wy − (µw + αLw
)v

∂x

∂t
+

∂x

∂τ
= −µwx(3.2)

x(0, t) = αLw
v

dy

dt
= βH

11S
∗

wy − (µw + αHw
+ νHw

)y

dz

dt
= αHw

y − µwz

To investigate the local stability of the DFE, we study the solutions of the system
(3.2). Suppose that the linear system (3.2) has exponential solutions, that is we look for
solutions of the following form:

(3.3) u = ūeλt , v = v̄eλt , x = x̄(τ)eλt , y = ȳeλt , z = z̄eλt .

Substituting the above solutions into linearized system (3.2), we get the following eigen-
value problem;

λū = −βL
11S

∗

wv̄ − βH
11S

∗

wȳ − µwū,

λv̄ = βL
11S

∗

wv̄ − (µw + αLw
)v̄

λȳ = βH
11S

∗

wȳ − (µw + αHw
+ νHw

)ȳ(3.4)

λz̄ = αHw
ȳ − µwz̄

which is combined with the following first order ODE;

λx̄+
dx̄

dτ
= −µwx̄ , x̄(0) = αLw

v̄ .

Solving the above differential equation, we obtain;

x̄ = αLw
v̄e−(λ+µw)τ .

Solutions of (3.4) gives the eigenvalues {λi}
4
i=1 of the linearized differential operator in

(3.2). The eigenvalue problem (3.4) is linear. The second equation involves only v̄ and is
independent from ū , ȳ and z̄ . Similar statement is true for the third equation involving
only ȳ. Solving the second equation we get

λ2 = βL
11S

∗

w − (µw + αLw
) ,

which is negative since RLw

0 < 1 . Solving the third equation we get λ3 = βL
11S

∗

w −
(µw + αHw

+ νHw
) . Clearly, λ3 < 0, since RHw

0 < 1 . The other two eigenvalues are
λ1 = λ4 = −µw < 0. �
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The basic reproduction number RLw

0 (RHw

0 ) measures the average number of new low
(high) pathogenic infections generated by a single wild bird infected with low (high)
pathogenic avian influenza in a completely susceptible wild bird population. Thus,
Theorem 1 implies that the LPAI and HPAI can be eliminated from the wild bird
population if RLw

0 < 1 and RHw

0 < 1 and if initially the number of wild birds infected
with LPAI and HPAI are in the the basin of attraction of the DFE.

3.1.1. Global Stability of the Disease-Free Equilibrium. Now, we prove the global asymp-
totic stability of the disease-free equilibrium ε0.

Theorem 2. If RLw

0 < 1 and RHw

0 < 1 then the DFE, ε0, is globally asymptotically

stable.

Proof. From the first equation in the system (2.1) we obtain the following inequality

S ′

w ≤ Λw − µwSw.

From this inequality we have

(3.5) lim sup
t

Sw(t) ≤
Λw

µw

.

Integrating the second equality in system (2.1) we have

ILw
(t) = e−(µw+αLw

)tILw
(0) + βL

11

∫ t

0

e−(µw+αLw
)(t−σ)Sw(σ)dσ.

Changing the variable of integration in the integral, we have

ILw
(t) = e−(µw+αLw

)tILw
(0) + βL

11

∫ t

0

e−(µw+αLw
)σSw(t− σ)dσ.

Taking a lim sup of both sides of this equality, we obtain the following inequality:

lim sup
t

ILw
(t) ≤

βL
11Λw

µw(µw + αLw
)
lim sup

t

ILw
(t)

where the coefficient infront the lim sup on the right hand side is exactly RLw

0 . Since
RLw

0 < 1, this inequality is only possible if lim supt ILw
(t) = 0. Hence, ILw

(t) → 0 as
t → ∞. Next, we integrate the partial differential equation along the characteristic lines.
We obtain,

(3.6) rLw
(τ, t) =

{

αLw
ILw

(t− τ)e−
∫
τ

0
qw(σ)IHw

(t−τ+σ)dσ−µwτ τ < t

r0(τ − t)e−
∫
t

0
qw(τ−t+σ)IHw

(σ)dσ−µw t τ > t

where r0(τ) = rLw
(τ, 0). Consider the term

∫

∞

0
qw(τ)rLw

(τ, t)dτ . We claim

lim sup
t

∫

∞

0

qw(τ)rLw
(τ, t)dτ = 0.
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Indeed, using (3.6) we have

(3.7)

lim sup
t

∫

∞

0

qw(τ)rLw
(τ, t)dτ

≤ αLw

∫ t

0

qw(τ)ILw
(t− τ)e−µwτdτ +

∫

∞

t

qw(τ)r
0(τ − t)e−µwtdτ

≤ αLw

∫ t

0

qw(τ)ILw
(t− τ)e−µwτdτ + e−µwt

∫

∞

0

r0(τ)dτ.

