## Introduction

- Why should Lagrange polynomial interpolation method be improved?
  - A practical difficulty with Lagrange interpolation is that since the error term is difficult to apply, the degree of the interpolating polynomial is NOT known until after the computation.
  - The work done in calculating the nth degree polynomial does not lessen the work for the computation of the (n+1)st degree polynomial
- To remedy these problems Newton created a different approach to the same problem of interpolating (n+1) points.

## Problem:

- We are solving the same problem:
- Given

 $\begin{array}{ccc} X_0 & X_1 & & X_n \\ f_0 & f_1 & & f_n \end{array}$ 

find a polynomial of degree at most n, P(x), that goes through all the points, that is satisfies:

 $P(x_k) = f_k$ 

• We take a new approach to this problem.

Let Pn(x) be the nth degree interpolating polynomial. We want to rewrite Pn(x) in the form

 $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$ 

for appropriate constants a<sub>0</sub>,a<sub>1</sub>,...,a<sub>n</sub>.

- We want to determine the coefficients ao,a1,...,an.
- Determining  $a_0$  is easy:  $a_0 = P_n(x_0) = f_0$

To determine a1 we compute

$$P_n(x_1) = a_0 + a_1(x - x_0)$$
  
 $f_1 = f_0 + a_1(x_1 - x_0)$ 

Solving for a1 we have

$$a_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

- This prompts to define the coefficients to be the divided differences.
- > The divided differences are defined recursively.

- Definition: The Oth divided difference of a function f with respect to the point x<sub>i</sub> is denoted by f[x<sub>i</sub>] and it is defined by f[x<sub>i</sub>]=f(x<sub>i</sub>)
- Definition: The first divided difference of f with respect to x<sub>i</sub>, x<sub>i+1</sub> is denoted by f[x<sub>i</sub>,x<sub>i+1</sub>] and it is defined as follows:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

Definition: The second divided difference at the points x<sub>i</sub>,x<sub>i+1</sub>,x<sub>i+2</sub> denoted by f[x<sub>i</sub>,x<sub>i+1</sub>,x<sub>i+2</sub>] is defined as follows:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_{i+1}}$$

Definition: If the (k-1)st divided differences f[x<sub>i</sub>,...,x<sub>i+k-1</sub>] and f[x<sub>i+1</sub>,...,x<sub>i+k</sub>] are given, the kth divided difference relative to x<sub>i</sub>,...,x<sub>i+k</sub> is given by

$$f[x_{i},...,x_{i+k}] = \frac{f[x_{i+1},...,x_{i+k}] - f[x_{i},...,x_{i+k-1}]}{x_{i+k} - x_{i}}$$

The divided differences are computed in table:

| X          | f(x)           | lst DD                    | lind DD     | IIIrd DD                                          | IVth DD                                                                |
|------------|----------------|---------------------------|-------------|---------------------------------------------------|------------------------------------------------------------------------|
| <b>X</b> 0 | fo             |                           |             |                                                   |                                                                        |
| <b>X</b> 1 | f۱             | <b>f[x</b> 0, <b>x</b> 1] |             |                                                   |                                                                        |
| <b>X</b> 2 | f <sub>2</sub> | <b>f[x</b> 1, <b>x</b> 2] | f[x0,x1,x2] |                                                   |                                                                        |
| <b>X</b> 3 | <b>f</b> 3     | <b>f[x</b> 2, <b>x</b> 3] | f[x1,x2,x3] | <b>f[x</b> 0, <b>x</b> 1, <b>x</b> 2, <b>x</b> 3] |                                                                        |
| <b>X</b> 4 | f4             | f[x3,x4]                  | f[x2,x3,x4] | f[x1,x2,x3,x4]                                    | <b>f</b> [ <b>x</b> 0, <b>x</b> 1, <b>x</b> 2, <b>x</b> 3, <b>x</b> 4] |
|            |                |                           |             |                                                   |                                                                        |

## Example

 Compute the divided differences with following data:

| X | f(x) |  |  |
|---|------|--|--|
| 0 | 3    |  |  |
| 1 | 4    |  |  |
| 2 | 7    |  |  |
| 4 | 19   |  |  |

