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This paper introduces a time-since-recovery structured, multi-strain, multi-population model
of avian influenza. Influenza A viruses infect many species of wild and domestic birds and
are classified into two groups based on their ability to cause disease: low pathogenic avian
influenza (LPAI) and high pathogenic avian influenza (HPAI). Prior infection with LPAI pro-
vides partial immunity towards HPAI. The model introduced in this paper structures LPAI-
recovered birds (wild and domestic) with time-since-recovery and includes cross-immunity
toward HPAI that can fade with time. The model has a unique disease free equilibrium
(DFE), unique LPAI-only and HPAI-only equilibria and at least one coexistence equilibrium.
We compute the reproduction numbers of LPAI (RL) and HPAI (RH) and show that the DFE
is locally asymptotically stable when RL < 1 and RH < 1. A unique LPAI-only (HPAI-only)
equilibrium exists when RL > 1 (RH > 1) and it is locally asymptotically stable if HPAI

(LPAI) cannot invade the equilibrium, that is, if the invasion number R̂
H

L < 1 (R̂L

H < 1 ).
We show using numerical simulations that the ODE version of the model, which is obtained
by discarding the time-since-recovery structures (making cross immunity constant), can ex-
hibit oscillations, and also that the pathogens LPAI and HPAI can coexist with sustained
oscillations in both populations. Through simulations, we show that even if both populations
(wild and domestic) are sinks when alone, LPAI and HPAI can persist in both populations
combined. Thus, reducing the reproduction numbers of LPAI and HPAI in each population
to below unity is not enough to eradicate the disease. The pathogens can continue to coexist
in both populations unless transmission between the populations is reduced.

Keywords: mathematical models, age-structured differential equations, reproduction
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1. Introduction

Infectious disease dynamics often occur within the context of complex ecological com-
munities [21]. Moreover, many important host-pathogen systems consist of multiple
pathogen strains, circulating among multiple species of hosts. Understanding how multi-
species transmission affects persistence of a given pathogen strain can help inform pre-
diction and management of infectious disease outbreaks, and understanding how such
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transmission among hosts modulates the coexistence of pathogen strains and thus the
maintenance of genetic variation within pathogens is essential for gauging how pathogens
are likely to evolve. This community dimension of epidemiology is widely recognized as
being a significant frontier in quantitative epidemiology and the public health sciences
[28].
These issues arise with particular urgency in the case of the avian influenza viruses

(AIVs), which present a global economic problem in the poultry industry costing annually
hundreds of millions of dollars [48] and pose a serious public health risk due to the threat
of emergence of a novel pathogen strain circulating among human hosts, with potentially
devastating consequences [62]. Influenza A viruses can infect many species of warm-
blooded vertebrates [63], but the great majority of viral strains appear to be found in
wild waterbirds, such as shorebirds and gulls (Charadriiformes) and ducks and geese
(Anseriformes) [32]. These species can come into contact with domestic poultry, which
can pose a direct threat to the poultry industry, and also provides a conduit for potential
transmission to humans.
Mathematical models can provide essential tools for understanding many aspects of

infectious disease dynamics [28], and become particularly important when grappling with
the complexities of multi-pathogen, multi-host systems, for instance when hosts them-
selves may mount strain-specific immune responses to infection. A realistic model of
avian influenza would be highly complex, since it would have to account for transmission
within and among multiple potential species of wild hosts, many of which are migra-
tory [58] and occupy seasonally forced environments (see refs. in [62]). As a way-station
towards such a realistic model, here we consider a system in which there are two host
populations, which we call domestic and wild bird populations, each of which has rela-
tively simple intrinsic dynamics. These two host populations are in turn infected by two
strains of avian influenza A, one of which is a strain of LPAI, and the other a strain of
HPAI. HPAI viruses are defined by the fact that they cause at least 75% mortality in
4-8 week chickens, infected intravenously [56]. HPAI strains are of influenza A subtypes
H5 and H7 (e.g. H5N1, H7N9).
The basic dynamics of each host consists of a steady flow of fresh susceptibles into each

host population, and a constant rate of intrinsic mortality. In the absence of the virus,
the hosts have very stable dynamics. (This assumption would need to be relaxed when
considering the detailed dynamics of natural populations, which fluctuate seasonally and
among years.) Transmission of the virus occurs in a density-dependent fashion, both
within and between these two populations. Hosts can recover from infection with LPAI,
and when they do recover, are immune for life from further infection by this viral strain.
However, LPAI-recovered birds can be infected by HPAI. Consistent with empirical evi-
dence, there is a degree of cross-protection in the immune response, so infection by LPAI
can protect against HPAI. However, this cross-immunity fades with time, and incorpo-
rating the dynamics of such time-dependent fadeout in immune protection is one of the
mathematical complexities of our model. By contrast, infection with HPAI is assumed
to always lead to death (possibly by culling) in domestic birds; in wild birds, HPAI leads
to death or recovery with permanent immunity to both strains.
Our focus will be on the implications of partial cross-immunity, but to put our results

into context, it is useful to consider what might be expected when cross-immunity is
complete. If cross-immunity is complete, then LPAI and HPAI simply compete for sus-
ceptible hosts. If there is only one population, within which each strain could persist
alone, whichever strain can persist at the lowest level of susceptibles will eliminate the
other strain. With two populations, there are two resources (the susceptibles in the two
populations), so there are other possibilities. One is that the two strains coexist, for ex-
ample if LPAI is better at exploiting wild susceptibles and HPAI is better at exploiting
domestic susceptibles. Another possibility is that each strain can exclude the other, in
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which case the first strain to arrive persists and the second strain cannot invade (al-
ternative equilibria). If cross-immunity is not complete, HPAI can infect at least some
LPAI-recovered birds, and so it has an additional resource. Therefore, coexistence is pos-
sible in a single population if LPAI is better at exploiting susceptibles; with complete
cross-immunity, LPAI would eliminate HPAI, but with partial cross-immunity it is some-
times possible for HPAI to invade and persist by infecting LPAI-recovered birds. With
two populations, of course, there is additional scope for coexistence. The analyses and
simulations presented below help illuminate the conditions that permit such coexistence.
We first present the basic model (for a flow chart of the model, see Figure 1). Then,

we characterize the conditions for each viral strain to be able to increase when rare and
alone. We derive expressions for the basic reproduction number for each strain, which
are functions of the joint densities of the domestic and wild bird populations. Next,
we consider the conditions for increase of each strain when rare, when the other strain
is present, and aim at characterizing conditions for the coexistence of the two strains.
Such coexistence is not guaranteed. The two viral strains can be viewed as interacting
in two distinct ways. First, they compete exploitatively for healthy hosts. Given that
there are two host populations, as noted above, there is the potential for a degree of
niche partitioning that could facilitate viral strain coexistence [21]. Secondly, the loss of
partial immunity means there is a partial, time-lagged facilitation of the dynamics of
HPAI, emerging from hosts who get infected with LPAI, but recover. This means that
even if all hosts have been infected by LPAI (so no fully susceptible hosts are available
at all), some hosts can become available for infection by HPAI.
This replenishment of hosts for HPAI involves a lag, relative to LPAI infection. We

will use numerical simulations to demonstrate that this permits the entire system to
persist, but at times with sustained, large-scale oscillations in infection by each viral
strain. Such oscillations can emerge even if each viral strain on its own tends towards a
stable equilibrium when it alone is infecting the two host populations.

2. The Model

We consider a time-since-recovery structured model to study the dynamics of low and
high pathogenic avian influenza (indicated by L and H subscripts or superscripts, re-
spectively) in wild and domestic bird populations (indicated by w or 1 subscripts for
wild birds and d or 2 subscripts for domestic birds). The wild bird population is divided
into nonintersecting classes of susceptible (Sw), infected with HPAI (IHw

), infected with
LPAI (ILw

), recovered from LPAI (rLw
), and recovered from HPAI (RHw

). Similarly,
the domestic bird population is divided into susceptible (Sd), infected with HPAI (IHd

),
infected with LPAI (ILd

) and recovered from LPAI (rLd
) classes. Since the detection of

even one HPAI-infected domestic bird results in culling the entire farm and the death of
the infected bird, we do not include a HPAI-recovered class for the domestic bird popu-
lation. The LPAI-recovered classes rLw

(τ, t), rLd
(τ, t) denote the density of (per unit τ)

recovered birds at time t with time-since-recovery equal to τ .
The susceptible bird populations are generated by the recruitment/birth rates (Λw

and Λd) and reduced by the natural death rates (µw and µd) and by infection with
HPAI or LPAI. The new infections with LPAI and HPAI, respectively, per unit time per
susceptible host are modeled by λLw

and λHw
in wild birds. The forces of infection for

LPAI and HPAI, respectively, in the wild bird population are given by

λLw
= βL

11ILw
+ βL

12ILd
, λHw

= βH
11IHw

+ βH
12IHd

.

Similarly, the forces of infection for LPAI and HPAI, respectively, in the domestic bird
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Table 1. Definition of the variables of model (1)

Variable Meaning Variable Meaning

Sw Population of susceptible wild birds Sd Population of susceptible domestic birds

ILw
Population of LPAI-infected wild birds ILd

Population of LPAI-infected domestic birds

IHw
Population of HPAI-infected wild birds IHd

Population of HPAI-infected domestic birds

rLw
Density of wild birds that have recovered from LPAI rd Density of domestic birds that have recovered from LPAI

RHw
Population of wild birds that have recovered from HPAI

population are given by

λLd
= βL

21ILw
+ βL

22ILd
, λHd

= βH
21IHw

+ βH
22IHd

.

The aggregate β parameters can be interpreted as the product of rate of contacts be-
tween a susceptible (wild or domestic) bird and an infected (LPAI or HPAI) bird and
the probability that the contact resulted in transmission. For instance βH

12 is the HPAI
transmission rate to wild birds from domestic birds; similarly, βL

21 is the LPAI transmis-
sion rate to domestic birds from wild birds (per susceptible bird per infected bird). Thus,
the rate of change of the population of susceptible wild and domestic bird populations
are given by

dSw

dt
= Λw − λLw

Sw − λHw
Sw − µwSw ,

dSd

dt
= Λd − λLd

Sd − λHd
Sd − µdSd .

The infected wild birds recover from LPAI infection at a rate αLw
and the domestic

birds recover at a rate αd. LPAI causes mild infection in domestic and wild birds [66],
hence we neglect the LPAI-induced death rate. The LPAI-infected wild and domestic
bird populations increase by the new incidences λLw

Sw and λLd
Sd, respectively. Thus

the wild and domestic bird populations infected with LPAI satisfy the equations

dILw

dt
= λLw

Sw − (µw + αLw
)ILw

,

dILd

dt
= λLd

Sd − (µd + αd)ILd
.

