Chapter 3: Interpolation and Polynomial Approximation

Introductory Remarks for Chapter 3

- This chapter is about working with data.
- Example: A census of the population of the Us is taken every 10 years.
- If we want to know the population of the US in year 1965 or year 2010, we have to fit a function through the given data.

Goal: To fit functions through data.

Introductory Remarks for Chapter 3

- Definition: The process of fitting a function through given data is called interpolation.

- Usually when we have data, we don't know the function $f(x)$ that generated the data. So we fit a certain class of functions.
The most usual class of functions fitted through data are polynomials. We will see why polynomials are fitted through data when we don't know $\mathrm{f}(\mathrm{x})$.

Introductory Remarks for Chapter 3

- Definition: The process of fitting a polynomial through given data is called polynomial interpolation.
- Polynomials are often used because they have the property of approximating any continuous function.
- Given:
- $f(x)$ continuous on $[a, b]$
- $\epsilon>0$ (called tolerance)

Then, there is a polynomial $P(x)$ of appropriate degree which approximates the function within the given tolerance.

Introductory Remarks for Chapter 3

- This fact is guaranteed by the following Theorem:

Theorem: (Weierstrass

 Approximation Theorem): Suppose that $f(x)$ is defined and continuous on [a,b]. For each $\epsilon>0$, there exists a polynomial $P(x)$ with the property$$
|f(x)-P(x)|<\epsilon
$$

for all x in $[a, b]$.

$f(x)$ in red approximated by $P(x)$ in blue within ϵ.

3.1 Interpolation and the Lagrange Polynomial

1. Lagrange Interpolating Polynomial

- Problem: Given the values of the function $f(x)$ at $n+1$ distinct points
- $\mathrm{X}_{0} \mathrm{X1}$ X2, \ldots, Xn_{n}
- $f_{0} f_{1} f_{2}, \ldots ., f_{n}$
where $f_{i}=f\left(x_{i}\right)$ for $i=0, \ldots, n$.
Find a polynomial of degree n, $P(x)$, such that

$$
P\left(x_{i}\right)=f_{i}, \quad i=0, \ldots, n
$$

Polynomial of degree n has $n+1$ coefficients, that is $\mathrm{n}+1$ unknowns to determine. We have $\mathrm{n}+1$ conditions given.

$$
P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

Simplest Case: 2 points

- When $\mathrm{n}=2$, the problem becomes: Given:
- $\mathrm{Xo} \mathrm{X}_{1}$
- $f_{0} f_{1}$

Find a polynomial of degree one such that

$$
P\left(x_{0}\right)=f_{0} \quad P\left(x_{1}\right)=f_{1}
$$

$y=f_{0}+\frac{f_{1}-f_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)=f_{0}+\left(f_{1}-f_{0}\right) \frac{x-x_{0}}{x_{1}-x_{0}}=$
$=f_{0} \frac{x-x_{1}}{x_{0}-x_{1}}+f_{1} \frac{x-x_{0}}{x_{1}-x_{0}}$

Simplest Case: 2 points

- Denote by $\operatorname{Lo}_{0}(x)$ and $\mathrm{LI}_{1}(\mathrm{x})$ the two first degree polynomials:

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

- These polynomials have the following properties:

$$
\begin{array}{ll}
\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)=1 & \mathrm{~L}_{0}\left(\mathrm{X}_{1}\right)=0 \\
\mathrm{~L}_{1}\left(\mathrm{X}_{0}\right)=0 & \mathrm{~L}_{1}\left(\mathrm{X}_{1}\right)=1
\end{array}
$$

- So we can rewrite the polynomial that fits the data in the form:

$$
P(x)=f_{0} L_{0}(x)+f_{1} L_{1}(x)
$$

Special Case: 2 points

- $P\left(x_{0}\right)=f_{0} L_{0}\left(x_{0}\right)+f_{1} L_{1}\left(x_{1}\right)=f_{0}$
- $P\left(x_{1}\right)=f_{0} L_{0}\left(x_{1}\right)+f_{1} L_{1}\left(x_{1}\right)=f_{1}$
- $\operatorname{Lo}\left(X_{0}\right)=1, \operatorname{Lo}\left(X_{1}\right)=0$
- $\mathrm{L}_{1}\left(\mathrm{X}_{0}\right)=0, \mathrm{~L}_{1}\left(\mathrm{X}_{1}\right)=1$
- Note: $P(x)$ is the unique linear polynomial passing through the points ($\mathrm{x}_{0}, \mathrm{f}_{0}$) and ($\mathrm{x}_{1}, \mathrm{f}_{1}$)

The General Case: $\mathrm{n}+1$ points

- Now we generalize the approach to n+1 points.
- Given:
- X0,X1,X2,...,Xn
- $f_{0}, f_{1}, f_{2}, \ldots, f_{n}$
- First we construct the special polynomials $L_{k}(x)$ so that they have the properties:
- $\mathrm{Lk}_{\mathrm{k}}\left(\mathrm{Xi}_{\mathrm{i}}\right)=0$ if $\mathrm{i} \neq \mathrm{k}$
- $L_{k}(x k)=1$
- These are polynomials that are zero at all points except one.