### Example

• Completing the table:

| X | f(x) | lst DD | IInd DD | IIIrd DD |
|---|------|--------|---------|----------|
| 0 | 3    |        |         |          |
| 1 | 4    | 1      |         |          |
| 2 | 7    | 3      | 1       |          |
| 4 | 19   | 6      | 1       | 0        |

## 2. Interpolating with Divided Differences

If we want to write the interpolating polynomial in the form

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

we saw that

$$a_0 = f(x_0) = f_0 = f[x_0]$$
$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1]$$

If we continue to compute we will get: ak=f[x0,x1,...,xk] for all k=0,1,...,n.

## Interpolating with Divided Differences

- So the nth interpolating polynomial becomes:
  Pn(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...+f[x0,...,xn](x-x0)...(x-xn-1)
- <u>Definition</u>: This formula is called <u>Newton's</u> interpolatory <u>forward</u> divided difference formula.
- Example: (A) Construct the interpolating polynomial of degree 4 for the points:

| X    | 0.0     | 0.1      | 0.3      | 0.6      | 1.0      |
|------|---------|----------|----------|----------|----------|
| f(x) | -6.0000 | -5.89483 | -5.65014 | -5.17788 | -4.28172 |

## Example

#### We construct the divided difference table

| X   | f(x)     | lst DD  | llnd DD | IIIrd DD | IVth DD |
|-----|----------|---------|---------|----------|---------|
| 0.0 | -6.00000 |         |         |          |         |
| 0.1 | -5.89483 | 1.0517  |         |          |         |
| 0.3 | -5.65014 | 1.22345 | 0.5725  |          |         |
| 0.6 | -5.17788 | 1.5742  | 0.7015  | 0.215    |         |
| 1.0 | -4.28172 | 2.2404  | 0.9517  | 0.278    | 0.063   |

Then, Newton's forward polynomial is: P4(x)=-6+1.0517x+0.5725x(x-0.1)+ +0.215x(x-0.1)(x-0.3)+ +0.063x(x-0.1)(x-0.3)(x-0.6)

## Example

 (B) Add the point f(1.1)=-3.99583 to the table, and construct the polynomial of degree five.

| X   | f(x)     | lst DD  | llnd DD | IIIrd DD | IVth DD  | Vth DD |
|-----|----------|---------|---------|----------|----------|--------|
| 0.0 | -6.00000 |         |         |          |          |        |
| 0.1 | -5.89483 | 1.0517  |         |          |          |        |
| 0.3 | -5.65014 | 1.22345 | 0.5725  |          |          |        |
| 0.6 | -5.17788 | 1.5742  | 0.7015  | 0.215    |          |        |
| 1.0 | -4.28172 | 2.2404  | 0.9517  | 0.278    | 0.063    |        |
| 1.1 | -3.99583 | 2.8589  | 1.237   | 0.356625 | 0.078625 | 0.0142 |

Newton's polynomial: P<sub>5</sub>(x)=P<sub>4</sub>(x)+

+0.0142x(x-0.1)(x-0.3)(x-0.6)(x-1)

## Newton's Backward Formula

If the interpolating nodes are reordered as

Xn,Xn-1,...X1,X0

a formula similar to the Newton's forward divided difference formula can be established.

•  $P_n(x) = f[x_n] + f[x_n, x_{n-1}](x-x_n) + ...$ 

 $+f[x_n,...,x_0](x-x_n)...(x-x_1)$ 

 <u>Definition</u>: This formula is called <u>Newton's</u> backward divided difference formula.