The HPAI-infected wild and domestic bird populations increase by the new incidences
λHw

Sw and λHd
Sd, respectively. Wild birds infected with HPAI can recover at a rate

αHw
; domestic birds do not recover from HPAI. Studies show that an earlier infection

with LPAI provides temporary immunity toward HPAI and this immunity fades with
time-since-recovery from LPAI [14, 53]. Since τ is the time elapsed since the recovery
from the last LPAI infection, the additional new HPAI infections per unit time from wild
birds that have recovered from LPAI are given by the term

λHw

∫

∞

0
qw(τ)rLw

(τ, t)dτ ,

where qw(τ) is the susceptibility to HPAI of a wild bird that recovered from LPAI τ time
units ago relative to that of a naive wild bird. Similarly, the new HPAI infections per
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Table 2. Definition of the parameters of model (1)

Parameter Meaning

Λd Birth/recruitment rate of domestic birds

Λw Birth/recruitment rate of wild birds

µd Natural death rate of domestic birds

µw Natural death rate of wild birds

νHd
HPAI-induced mortality rate for domestic birds

νHw
HPAI-induced mortality rate for wild birds

αd Recovery rate of domestic birds from LPAI

αLw
Recovery rate of wild birds from LPAI

αHw
Recovery rate of wild birds from HPAI

βL

11
/βH

11
LPAI/HPAI transmission rate to susceptible wild birds from infected wild birds

βL

12
/βH

12
LPAI/HPAI transmission rate to susceptible wild birds from infected domestic birds

βL

22
/βH

22
LPAI/HPAI transmission rate to susceptible domestic birds from infected domestic birds

βL

21
/βH

21
LPAI/HPAI transmission rate to susceptible domestic birds from infected wild birds

qw(τ) Relative susceptibility of LPAI-recovered wild birds toward HPAI

qd(τ) Relative susceptibility of LPAI-recovered domestic birds toward HPAI

unit time of the domestic birds recovered from LPAI infections are given by the term

λHd

∫

∞

0
qd(τ)rd(τ, t)dτ ,

where qd(τ) is the relative susceptibility to HPAI of an LPAI-recovered domestic bird.
Thus the wild and domestic bird populations infected with HPAI satisfy the equations

dIHw

dt
= λHw

Sw + λHw

∫

∞

0
qw(τ)rLw

(τ, t)dτ − (µw + αHw
+ νHw

)IHw
,

dIHd

dt
= λHd

Sd + λHd

∫

∞

0
qd(τ)rd(τ, t)dτ − (µd + νHd

)IHd
,

where νHw
and νHd

are disease death rates induced by HPAI in wild and domestic
birds, respectively. We combine these differential equations with those for LPAI-recovered
classes, rLw

(τ, t) and rLd
(τ, t), which have relative susceptibilities to HPAI of qw(τ) and

qd(τ), respectively, where 0 ≤ qw(τ) ≤ 1 , 0 ≤ qd(τ) ≤ 1 for every τ > 0. Thus the
differential equations modeling the recovered classes are

∂rLw

∂t
+

∂rLw

∂τ
= −qw(τ)λHw

rLw
− µwrLw

,

rLw
(0, t) = αLw

ILw
,

∂rd
∂t

+
∂rd
∂τ

= −qd(τ)λHd
rd − µdrd ,

rd(0, t) = αdILd
.

We note that in the above equations we have assumed mass-action incidence. Since the
contacts in influenza (avian or human) scale with the total population size, most influenza
models are built with mass action incidence (see e.g [4]). With the above notation, we
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have the following time-since-recovery structured, multi-strain, multi-population model

dSw

dt
= Λw − λLw

Sw − λHw
Sw − µwSw,

dILw

dt
= λLw

Sw − (µw + αLw
)ILw

∂rLw

∂t
+

∂rLw

∂τ
= −qw(τ)λHw

rLw
− µwrLw

rLw
(0, t) = αLw

ILw

dIHw

dt
= λHw

Sw + λHw

∫

∞

0
qw(τ)rLw

(τ, t)dτ − (µw + αHw
+ νHw

)IHw

dRHw

dt
= αHw

IHw
− µwRHw

dSd

dt
= Λd − λLd

Sd − λHd
Sd − µdSd,

dILd

dt
= λLd

Sd − (µd + αd)ILd

∂rd
∂t

+
∂rd
∂τ

= −qd(τ)λHd
rd − µdrd

rd(0, t) = αdILd

dIHd

dt
= λHd

Sd + λHd

∫

∞

0
qd(τ)rd(τ, t)dτ − (µd + νHd

)IHd
.

(1)

A schematic flow diagram of model (1) is given in Figure 1, and the associated model
variables and parameters are defined in Table 1 and Table 2, respectively.

3. LPAI-HPAI dynamics in wild and domestic bird populations

We first examine the existence and stability of equilibria of system (1). Model (1) has 4
equilibria: the disease free equilibrium (DFE); two boundary equilibria, LPAI-only and
HPAI-only; and the coexistence equilibrium.

3.1 Disease-Free Equilibrium

System (1) has a disease-free equilibrium ε0 given by ε0 = (S∗
w, 0, 0, 0, 0, S

∗

d , 0, 0, 0) , where

S∗
w = Λw

µw

, and S∗

d = Λd

µd

.
The LPAI and HPAI basic reproduction numbers for the wild bird population are

denoted by RL
11 and RH

11, respectively, and are given by

RL
11 =

βL
11Λw

µw(µw + αLw
)
, RH

11 =
βH
11Λw

µw(µw + αHw
+ νHw

)
.

The epidemiological meaning of basic reproduction number RL
11 (RH

11) is the number of
secondary cases produced by one LPAI (HPAI) infected wild bird during its infectious
period in an entirely susceptible population of wild birds. Similarly, the basic reproduc-
tion numbers for LPAI and HPAI in the domestic bird population are denoted by RL

22
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Figure 1. Flow chart of model (1)

Sw

rLw IHw
ILw

RHw

ILd
IHd

rd

Sd

Λw

µw

µw µw µw + νHw
µw

λLw
λHw

αLw
qw(τ)λHw

αHw

Λd

µd

µd µd µd + νHd

λLd
λHd

αd qd(τ)λHd

and RH
22 , respectively, and are given by

RL
22 =

βL
22Λd

µd(µd + αd)
, RH

22 =
βH
22Λd

µd(µd + νHd
)
.

We also define the reproduction numbers between populations. In particular, the LPAI
and HPAI reproduction numbers of domestic birds in the wild bird population are de-
noted by RL

12 and RH
12 , respectively, and are given by

RL
12 =

βL
12Λw

µw(µd + αd)
, RH

12 =
βH
12Λw

µw(µd + νHd
)
.

The reproduction number RL
12 (RH

12) gives the number of secondary cases one LPAI
(HPAI) infected domestic bird will produce during its lifetime as infectious in an entirely
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susceptible wild bird population. Similarly, we denote the LPAI and HPAI reproduction
number of wild birds in the domestic bird population as RL

21 and RH
21 , respectively, which

are given by

RL
21 =

βL
21Λd

µd(µw + αLw
)
, RH

21 =
βH
21Λd

µd(µw + αHw
+ νHw)

.

The reproduction number RL
21 (RH

21) gives the number of secondary cases one LPAI
(HPAI) infected wild bird will produce during its lifetime as infectious in an entirely
susceptible domestic bird population.
We call the reproduction numbers RL

11, . . . ,R
H
22 population-specific reproduction num-

bers and the reproduction numbersRL
12, . . . ,R

H
21 cross-population reproduction numbers.

We denote the basic reproduction number of LPAI for the full system (1) as RL , which
is given by

RL =
RL

11 +RL
22 +

√

(

RL
11 −RL

22

)2
+ 4RL

12R
L
21

2
.

Similarly the basic reproduction number of HPAI for the full system (1) is given by

RH =
RH

11 +RH
22 +

√

(

RH
11 −RH

22

)2
+ 4RH

12R
H
21

2
.

These basic reproduction numbersRL,RH are threshold values which determine whether
LPAI or HPAI can invade the disease-free equilibrium. The basic reproduction number
R0 of the full system (1) is the maximum of the LPAI and HPAI reproduction numbers:
that is,

R0 = max{RL,RH} .

Theorem 3.1. If RL < 1 and RH < 1 then the DFE, ε0, is locally asymptotically stable.

Proof. Let (uw, vw, xw, yw, zw, ud, vd, xd, yd) = (Sw, ILw
, rLw

, IHw
, RHw

, Sd, ILd
, rd, IHd

)−
ε0 denote the perturbations around the DFE; then we obtain the following linearized
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system.

duw
dt

= −βL
11S

∗

wvw − βL
12S

∗

wvd − βH
11S

∗

wyw − βH
12S

∗

wyd − µwuw,

dvw
dt

= βL
11S

∗

wvw + βL
12S

∗

wvd − (µw + αLw
)vw

∂xw
∂t

+
∂xw
∂τ

= −µwxw

xw(0, t) = αLw
vw

dyw
dt

= βH
11S

∗

wyw + βH
12S

∗

wyd − (µw + αHw
+ νHw

)yw

dzw
dt

= αHw
yw − µwzw

dud
dt

= −βL
21S

∗

dvw − βL
22S

∗

dvd − βH
21S

∗

dyw − βH
22S

∗

dyd − µdud,

dvd
dt

= βL
21S

∗

dvw + βL
22S

∗

dvd − (µd + αd)vd

∂xd
∂t

+
∂xd
∂τ

= −µdxd

xd(0, t) = αdvd

dyd
dt

= βH
21S

∗

dyw + βH
22S

∗

dyd − (µd + νHd
)yd

(2)

Suppose that the perturbations xw(t, τ) and xd(t, τ) have exponential forms such as
xw = eλtx̄w(τ) and xd = eλtx̄d(τ) . After dropping the bars, we obtain the following first
order ODEs:

λxw+
dxw
dτ

= −µwxw , xw(0) = αLw
vw , and λxd+

dxd
dτ

= −µdxd , xd(0) = αdvd .

Solving these differential equations, we obtain:

xw(τ) = αLw
vwe

−(λ+µw)τ , xd(τ) = αdvde
−(λ+µd)τ .

The infected compartments x = (vw, vd, yw, yd) of the linearized system (2) are decoupled
from the remaining equations. Using the next generation matrix approach, the linearized
system for the infected compartment x = (vw, vd, yw, yd) can be rewritten as

x′ = (F − V )x

where

F =









βL
11S

∗
w βL

12S
∗
w 0 0

βL
21S

∗

d βL
22S

∗

d 0 0
0 0 βH

11S
∗
w βH

12S
∗
w

0 0 βH
21S

∗

d βH
22S

∗

d









, V =









µw + αLw
0 0 0

0 µd + αd 0 0
0 0 µw + αHw

+ νHw
0

0 0 0 µd + νHd








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The next generation matrix K = FV −1 is a matrix of reproduction numbers:

K =









RL
11 R

L
12 0 0

RL
21 R

L
22 0 0

0 0 RH
11 R

H
12

0 0 RH
21 R

H
22









The LPAI basic reproduction number RL is the principal eigenvalue of the matrix

KL =

(

RL
11 R

L
12

RL
21 R

L
22

)

RL =
RL

11 +RL
22 +

√

(

RL
11 −RL

22

)2
+ 4RL

12R
L
21

2
.

Similarly, the HPAI reproduction number RH is the principal eigenvalue of the matrix

KH =

(

RH
11 R

H
12

RH
21 R

H
22

)

RH =
RH

11 +RH
22 +

√

(

RH
11 −RH

22

)2
+ 4RH

12R
H
21

2
.