Taking the lim sup from both sides of the above inequality gives the claim. We denote
by

Q(t) =

∫

∞

0

qw(τ)rLw
(τ, t)dτ.

To conclude the proof, we integrate the equation for high pathogenic influenza and
change the variable of integration.
(3.8)

IHw
(t) = e−(µw+αHw

+νHw
)tIHw

(0) + βH
11

∫ t

0

e−(µw+αHw
+νHw

)σSw(t− σ)IHw
(t− σ)dσ

+βH
11

∫ t

0

e−(µw+αHw
+νHw

)σQ(t− σ)IHw
(t− σ)dσ.

Taking lim sup of both sides of the above equality, we have

lim sup
t

IHw
(t) ≤

βH
11Λw

µw(µw + αHw
+ νHw

)
lim sup

t

IHw
(t).

The coefficient on the right-hand side infront lim supt IHw
(t) is exactly RHw

0 . Since
RHw

0 < 1, the only way the above inequality can hold is if lim supt IHw
(t) = 0, that is if

IHw
(t) → 0 as t → ∞. That completes the proof.

�

3.2. LPAI-only and HPAI-only Equilibria. We study the competition of the low
and high pathogenic avian influenza in wild bird population. Like basic reproduction
number, the invasion number is a threshold quantity that determines if one pathogen
can invade the other pathogen’s equilibrium. The invasion numbers are very useful in
understanding the dynamics between low and high pathogens in wild bird population.
We denote by R̂Lw

the invasion number of LPAI when the system is at HPAI-only
equilibrium. The invasion number of LPAI is

R̂Lw
=

βL
11 (µw + αHw

+ νHw
)

βH
11(µw + αLw

)
=

RLw

0

RHw

0

.

The invasion number R̂Lw
gives the ability of LPAI to invade the HPAI-only equilibrium

which is measured as the secondary infections one LPAI-infected wild bird can produce
in a wild bird population where HPAI is at equilibrium. We denote by R̂Hw

the invasion
number of HPAI. Similar definition is true for the invasion number of HPAI. The invasion
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number of HPAI is

(3.9)
R̂Hw

=

βH
11Ŝw + βH

11

∫

∞

0

qw(τ)r̂wdτ

µw + αHw
+ νHw

=
RHw

0

RLw

0

(

1 +
αLw

µw

αLw
+ µw

(RLw

0 − 1)

∫

∞

0

qw(τ)e
−µwτdτ

)

.

The wild bird system (2.1) has two boundary equilibria: LPAI-only and HPAI-only

equilibria. We denote the LPAI-only equilibrium by (Ŝw, ÎLw
r̂Lw

, 0, 0) and the HPAI-only

equilibrium by (S̃w, 0, 0, ĨHw
R̃Hw

). In the following two theorems we prove the existence
of boundary equilibria.

Theorem 3. IfRLw

0 > 1, then there exists a unique LPAI-only equilibrium (Ŝw, ÎLw
r̂Lw

, 0, 0)

in which Ŝw =
µw+αLw

βL
11

, ÎLw
= µw

βL
11

(

RLw

0 − 1
)

and r̂Lw
= αLw

ÎLw
e−µwτ .

Proof. To find the LPAI-only equilibrium, we look for time-independent solutions of the
form (Ŝw, ÎLw

r̂Lw
(τ), 0, 0). We set the time derivatives in wild bird system (2.1) equal

to zero and obtain the following system for the LPAI-only equilibrium.

0 = Λw − βL
11ÎLw

Ŝw − µwŜw

0 = βL
11ÎLw

Ŝw − (µw + αw)ÎLw
(3.10)

dr̂Lw

dτ
= µwr̂Lw

r̂Lw
(0) = αLw

ÎLw

The system consists of one first order ODE whose initial condition depends on the
solution ÎLw

and two algebraic equations. The second equation can be rewritten as

0 =
(

βL
11Ŝw − (µw + αw)

)

ÎLw
.

Solving for Ŝw we get,

Ŝw =
µw + αw

βL
11

.

Substituting the expression for Ŝw into the first equation and solving it for ÎLw
we get,

ÎLw
=

Λw

µw + αLw

−
µw

βL
11

.