## Example

Construct the interpolating polynomial of degree four using Newton's backward divided difference formula using the data:

| 0.0 | -6.00000 |         |        |       |       |
|-----|----------|---------|--------|-------|-------|
| 0.1 | -5.89483 | 1.0517  |        |       |       |
| 0.3 | -5.65014 | 1.22345 | 0.5725 |       |       |
| 0.6 | -5.17788 | 1.5742  | 0.7015 | 0.215 |       |
| 1.0 | -4.28172 | 2.2404  | 0.9517 | 0.278 | 0.063 |

 $P_4(x) = -4.28172 + 2.2404(x-1) +$ 

+0.9517(x-1)(x-0.6)++0.278(x-1)(x-0.6)(x-0.3) +0.063(x-1)(x-0.6)(x-0.3)(x-0.1)

# 3. Error of Interpolation with Divided Differences

The nth degree polynomial generated by the Newton's divided difference formula is the <u>exact</u> <u>same polynomial</u> generated by Lagrange formula. Thus, the error is the same:

$$E_n(x,f) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0) \dots (x - x_n)$$

Recall also that

 $E_n(x,f)=f(x)-P_n(x)$ 

## Example

For the function

$$f(x) = x^2 e^{\frac{-x}{2}}$$

Construct the divided difference table for the points

 $x_0=1.1$   $x_1=2$   $x_2=3.5$   $x_3=5$   $x_4=7.1$ 

- Find the Newton's forward divided difference polynomials of degree 1, 2 and 3.
- Find the errors of the interpolates for f(1.75).
- Find the error bound for  $E_1(x,f)$ .

The divided difference table is:

|       | X   | f(x)   | lst DD  | lind DD | IIIrd DD | IVth DD |
|-------|-----|--------|---------|---------|----------|---------|
| 1 76  | 1.1 | 0.6981 |         |         |          |         |
| 1./ ) | 2   | 1.4715 | 0.8593  |         |          |         |
|       | 3.5 | 2.1287 | 0.4381  | -0.1755 |          |         |
|       | 5   | 2.0521 | -0.0511 | -0.1631 | 0.0032   |         |
|       | 7.1 | 1.4480 | -0.2877 | -0.0657 | 0.0191   | 0.0027  |

 $P_1(x) = 0.6981 + 0.8593(x-1.1)$   $P_2(x) = P_1(x) - 0.1755(x-1.1)(x-2)$  $P_3(x) = P_2(x) + 0.0032(x-1.1)(x-2)(x-3.5)$ 

• f(1.75)=1.2766

| Degree | Pn(1.75) | Actual error |
|--------|----------|--------------|
| 1      | 1.25665  | 0.01995      |
| 2      | 1.2852   | -0.0086      |
| 3      | 1.2861   | -0.0095      |

- Typically we can expect that a higher degree polynomial will approximate better but here P<sub>2</sub>(x) approximates better than P<sub>3</sub>(x).
- Difference is small.



f(x) in red,  $P_1(x)$  in blue,  $P_2(x)$  in green,  $P_3(x)$  in gray

## Example - Bounding the Error

The error of P<sub>1</sub>(x) is

$$E_1(x, f) = \frac{f''(\xi(x))}{2!} (x - 1.1)(x - 2)$$
  
We find the derivatives  

$$f(x) = x^2 e^{-\frac{x}{2}}$$

$$f'(x) = (2x - \frac{x^2}{2})e^{-\frac{x}{2}}$$

$$f''(x) = (2 - 2x + \frac{x^2}{4})e^{-\frac{x}{2}}$$



 $\max_{x} |f''(x)| \le |f''(2)| = 0.3679$ 

Plot of |f''(x)| on [1.1,2]

## Example - Bounding the Error

- g(x)=(x-1.1)(x-2)
- The maximum of |g(x)| is attained at the midpoint of the interval [1.1,2]:
- $p_m = (1.1+2)/2 = 1.55$
- $|g(x)| \le |g(1.55)| = 0.2025$
- Error bound:

$$|E_{1}(x,f)| = \frac{|f''(\xi(x))|}{2!} |(x-1.1)(x-2)|$$
$$\leq \frac{0.3679}{2} 0.2025 = 0.03725$$



Plot of |g(x)| on [1.1,2].

### How Does the Divided Difference Relate to the Derivative?

Notice that

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

The Mean Value Theorem says that if f'(x) exists, then

 $f[x_0,x_1]=f'(\xi)$ for some  $\xi$  between  $x_0$  and  $x_1$ .