The reproduction number R0 is given by the principal eigenvalue of the next gen-
eration matrix K. Thus the basic reproduction number of the full system (1) is
R0 = max{RL,RH} . Note that if R0 < 1, then all eigenvalues of the subsystem in-
volving infected compartments (vw, vd, yw, yd) have negative real parts [12] (Theorem
2, page 33). For values of λ different from the eigenvalues of the subsystem, we have
(vw, vd, yw, yd) = (0, 0, 0, 0) , which leads to xw(τ) = xd(τ) = 0. The remaining eigenval-
ues of the full system are λ5 = −µw, λ6 = −µw and λ7 = −µd . Hence all the eigenvalues
are negative or have negative real parts. Thus, the DFE is locally asymptotically stable
when R0 < 1. If R0 > 1 , then the (vw, vd, yw, yd) subsystem has an eigenvalue with a
positive real part, thus the DFE is unstable.

Furthermore, we can show the global stability of the disease-free equilibrium.

Theorem 3.2. Assume R0 < 1. Then the disease-free equilibrium is globally stable.

Proof. Integrating the PDEs and adding all equations for wild birds in system (1), we
have the following inequality for the total population size Nw of wild birds:

dNw

dt
≤ Λw − µwNw.

Hence lim suptNw ≤ Λw

µw

. Similarly we have for the total domestic bird population Nd

the inequality lim suptNd ≤
Λd

µd

. That means that the set

Γ = {(Nw, Nd) : Nw ≤
Λw

µw
, Nd ≤

Λd

µd
}

10
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is invariant. For initial conditions in the set Γ we have

dILw

dt
≤ (βL

11ILw
+ βL

12ILd
)S∗

w − (µw + αLw
)ILw

dILd

dt
≤ (βL

21ILw
+ βL

22ILd
)S∗

d − (µd + αd)ILd

dIHw

dt
≤ (βH

11IHw
+ βH

12IHd
)S∗

w − (µw + αHw
+ νHw

)IHw

dIHd

dt
≤ (βH

21IHw
+ βH

22IHd
)S∗

d − (µd + νHd
)IHd

.

(3)

where we recall that S∗
w = Λw

µw

and S∗

d = Λd

µd

. We note also that since qw(τ) ≤ 1 and

qd(τ) ≤ 1, the integral is smaller than the total population size of recovered individuals,
and the sum of the susceptible and recovered individuals is smaller than S∗

w and S∗

d
respectively. The right-hand side of the above system is linear. Furthermore, if R0 < 1,
that implies (see [12]) that the matrix of the right-hand side above has only eigenvalues
with negative real parts. Therefore,

ILw
→ 0 as t → ∞

ILd
→ 0 as t → ∞

IHw
→ 0 as t → ∞

IHd
→ 0 as t → ∞

(4)

Thus, the disease-free equilibrium is globally stable. This completes the proof.

The global stability of the disease-free equilibrium means that the model does not
exhibit backward bifurcation.

3.2 LPAI-only and HPAI-only Equilibria

System (1) has two boundary equilibria: the LPAI-only equilibrium denoted by εL =
(S∗L

w , I∗LLw
, r∗LLw

, 0, 0, S∗L
d , I∗LLd

, r∗Ld , 0) and the HPAI-only equilibrium denoted by εH =

(S∗H
w , 0, 0, I∗HHw

, R∗H
Hw

, S∗H
d , 0, 0, I∗HHd

) .

The invasion number of HPAI when the system is at the LPAI-only equilibrium is R̂H
L

and it is given by

R̂H
L =

aRH
11 + bRH

22 +

√

(

aRH
11 − bRH

22

)2
+ 4abRH

12R
H
21

2
, (5)

where

a =
µw(S

∗L
w +Bw)

Λw
, b =

µd(S
∗L
d +Bd)

Λd
, Bw =

∫

∞

0
qw(τ)r

∗L
Lw

(τ)dτ , Bd =

∫

∞

0
qd(τ)r

∗L
d (τ)dτ .

(6)
Similarly, the invasion number of LPAI when the system is at the HPAI-only equilib-

rium is R̂L
H and

R̂L
H =

cRL
11 + dRL

22 +
√

(

cRL
11 − dRL

22

)2
+ 4cdRL

12R
L
21

2
, (7)

11
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where

c =
µwS

∗H
w

Λw
, d =

µdS
∗H
d

Λd
. (8)

As with the reproduction numbers, the invasion reproduction numbers are also obtained
through the next generation approach [12] where the next generation operator of HPAI
invading the equilibrium of LPAI is given by

KH
L =

(

aRH
11 aR

H
12

bRH
21 bRH

22

)

.

Correspondingly, the next generation operator of LPAI invading the equilibrium of HPAI
is given by

KL
H =

(

cRL
11 cRL

12

dRL
21 dR

L
22

)

.

We call the main diagonal entries of the next generation matrices the population-specific
invasion numbers, and denote them by R̂L

11,H , . . . , R̂H
22,L where

R̂H
11,L = aRH

11 , R̂
H
22,L = bRH

22 , R̂
L
11,H = cRL

11 , R̂
L
22,H = dRL

22 .

We call the off diagonal entries the cross-population invasion numbers, and denote them
by R̂L

12,H , . . . , R̂H
21,L , where

R̂H
12,L = aRH

12 , R̂
H
21,L = bRH

21 , R̂
L
12,H = cRL

12 , R̂
L
21,H = dRL

21 .

We denote the forces of infection of LPAI when wild and domestic bird populations are
at the εL equilibrium by λ∗L

Lw
and λ∗L

Ld
respectively:

λ∗L
Lw

= βL
11I

∗L
Lw

+ βL
12I

∗L
Ld

, λ∗L
Ld

= βL
21I

∗L
Lw

+ βL
22I

∗L
Ld

. (9)

Substituting LPAI-only equilibrium εL into system (1) and setting the time derivatives
to zero, we can show that

r∗LLw
(τ) = αLw

I∗LLw
e−µwτ and r∗Ld (τ) = αdI

∗L
Ld

e−µdτ .

Furthermore, we have:

S∗L
w =

Λw

λ∗L
Lw

+ µw
, I∗LLw

=
Λwλ

∗L
Lw

(λ∗L
Lw

+ µw)(µw + αLw
)

S∗L
d =

Λd

λ∗L
Ld

+ µd
, I∗LLd

=
Λdλ

∗L
Ld

(λ∗L
Ld

+ µd)(µd + αd)
.

We show the existence and uniqueness of an LPAI-only equilibrium by showing the
existence and uniqueness of λ∗L

Lw
and λ∗L

Ld
. Solving the equations in (9) for I∗LLw

and I∗LLd
,

12
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we see that if λ∗L
Lw

and λ∗L
Ld

are unique, so are I∗LLw
and I∗LLd

if and only if βL
11β

L
22 6= βL

12β
L
21 .

We then substitute the expressions for I∗LLw
and I∗LLd

into (9) and obtain

λ∗L
Lw

= κ1
λ∗L
Lw

λ∗L
Lw

+ µw
+ κ2

λ∗L
Ld

λ∗L
Ld

+ µd
, λ∗L

Ld
= κ3

λ∗L
Lw

λ∗L
Lw

+ µw
+ κ4

λ∗L
Ld

λ∗L
Ld

+ µd
, (10)

where κ1 = RL
11µw , κ2 = RL

12

µwΛd

Λw
, κ3 = RL

21

µdΛw

Λd
and κ4 = RL

22µd . Based on equations

(10), setting u1 = λ∗L
Lw

and u2 = λ∗L
Ld

we define a nonlinear operator P in the following
way. Let u = (u1, u2); then

P (u) = (κ1
u1

u1 + µw
+ κ2

u2
u2 + µd

, κ3
u1

u1 + µw
+ κ4

u2
u2 + µd

) = u .

For any two u = (u1, u2) and v = (v1, v2), we say that u > v provided that u1 > v1
and u2 > v2 . Then, K = {u ∈ R

2 s.t. u > 0} is a positive cone in R
2. If we set

C = [0, κ1 + κ2]× [0, κ3 + κ4], then the operator P maps C into itself.

Theorem 3.3. There exists a unique LPAI-only equilibrium, εL, if RL > 1 .

Proof. Let u = (u1, u2) and v = (v1, v2) s.t. u > v, then by the Mean Value Theorem,

P (u1, u2)− P (v1, v2) = κ1
µw

(u1 + µw)2
(u1 − v1) + κ4

µd

(u2 + µd)2
(u2 − v2) > 0

Hence P is monotone in K. If u1 and u2 are less than ǫ > 0, then the operator P (u)
satisfies P (u) > Aǫu, where

Aǫ =





κ1
ǫ+ µw

κ2
ǫ+ µdκ3

ǫ+ µw

κ4
ǫ+ µd



 .

Notice that when ǫ = 0, the principal eigenvalue of the matrix Aǫ=0 is RL > 1. Determine
ǫ > 0 such that the principal eigenvalue of Aǫ is Rǫ

L = 1 . Let v be the eigenvector
corresponding to the principal eigenvalue Rǫ

L of Aǫ. Therefore, Aǫv = v , such that v > 0.
Rescale v so that its components are less than ǫ, that is v = (v1, v2) where v1 < ǫ and
v2 < ǫ. Then, it is clear that P (v) > v. To show the existence of LPAI-only equilibrium,
we define an increasing sequence; v0 = v and vj = P (vj−1). Note that ‖vj‖ < κ where
κ < κ1 + κ2 + κ3 + κ4. Since {vj}

n
j=1 is a increasing bounded sequence, it converges.

Namely, vj → v̂ as j → ∞. Since P (v̂) = v̂, v̂ is a fixed point for P .
Suppose there are two fixed points u1 and u2 which are ordered, that is u1 < u2, then

u2 − u1 = P (u2)− P (u1) = DP (ξ)(u2 − u1) ,

where DP (u) is the derivative of P with respect to u (see Appendix A) and u1 ≤ ξ ≤ u2.
Notice that if w ≤ v and u > 0, then DP (v)u ≤ DP (w)u. Thus, we have

DP (u2)(u2 − u1) ≤ DP (ξ)(u2 − u1) ≤ DP (u1)(u2 − u1) .

Repeating n times, we obtain

(

DP (u2)
)n

(u2 − u1) ≤ u2 − u1 ≤
(

DP (u1)
)n

(u2 − u1) ,

13
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since DP (ξ)(u2−u1) = u2−u1 . Since ρ(DP (u1)) < 1 and ρ(DP (u2)) < 1 (see Appendix
A), therefore

(

DP (u2)
)n

→ 0 and
(

DP (u1)
)n

→ 0. Thus, we have u1 = u2 . Now, suppose
that there are two fixed points u1 and u2 ordered as u1 ≤K u2, which means u11 ≤ u21
and u12 ≥ u22 . Then

u = u1 − u2 = P (u1)− P (u2) = DP (ξ)(u1 − u2) = DP (ξ)u ,

where u = (u1, u2) with u1 < 0 and u2 > 0 , and u1 ≤K ξ ≤ u2. Notice that for any
w ≤K v, we have DP (w)u ≤ DP (v)u since u1 < 0 and u2 > 0 . That is we have,

DP (u1)(u2 − u1) ≤ DP (ξ)(u2 − u1) ≤ DP (u2)(u2 − u1) .

Applying the same steps as before, we arrive at u1 = u2 . So in either order, there exists
a unique fixed point, and therefore a unique equilibrium.

Theorem 3.4. Assume RL > 1. Then the LPAI-only equilibrium is locally asymptoti-
cally stable iff R̂H

L < 1.

