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Abstract

In this paper, a partial differential equation (PDE) model is proposed to explore the trans-

mission dynamics of vector-borne diseases. The model includes both incubation age of the

exposed hosts and infection age of the infectious hosts which describe incubation-age dependent

removal rates in the latent period and the variable infectiousness in the infectious period, re-

spectively. The reproductive number R0 is derived. By using the method of Lyapunov function,

the global dynamics of the PDE model is further established, and the results show that the basic

reproduction number R0 determines the transmission dynamics of vector-borne diseases: the

disease-free equilibrium is globally asymptotically stable if R0 ≤ 1, and the endemic equilibrium

is globally asymptotically stable if R0 > 1. The results suggest that an effective strategy to

contain vector-borne diseases is decreasing the basic reproduction number R0 below one.
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1 Introduction

Vector-borne diseases are infectious diseases caused by pathogens and parasites in human popula-

tions that are transmitted to people by blood-sucking arthropods, such as mosquitoes, ticks and

fleas. They include some of the world’s most destructive diseases, for instance, malaria, schis-

tosomiasis, plague, and dengue fever. According to WHO [1], vector-borne diseases account for

more than 17% of all infectious diseases, causing more than 1 million deaths annually. In the past

two decades, some vector-borne diseases, such as as malaria and schistosomiasis, have continued

to threaten human health. Furthermore, other vector-borne diseases have reemerged and broken

out in different parts of the world, such as the 2014 Guangzhou outbreak of dengue fever and

the outbreak of West Nile virus in North America since 1999. Any outbreak of the vector-borne

diseases causes great harm to public health. As far as the 2014 Guangzhou outbreak of dengue

fever is concerned, the total number of dengue fever cases reached 36, 889 as of October 21st, 2014

[2], according to the provincial health and family planning commission. Due to the great harm to

the public health caused by the vector diseases, it is imperative to understand the transmission

dynamics of the vector-borne diseases firstly, and then discuss strategies to prevent and contain

their outbreaks.

Mathematical modelling has contributed significantly to our understanding of the epidemiology

of infectious diseases [3, 4]. Over the past two decades, there have been many published mathe-

matical models focused on understanding the transmission dynamics of the vector-borne diseases

([5, 6, 7, 8, 9, 10] and references therein). These models provided useful insights into the trans-

mission dynamics of the vector-borne diseases. Almost all of the above models are described by

ordinary differential equations (ODEs); therefore, some of the assumptions implicitly made in the

formulation of these models [11] include: (1) infectious individuals are equally infectious during

their infectious period; (2) the stage durations of the latent and infectious periods are exponen-

tially distributed. Although in many cases these simplifying assumptions may provide a reasonable

approximation to the biological process being modelled, it is important to examine how the model

results may be influenced by these assumptions, which calls for an investigation of models that use

more realistic assumptions [11].

In this paper, we develop an age-structured model to study how transmission dynamics of the

vector-borne diseases are affected by the incubation and infectious ages. The model studied in

the paper incorporates both incubation age of the exposed hosts and infection age of the infectious

hosts. Incubation age of the exposed hosts describes the different removal rates in the latent period,

and infection age of the infectious hosts describes the variable infectiousness in the infectious period.

Several recent studies [12, 13, 14, 15, 16, 17, 18] on age structured models have shown that age of

infection may play an important role in the transmission dynamics of infectious diseases. Thieme

and Castillo-Chavez [13] studied the effect of infection-age-independent infectivity on dynamics of

HIV transmission, and showed that undamped oscillations may occur in particular if the variable

infectivity is highly concentrated at certain parts of the incubation period. Lloyd [12, 14] studied
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the epidemic model with the inclusion of non-exponential distributions of infectious periods. The

results indicated that the inclusion of more realistic description of the recovery process may cause

a significant destabilization of the model, and less dispersed distributions are seen to have two

important epidemiological consequences: (1) less stable behavior is seen within the model; (2)

disease persistence is diminished.

Epidemic models with age of infection are usually described by first order partial differential

equations, whose complexity makes them more difficult to theoretically analyze, particularly, their

global behavior. Most existing studies on age-structured models focus only on the existence of non-

trivial steady states [19, 20] or give local stability results [21]. The stability analysis of nonlinear

dynamical systems has always been a topic of both theoretical and practical importance since global

stability is one of the most important issues related to their dynamic behaviors. However, proving

the global stability is a very challenging task, especially for nonlinear systems described by PDEs

due to the lack of generically applicable tools. The global stability results for the age-structured

epidemic models were first obtained in [22, 23, 24]. The method of Lyapunov functions is the most

common tool used to prove the global stability, especially for ODE models [25, 26, 27]. In recent

years, Lyapunov function has been also used to study the global stability of epidemic models with

age of infection [28, 29, 30].