### How Does the Divided Difference Relate to the Derivative?

The following Theorem generalizes this:

 Theorem 3.6: Suppose f has n continuous derivatives and x0,x1,...,xn are distinct numbers in [a,b]. Then ξ in (a,b) exists with

$$f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$

## Error Estimation when f(x) is Unknown: Next Term Rule

- Often f(x) is NOT known, and the nth derivative of f(x) is also not known. Therefore, it is hard to bound the error.
- We saw that

$$f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Thus, the nth divided difference is an estimate of the nth derivative of f.

#### Error Estimation when f(x) is Unknown: Next Term Rule

This means that the error is approximated by the value of the next term to be added:

$$E_n(x,f) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0) \dots (x - x_n)$$
  

$$\approx f[x_0, \dots, x_n, x_{n+1}](x - x_0) \dots (x - x_n)$$

•  $E_n(x,f) \approx$  the value of the next term that would be added to  $P_n(x)$ .

## Example – Next Term Rule

For the function

$$f(x) = x^2 e^{-\frac{x}{2}}$$

Construct the divided difference table for the points

 $x_0=1.1$   $x_1=2$   $x_2=3.5$   $x_3=5$   $x_4=7.1$ 

- Find the Newton's forward divided difference polynomial of degree 1.
- Use the next term rule to estimate the error of the interpolate for f(1.75).

## Example – Next Term Rule

The divided difference table is:

| X   | f(x)   | lst DD | llnd DD |
|-----|--------|--------|---------|
| 1.1 | 0.6981 |        |         |
| 2   | 1.4715 | 0.8593 |         |
| 3.5 | 2.1287 | 0.4381 | -0.1755 |

- $P_1(x) = 0.6981 + 0.8593(x 1.1)$
- $P_2(x) = P_1(x) 0.1755(x-1.1)(x-2)$

The next term rule gives:
E₁(1.75,f)≈-0.17755(1.75-1.1)(1.75-2)=0.02852

# 4. Interp. With Equally Spaced Points. Ordinary Differences

Definition: The points x<sub>0</sub>,x<sub>1</sub>,...,x<sub>n</sub> are called equally spaced if

 $x_1 - x_0 = x_2 - x_1 = ... = x_n - x_{n-1} = h$  (step).

- Example:  $x_0=1$   $x_1=1.5$   $x_2=2$   $x_3=2.5$
- If the data are equally spaced getting the interpolation polynomial is simpler.
- When we compute the divided differences we will always divide by the same number.
- In this case it is more convenient to define ordinary differences.

## **Ordinary Differences**

 <u>Definition</u>: The first forward difference Δf(x<sub>i</sub>) is defined as

 $\Delta f(x_i) = f(x_{i+1}) - f(x_i)$ 

Then,

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{\Delta f(x_i)}{h}$$

Example: Let f(x)=ln(x). The first forward difference at the points x<sub>0</sub>=1 x<sub>1</sub>=2 is Δf(x<sub>0</sub>)=f(2)-f(1)=ln(2)-ln(1)=ln(2)=0.69315

## **Ordinary Differences**

• The second forward difference  $\Delta^2 f(x_i)$  is defined as follows:

$$\Delta^2 f(x_i) = \Delta f(x_{i+1}) - \Delta f(x_i)$$

Consequently the second divided difference expressed in terms of the ordinary difference is:

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i+1}, x_{i}]}{x_{i+2} - x_{i}} = \frac{1}{2h} \left[ \frac{\Delta f(x_{i+1})}{h} - \frac{\Delta f(x_{i})}{h} \right] = \frac{\Delta^{2} f(x_{i})}{2h^{2}}$$

## **Ordinary Differences**

• The (k+1)st forward difference  $\Delta^{k+1}f(x_i)$  is defined as follows:

$$\Delta^{k+1} f(x_i) = \Delta^k f(x_{i+1}) - \Delta^k f(x_i)$$

In general,

$$f[x_i, \dots, x_{i+k}] = \frac{\Delta^k f(x_i)}{k! h^k}$$

 Computing ordinary differences is the same as computing divided differences – in a table.