Proof. We obtain the following linear system for perturbations.

duw
dt

=− (λ∗L
Lw

+ µw)uw − βL
11S

∗L
w vw − βL

12S
∗L
w vd − βH

11S
∗L
w yw − βH

12S
∗L
w yd,

dvw
dt

=λ∗L
Lw

uw + (βL
11S

∗L
w − (µw + αLw

))vw + βL
12S

∗L
w vd

∂xw
∂t

+
∂xw
∂τ

=− qw(τ)(β
H
11yw + βH

12yd)r
∗L
Lw

− µwxw

xw(0, t) =αLw
vw

dyw
dt

=βH
11S

∗L
w yw + βH

12S
∗L
w yd + (βH

11yw + βH
12yd)Bw − (µw + αHw

+ νHw
)yw

dzw
dt

=αHw
yw − µwzw

dud
dt

=− (λ∗L
Ld

+ µd)ud − βL
21S

∗L
d vw − βL

22S
∗L
d vd − βH

21S
∗L
d yw − βH

22S
∗L
d yd,

dvd
dt

=λ∗L
Ld
ud + βL

21S
∗L
d vw + (βL

22S
∗L
d − (µd + αd))vd

∂xd
∂t

+
∂xd
∂τ

=− qd(τ)(β
H
21yw + βH

22yd)r
∗L
d − µdxd

xd(0, t) =αdvd

dyd
dt

=βH
21S

∗L
d yw + βH

22S
∗L
d yd + (βH

21yw + βH
22yd)Bd − (µd + νHd

)yd

(11)

where Bw and Bd are as defined in (6). Considering the exponential solutions such as
xw(τ, t) = eλtx̄w(τ), xd(τ, t) = eλtx̄d(τ), yw = eλtȳw and yd = eλtȳd we obtain two
non-homogeneous linear first order differential equations. Solving them, we get:

x̄w(τ) = αLw
v̄we

−(λ+µw)τ − (βH
11ȳw + βH

12ȳd)

∫ τ

0
qw(s)r

∗L
Lw

(s)e−(λ+µw)(τ−s)ds .

x̄d(τ) = αdv̄de
−(λ+µd)τ − (βH

21ȳw + βH
22ȳd)

∫ τ

0
qd(s)r

∗L
Ld
(s)e−(λ+µd)(τ−s)ds .

14
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For the remaining equations, which do not depend on x̄w(τ) and x̄d(τ), we suppose that
the perturbations are exponential functions of the form uw = eλtūw, ud = eλtūd, vw =
eλtv̄w, vd = eλtv̄d, zw = eλtz̄w. We get the following eigenvalue problem after dropping
the bars,

(

A B
0 C

)

= λ

(

x
y

)

(12)

where x = (uw, ud, vw, vd, zw), y = (yw, yd),

A =













−(λ∗L
Lw

+ µw) 0 −βL
11S

∗L
w −βL

12S
∗L
w 0

0 −(λ∗L
Ld

+ µd) −βL
21S

∗L
d −βL

22S
∗L
d 0

λ∗L
Lw

0 βL
11S

∗L
w − (µw + αLw

) βL
12S

∗L
w 0

0 λ∗L
Ld

βL
21S

∗L
d βL

22S
∗L
d − (µd + αd) 0

0 0 0 0 −µw













,

B =













−βH
11S

∗L
w −βH

12S
∗L
w

−βH
21S

∗L
d −βH

22S
∗L
d

0 0
0 0

αHw
0













C =

(

βH
11(S

∗L
w +Bw)− (µw + αHw

+ νHw
) βH

12(S
∗L
w +Bw)

βH
21(S

∗L
d +Bd) βH

22(S
∗L
d +Bd)− (µd + νHd

)

)

.

The equations involving high pathogenic avian influenza, that is yw and yd in the above
eigenvalue problem, decouple. Thus, two eigenvalues of the system will be determined
by the subsystem involving equations of yw and yd (matrix C; the other eigenvalues
are the eigenvalues of A). The eigenvalues of the Jacobian matrix C have negative real
parts if and only if the spectral radius of the next generation matrix is less than 1 [12]
(Theorem 2, page 33). Following the next generation matrix approach, we obtain the
next generation matrix KH

L = FV −1 , where

F =

(

βH
11(S

∗L
w +Bw) β

H
12(S

∗L
w +Bw)

βH
21(S

∗L
d +Bd) βH

22(S
∗L
d +Bd)

)

and V =

(

µw + αHw
+ νHw

0
0 µd + νHd

)

.

The principal eigenvalue of the next generation matrix KH
L gives the invasion number of

HPAI which is denoted by R̂H
L ; if this is greater than or equal to 1, then at least one

eigenvalue of C has a positive real part, so the LPAI-only equilibrium is unstable.
Thus the eigenvalues of C have negative real parts if R̂H

L < 1. By contradiction, we

show that if R̂H
L < 1 then the eigenvalues of the matrix A do not have non-negative real

parts. The characteristic equation of A is:

−βL
12S

∗L
w βL

21S
∗L
d (µw + λ)(µd + λ) + [(µd + αd + λ)

(

λ∗L
Ld

+ µd + λ
)

− βL
22S

∗L
d (µd + λ)]

[(µw + αLw
+ λ)

(

λ∗L
Lw

+ µw + λ
)

− βL
11S

∗L
w (µw + λ)] = 0 .

(13)

15
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We rewrite the (13) as:

(

(µd + αd + λ)
(

λ∗L
Ld

+ µd + λ
)

− βL
22S

∗L
d (µd + λ)

) (

(µw + αLw
+ λ)

(

λ∗L
Lw

+ µw + λ
)

− βL
11S

∗L
w (µw + λ)

)

(µd + λ) (µw + λ)

= βL
12S

∗L
w βL

21S
∗L
d .

(14)

If ℜ(λ) ≥ 0, then

∣

∣

∣

∣

∣

(µd + αd + λ)
(

λ∗L
Ld

+ µd + λ
)

− βL
22S

∗L
d (µd + λ)

µd + λ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(µd + αd + λ)
(

λ∗L
Ld

+ µd + λ
)

(µd + λ)
− βL

22S
∗L
d

∣

∣

∣

∣

∣

≥
|µd + αd + λ|

∣

∣λ∗L
Ld

+ µd + λ
∣

∣

|µd + λ|
− βL

22S
∗L
d > |µd + αd + λ| − βL

22S
∗L
d ≥ µd + αd − βL

22S
∗L
d .

(15)

Similar analysis yields

|µw + αLw
+ λ|

∣

∣λ∗L
Lw

+ µw + λ
∣

∣

µw + λ
− βL

11S
∗L
w ≥ µw + αLw

− βL
11S

∗L
w . (16)

So the characteristic equation (14) leads the following inequality

βL
12S

∗L
w βL

21S
∗L
d >

(

µd + αd − βL
22S

∗L
d

) (

µw + αLw
− βL

11S
∗L
w

)

. (17)

From the equations for the LPAI-only equilibrium we obtain µw + αLw
− βL

11S
∗L
w =

βL

12
I∗L

L
d
S∗L

w

I∗L

Lw

and µd + αd − βL
22S

∗L
d =

βL

21
I∗L

Lw
S∗L

d

I∗L

L
d

. Thus the inequality (17) becomes

βL
12S

∗L
w βL

21S
∗L
d >

βL
21I

∗L
Lw

S∗L
d

I∗LLd

βL
12I

∗L
Ld

S∗L
w

I∗LLw

= βL
12S

∗L
w βL

21S
∗L
d . (18)

This contradiction completes the proof. Hence, the characteristic equation (13) cannot
have roots with non-negative real parts.

Theorem 3.5. Assume RH > 1 . Then there exists a unique HPAI-only equilibrium.
The HPAI-only equilibrium is locally asymptotically stable if R̂L

H < 1 and unstable if

R̂L
H > 1 .

Proof. Proof of Theorem 3.5 is very similar to the proof of Theorem 3.3 and Theorem
3.4, and will be omitted.

3.3 Coexistence Equilibrium

In this subsection, we investigate the existence of the coexistence equilibrium (i.e., in-
terior equilibrium), that is, the equilibrium in which both low pathogenic and high
pathogenic avian influenza are present in wild and domestic bird populations. We sup-
pose that all the β parameters, βL

11 , β
L
12 , . . . , β

H
21 , β

H
22 are positive. Special cases can be

obtained by setting some or all the cross-coefficients to zero. For instance, the LPAI
and HPAI might coexist only in the wild bird population, and only HPAI persist in
the domestic bird population. In this paper, we will only consider the case when both

16
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pathogens coexist in both populations. Thus, the coexistence equilibrium is given by
ε∗∗ = (S∗∗

w , I∗∗Lw
, r∗∗Lw

, I∗∗Hw
, R∗∗

Hw
, S∗∗

d , I∗∗Ld
, r∗∗d , I∗∗Hd

). We study the existence of the interior
equilibrium by showing the existence of the forces of infections λ∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
and λ∗∗

Hd
.

We solve equations of the equilibrium for S∗∗
w , I∗∗Lw

, r∗∗Lw
, I∗∗Hw

, S∗∗

d , I∗∗Ld
, r∗∗Ld

, and I∗∗Hd
, and

obtain:

S∗∗

w =
Λw

λ∗∗

Lw
+ λ∗∗

Hw
+ µw

, I∗∗Lw
=

λ∗∗

Lw
S∗∗
w

µw + αLw

, I∗∗Hw
=

λ∗∗

Hw
S∗∗
w

µw + αHw
+ νHw

+

λ∗∗

Hw

∫

∞

0
qw(τ)r

∗∗

Lw
(τ)dτ

µw + αHw
+ νHw

S∗∗

d =
Λd

λ∗∗

Ld
+ λ∗∗

Hd
+ µd

, I∗∗Ld
=

λ∗∗

Ld
S∗∗

d

µd + αd
, I∗∗Hd

=
λ∗∗

Hd
S∗∗

d

µd + νHd

+

λ∗∗

Hd

∫

∞

0
qd(τ)r

∗∗

d (τ)dτ

µd + νHd

.

Setting, Πw(τ) = e
−λ∗∗

Hw

∫ τ

0
qw(s)ds − µwτ

and Πd(τ) = e
−λ∗∗

H
d

∫ τ

0
qd(s)ds− µdτ

, we
obtain

r∗∗Lw
(τ) = αLw

I∗∗Lw
Πw(τ) , r∗∗Ld

(τ) = αdI
∗∗

Ld
Πd(τ) .

Using above expressions and the definitions of forces of infections, we arrive at the fol-
lowing equations

λ∗∗

Lw
=

Λdβ
L
12λ

∗∗

Ld

(αd + µd)(µd + λ∗∗

Hd
+ λ∗∗

Ld
)
+

Λwβ
L
11λ

∗∗

Lw

(αLw
+ µw)(µw + λ∗∗

Hw
+ λ∗∗

Lw
)
, (19)

λ∗∗

Ld
=

Λdβ
L
22λ

∗∗

Ld

(αd + µd)(µd + λ∗∗

Hd

+ λ∗∗

Ld

)
+

Λwβ
L
21λ

∗∗

Lw

(αLw
+ µw)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)
, (20)

λ∗∗

Hw
=

Λwβ
H
11λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)

(

1 +
αLw

λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

(21)

+
Λdβ

H
12λ

∗∗

Hd

(µd + νHd
)(µd + λ∗∗

Hd

+ λ∗∗

Ld

)

(

1 +
αdλ

∗∗

Ld

µd + αd

∫

∞

0
qd(τ)Πd(τ)dτ

)

,

λ∗∗

Hd
=

Λwβ
H
21λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)

(

1 +
αLw

λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

(22)

+
Λdβ

H
22λ

∗∗

Hd

(µd + νHd
)(µd + λ∗∗

Hd

+ λ∗∗

Ld

)

(

1 +
αdλ

∗∗

Ld

µd + αd

∫

∞

0
qd(τ)Πd(τ)dτ

)

.