Since the basic reproduction number for LPAI is RLw

0 =
βL
11
Λw

µw(µw+αLw
)
, we rearrange the

terms in ÎLw
by factoring out µw

βL
11

to obtain

ÎLw
=

µw

βL
11

(

RLw

0 − 1
)

.

Finally we solve the differential equation
dr̂Lw

dτ
= −µwr̂Lw

with r̂Lw
(0) = αLw

ÎLw
whose

solution is
r̂Lw

(τ) = αLw
ÎLw

e−µwτ



LPAI-HPAI dynamics 11

�

Theorem 4. IfRHw

0 > 1, then there exists a unique HPAI-only equilibrium (S̃w, 0, 0, ĨHw
R̃Hw

)

where S̃w =
µw+αLw

+νHw

βH
11

, ÎHw
= µw

βH
11

(

RHw

0 − 1
)

and R̃Hw
=

αHw

βH
11

(

RHw

0 − 1
)

.

Proof. Proof is very similar to the proof of Theorem 3, and will not be repeated. �

Theorem 5. The LPAI-only equilibrium is locally asymptotically stable if R̂Hw
< 1 and

unstable if R̂Hw
> 1.

Proof. As before, we start by linearizing the system. We denote by (u, v, x, y, z) the
perturbations around the steady state and set

Sw(t) = Ŝw+u(t) , ILw
(t) = ÎLw

+v(t) , rLw
(τ, t) = r̂Lw

(τ)+x(τ, t) , IHw
(t) = y(t) , RHw

(t) = z(t) .

Substituting the above expressions onto (2.1), we obtain the following linear system for
perturbations.

du

dt
=− βL

11ÎLw
u− βL

11Ŝwv − βH
11Ŝwy − µwu,

dv

dt
=βL

11ÎLw
u+ βL

11Ŝwv − (µw + αLw
)v

∂x

∂t
+

∂x

∂τ
=− βH

11r̂Lw
qw(τ)y − µwx

x(0, t) =αLw
v(3.11)

dy

dt
=βH

11Ŝwy + βH
11y

∫

∞

0

qw(τ)r̂Lw
dτ − (µw + αHw

+ νHw
)y

dz

dt
=αHw

y − µwz

We expect that the solutions are exponential and seek for solutions of the form (3.3).
Substituting the these solutions (3.3) into linearized system (3.11), we get the follow-
ing linear eigenvalue problem which consists of algebraic equations and a differential
equation. The algebraic equations can be represented in the following matrix form

(3.12) Aω = λω

where ω = (ū , v̄ , ȳ , z̄)T and the matrix A is;

A =









−βL
11ÎLw

− µw −βL
11Ŝw −βH

11Ŝw 0

βL
11ÎLw

βL
11Ŝw − (µw + αLw

) 0 0
0 0 D 0
0 0 αHw

−µw









where D = βH
11Ŝw + βH

11

∫

∞

0

qw(τ)r̂Lw
dτ − (µw + αHw

+ νHw
). The differential equation

is:

λx̄+
dx̄

dτ
= −βH

11r̂Lw
qw(τ)ȳ − µwx̄ , x̄(0) = αLw

v̄ .
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We solve the non-homogeneous differential equation by first multiplying with the integral
factor e(λ+µw)τ . We then integrate and obtain the following solution;

x̄(τ) = αLw
v̄e−(λ+µw)τ −

∫ τ

0

βH
11r̂Lw

qw(s)ȳe
−(λ−µw)(τ−s)ds .

The LPAI-only equilibrium is stable, if and only if the eigenvalues {λi}
4
i=1 of the algebraic

eigenvalue problem (3.12) are all negative. The third equation in (3.12) involves only ȳ.
We solve the third equation and obtain

λ3 = βH
11Ŝw + βH

11

∫

∞

0

qw(τ)r̂Lw
dτ − (µw + αHw

+ νHw
) .

The eigenvalue λ3 < 3 if R̂Hw
< 1 . We see that eigenvalue λ4 = −µw. Note that

βL
11Ŝw − (µw + αLw

) = 0 Thus, the characteristic equation for eigenvalues λ1 and λ2 is;

λ2 + λ
(

βH
11ÎLw

+ µw

)

+ βL
11Ŝwβ

L
11ÎLw

= 0

Since λ1 + λ2 < 0 and λ1λ2 > 0, there are either λ1 < 0 and λ2 < 0 or two complex
conjugate eigenvalues that satisfy ℜλ1 < 0, ℜλ2 < 0. �

Theorem 6. The HPAI-only equilibrium is locally asymptotically stable if R̂Lw
< 1 and

unstable if R̂Lw
> 1 .