## Example

Compute the ordinary differences table for

$$f(x) = 2x^3$$

for the points:

 $x_0=0, x_1=0.5, x_2=1, x_3=1.5, x_4=2, x_5=2.5$ 

- Compute the divided differences table for the same function and the same points.
- Compare the two tables.

### Example – Table of Ordinary Differences

| X   | f(x)  | $\Delta f(x)$ | $\Delta^2 f(x)$ | $\Delta^3 f(x)$ | $\Delta^4 f(x)$ |
|-----|-------|---------------|-----------------|-----------------|-----------------|
| 0   | 0     |               |                 |                 |                 |
| 0.5 | 0.25  | 0.25          |                 |                 |                 |
| 1   | 2     | 1.75          | 1.5             |                 |                 |
| 1.5 | 6.75  | 4.75          | 3.0             | 1.5             |                 |
| 2   | 16    | 9.25          | 4.5             | 1.5             | 0               |
| 2.5 | 31.25 | 15.25         | 6.0             | 1.5             | 0               |
| 3   | 54    | 22.75         | 7.5             | 1.5             | 0               |

### Example – Table of Divided Differences

| X   | f(x)  | lst DD | lind DD | IIIrd DD | IVth DD |
|-----|-------|--------|---------|----------|---------|
| 0   | 0     |        |         |          |         |
| 0.5 | 0.25  | 0.5    |         |          |         |
| 1   | 2     | 3.5    | 3       |          |         |
| 1.5 | 6.75  | 9.5    | 6       | 2        |         |
| 2   | 16    | 18.5   | 9       | 2        | 0       |
| 2.5 | 31.25 | 30.5   | 12      | 2        | 0       |
| 3   | 54    | 45.5   | 15      | 2        | 0       |

## Example – Remarks

- The IVth DD of f(x) are zero. That is because the IVth DD of f(x) is approximated by f'''(ξ) which is zero.
- Ist DD = Ist difference/h = 2 (Ist difference)
- IInd DD = IInd difference/h(2h)=

2 (IInd difference)

IIIrd DD = IIIrd difference/(h(2h)(3h))= 4/3(IIIrd difference)

## Interpolating with Ordinary Differences

- An interpolation polynomial of degree n can be written in terms of ordinary differences.
- The independent variable in this polynomial is typically not x but s:

$$s = \frac{x - x_0}{h}$$

Newton's forward difference formula is given by:

$$P_n(s) = f(x_0) + s\Delta f(x_0) + \frac{s(s-1)}{2!}\Delta^2 f(x_0) + \dots$$
$$\dots + \frac{s(s-1)\dots(s-n+1)}{n!}\Delta^n f(x_0)$$

## Example:

Given the table of xi and f(xi):

| X    | 0 | 0.2   | 0.4   | 0.6   | 0.8  | 1.0   | 1.2   |
|------|---|-------|-------|-------|------|-------|-------|
| f(x) | 0 | 0.203 | 0.423 | 0.684 | 1.03 | 1.557 | 2.572 |

- Compute the forward differences to order four.
- Find f(0.73) from a cubic interpolating polynomial.

• We complete the table

|        | X   | f(x)  | lst diff | llnd diff | IIIrd diff | IVth diff |
|--------|-----|-------|----------|-----------|------------|-----------|
|        | 0   | 0     |          |           |            |           |
|        | 0.2 | 0.203 | 0.203    |           |            |           |
|        | 0.4 | 0.423 | 0.22     | 0.017     |            |           |
|        | 0.6 | 0.684 | 0.261    | 0.041     | 0.024      |           |
| • 0.73 | 0.8 | 1.03  | 0.346    | 0.085     | 0.044      | 0.2       |
|        | 1.0 | 1.557 | 0.527    | 0.181     | 0.096      | 0.052     |
|        | 1.2 | 2.572 | 1.015    | 0.488     | 0.307      | 0.211     |

Since 0.73 falls between 0.6 and 0.8 and we need 4 point to obtain a cubic polynomial, we use the closest points to 0.73:

| <b>X</b> 0 | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 |
|------------|------------|------------|------------|
| 0.4        | 0.6        | 0.8        | 1          |