The General Case: n+1 points

- A polynomial of degree n which is zero at all points except x_{k} is given by

$$
\text { - }\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)
$$

- If we want that polynomial to have value one at x_{k} we must divide by its value at x_{k}. Thus,

$$
L_{k}(x)=\frac{\left(x-x_{0}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-x_{n}\right)}
$$

- $L_{k}(x)$ is called basic Lagrange polynomial of degree n.

The General Case: $\mathrm{n}+1$ points

- Then $P(x)=f_{0} L_{0}(x)+f_{1} L_{1}(x)+\ldots f_{n} \operatorname{Ln}(x)$
- We would have $P\left(x_{k}\right)=f_{k}$ for $k=0, \ldots, n$.

Definition: $P(x)$ is called the nth Lagrange interpolating polynomial.

Example: Find the appropriate Lagrange interpolating polynomial using the table:

x	0	0.5	1	1.5
$\mathrm{f}(\mathrm{x})$	1	2	3	4

2. Example

- We have 4 points, so the $L_{k}(\mathrm{x})$ Lagrange polynomial will be of degree 3 .
- The basic Lagrange polynomials are:

$$
\begin{aligned}
& L_{0}(x)=\frac{(x-0.5)(x-1)(x-1.5)}{(0-0.5)(0-1)(0-1.5)} \\
& L_{1}(x)=\frac{x(x-1)(x-1.5)}{0.5(0.5-1)(0.5-1.5)} \\
& L_{2}(x)=\frac{x(x-0.5)(x-1.5)}{1(1-0.5)(1-1.5)} \\
& L_{3}(x)=\frac{x(x-0.5)(x-1)}{1.5(1.5-0.5)(1.5-1)}
\end{aligned}
$$

3. The Interpolation Error

- If we replace the function $f(x)$ with the polynomial $P(x)$, we would like to know what error we are making.
- Definition: The error $E_{n}(x, f)=f(x)-P(x)$
- The error varies from point to point. In the interpolation points the error is zero but it is non-zero in other points.
- We will be most interested in the maximum of the $\left|E_{n}(x, f)\right|$ over the interval $[a, b]$. This maximum is called error bound.

The Interpolation Error

Theorem 3.3: Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are $n+1$ distinct points in the interval $[a, b]$ and $f(x)$ has $n+1$ continuous derivatives. Then, for each x in $[a, b]$, a number $\xi(x)$ in (a, b) exists with

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

where $P(x)$ is the nth Lagrange interpolating polynomial.

The Interpolation Error

Definition: The error is given by the formula:

$$
E_{n}(x, f)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

, Note:

- If the interval $[a, b]$ is not given, we take $[\mathrm{a}, \mathrm{b}]=\left[\mathrm{x}_{0}, \mathrm{x}_{\mathrm{n}}\right]$.
- We need the function $f(x)$ in order to be able to compute an error bound.

Example 1

- Example: For the function

$$
f(x)=\cos (x)
$$

let $x_{0}=0, x_{1}=0.6, x_{2}=0.9$.

- Construct the interpolation polynomial of degree at most two to approximate $f(0.45)$.
- Find the actual error at 0.45.
- Use Theorem 3.3 to find the error bound for the error.

Example 1 - Solution

- The basic Lagrange polynomials are:

$$
\begin{aligned}
& L_{0}(x)=\frac{(x-0.6)(x-0.9)}{(0-0.6)(0-0.9)} \\
& L_{1}(x)=\frac{x(x-0.9)}{0.6(0.6-0.9)} \\
& L_{2}(x)=\frac{x(x-0.6)}{0.9(0.9-0.6)}
\end{aligned}
$$

$P(x)=L_{0}(x)+\cos (0.6) \mathrm{L}_{1}(x)+\cos (0.9) \mathrm{L}_{2}(x)$

Plot of $f(x)$ and $P(x)$.

Example 1 - Solution

- $\mathrm{P}(0.45)=0.898100747$

$$
E_{2}(x, f)
$$

- $\cos (0.45)=0.9004471024$
- Actual error at $x=0.45$: $\cos (0.45)-\mathrm{P}(0.45) \approx 0.0023$
- Error bound:

$$
E_{2}(x, f)=\frac{f^{\prime \prime \prime}(\xi(x))}{3!} x(x-0.6)(x-0.9)
$$

- We want to compute $\max _{x}\left|\mathrm{E}_{2}(\mathrm{x}, \mathrm{f})\right|$

Plot of the error.