Proof. Proof of Theorem 6 is very similar to the proof of Theorem 5, and will be omitted.
�

3.3. Coexistence Equilibrium. In this subsection, we investigate the existence, unique-
ness and the stability of the coexistence equilibrium (i.e. interior equilibrium). We de-
note the coexistence equilibrium by (S∗∗

w , I∗∗Lw
, r∗∗Lw

, I∗∗Hw
, R∗∗

Hw
) . Coexistence equilibrium

represents the state for which both low pathogenic and high pathogenic avian influenza
are endemic in the wild bird population. We first show the existence and uniqueness of
the coexistence equilibrium by the following theorem.

Theorem 7. There exists a unique coexistence equilibrium (S∗∗

w , I∗∗Lw
, r∗∗Lw

, I∗∗Hw
, R∗∗

Hw
) iff

R̂Lw
> 1 , and R̂Hw

> 1 .

Proof. The coexistence equilibrium satisfies the following steady state equation

(3.13)































































0 = Λw − βL
11I

∗∗

Lw
S∗∗

w − βH
11I

∗∗

Hw
S∗∗

w − µwS
∗∗

w ,

0 = βL
11I

∗∗

Lw
S∗∗

w − (µw + αLw
)I∗∗Lw

dr∗∗Lw

dτ
= −qw(τ)β

H
11I

∗∗

Hw
r∗∗Lw

− µwr
∗∗

Lw

r∗∗Lw
(0)= αLw

I∗∗Lw

0 = βH
11I

∗∗

Hw
S∗∗

w + βH
11I

∗∗

Hw

∫

∞

0

qw(τ)r
∗∗

Lw
(τ)dτ − (µw + αHw

+ νHw
)I∗∗Hw

0 = αHw
I∗∗Hw

− µwR
∗∗

Hw

Solving the second equation for S∗∗

w , we get;

S∗∗

w =
µw + αLw

βL
11

.
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We then substitute the expression for S∗∗

w to the first equation and solve for I∗∗Lw
and

obtain:

I∗∗Lw
= µw

(

RLw

0 − 1
)

−
βH
11

βL
11

I∗∗Hw
.

To determine r∗∗Lw
, we solve the differential equation

dr∗∗Lw

dτ
= −qw(τ)β

H
11I

∗∗

Hw
r∗∗Lw

− µwr
∗∗

Lw
, r∗∗Lw

(0) = αLw
I∗∗Lw

and obtain

r∗∗Lw
= αLw

I∗∗Lw
e
−µwτ−βH

11
I∗∗
Hw

∫ τ

0

qw(s)ds
.

Substituting the expressions for S∗∗

w and r∗∗Lw
into the fourth equation, we see that I∗∗Hw

satisfies the equation F (I∗∗Hw
) = 0 where F (x) is the following monotone decreasing

function

F (x) =
βH
11

βL
11

(µw + αLw
) +

βH
11

βL
11

αLw

(

µw(R
Lw

0 − 1)− βH
11x

)

∫

∞

0

qw(τ)e
−µwτ−βH

11
x

∫ τ

0

qw(s)ds
dτ

− (µw + αHw
+ νHw

).

(3.14)

There exists a unique positive I∗∗Hw
in the interval (0, ÎLw

) such that F (I∗∗Hw
) = 0, since

F (0) =
βH
11

βL
11

(µw + αLw
) +

βH
11

βL
11

(

µw(R
Lw

0 − 1)
)

∫

∞

0

qw(τ)e
−µwτdτ − (µw + αHw

+ νHw
)

= βH
11Ŝw + βH

11

∫

∞

0

qw(τ)r̂Lw
(τ)dτ − (µw + αHw

+ νHw
)

= (µw + αHw
+ νHw

)(R̂Hw
− 1)

> 0

and

F (ÎLw
) =

βH
11

βL
11

(µw + αLw
)− (µw + αHw

+ νHw
)

= (µw + αHw
+ νHw

)

(

1

R̂Lw

− 1

)

< 0.

�

3.3.1. Stability of the Coexistence Equilibrium: To investigate the stability of
coexistence equilibrium (S∗∗

w , I∗∗Lw
, r∗∗Lw

, I∗∗Hw
, R∗∗

Hw
) we start by linearizing the system (2.1).