Note that Πw(τ) and Πd(τ) depend on λ∗∗

Hw
, λ∗∗

Hd
. Using (19) - (22), we define a non-linear

operator T in the following way. Let u = (λ∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
), then

T (u) = (T1(u), T2(u), T3(u), T4(u)) = u (23)

For vectors, u1 = (λ1
Lw

, λ1
Ld
, λ1

Hw
, λ1

Hd
) and u2 = (λ2

Lw
, λ2

Ld
, λ2

Hw
, λ2

Hd
), we define a

partial order and say that u1 ≤K u2 if and only if

λ1
Lw

≤ λ2
Lw

, λ1
Ld

≤ λ2
Ld
, λ1

Hw
≥ λ2

Hw
, λ1

Hd
≥ λ2

Hd
.
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With this partial order ≥K , KT = {u ∈ R
4 u ≥K 0} is a positive cone in R

4. We
define the set CT to be C := [0,K1]× [0,K2]× [0,K3]× [0,K4] , where

K1 = βL
11

Λw

µw
+βL

12

Λd

µd
,K2 = βL

21

Λw

µw
+βL

22

Λd

µd
,K3 = 2

(

βH
11

Λw

µw
+ βH

12

Λd

µd

)

,K4 =

(

βH
21

Λw

µw
+ βH

22

Λd

µd

)

.

The non-linear operator T maps CT into itself, and it is monotone in the cone KT (see
Proposition B.1 in Appendix B).
Let εL = (λ∗L

Lw
, λ∗L

Ld
, 0, 0) denote the LPAI-only equilibrium, εH = (0, 0, λ∗H

Hw
, λ∗H

Hd
)

denote the HPAI-only equilibrium and ε∗∗ = (λ∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
) denote the coexistence

equilibrium. In the previous section, we showed that if both invasion numbers are greater
than unity, then both LPAI-only and HPAI-only equilibria are unstable. Next, we show
that in such a situation, there exists a coexistence equilibrium, ε∗∗ .
We first linearize the non-linear operator T around the LPAI-only and the HPAI-

only equilibria, and denote the linearization by DT (εj) for j = L,H. For any u =
(λLw

, λLd
, λHw

, λHd
), we have

T (εj + u) = εj +DT (εj)u+N(u) j = L,H. (24)

Let ρj be the spectral radius of DT (εj) for j = L,H, then by the Perron-Frobenius
Theorem ρj is an eigenvalue of the linear operator DT (εj). By Proposition B.1, DT (εj)
is a positive matrix in the order created by the cone KT . Thus, the spectral radius is a
simple eigenvalue to which there corresponds a “positive” eigenvector in the cone KT .
In particular

DT (εL)v = ρLv ,

DT (εH)u = ρHu ,

where v ≥K 0 and u ≥K 0.

Theorem 3.6. Assume R̂L
H > 1 and R̂H

L > 1, then there exists at least one coexistence
equilibrium ε = (λ∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
) .

Proof. Since R̂L
H > 1 and R̂H

L > 1, Proposition B.2 (Appendix B) implies that ρL > 1
and ρH > 1. Note that we also have

εH <K εL .

For given u ≥K 0 and v ≥K 0, there exist small positive numbers ξ > 0 and η > 0 s.t.

εH + ηu <K εL − ξv .

We apply the operator T to the above inequality to obtain

T (εH + ηu) = T (εH) + ηDT (εH)u+ η2N(u)

= εH + ηu+ η(ρH − 1)u+ η2N(u)

Note that η(ρH − 1)u ≥K 0 and (ρH − 1)u + ηN(u) ≥K 0 for η small enough. Thus,
T (εH + ηu) ≥K εH + ηu . Similarly, T (εL − ξv) = εL − ξv − ξ(ρL − 1)v + ξ2N(v) . For
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small enough ξ, we have −(ρL − 1)v + ξN(u) ≤K 0 . Thus, we have

T (εL − ξv) ≤K εL − ξv .

T is a monotone operator, so we apply the operator T to the above inequality repeatedly
and obtain

T n(εL − ξv) ≤K T n−1(εL − ξv) ≤K · · · ≤K εL − ξv .

Hence, T n(εL − ξv) is a decreasing sequence. In addition we have

εH + ηu ≤K T (εH + ηu) ≤K T (εL − ξv) .

Similarly, applying the non-linear operator T n times, we have

εH + ηu ≤K T n(εL − ξv).

Hence T n(εL − ξv) is a decreasing sequence bounded below by something strictly larger
than εH . Thus, the sequence converges to something with strictly positive components.

T n(εL − ξv) → ε∗∗ ≥K εH + ηu as n → ∞ .

Thus ε∗∗ = (λ∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
) is such that λ∗∗

Lw
> 0, λ∗∗

Ld
> 0, λ∗∗

Hw
> 0 and λ∗∗

Hd
>

0 . Hence, there exists a coexistence equilibrium. Our numerical simulations have not
revealed alternative equilibria.

4. Simulations

Understanding how LPAI and HPAI compete and coexist in wild and domestic bird
populations can further be approached through simulations. To do so, it is necessary to
assess some reasonable values for parameters in the models. The parameter values we
choose are for illustrative purposes, grounded in empirical studies, but to ascertain more
accurate values requires more detailed empirical studies in the future.

4.1 Estimating Parameter Values

Determining realistic or at least plausible parameter values is obstructed by the enormous
diversity of wild and domestic bird species that can be affected by avian influenza and the
lack of time series data. Avian influenza A LPAI viruses have been isolated from more
than 100 different species of wild birds. Avian influenza A viruses are predominantly
found in gulls, terns and shorebirds or waterfowl such as ducks, geese and swans [66].
These wild birds are considered as reservoirs (hosts) for LPAI viruses. HPAI viruses
also infect these species predominantly, killing some species within days and infecting
others without symptoms. Average lifespan varies dramatically from species to species.
Mallards have a lifespan of 3 years [67] while albatrosses can live up to 38 years. A table
of various birds’ maximum lifespan is given in [68]. We assume LPAI is not virulent to
wild birds [31]. We further take wild birds to be infected with LPAI for a range of 2-21
days. We assume the same duration for HPAI infection. Hence, αLw

, αHw
and νHw

range
from 365/2− 365/21. The recruitment rate of wild birds is unknown. We take Λw in the
range 1000 − 3000 birds per year. This implies a carrying capacity of wild birds from
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500 to 15,000. We use a similar parameter range for domestic fowl. This might literally
pertain to say the wild waterfowl populations found in a single small lake in China,
interacting with a local population of domestic waterfowl. Alternatively, this could refer
to population “units”, and thus larger spatial areas.

Parameter Range Average

µw 0.027-1 year−1 0.1
Λw 1000 − 3000 birds/year 1500
αLw

365/21-365/2 year−1 36.5
αHw

365/21-365/2 year−1 36.5
νHw

365/21-365/2 year−1 36.5
qw 0− 1 0.5
µd 0.2− 2 year−1 0.5
Λd 1000 − 3000 birds/year 1500
αLd

365/21-365/2 year−1 36.5
νHd

365/5-365/2 year−1 80.0
qd 0− 1 0.5

Table 3. Parameter ranges

Poultry is infected with LPAI viruses mainly through contact with infected wild birds
or contaminated surfaces and/or water. LPAI is a mild illness in poultry typically leading
to recovery. We assume an infection period for LPAI of 2 − 21 days in poultry. HPAI
is extremely virulent in poultry and causes severe illness and death, typically within 48
hours. We assume no recovery from HPAI in poultry since affected individuals either die
or are destroyed for security reasons. Poultry is usually kept for 2 years [41]; we take a
range 0.5− 5 years, so that µd = 0.2 to 2 year−1. There are 20.4 billion poultry units in
the world [41]. We take Λd in the range 1000 − 3000 with average value of 1500. This is
consistent with the number of poultry units estimated from literature values if they are
measured in units of 107.

4.2 Main questions

AI’s rich ecology and evolution is a source of novel mathematical models capable of ad-
dressing new questions in biology. Theoretically, each population may be a source for a
pathogen, where the intra-population transmission of the pathogen allows the pathogen
to sustain itself within the focal population, or a sink, where the intra-population trans-
mission is not sufficient to sustain the pathogen but transmission in the sink popula-
tion is maintained by spillover infection from a source population [11]. Naturally, the
pathogen persists if at least one of the host populations is a source. However, a single
pathogen might also persist if both host populations are sinks (basically because cross-
transmission in effect increases the the number of available hosts). In the case when
two host populations and two pathogens are present, the situation is more complex. We
will call population A a sink for pathogen p if pathogen p cannot persist in population
A if population A is isolated from population B. Could a pathogen persist in sink-sink
host populations when under competition from another pathogen? If “yes”, under what
conditions? Could two pathogens persist if both host populations are sink populations for
each one of them? The status of wild birds and domestic birds as source/sinks for LPAI
and HPAI viruses in some cases is known. Wild birds are a source host population for
LPAI viruses, as some species of wild birds are a natural reservoir for them. There is
little discussion in the literature about whether LPAI viruses are endemic in domestic
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bird populations. Based on the data, however, our results in [37] concluded that domestic
birds are a sink host population for the LPAI viruses. Although we estimated the LPAI
virus reproduction number to be above one, LPAI cannot persist on its own in poultry
because it is out-competed by HPAI. On the other hand, HPAI viruses are now endemic
in domestic bird populations in some countries in Asia and Africa [51], and our model
captures that scenario [37]. The source/sink status of wild and domestic birds for HPAI
and LPAI are summarized in Table 4.

LPAI HPAI

wild birds source ?

domestic birds sink source

Table 4. Source-sink status of birds to AI viruses.

The source/sink status of wild birds for HPAI viruses is an open question of significant
interest [54, 56]. Is the HPAI virus capable of sustained transmission in the wild bird
population? What is the role of cross-immunity? We address these questions as well as
the question of oscillatory coexistence of LPAI and HPAI through the ODE version of
model (1) (in which qw and qd are constants rather than functions of time-since-infection)
in the next subsection.

4.3 Simulations with the full ODE system

We explored conditions for coexistence by conducting simulations of the ordinary dif-
ferential equation (ODE) system corresponding to model (1). In the ODE system, the
relative susceptibilities of LPAI-recovered birds, which in (1) were qw(τ) and qd(τ), are
set to constants qw and qd, meaning that cross-immunity does not fade with time. There-
fore, all LPAI-recovered birds in each population are the same, and so can be combined
into variables RLw

and RLd
, with the rate of change for the wild population given by

dRLw

dt
= αLw

ILw
− qwλHw

RLw
− µwRLw

(and an analogous equation for the domestic population). In the HPAI-infected equations,
the integrals are replaced by qwRLw

or qdRLd
, giving a system of nine ODEs.