• We take the appropriate subtable:

| X   | f(x)  | lst diff | llnd diff | lllrd diff |
|-----|-------|----------|-----------|------------|
| 0.4 | 0.423 |          |           |            |
| 0.6 | 0.684 | 0.261    |           |            |
| 0.8 | 1.03  | 0.346    | 0.085     |            |
| 1.0 | 1.557 | 0.527    | 0.181     | 0.096      |

• We obtain the polynomial:

$$P_{3}(s) = 0.423 + 0.261s + 0.085 \frac{s(s-1)}{2} + 0.096 \frac{s(s-1)(s-2)}{6}$$
  
> Since x=0.73, then  
 $s=(x-x_{0})/h=(0.73-0.4)/0.2=1.65$   
 $P(1.65) = 0.893$   
> Note: The function f(x)=tan(x). So f(0.73)=0.895.

Thus the actual error of the approximation is 0.002.

## **Backward Differences**

As before, we can rearrange the points and define backward differences:

Xn Xn-1 ... X1 X0

Definition: The first backward difference at x<sub>i</sub> is defined as follows:

$$\nabla f(x_i) = f(x_i) - f(x_{i-1})$$



 $\nabla f(x_i) = \Delta f(x_{i-1})$ 

## **Backward Differences**

Definition: The kth backward difference at the point x<sub>i</sub> is defined as follows:

$$\nabla^{k} f(x_{i}) = \nabla^{k-1} f(x_{i}) - \nabla^{k-1} f(x_{i-1})$$

 <u>Definition</u>: Newton's backward difference formula is given by

$$P_n(s) = f(x_n) + s\nabla f(x_n) + \frac{s(s+1)}{2!} \nabla^2 f(x_n) + \dots$$
$$\dots + \frac{s(s+1)\dots(s+n-1)}{n!} \nabla^n f(x_n)$$

where  $s = (x - x_n)/h$ .

## Example

#### Given the data:

| X    | -0.75      | -0.5     | -0.25     | 0     |
|------|------------|----------|-----------|-------|
| f(x) | -0.0718125 | -0.02475 | 0.3349375 | 1.101 |

- Construct the forward difference table.
- Use Newton's forward difference formula to construct the interpolating polynomial of degree 3.
- Use Newton's backward difference formula to construct the interpolating polynomial of degree 3.
- ▶ Use either polynomial to approximate f(-1/3).

• We construct the forward difference table:

| X     | f(x)       | lst diff  | llnd diff | lllrd diff |
|-------|------------|-----------|-----------|------------|
| -0.75 | -0.0718125 |           |           |            |
| -0.5  | -0.02475   | 0.0470625 |           |            |
| -0.25 | 0.3349375  | 0.3596875 | 0.312625  |            |
| 0     | 1.101      | 0.7660625 | 0.406375  | 0.09375    |

The forward difference polynomial is

$$P_3(s) = -0.0718125 + 0.0470625s + 0.312625 \frac{s(s-1)}{2!} +$$

$$0.09375 \frac{s(s-1)(s-2)}{3!}$$

The backward difference table is exactly the same as the forward difference table

| X     | f(x)       | lst diff  | llnd diff | IIIrd diff |
|-------|------------|-----------|-----------|------------|
| -0.75 | -0.0718125 |           |           |            |
| -0.5  | -0.02475   | 0.0470625 |           |            |
| -0.25 | 0.3349375  | 0.3596875 | 0.312625  |            |
| 0     | 1.101      | 0.7660625 | 0.406375  | 0.09375    |

• The backward difference polynomial is:  $P_3(s) = 1.101 + 0.7660625s + 0.406375 \frac{s(s+1)}{2!} +$ 

$$+0.09375 \frac{s(s+1)(s+2)}{3!}$$

- We have to use either polynomial to estimate f(-1/3).
- If we use the backward polynomial,

 $s=(x-x_n)/h=x/h = -4/3$ 

We compute  $P_3(-4/3) \approx 0.1745185$