We set

Sw(t) = S∗∗

w +u(t) , ILw
(t) = I∗∗Lw

+v(t) , rLw
(τ, t) = r∗∗Lw

+x(τ, t) , IHw
(t) = I∗∗Hw

+y(t) ,

RHw
(t) = R∗∗

Hw
+ z(t) . Substituting into the equations of the system (2.1) and using

the equation (3.13) for coexistence equilibrium, we get the following linear system after
dropping the quadratic terms in perturbations:
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du

dt
= −βL

11S
∗∗

w v − βL
11I

∗∗

Lw
u− βH

11I
∗∗

Hw
u− βH

11S
∗∗

w y − µwu(3.15)

dv

dt
= βL

11S
∗∗

w v + βL
11I

∗∗

Lw
u− (µw + αLw

)v(3.16)

∂x

∂t
+

∂x

∂τ
= −qw(τ)β

H
11r

∗∗

Lw
y − qw(τ)β

H
11I

∗∗

Hw
x− µwx(3.17)

x(0, t) = αLw
v

dy

dt
= βH

11I
∗∗

Hw
u+ βH

11S
∗∗

w y + βH
11I

∗∗

Hw

∫

∞

0

qw(τ)x(τ, t)dτ(3.18)

+ βH
11y

∫

∞

0

qw(τ)r
∗∗

Lw
dτ − (µw + αHw

+ νHw
)y

dz

dt
= αHw

y − µwz(3.19)

We look for exponential solutions of the system (3.15)-(3.19). Substituting (3.3) into
(3.15)-(3.19), we get the following eigenvalue problem:

λū = −βL
11S

∗∗

w v̄ − βL
11I

∗∗

Lw
ū− βH

11I
∗∗

Hw
ū− βH

11S
∗∗

w ȳ − µwū(3.20)

λv̄ = βL
11S

∗∗

w v̄ + βL
11I

∗∗

Lw
ū− (µw + αLw

)v̄(3.21)

λx̄+
dx̄

dτ
= −qw(τ)β

H
11r

∗∗

Lw
ȳ − qw(τ)β

H
11I

∗∗

Hw
x̄− µwx̄(3.22)

x̄(0) = αLw
v̄

λȳ = βH
11I

∗∗

Hw
ū+ βH

11S
∗∗

w ȳ + βH
11I

∗∗

Hw

∫

∞

0

qw(τ)x̄(τ)dτ(3.23)

+ βH
11ȳ

∫

∞

0

qw(τ)r
∗∗

Lw
dτ − (µw + αHw

+ νHw
)ȳ

λz̄ = αHw
ȳ − µwz̄(3.24)

We solve the non-homogeneous differential equation (3.22), by first multiplying with
the integrating factor;

e
(λ+µw)τ+βH

11
I∗∗
Hw

∫ τ

0

qw(s)ds
.

We then integrate both sides from 0 to τ and use the initial condition x̄(0) = αLw
v̄ to

obtain:

(3.25) x̄(τ) = αLw
v̄e

−(λ+µw)τ−βH
11
I∗∗
Hw

∫ τ

0

qw(s)ds
− βH

11ȳf(τ) ,

where

(3.26) f(τ) =

∫ τ

0

qw(s)r
∗∗

Lw
(s)e

−(λ+µw)(τ−s)−βH
11
I∗∗
Hw

∫ τ

s

qw(σ)dσ
.
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Since βL
11S

∗∗

w − (µw + αLw
) = 0, equation (3.21) reduces to

(3.27) λv̄ = βL
11I

∗∗

Lw
ū .

Similarly using the equation of coexistence equilibrium (3.13), from (3.23) we see that

βH
11S

∗∗

w + βH
11

∫

∞

0

qw(τ)r
∗∗

Lw
dτ − (µw + αHw

+ νHw
) = 0. Hence, (3.23) reduces to

(3.28) λȳ = βH
11I

∗∗

Hw
ū+ βH

11I
∗∗

Hw

∫

∞

0

qw(τ)x̄(τ)dτ .

Substituting the solution for x̄(τ), (3.25), into the reduced equation for ȳ (3.28), we
obtain the following equation for ȳ which involves only ū and v̄

(3.29) λȳ = βH
11I

∗∗

Hw
ū+ A(λ)v̄ − βH

11I
∗∗

Hw
βH
11B(λ)ȳ

where

(3.30) A(λ) = αLw
βH
11I

∗∗

Hw

∫

∞

0






qw(τ)e

−(λ+µw)τ−βH
11
I∗∗
Hw

∫ τ

0

qw(s)ds






dτ .

and

(3.31) B(λ) =

∫

∞

0

qw(τ)f(τ)dτ .