We investigate scenarios of coexistence of LPAI and HPAI in wild and domestic birds
in the form of an equilibrium or in the form of sustained oscillations. We will call the
order of prevalences “realistic” if in the wild birds LPAI prevalence is higher than HPAI
prevalence, and in domestic birds HPAI prevalence is higher than LPAI prevalence. We
expect our prevalences in the simulations to be in this realistic order.
Figure 2 shows a coexistence equilibrium with realistic parameter values and realistic

prevalence order, that is HPAI prevalence in domestic birds is higher than that of LPAI
and LPAI prevalence for wild birds is higher than that of HPAI. The solution stabilizes
to an equilibrium. We note that in Figure 2 at equilibrium 16.63 domestic birds are HPAI
infected out of a total of 826 domestic birds at equilibrium (both times 107), giving as
infection rate of 1 in 50. Just for a comparison, in a recent outbreak of HPAI in the
United States poultry industry approximately 50 million birds were affected out of 2
billion birds [69] which is 1 in 40. Thus, our figure is a reasonable approximation of
reality.
For Figure 2 the LPAI reproduction numbers are RL

11 = 2.05, RL
12 = 0.91. RL

21 = 0.835,
RL

22 = 0.984. In addition, the HPAI reproduction numbers are RH
11 = 0.546, RH

12 = 0.432,

RH
21 = 0.0863 and RH

22 = 2.7. The invasion numbers are R̂H
L = 1.75 and R̂L

H = 1.98. We
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Figure 2. Coexistence with realistic parameter values. The parameter values used in the figure are: Λw = 2000,
µw = 0.25, νHw

= 36.5, αHw
= 36.5, αLw

= 73, qw = 0.5, βL

11
= .018776, βH

11
= 0.005, Λd = 1020, µd = 0.5,

νHd
= 36.5, αd = 52.14, qd = 0.5, βL

22
= .02539, βH

22
= 0.04897, βL

12
= 0.006, βL

21
= 0.03, βH

12
= 0.002, βH

21
= 0.031.

The reproduction numbers are RL = 2.54 and RH = 2.71. The invasion coefficients are as follows: R̂H

L
= 1.75

and R̂
L

H
= 1.98. The red line shows HPAI in wild birds, the orange dashed line shows HPAI in domestic birds,

the blue line shows LPAI in wild birds, the green dashed line shows LPAI in domestic birds.

see that, as we expect, the population-specific reproduction numbers of LPAI in wild
birds and HPAI in domestic birds are higher than one; all other numbers are lower than
one. With these parameters, wild birds are a sink for HPAI with realistic parameter values
and a realistic order of prevalences. We note that we can obtain with realistic parameters
and realistic prevalence order a case where HPAI in wild birds is a source. However, the
IHw

would be larger and a larger IHw
should be more detectable in practice. Thus with

the available information we cannot deduce for sure whether HPAI will persist on its
own in wild birds; however, the model suggests that the situation is closest to reality if
HPAI is a sink for wild birds.
Figure 3 shows that the full system can exhibit sustained, complex oscillations. We

note that the prevalences are generally in realistic order and the parameters used in the
examples are biologically reasonable. For wild birds LPAI is generally higher than HPAI.
The reversed order is observed for domestic birds. The oscillations of LPAI and HPAI
are shifted half a period both in wild and domestic birds. That is, when LPAI is at high
values, HPAI is at low values and vice versa. This is a manifestation of the competition
of LPAI and HPAI for susceptible hosts in both wild and domestic birds. We note that
in the full system oscillations can be obtained for relatively intermediate or low values
for qw and qd, which shows that even intermediate levels of cross-immunity to HPAI can
destabilize the system. The parameters νHd

and νHw
change the shape of the oscillations.

In general, oscillations, whenever found, are observed in a moderate neighborhood of the
parameters for which they occur.
Furthermore, we note that oscillation and persistence of HPAI occurs in the case when

βH
12 = 0, that is when transmission from domestic to wild birds of HPAI does not occur.

In this case persistence of HPAI is only possible if RH
11 > 1. We note that HPAI in wild

birds emerges (or is likely detectable) only from time to time.
Figure 4 is an illustration of a sink-sink scenario for both pathogens. A sink-sink

scenario is a scenario where both pathogens are sinks for each of the populations but
they can persist together in a coexistence equilibrium. We say that a sink-sink scenario
occurs if the following is satisfied in each of the populations if they are isolated (no
cross-transmission):

• The reproduction numbers and the invasion numbers of both pathogens are smaller
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Figure 3. Oscillations with realistic parameter values. The parameter values used in the figure are: Λw = 2000,
µw = 0.25, νHw

= 36.5, αHw
= 36.5, αLw

= 73, qw = 0.45, βL

11
= .018776, βH

11
= 0.015, Λd = 1020, µd = 0.5,

νHd
= 36.5, αd = 52.14, qd = 0.5, βL

22
= .025, βH

22
= 0.04897, βL

12
= 0.006, βL

21
= 0.03, βH

12
= 0.0, βH

21
= 0.031.

The reproduction numbers are RL = 2.54 and RH = 2.7. The invasion coefficients are as follows: R̂L = 1.37 and

R̂H = 1.86. The red line shows HPAI in wild birds, the orange dashed line shows HPAI in domestic birds, the
blue line shows LPAI in wild birds, the green dashed line shows LPAI in domestic birds.
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Figure 4. Coexistence with realistic parameter values. The parameter values used in the figure are: Λw = 2000,
µw = 0.25, νHw

= 36.5, αHw
= 36.5, αLw

= 73, qw = 0.426, βL

11
= .0086, βH

11
= 0.005, Λd = 1020, µd = 0.5,

νHd
= 36.5, αd = 52.14, qd = 1, βL

22
= .02539, βH

22
= 0.0166, βL

12
= 0.0043, βL

21
= 0.0131, βH

12
= 0.0014,

βH

21
= 0.0332. The reproduction numbers are RL = 1.45 and RH = 1.29. The invasion coefficients are as follows:

R̂L = 1.17 and R̂H = 1.22. The red line shows HPAI in wild birds, the orange dashed line shows HPAI in domestic
birds, the blue line shows LPAI in wild birds, the green dashed line shows LPAI in domestic birds.

than one.

We were able to produce an example of this scenario, where all intra- and cross-population
components of the reproduction numbers and invasion reproduction numbers are smaller
than one. The coexistence of LPAI and HPAI under a sink-sink scenario is shown in
Figure 4. All components of the reproduction numbers and the invasion reproduction
numbers are smaller than one:
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Reproduction numbers Values Invasion Numbers Values

RL
11 0.94 R̂H

11,L 0.46

RL
12 0.65 R̂H

12,L 0.26

RL
21 0.36 R̂H

21,L 0.92

RL
22 0.98 R̂H

22,L 0.91

RH
11 0.55 R̂L

11,H 0.86

RH
12 0.3 R̂L

12,H 0.6

RH
21 0.92 R̂L

21,H 0.26

RH
22 0.91 R̂L

22,H 0.69

In this case, if all cross-coefficients βp
12 = βp

21 = 0 where p = L,H, then both LPAI
and HPAI will die out. Persistence of both pathogens occurs only through the cross-
population transmission. This scenario is easy to find with no constraints on parameters,
but in our example the parameters are plausible and we have a realistic prevalence order
in wild and domestic birds.

4.4 LPAI and HPAI dynamics in the wild bird system only

We saw that the full ODE system corresponding to system (1) can exhibit oscillations
where LPAI and HPAI coexist. An interesting question occurs whether the coexistence
equilibrium can lose stability if restricted to just the wild bird system. This question is of
particular importance in the ODE case as it is well known that alternative ODE models
with cross immunity do not always lead to oscillations. For instance, Castillo-Chavez et
al. found that age structure or quarantine needs to be introduced for a cross-immunity
model to show oscillations [7, 8]. However, it turns out that this is not the case with
system (1) with wild birds only. The characteristic equation of the coexistence equilib-
rium looks “almost” stable but for some parameter values the coexistence equilibrium
can be destabilized (the analytical expression giving parameter combinations for which
the system is unstable is too complicated to interpret, so we illustrate instability with
numerical examples). Figure 5 shows sustained oscillations for both LPAI and HPAI.
The oscillations in LPAI have much larger amplitude. HPAI peaks follow LPAI peaks
by about 1/4 period which is typical for classical predator-prey dynamics. The param-
eters chosen including the reproduction numbers and invasion reproduction numbers
have plausible values. To obtain oscillations with these parameter choices, our simula-
tions suggested that we need to choose qw ≈ 1. That suggests that oscillations, which
often mimic outbreaks, occur if the LPAI cross-immunity to HPAI is nearly or com-
pletely non-existent. Figure 6 also shows sustained oscillations. Looking more closely at
the figure we can see two oscillation patterns superimposed, differing in period. With
the short period oscillations, the peak of LPAI is followed by a peak of HPAI, some-
what resembling predator-prey oscillations. The unstable equilibrium values are given
by (Sw, ILw

, RLw
, IHw

, RHw
) = (5301.83, 38.2707, 12316.7, 16.3273, 26426.1). In the sim-

ulation in Figure 6 the reproduction number of LPAI is somewhat high to be realistic.
Decreasing qw to 0.9 from the parameter listed in Figure 6 allows the oscillations of LPAI
and HPAI to be shifted so they are half the period out of phase, so that the maximum
of HPAI occurs at the same moment as the minimum of LPAI. In this case we say the
the system exhibits fully competitive oscillation.
It is useful to develop some intuitive understanding for why oscillations arise in this

system. Biologically, the system is not really analogous to a predator-prey system. Recall
that LPAI and HPAI both attack susceptible hosts. If qw = 0, there is complete cross-
immunity, and the relation between LPAI and HPAI is simply that of being competitors
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Figure 5. Sustained oscillations in the wild birds only system. Parameter values are Λw = 2000, µw = 0.14,
νHw

= 49.5, αHw
= 51.6, αLw

= 73, qw = 0.98, βL

11
= .018776, βH

11
= 0.015, Sw(0) = 3449.72, ILw

(0) = 14.684,
RLw

(0) = 3366.78, IHw
(0) = 7, RHw

(0) = 769.5. The reproduction numbers are RL = 3.66 and RH = 2.116.

The invasion coefficients are as follows: R̂L = 1.73 and R̂H = 2.08. The red line shows HPAI and the blue line
shows LPAI.
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Figure 6. Sustained oscillations in the wild birds only system. Parameter values are Λw = 3810, µw = 0.054,
νHw

= 87.5, αHw
= 87.4, αLw

= 69.4, qw = 0.99, βL

11
= .0131, βH

11
= 0.01, Sw(0) = 5000, ILw

(0) = 40,
RLw

(0) = 12000, IHw
(0) = 15, RHw

(0) = 25000. The reproduction numbers are RL = 13.3 and RH = 4.0. The

invasion coefficients are R̂L = 3.3 and R̂H = 4. The red line shows HPAI and the blue line shows LPAI.

for susceptible hosts. One does not find coexistence in this case in a single population.
In this model, infection by HPAI always gives complete immunity to LPAI. However, if
qw > 0, there is only partial (or no) immunity to HPAI conferred by prior infection by
LPAI, so LPAI-recovered hosts can be infected by HPAI. A direct predation analogue
in this system would be if HPAI could infect LPAI-infected hosts and eliminate the
LPAI infection, thereby directly reducing the number of LPAI-infected hosts. In our
model, HPAI does not have this direct effect because it just attacks LPAI-recovered
hosts. However, attacking LPAI-recovered hosts increases the prevalence of HPAI, and
allows it to infect more susceptible hosts, for which it is competing with LPAI. It would
therefore be analogous to a system in which one competitor can consume the carcasses of
the other. For the parameters of Figure 6, the number of LPAI-infected hosts increases
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whenever

Sw > (µw + αLw
)/βL

ww = 5302

and decreases otherwise. As ILw
increases, it decreases Sw until it is below this value

(HPAI also helps decrease Sw, but it is less common, especially when ILw
is near its

peak). For HPAI to increase requires

Sw + qwRLw
> (µw + αHw

+ νHw
)/βH

ww = 17495.