In this paper, we also use Lyapunov functions to study the global dynamics of a vector-borne

disease model with incubation age of the exposed hosts and infection age of the infectious hosts.

By using a class of global Lyapunov functions we show that the global dynamics of the system is

completely determined by the basic reproduction number R0: if R0 < 1 the disease-free equilibrium

is globally asymptotically stable; if R0 > 1, a unique endemic equilibrium is globally asymptotically

stable.

This paper is organized as follows. In the next section we formulate a vector-borne epidemic

model with incubation age of exposed hosts and infection age of infectious hosts. The two infection

ages describe the different removal rates in the latent stage and the variable infectiousness in the

infectious stage, respectively. We obtain an explicit formula for the basic reproduction number of

system. Then we discuss the trivial and non-trivial equilibria and their stabilities. In Section 3,

the global stability of the infection-free equilibrium of the system is analyzed by constructing a

Lyapunov function. In Section 4, we show uniform strong persistence of if R0 > 1. In Section 5, we

again use a Lyapunov function to derive the global stability of the epidemic equilibrium. Finally,

a brief discussion is given in Section 6.

2 The vector-borne disease model with two ages of infection and

the local stabilites

To introduce the model, we divide the host population under consideration into four groups: sus-

ceptible hosts at time t, denoted by Sh(t), infected but not infectious individuals Eh(τ, t), infected
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and infectious individuals Ih(a, t), and the number of recovered or immune individuals, denoted

by Rh(t). The vector population, on the other hand, is divided into three compartmental classes:

susceptible vector at time t, denoted by Sv(t), the number of recovered or immune vectors, denoted

by Rv(t), and infected/infectious vectors Iv(t).

With the above notation, we study the following infection-age-structured mosquito-borne model

of Dengue virus.
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S′
v(t) = Λv − Sv(t)

∫ ∞

0
βv(a)Ih(a, t)da− µvSv(t),

I ′v(t) = Sv(t)

∫ ∞

0
βv(a)Ih(a, t)da− (µv + αv)Iv(t),

R′
v(t) = αvIv(t) − µvRv(t),

S′
h(t) = Λh − βhSh(t)Iv(t) − µhSh(t),

∂Eh(τ, t)

∂τ
+
∂Eh(τ, t)

∂t
= −(µh +m(τ))Eh(τ, t),

Eh(0, t) = βhSh(t)Iv(t),

∂Ih(a, t)

∂a
+
∂Ih(a, t)

∂t
= −(µh + αh(a) + rh(a))Ih(a, t),

Ih(0, t) =

∫ ∞

0
m(τ)Eh(τ, t)dτ,

R′
h(t) =

∫ ∞

0
rh(a)Ih(a, t)da− µhRh(t).

(2.1)

Here, Λv is the birth /recruitment rate of the vectors. Λh is the birth /recruitment rate of the host

population. Let µv, µh be the natural death rate of the vectors and the host, respectively. m(τ)

denotes the removal rate of the infected hosts with age of incubation τ from the latent period. αh(a)

gives the additional disease induced death rate due to vector-borne disease at age of infection a.

αv denotes the recovery rate of the infected vectors. rh(a) denotes the recovery rate of the infected

hosts with age of infection a. Furthermore, βv(a) is the transmission coefficient of the infected

host individuals at age of infection a, and βh is the transmission coefficient from infected vectors

to healthy host individuals.

To understand the model, notice that susceptible host individuals are recruited at a rate Λh.

Susceptible host individuals can become infected by an bite of an infected mosquito with disease.

Upon infection through biting by infected mosquitoes, the newly infected individuals move to the

latent class, then progress into the infectious class with the progression rate m(τ). The non-

infectious and infectious individuals infected by disease with age-since-infection equal to zero move

to the boundary condition. The number total recovery rate from the infected class Ih(a, t) is given

by the integral over all ages-since-infection. The susceptible vectors are recruited at a rate Λv.

Susceptible mosquitos can become infected through biting on an infected individual of any age-

since-infection at a specific age-infection transmission rate. As a consequence, the force of infection

of susceptible vectors is given by the integral over all ages-since-infection. The total recovery rate
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from the infected vector class Iv(t) is given by αvIv(t).