Combining these reduced equations for (3.27) and (3.29) together with (3.20), we get
the following eigenvalue problem;

λū = −βL
11S

∗∗

w v̄ − βL
11I

∗∗

Lw
ū− βH

11I
∗∗

Hw
ū− βH

11S
∗∗

w ȳ − µwū

λv̄ = βL
11I

∗∗

Lw
ū(3.32)

λȳ = βH
11I

∗∗

Hw
ū+ A(λ)v̄ − βH

11I
∗∗

Hw
βH
11B(λ)ȳ .

This system will have non-zero solution for (ū, v̄, ȳ) if the determinant of this system is
zero, that is, if

(3.33)

∣

∣

∣

∣

∣

∣

∣

∣

−λ− βL
11I

∗∗

Lw
− βH

11I
∗∗

Hw
− µw −βL

11S
∗∗

w βH
11S

∗∗

w

βL
11I

∗∗

Lw
−λ 0

βH
11I

∗∗

Hw
A(λ) −λ− βH

11I
∗∗

Hw
B(λ)

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

From the determinant, we obtain the characteristic equation for the eigenvalue problem
(3.32):

λ3 + λ2
(

βH
11I

∗∗

Hw
βH
11B(λ) + βL

11I
∗∗

Lw
+ βH

11I
∗∗

Hw
+ µw

)

+λ
[(

βL
11I

∗∗

Lw
+ βH

11I
∗∗

Hw
+ µw

) (

βH
11I

∗∗

Hw
βH
11B(λ)

)

+ βH
11S

∗∗

w βH
11I

∗∗

Hw
+ βL

11S
∗∗

w βL
11I

∗∗

Lw

]

+βH
11S

∗∗

w βL
11I

∗∗

Lw
A(λ) + βH

11I
∗∗

Hw
βH
11B(λ)βL

11S
∗∗

w βL
11I

∗∗

Lw
= 0.

This characteristic equation has roots with positive real parts. Thus instability and
oscillations occur. We show that sustained oscillations are possible in the system (2.1)
by demonstrating it with a specific example in the next section.
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Figure 1. The number of wild birds infected with LPAI (thin line) and
the number of wild birds infected with HPAI (thick line) exhibit oscilla-
tions.
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4. Numerical Simulations

In this section, we perform several numerical simulations of the model (2.1). We
obtain the approximate solution of the system (2.1) by constructing an implicit finite
difference method. We discretize the domain D = {(τ, t) : 0 ≤ τ ≤ A , 0 ≤ t ≤ T} by
taking equal step sizes in both t and τ direction. Thus, ∆t = ∆τ .
In all simulations, we choose the cross-immunity function qw(τ) to be the following

step function;

(4.1) qw(τ) =

{

0 if τ ≤ a

q if τ > a

where a is an arbitrary constant. Since the variable τ is the time-since-recovery from low
pathogenic avian influenza, this cross immunity function qw(τ) means that the wild birds
are fully protected from HPAI for a period of time a. After that period a, the protection
wanes. This is a reasonable assumption for low pathogenic and high pathogenic influenza
in the avian population, and it is in agreement with the results of the study by [40].
The first question that we address with simulations is whether system can (2.1) can

exhibit oscillations in which both the LPAI and the HPAI oscillate at non-zero values.
To address this question, we analyze the characteristic equation. With the above choice
of qw(τ), we compute the integrals in f(τ), A(λ), and B(λ) and get;

f(τ) = qαLw
I∗∗Lw

1

λ

(

eλτ − eλa
)

e−(λ+µw)τ−βH
11
I∗∗
Hw

q(τ−a)

and

A(λ) =
βH
11I

∗∗

Hw
αLw

qe−(λ+µw)a

λ+ µw + βH
11I

∗∗

Lw
q

and

B(λ) =
q2αLw

I∗∗Lw
e−µwa

(λ+ µw + βH
11I

∗∗

Lw
q)(µw + βH

11I
∗∗

Lw
q)
.

After analyzing the characteristics equation we find parameters of the model (2.1),
whose solutions exhibits oscillations. These parameters are given in Table 1. To illustrate
the oscillations, we simulate the solutions of the wild bird system (2.1) using an implicit
finite difference method. Time is measured in years, and the final time for the simulations
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are T = 40 and A = 30. The number of wild birds infected with LPAI and the number of
wild birds infected with HPAI, which exhibit sustained oscillations, are plotted in Figure
1. The Figure shows that the oscillations in LPAI have a much larger amplitude than
the oscillations of LPAI suggesting that the instability of the dynamics of LPAI is more
pronounced. Furthermore, the oscillations in HPAI follow the oscillations of LPAI with
the peak in HPAI occurring right after the drop in LPAI. This behavior partly reminds
of a Lotka-Volterra predator-prey dynamics where the oscillations in the predator follow
the oscillations of the prey with 1/4 of a turn. This analogy is perhaps not surprising
since HPAI infects individuals recovered from LPAI.