Even though this threshold is higher (due to the high death rate), it applies to the sum
of susceptible and LPAI-recovered hosts (the latter discounted by qw). Because most
LPAI-infected birds recover, as the peak in ILw

draws down Sw, it also increases RLw
, so

that the condition for HPAI to increase can sometimes continue to be met after LPAI has
started to decrease, as in the figure. For the parameters of the figure, HPAI relies mostly
on LPAI-recovered birds, the peak of which is after the peak in ILw

. HPAI therefore
is increasing most rapidly after the LPAI peak. Eventually, HPAI depletes the hosts it
attacks, and starts to decrease. By this time, the susceptible hosts have started to increase
(because of the low level of ILw

), but they then increase faster until they are high enough
for ILw

to start to increase. So oscillations in this system arise because of a combination
of competition, and a phenomenon analogous to “scavenging” among carnivores.
We next address the question of whether we can reduce qw and still obtain oscillations.

The most influential parameter for that to occur is µw, which needs to be fairly low (0.14
in Figure 5 and 0.054 in Figure 6, both reasonable for wild birds) to produce oscillations
with smaller qw. Raising Λw allows oscillations without µw becoming excessively small
and therefore unrealistic for wild bird populations. Raising the sum αHw

+νHw
also allows

for lowering qw. Still with nearly realistic other parameters, qw needs to stay above 0.9
for oscillations to occur.
LPAI persists at higher levels than HPAI in Figures 2-4, which is the realistic scenario

for wild bird populations. However, raising qw as in Figures 5-6 leads to oscillations but
also increases the prevalence of HPAI at times to levels higher than LPAI which in wild
birds is unrealistic. Lack of cross-immunity from LPAI in domestic birds may explain
why HPAI persists in domestic birds at higher prevalence levels.
For realistic parameter values, it appears that in most cases oscillations of LPAI have

larger amplitude and go to higher values compared to oscillations in HPAI. In the future,
we expect that long-term empirical time-series of avian influenza will become empirically
available. There is considerable temporal variability in avian flu prevalence, and the
processes we have explored could help explain some of the drivers of these dynamics. Our
model predictions about phase shifts and differences in amplitude for flu strains differing
in pathogenicity and cross-infectivity should be useful in future studies in interpreting
patterns in such data.

5. Discussion

Avian influenza continues to be a threat to human health. Recently, strains of HPAI
H7N9 have started infecting humans and hold potential to turn pandemic with deadly
consequences. Studying avian influenza in birds and humans is of paramount importance
if we are to be prepared for the next deadly pandemic.
In this paper we introduce an avian influenza model for multiple bird populations.

The model incorporates two strains, one low pathogenic (LPAI) and one high pathogenic
(HPAI). We are interested in studying the dynamics of LPAI and HPAI in wild and do-
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mestic birds. Our model builds on previous work. Several models published before have
studied the interplay between LPAI and HPAI. Lucchetti et al. [37] were the first to
introduce LPAI and HPAI but the wild bird population in that article is taken as a peri-
odic source, not as a dynamical variable. Bourouiba et al. [6] studied the transmission of
LPAI and HPAI in wild bird populations only. They assumed no cross-immunity and that
LPAI-recovered birds can get infected by HPAI with the same transmission coefficients as
do susceptible birds. However, reinfected wild birds can show higher survivability. The
results of this article are mostly obtained through simulations and are specific to the
parameters chosen. A model close to the one considered here is introduced by Augusto
and Gumel [4]. This model studies LPAI and HPAI in both wild and domestic birds and
assumes reinfection by HPAI of exposed and infectious birds with LPAI. It assumes that
the partial immunity to HPAI conferred by LPAI infection is fixed, whereas we allow it
to wane with time (so their model is a pure ODE model, whereas ours includes PDEs).
Also, their model includes exposed (infectious but asymptomatic) classes, and includes
two mechanisms by which LPAI can change into HPAI. One is mutation, which takes
place in LPAI-exposed birds but produces HPAI-exposed and HPAI-infected birds. In the
other process, when LPAI-exposed birds become symptomatic (enter an infected class),
a fraction of them become LPAI-infected and the rest become HPAI-infected birds. (In
addition, birds with LPAI can become infected by HPAI, as in our model.) This article
finds backward bifurcation and multiple coexistence equilibria which are caused by the
reinfection with HPAI of LPAI-exposed birds and LPAI-infected birds. The article makes
two conjectures which are both true and are explained in the case of wild birds only in
[61]. One of our main contributions here relative to article [4] is that we provide rigorous
analytical results for when each strain persists and when it dies out, and when the two
strains coexist for the case when both reproduction numbers are greater than one. These
are quantified in terms of the invasion reproduction numbers and are satisfied for all pa-
rameter values. One difference from the model in [4] is that our model does not exhibit
backward bifurcation. Also, of course, we allow cross-immunity to fade with time.
We compute the reproduction numbers RL and RH and the invasion reproduction

numbers R̂H
L and R̂L

H . The model has a unique disease-free equilibrium which is locally
and globally stable if both reproduction numbers are smaller than one. The global stabil-
ity of the disease-free equilibrium rules out backward bifurcation. There are also a unique
LPAI-only and a unique HPAI-only equilibria which exist if the LPAI (HPAI) reproduc-
tion number is larger than one. The LPAI-only equilibrium is locally asymptotically
stable whenever it exists if R̂H

L < 1. The HPAI-only equilibrium is locally asymptoti-

cally stable whenever it exists if R̂L
H < 1. We show that if R̂L

H > 1 and R̂H
L > 1 then

a coexistence equilibrium exists. The question about the uniqueness of the coexistence
equilibrium remains open.
Simulations suggest that the coexistence equilibrium is not stable for all parameter

regimes. In fact, the coexistence equilibrium can be destabilized even in the corresponding
ODE system in which qw and qd are assumed constant. Since the semi-trivial equilibria
are locally stable, this clearly suggests that the interaction between the strains, that is
qw 6= 0 and/or qd 6= 0, is necessary for the destabilization of the coexistence equilibrium.
Next, we asked whether the presence of both populations and transmission between the
populations were necessary for instability. Investigating the wild bird system only (see
[60]), we find numerically that the ODE model of wild birds with LPAI and HPAI also
can exhibit oscillations in which both LPAI and HPAI persist. In the wild bird system,
oscillations are found with high values of qw ≈ 1, which means that destabilization of the
system occurs if cross-immunity is very low. In the full system oscillations can be found
for larger ranges of qw and qd. Thus, transmission between the two populations allows
for destabilization of the system for a variety of cross-immunity levels. For sustained
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oscillations in a single population considered alone, LPAI-recovered birds must be almost
as susceptible to HPAI infection as are naive birds.
Simulations suggest that for plausible parameter values we can also produce realistic

prevalences. In particular, in wild birds the LPAI prevalence is higher than the HPAI
prevalence, while in domestic birds it is vice versa. Of particular interest is the case when
a population is a sink for a pathogen but persistence in a multi-population multi-pathogen
system is still possible. We call population A a sink for pathogen p, where p = LPAI or
HPAI, if pathogen p cannot persist alone in population A, if isolated. It is well-known
that, in a system with two sink habitats, a population can sometimes persist by using
both habitats. We have investigated this question in the case of competition of pathogens.
In the case of competition, we say that a population A is a sink for pathogen p if its
within-population reproduction number is less than one, or if its reproduction number is
greater than one, its within-population invasion reproduction number is smaller than one
and the other pathogen is present. We show through simulations that coexistence of both
pathogens is possible, if all their within-population and cross-population reproduction
numbers are smaller than one. This observation is very important since estimates of the
reproduction number of HPAI H5N1 in poultry vary around one ([41, 46, 62]) but our
results imply that even if the reproduction number is below one, HPAI may persist in the
wild-domestic bird system, even under competition with LPAI. We note that in the sink-
sink scenario, even though the species-specific, strain-specific reproduction and invasion
numbers are below one, the overall strain-specific reproduction and invasion numbers are
above one, which gives persistence.
Future empirical studies will be required to refine parameter estimation and ascertain

the likelihood of observing the complex dynamics revealed by this model. Also, in the
future it would be useful to explore alternative models of recruitment instead of the
constant rate of input assumed in model (1). Finally, it is likely that spatial dynamics
are significant in this system. Many wild waterfowl are migratory and can move over large
areas. Some birds may return to the same area each winter, but others may move among
regions. Domestic fowl are concentrated in more discrete locations, with less mobility,
one expects. Dealing with spatial patchiness, migration, and heterogeneity will likely be
important in more realistic future characterizations of cross-population transmission in
avian influenza.
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Appendix A. LPAI-only Equilibrium

Proposition A.1. Let DP (u) denote the derivative of the operator P ; then the spectral
radius of DP (u) is less than 1.

Proof. The derivative of the operator P is DP (u) =







κ1
µw

(u1 + µw)2
κ2

µd

(u2 + µd)2

κ3
µw

(u1 + µw)2
κ4

µd

(u2 + µd)2






.

Note that DP (u) is a positive matrix, since all its entries are positive. Let A be a 2× 2
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square matrix given as: A =







κ1
(u1 + µw)

κ2
(u2 + µd)

κ3
(u1 + µw)

κ4
(u2 + µd)






. Clearly, DP (u) ≤ A. Since

P (u1, u2) = (u1, u2), dividing by u1 we obtain

1 =
κ1

u1 + µw
+

κ2
u2 + µd

z ,
u2
u1

=
κ3

u1 + µw
+

κ4
u2 + µd

z ,

where z =
u2
u1

. Let v =

(

1
z

)

, then Av = v. Thus 1 is an eigenvalue of A corresponding

to a positive eigenvector. By Perron-Frobenius Theorem, the spectral radius of A is
ρ(A) = 1. Furthermore, ρ(DP (u)) < ρ(A) since DP (u) < A.

Appendix B. Coexistence Equilibrium

Proposition B.1.1) Derivatives of the nonlinear operator T satisfy the following in-
equalities:

∂Ti

∂λ∗∗

Lw

> 0
∂Ti

∂λ∗∗

Ld

> 0
∂Ti

∂λ∗∗

Hw

< 0
∂Ti

∂λ∗∗

Hd

< 0 i = 1, 2.

∂Ti

∂λ∗∗

Lw

< 0
∂Ti

∂λ∗∗

Ld

< 0
∂Ti

∂λ∗∗

Hw

> 0
∂Ti

∂λ∗∗

Hd

> 0 i = 3, 4.

2) T is monotone in KT , that is u1 ≤K u2 =⇒ T (u1) ≤K T (u2) .
3) T maps the set C into itself. T : C → C.