We notice that the equations for the recovered individuals and the recovered vectors are decou-

pled from the system and the analysis of system (2.1) is equivalent to the analysis of the system

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S′
v(t) = Λv − Sv(t)

∫ ∞

0
βv(a)Ih(a, t)da− µvSv(t),

I ′v(t) = Sv(t)

∫ ∞

0
βv(a)Ih(a, t)da− (µv + αv)Iv(t),

S′
h(t) = Λh − βhSh(t)Iv(t) − µhSh(t),

∂Eh(τ, t)

∂τ
+
∂Eh(τ, t)

∂t
= −(µh +m(τ))Eh(τ, t),

Eh(0, t) = βhSh(t)Iv(t),

∂Ih(a, t)

∂a
+
∂Ih(a, t)

∂t
= −(µh + αh(a) + rh(a))Ih(a, t),

Ih(0, t) =

∫ ∞

0
m(τ)Eh(τ, t)dτ.

(2.2)

Model (2.2) is equipped with the following initial conditions:

Sv(0) = Sv0
, Iv(0) = Iv0

, Sh(0) = Sh0
, Eh(τ, 0) = ϕ(τ), Ih(a, 0) = ψ(a).

All parameters are nonnegative, Λv > 0, Λh > 0, and µv > 0, µh > 0. We make the following

assumptions on the parameter-functions.

Assumption 2.1 The parameter-functions satisfy the following.

1. The functions βv(a) is bounded and uniformly continuous. When βv(a) is of compact support,

the support has non-zero Lebesgue measure;

2. The functions m(τ), αh(a), rh(a) belong to L∞(0,∞);

3. The functions ϕ(τ), ψ(a) are integrable.

Define the space of functions

X = R × R × R × (L1(0,∞)) × (L1(0,∞)).

It can be verified that solutions of (2.2) with nonnegative initial conditions belong to the positive

cone for t ≥ 0. Furthermore, adding the first and the second equations we have

d

dt

(

Sv(t) + Iv(t)

)

≤ Λv − µv

(

Sv(t) + Iv(t)

)

.

Hence,

lim sup
t

(

Sv(t) + Iv(t)

)

≤
Λv

µv
.

The number of the hosts can be bounded as follows:

d

dt

(

Sh(t)+

∫ ∞

0
Eh(τ, t)dτ +

∫ ∞

0
Ih(a, t)da

)

≤ Λh − µh

(

Sh(t) +

∫ ∞

0
Eh(τ, t)dτ +

∫ ∞

0
Ih(a, t)da

)

.
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Hence,

lim sup
t

(

Sh(t) +

∫ ∞

0
Eh(τ, t)dτ +

∫ ∞

0
Ih(a, t)da

)

≤
Λh

µh

.

Therefore, the following set is positively invariant for system

Ω =

{

(Sv, Iv, Sh, Eh, Ih) ∈ X+

∣

∣

∣

∣

(

Sv(t) + Iv(t)

)

≤
Λv

µv
,

(

Sh(t) +

∫ ∞

0
Eh(τ, t)dτ +

∫ ∞

0
Ih(a, t)da

)

≤
Λh

µh

}

.

Finally, since the exit rate of exposed host individuals from the incubation compartment is given

by µh +m(τ), then the probability of still being latent after τ time units is given by

π1(τ) = e−µhτ e−
∫

τ

0
m(σ))dσ . (2.3)

The exit rate of infected individuals from the infective compartment is given by µh +αh(a)+rh(a),

thus the probability of still being infectious after a time units is given by

π2(a) = e−µhae−
∫

a

0
(αh(σ)+rh(σ))dσ . (2.4)

The reproduction number of disease in system (2.2) is given by the following expression

R0 =
βhΛvΛh

µvµh(µv + αv)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da. (2.5)

The reproduction number of disease gives the number of secondary infections produced in an entirely

susceptible population by a typical infected individual during its entire infectious period. R0 gives

the strength of vector-borne disease to invade when rare and alone. In particular, we notice that

the reproduction number for vector-borne diseases is a product of the reproduction numbers of the

two transmission processes: human-to-vector Rh and vector-to-human Rv,

Rh =
Λv

µv

∫ ∞

0
βv(a)π2(a)da, Rv =

βhΛh

µh(µv + αv)

∫ ∞

0
m(τ)π1(τ)dτ,

that is R0 = RvRh. In the next section we compute explicit expressions for the equilibria and

establish their local stability.

System (2.2) always has a unique disease-free equilibrium E0, which is given by

E0 =

(

S∗
v0
, 0, S∗

h0
, 0, 0

)

,

where

S∗
v0

=
Λv

µv

, S∗
h0

=
Λh

µh

.

In addition, for Dengue virus there is a corresponding endemic equilibrium E1 given by

E1 = (S∗
v , I

∗
v , S

∗
h, E

∗
h(τ), I∗h(a)).
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We denote by

∆ =
βhΛhΛv

µhµv(µv + αv)
,

b =

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da,

b(λ) =

∫ ∞

0
m(τ)e−λτπ1(τ)dτ

∫ ∞

0
βv(a)e

−λaπ2(a)da.