Table 1. Parameter values of the wild birds model (2.1) which exhibits oscillations.

Prameter Value Parameter Value Parameter Value

Λw 1020 βL
11 0.1278 rLw

(τ, 0) 28/T
µw 1/2 βH

11 0.7140 IHw
(0) 2

νHw
460.925 Sw(0) 2000 q 1

αHw
365/7 ILw

(0) 10 a 0.25
αLw

365/7

The next question we address is how changes in the transmission of LPAI affect the
competition of the strains. To investigate the impact of βL

11, we obtain the approximate
solutions of the system (2.1) for three different values of βL

11. We fix all other parameters
and change only βL

11. The results show that increasing βL
11 increases the LPAI prevalence

and decreases the HPAI prevalence. We plot ILw
(t) and IHw

(t) in Figure 2.

Figure 2. LPAI and HPAI prevalence for three different values of βL
11

System (2.1) can model the dynamics of LPAI and HPAI in both wild and domestic
birds. The observation that increasing transmission increases prevalence of LPAI and
decreases prevalence of HPAI may shed light on why wild birds have lower prevalence
of HPAI compared to domestic birds. The immunity created by circulating LPAI pro-
tects wild birds from HPAI. In contrast, domestic birds are protected from LPAI and
consequently, they experience much more serious symptoms from HPAI and HPAI has
much higher prevalence in domestic birds, particularly in the poultry population of some
countries.
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Another question of interest is how the duration of cross-immunity affects the LPAI
and HPAI prevalence. Since we assume that LPAI provides full protection against HPAI
for τ ∈ [0, a], it is interesting to know how the length of this protection affects the
dynamics. We take three different values of a and plot ILw

(t) and IHw
(t) in Figure 3.

We observe that increasing duration of cross-immunity decreases the prevalence of HPAI
among wild bird populations. What is unexpected is that cross-immunity also increases
the prevalence of LPAI, even though it does not directly affect LPAI. The change in
LPAI is at least as pronounced as the change in HPAI.

Figure 3. Effect of cross-immunity on HPAI prevalence

Another question that we consider is the impact of LPAI and HPAI transmission
rates βH

11 and βL
11 on the HPAI prevalence at coexistence equilibrium. To investigate this

topic, we consider the equation for the I∗∗Hw
. The HPAI prevalence in the coexistence

equilibrium satisfies the equation F (I∗∗Hw
) = 0 given in (3.14) which involves the following

integral

C =

∫

∞

0

qw(τ)e
−µwτ−βH

11
I∗∗
Hw

∫ τ

0

qw(s)ds
dτ .

We compute the integral C(λ) by taking qw(τ) to be the step function in (4.1) and obtain

C =
qe−µwa

µw + βH
11I

∗∗

Hw
q
.

Thus, the HPAI coexistence equilibrium, I∗∗Hw
satisfies

(4.2)
βH
11

βL
11

(µw+αLw
)+

βH
11

βL
11

αLw

(

µw(R
Lw

0 − 1)− βH
11I

∗∗

Hw

) qe−µwa

µw + βH
11I

∗∗

Hw
q
− (µw+αHw

+ νHw
) = 0

We plot (4.2) for several values of βL
11 in Figure 4 . We consider how the two transmission

rates impact I∗∗Hw
. We notice that for low values of HPAI transmission rate and low HPAI

prevalence, the HPAI prevalence does not depend on the transmission rate of LPAI.
However, as the HPAI prevalence increases it becomes more and more sensitive to the
LPAI transmission rate. A surprising conclusion is that for higher HPAI prevalences, the
HPAI prevalence depends significantly on the LPAI transmission rate βL

11. It is further
clear that increase in βH

11 increases the HPAI prevalence I∗∗Hw
while increase in the LPAI

transmission rate βL
11 decreases HPAI prevalence I∗∗Hw

. This observation again suggests
that higher transmission of LPAI in wild birds may be responsible for lower prevalence
of HPAI.
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Figure 4. HPAI coexistence equilibrium

Finally, we recall that HPAI is locally stable if R̂Lw
< 1, and LPAI is locally stable

if R̂Hw
< 1. We notice that the two invasion numbers can be written as function of the

two reproduction numbers:

R̂Lw
= h(RLw

0 ,RHw

0 ) R̂Hw
= g(RLw

0 ,RHw

0 ).