Example 1 - Solution

- We can see from the figure that $\max _{x}\left|\mathrm{E}_{2}(\mathrm{x}, \mathrm{f})\right| \leq 0.4$
- However, we will not be able to compute this best bound because we don't know the location of ξ.
- We will bound the error in 2 steps:
- Find
- Find

$$
\max _{a \leq x \leq b}\left|f^{\prime \prime \prime}(x)\right|
$$

$$
\max _{a \leq x \leq b}|x(x-0.6)(x-0.9)|
$$

Example 1 - Solution

- Computing

$$
\max _{a \leq x \leq b}\left|f^{\prime \prime \prime}(x)\right|
$$

- Computing derivatives:

$$
\begin{aligned}
& f(x)=\cos x \\
& f^{\prime}(x)=-\sin x
\end{aligned}
$$

$$
f^{\prime \prime}(x)=-\cos x
$$

$$
f^{\prime \prime \prime}(x)=\sin x
$$

- $|\sin (x)|$ is increasing over [0,0.9]. Hence:
$\max _{a \leq x \leq b}|\sin (x)| \leq|\sin (0.9)|$

Example 1 - Solution

- Computing

$\max _{a \leq x \leq b}|x(x-0.6)(x-0.9)|$

$$
\begin{aligned}
& g(x)=x(x-0.6)(x-0.9) \\
& g^{\prime}(x)=3\left(x^{2}-x+0.18\right)=0 \\
& p_{1}=0.2354248689 \\
& p_{2}=0.7645751311
\end{aligned}
$$

$$
|g(x)| \leq\left|g\left(p_{1}\right)\right|=0.05704
$$

Example 1 - Solution

- We put together the two estimates:

$$
\begin{aligned}
\left|E_{2}(x, f)\right| & =\frac{|\sin (\xi(x))|}{6}|x(x-0.6)(x-0.9)| \\
& \leq \frac{|\sin 0.9|}{6} 0.05704=0.0074468
\end{aligned}
$$

Example 2

- Construct the Lagrange interpolating polynomial of degree 2 for

$$
f(x)=\sin (\ln x)
$$

on the interval $[2,2.6]$ with the points

$$
X_{0}=2.0 \quad X_{1}=2.4 \quad X_{2}=2.6
$$

Find a bound for the absolute error.

- Thus, the following table is given:

x	2	2.4	2.6
$f(x)$	$\sin (\ln 2)$	$\sin (\ln 2.4)$	$\sin (\ln 2.6)$

Example 2 - Solution

- We construct the basic Lagrange polynomials:

$$
\begin{aligned}
& L_{0}(x)=\frac{(x-2.4)(x-2.6)}{(2-2.4)(2-2.6)} \\
& L_{1}(x)=\frac{(x-2)(x-2.6)}{(2.4-2)(2.4-2.6)} \\
& L_{2}(x)=\frac{(x-2)(x-2.4)}{(2.6-2)(2.6-2.4)}
\end{aligned}
$$

$P(x)=\sin (\ln 2) L_{0}(x)+\sin (\ln 2.4) L_{1}(x)+\sin (\ln 2.6) L_{2}(x)$

Example 2 - Solution

- The error is given by

$$
\begin{aligned}
& E_{2}(x, f)=\frac{f^{\prime \prime \prime}(\xi(x))}{3!}(x-2)(x-2.4)(x-2.6) \\
& f(x)=\sin (\ln x)) \\
& f^{\prime \prime \prime}(x)=\frac{3 \sin (\ln x)+\cos (\ln x)}{x^{3}}
\end{aligned}
$$

Plot of the error $f(x)-P(x)$

Example 2 - Solution

- Bounding the third derivative:
$\left|f{ }^{\prime \prime \prime}(x)\right|$ is plotted on the right. |f'" $(x) \mid$ is decreasing. The maximum is at 2 :

$$
\begin{aligned}
& \max _{2 \leq x \leq 2.6}\left|f^{\prime \prime \prime}(x)\right| \leq\left|f^{\prime \prime \prime}(2)\right|= \\
&=\frac{3 \sin (\ln 2)+\cos (\ln 2)}{8}=0.335765
\end{aligned}
$$

$f^{\prime \prime \prime}(x)$ plotted over the interval [2,2.6].

Example 2 - Solution

- Next we bound $|g(x)|$:

$$
g(x)=(x-2)(x-2.4)(x-2.6)
$$

- To find the maximum of $|g(x)|$, we need to take the derivative:

$$
g^{\prime}(x)=3 x^{2}-14 x+16.24=0
$$

$$
p_{1}=2.157
$$

$$
\text { - } p_{2}=2.5
$$

$|g(x)| \leq|g(2.157)|=0.0169$ $|g(2.5)|=0.005$

$g(x)$

Example 2 - Solution

Obtaining the error bound:

$$
\begin{aligned}
\left|E_{2}(x, f)\right| & =\frac{\left|f^{\prime \prime \prime}(\xi(x))\right|}{3!}|(x-2)(x-2.4)(x-2.6)| \\
& \leq \frac{0.335765}{6} 0.0169=9.457 * 10^{-4}
\end{aligned}
$$