Proof.1) We only prove the inequalities
∂T1

∂λ∗∗

Lw

> 0 and
∂T1

∂λ∗∗

Hw

< 0, since the inequalities

of other derivatives when i = 1, 2 can be derived by applying the same steps. Note
that

T1(λ
∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
) =

Λdβ
L
12λ

∗∗

Ld

(αd + µd)(µd + λ∗∗

Hd

+ λ∗∗

Ld

)
+

Λwβ
L
11λ

∗∗

Lw

(αLw
+ µw)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)
.

Thus
∂T1

∂λ∗∗

Lw

=
(Λwβ

L
11)(µw + λ∗∗

Hw
)

(αLw
+ µw)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)2
> 0 and

∂T1

∂λ∗∗

Hw

=

−Λwβ
L
11λ

∗∗

Lw

(αLw
+ µw)(µw + λ∗∗

Hw
+ λ∗∗

Lw
)2

< 0 .

Next, we prove the inequalities
∂T3

∂λ∗∗

Lw

< 0 and
∂T3

∂λ∗∗

Hw

> 0 . Inequalities for the other

derivatives when i = 3, 4 can be shown in a similar way. Note that

T3(λ
∗∗

Lw
, λ∗∗

Ld
, λ∗∗

Hw
, λ∗∗

Hd
) = λ∗∗

Hw
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as in (22). The derivative of T3 with respect to λ∗∗

Lw
is

∂T3

∂λ∗∗

Lw

=
−Λwβ

H
11λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw
+ λ∗∗

Lw
)2

(

1 +
αLw

λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

+
Λwβ

H
11λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)

(

αLw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

.

Combining the terms, we obtain

∂T3

∂λ∗∗

Lw

=
−Λwβ

H
11λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)2

(

1−
αLw

(µw + λ∗∗

Hw
)

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

.

Clearly,
∂T3

∂λ∗∗

Lw

< 0 is negative, provided that

(µw + λ∗∗

Hw
)

∫

∞

0
qw(τ)Πw(τ)dτ < 1 . (B1)

Since 0 ≤ qw(τ) ≤ 1 , the left side of (B1) is less than the following integral

∫

∞

0
(λ∗∗

Hw
qw(τ) + µw)Πw(τ)dτ = 1 , (note that

∫

∞

0
qw(s)ds = ∞) .

The derivative of T3 with respect to λ∗∗

Hw
is

∂T3

∂λ∗∗

Hw

=
Λwβ

H
11(µw + λ∗∗

Lw
)

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw
+ λ∗∗

Lw
)2

(

1 +
αLw

λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

)

−
Λwβ

H
11λ

∗∗

Hw

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)

(

αLw
λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ

)

=
Λwβ

H
11(µw + λ∗∗

Lw
)

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw
+ λ∗∗

Lw
)2

(

1 +
αLw

λ∗∗

Lw

µw + αLw

∫

∞

0
qw(τ)Πw(τ)dτ

−
αLw

λ∗∗

Lw
λ∗∗

Hw
(µw + λ∗∗

Hw
+ λ∗∗

Lw
)

(µw + αLw
)(µw + λ∗∗

Lw

)

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ

)

.

Reorganizing the terms, we obtain

∂T3

∂λ∗∗

Hw

=
Λwβ

H
11(µw + λ∗∗

Lw
)

(µw + αHw
+ νHw

)(µw + λ∗∗

Hw

+ λ∗∗

Lw

)2

[

1 +
αLw

λ∗∗

Lw

µw + αLw

(∫

∞

0
qw(τ)Πw(τ)dτ

(B2)

− λ∗∗

Hw

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ −

λ∗∗

Hw

2

µw + λ∗∗

Lw

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ

)]

.

The derivative
∂T3

∂λ∗∗

Hw

is positive if the term inside the square brackets in (B2) is

33



October 9, 2015 Journal of Biological Dynamics LPAI-HPAI˙Model˙V11R5

positive. Thus
∂T3

∂λ∗∗

Hw

> 0 if

∫

∞

0
qw(τ)Πw(τ)dτ − λ∗∗

Hw

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ > 0 , (B3)

and

1−
αLw

λ∗∗

Lw

(µw + αLw
)(µw + λ∗∗

Lw
)
λ∗∗

Hw

2
∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ > 0 . (B4)

Applying integration by parts, (B3) becomes

∫

∞

0
qw(τ)Πw(τ)dτ +

∫ τ

0
qw(s)dse

−µwτΠw(τ)

∣

∣

∣

∣

∣

∞

0

−

∫

∞

0
Πw(τ)

(

qw(τ)e
−µwτ − µw

∫ τ

0
qw(s)dse

−µwτ

)

dτ

= µw

∫

∞

0

∫ τ

0
qw(s)dsΠw(τ)dτ > 0 .

Since
αLw

µw + αLw

λ∗∗

Lw

µw + λ∗∗

Lw

< 1, the expression in (B4) is greater than the following

1− λ∗∗

Hw

2
∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ . (B5)

By integration by parts, (B5) becomes

1− λ∗∗

Hw

∫

∞

0
qw(τ)Πw(τ)dτ + µwλ

∗∗

Hw

∫

∞

0
qw(τ)

∫ τ

0
qw(s)dsΠw(τ)dτ ,

which is positive, since λ∗∗

Hw

∫

∞

0
qw(τ)Πw(τ)dτ < 1 .

2) We prove the monotonicity of the operator T , by showing that T3(u
1) ≥ T3(u

2) when-
ever (u1) ≤K (u2) . Because of the symmetry, the steps for proving the rest of the
inequalities T1(u

1) ≤ T1(u
2), T2(u

1) ≤ T2(u
2) and T4(u

1) ≥ T4(u
2) are similar.

T3(u
1)− T3(u

2) = T3(λ
1
Lw

, λ1
Ld
, λ1

Hw
, λ1

Hd
)− T3(λ

2
Lw

, λ2
Ld
, λ2

Hw
, λ2

Hd
)

= T3(λ
1
Lw

, λ1
Ld
, λ1

Hw
, λ1

Hd
)− T3(λ

2
Lw

, λ1
Ld
, λ1

Hw
, λ1

Hd
)

+ T3(λ
2
Lw

, λ1
Ld
, λ1

Hw
, λ1

Hd
)− T3(λ

2
Lw

, λ2
Ld
, λ1

Hw
, λ1

Hd
)

+ T3(λ
2
Lw

, λ2
Ld
, λ1

Hw
, λ1

Hd
)− T3(λ

2
Lw

, λ2
Ld
, λ2

Hw
, λ1

Hd
)

+ T3(λ
2
Lw

, λ2
Ld
, λ2

Hw
, λ1

Hd
)− T3(λ

2
Lw

, λ2
Ld
, λ2

Hw
, λ2

Hd
) .
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Using the Mean Value Theorem we obtain

T3(u
1)− T3(u

2) =
∂T3

∂λ∗∗

Lw

(ξ1, λ
1
Ld
, λ1

Hw
, λ1

Hd
)(λ1

Lw
− λ2

Lw
)

+
∂T3

∂λ∗∗

Ld

(λ2
Lw

, ξ2, λ
1
Hw

, λ1
Hd

)(λ1
Ld

− λ2
Ld
)

+
∂T3

∂λ∗∗

Hw

(λ2
Lw

, λ2
Ld
, ξ3, λ

1
Hd

)(λ1
Hw

− λ2
Hw

)

+
∂T3

∂λ∗∗

Hd

(λ2
Lw

, λ2
Ld
, λ2

Hw
, ξ4)(λ

1
Hd

− λ2
Hd

) .

We just proved that
∂T3

∂λ∗∗

Lw

< 0,
∂T3

∂λ∗∗

Ld

< 0,
∂T3

∂λ∗∗

Hw

> 0,
∂T3

∂λ∗∗

Hd

> 0 . Since (u1) ≤K

(u2) , we have λ1
Lw

− λ2
Lw

≤ 0, λ1
Ld

− λ2
Ld

≤ 0, λ1
Hw

− λ2
Hw

≥ 0, λ1
Hd

− λ2
Hd

≥ 0 .

Thus T3(u
1)− T3(u

2) ≥ 0 .
3) Next, we show that T maps the set C into itself by showing it for T1 : C → C. Since

λ∗∗

Ld

µd + λ∗∗

Hd

+ λ∗∗

Ld

< 1 and
λ∗∗

Lw

µw + λ∗∗

Hw

+ λ∗∗

Lw

< 1 , it is clear that

T1(u) ≤ βL
12

Λd

µd
+ βL

11

Λw

µw
.

Proposition B.2. The spectral radius ρL > 1 if and only if R̂H
L > 1, and the spectral

radius ρH > 1 if and only if R̂L
H > 1 .

Proof. We only show that ρL > 1 iff R̂H
L > 1, since the other case is similar. We have

DT (εL)v = ρLv

where v is the positive eigenvector, v ≥K 0. The linearization matrix DT (εL) at the
LPAI-only equilibrium is given as follows;

DT (εL) =

























∂T1

∂λ∗∗

Lw

(εL)
∂T1

∂λ∗∗

Ld

(εL)
∂T1

∂λ∗∗

Hw

(εL)
∂T1

∂λ∗∗

Hd

(εL)

∂T2

∂λ∗∗

Lw

(εL)
∂T2

∂λ∗∗

Ld

(εL)
∂T2

∂λ∗∗

Hw

(εL)
∂T2

∂λ∗∗

Hd

(εL)

∂T3

∂λ∗∗

Lw

(εL)
∂T3

∂λ∗∗

Ld

(εL)
∂T3

∂λ∗∗

Hw

(εL)
∂T3

∂λ∗∗

Hd

(εL)

∂T4

∂λ∗∗

Lw

(εL)
∂T4

∂λ∗∗

Ld

(εL)
∂T4

∂λ∗∗

Hw

(εL)
∂T4

∂λ∗∗

Hd

(εL)

























which is equivalent to the following block triangular matrix,

DT (εL) =

(

DTL
1,2 DTH

1,2

0 DTH
3,4

)
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The 2× 2 block diagonal matrices are as follows;

DTL
1,2 =











Λwβ
L
11µw

(αLw
+ µw)(µw + λ∗L

Lw
)2

Λdβ
L
12µd

(αLd
+ µd)(µd + λ∗L

Ld
)2

Λwβ
L
21µw

(αLw
+ µw)(µw + λ∗L

Lw

)2
Λdβ

L
22µd

(αLd
+ µd)(µd + λ∗L

Ld

)2











DTH
1,2 =











−Λwβ
L
11λ

∗L
Lw

(αLw
+ µw)(µw + λ∗L

Lw

)2
−Λdβ

L
12λ

∗L
Ld

(αLd
+ µd)(µd + λ∗L

Ld

)2

−Λwβ
L
21λ

∗L
Lw

(αLw
+ µw)(µw + λ∗L

Lw
)2

−Λdβ
L
22λ

∗L
Ld

(αLd
+ µd)(µd + λ∗L

Ld
)2











and the components of the 2× 2 matrix DTH
3,4 are as follows;

∂T3

∂λ∗∗

Hw

(εL) = aRH
11

∂T3

∂λ∗∗

Hd

(εL) = aRH
12

∂T4

∂λ∗∗

Hw

(εL) = bRH
21

∂T4

∂λ∗∗

Hd

(εL) = bRH
22 .

The principal eigenvalue of DTH
3,4 is R̂H

L . The eigenvalues of DTL
1,2 are smaller than one,

as we showed in Proposition A.1. Therefore, the principal eigenvalue of DT (ǫL) is greater

than 1 if and only if R̂H
L > 1.
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