Therefore, we can plot the curves h(RLw

0 ,RHw

0 ) = 1 and g(RLw

0 ,RHw

0 ) = 1 in the
(RLw

0 ,RHw

0 ) plane. The figure we obtain is given in Figure 5. The figure shows that the

Figure 5. The regions of coexistence and dominance

area in the (RLw

0 ,RHw

0 ) plane where HPAI dominates is the largest. HPAI dominates
whenever RHw

0 > RLw

0 . The area where LPAI dominates is below the lower curve. The
area where LPAI and HPAI coexist is the area between the curves. This area is larger
if q is larger and when a is smaller. That is to say that coexistence is more likely if the
full immunity provided by LPAI is shorter.

5. Discussion

This chapter introduces a LPAI-HPAI avian influenza model. HPAI-infected individ-
uals can infect individuals recovered from LPAI at some reduced infectivity. However,
we assume that LPAI-infected individuals cannot infect HPAI-recovered individuals.
Furthermore, LPAI-recovered individuals are structured by time-since-recovery and the
immunity to HAPI created by prior infection by LPAI wanes as the time-since-recovery
increases. This model describes the HPAI-LPAI dynamics in both domestic and wild
birds.
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We find that the system has a unique disease-free equilibrium. We define the repro-
duction numbers for the LPAI and HPAI. If both reproduction number are smaller than
one, then we show that the disease-free equilibrium is both locally and globally stable.
If one of the reproduction numbers is greater than one, then the disease-free equilibrium
is unstable. Furthermore, we find that if the reproduction number of LPAI is greater
than one, there is a unique LPAI-only equilibrium. Similarly, if the reproduction number
of HPAI is greater than one, there is a unique HPAI-only equilibrium. We define the
invasion reproduction numbers of LPAI and HPAI. The invasion reproduction number
of LPAI is greater than one if and only if the reproduction number of LPAI is greater
then the reproduction number of HPAI. We prove that the LPAI-only equilibrium is lo-
cally asymptotically stable if the HPAI invasion number is smaller than one, that if the
HPAI cannot invade the equilibrium of the LPAI. Similarly we prove that the HPAI-only
equilibrium is locally asymptotically stable if the LPAI invasion number is smaller than
one, that is the LPAI cannot invade the equilibrium of the HPAI. This is to say that
HAPI dominates in the population and drives LPAI to extinction if and only if HAPI
reproduction number is larger than the LPAI reproduction number. HPAI dominates
for more values of the reproduction numbers than LPAI and every time the reproduction
number of HPAI is larger than the reproduction number of LPAI; however, we believe
that for realistic parameter values LPAI has a higher reproduction number, particularly
in wild birds.
Finally we show that if both invasion numbers are larger than one coexistence equi-

librium is present. The mechanism of coexistence is cross-immunity. We show that
the coexistence equilibrium is unique. In addition, we show through simulations that
the coexistence equilibrium may lose stability and coexistence in the form of sustained
oscillations is possible. In this case HPAI’s peak follows right after the LPAI’s peak.
Simulations also suggest that increasing the transmission coefficient of LPAI increases

the prevalence of LPAI and decreases the prevalence of HPAI. Furthermore, increasing
the transmission coefficient of HPAI and decreasing the transmission coefficient of LPAI
both increase the HPAI prevalence. Based on these simulations we conclude that higher
transmission of LPAI in wild birds may be responsible for the lower prevalence of HPAI
compared to poultry. Finally, assuming that LPAI protects against HPAI completely for
a period of time, we investigate the effect the duration of protection has on the LPAI
and HPAI prevalence. We find that increasing the duration of protection has an impact
on both the LPAI prevalence and the HPAI prevalence. In particular, it increases the
LPAI prevalence and decreases the HPAI prevalence.
Several articles have investigated the dynamics of LPAI and HPAI before [28, 5]. How-

ever, the effects of cross-immunity and duration of protection have not been studied. In
this article we investigate these effects as well as how transmission impacts the preva-
lence of LPAI and HPAI. Furthermore, prior studies have found that ODE models with
cross-immunity have note been able to exhibit sustain oscillations [6, 7]. To generate
oscillations in the multi-strain influenza dynamics, a quarantine state was introduced in
[34]. Here, we have used a different approach to model the oscillations in avian influenza
dynamics, namely, we have introduced a time-since-recovery independent variable. We
show via simulations that the coexistence equilibrium can be destabilized and coexis-
tence in the form of sustained oscillation is possible.
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