(2.6)

The non-zero components of the equilibrium E1 are given by

I∗v =
µvµh(R− 1)

βh(Λhb+ µv)
, S∗

v =
Λv − (µv + αv)I

∗
v

µv
, S∗

h =
Λh

βhI∗v + µh

,

E∗
h(τ) = E∗

h(0)π1(τ), E∗
h(0) = βhS

∗
hI

∗
v ,

I∗h(a) = I∗h(0)π2(a), I∗h(0) = E∗
h(0)

∫ ∞

0
m(τ)π1(τ)dτ.

(2.7)

Next, we turn to the linearized equations for the disease-free equilibrium. To introduce the lin-

earization at the disease-free equilibrium E0, we let Sv(t) = S∗
v0

+ xv(t), Iv(t) = yv(t), Sh(t) =

S∗
h0

+ xh(t), Eh(τ, t) = zh(τ, t), Ih(a, t) = yh(a, t). The linearized system becomes


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dxv(t)

dt
= −S∗

v0

∫ ∞

0
βv(a)yh(a, t)da − µvxv(t),

dyv(t)

dt
= S∗

v0

∫ ∞

0
βv(a)yh(a, t)da − (µv + αv)yv(t),

dxh(t)

dt
= −βhS

∗
h0
yv(t) − µhxh(t),

∂zh(τ, t)

∂τ
+
∂zh(τ, t)

∂t
= −(µh +m(τ))zh(τ, t),

zh(0, t) = βhS
∗
h0
yv(t),

∂yh(a, t)

∂a
+
∂yh(a, t)

∂t
= −(µh + αh(a) + rh(a))yh(a, t),

yh(0, t) =

∫ ∞

0
m(τ)zh(τ, t)dτ.

(2.8)

To study system (2.2), we look for solutions of the form xv(t) = x̄ve
λt, yv(t) = ȳve

λt, xh(t) =

x̄he
λt, zh(τ, t) = z̄h(τ)eλt and yh(a, t) = ȳh(a)eλt. We obtain the following eigenvalue problem
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λx̄v = −S∗
v0

∫ ∞

0
βv(a)ȳh(a)da − µvx̄v,

λȳv = S∗
v0

∫ ∞

0
βv(a)ȳh(a)da − (µv + αv)ȳv,

λx̄h = −βhS
∗
h0
ȳv − µhx̄h,

dz̄h(τ)

dτ
= −(λ+ µh +m(τ))z̄h(τ),

z̄h(0) = βhS
∗
h0
ȳv,

dȳh(a)

da
= −(λ+ µh + αh(a) + rh(a))ȳh(a),

ȳh(0) =

∫ ∞

0
m(τ)z̄h(τ)dτ.

(2.9)

7



We notice that the two equations for x̄v and x̄h are decoupled from the equation for ȳv, z̄h, ȳh.

Hence, the equations for x̄v and x̄h are independent from the equations for ȳv, z̄h, ȳh. Solving the

differential equations for z̄h, ȳh, we have

z̄h(τ) = z̄h(0) e−λτπ1(τ) = βhS
∗
h0
ȳv e

−λτπ1(τ),

ȳh(a) = ȳh(0) e−λaπ2(a) = βhS
∗
h0
ȳv e

−λaπ2(a)

∫ ∞

0
m(τ) e−λτπ1(τ)dτ.

(2.10)

Substituting for ȳh(a) in the second equation of (2.9), we can obtain the following equation

λ+ µv + αv = βhS
∗
v0
S∗

h0

∫ ∞

0
m(τ)e−λτπ1(τ)dτ

∫ ∞

0
βv(a)e

−λaπ2(a)da. (2.11)

Now we are ready to establish the following result.

Proposition 2.1 If

R0 < 1,

then the disease-free equilibrium is locally asymptotically stable. If R0 > 1, it is unstable.

Proof. Assume

R0 < 1.

We set

LHS
def
= λ+ µv + αv,

RHS
def
= G1(λ) = βhS

∗
v0
S∗

h0

∫ ∞

0 m(τ)e−λτπ1(τ)dτ
∫ ∞

0 βv(a)e
−λaπ2(a)da.

(2.12)

Consider λ with <λ ≥ 0. For such λ, following from (2.12), we have that

|LHS| ≥ µv + αv,

|RHS| ≤ G1(<λ) ≤ G1(0) = βhS
∗
v0
S∗

h0

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da

=
βhΛvΛh

µvµh

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da

= R(µv + αv) < |LHS|.

This gives a contradiction. Hence, we have shown that equation (2.11) cannot have any roots with

non-negative real parts. Therefore, the disease-free equilibrium E0 depends on the eigenvalues of the

equations for xv and xh. It is evident that λ = −µv and λ = −µh, so the disease-free equilibrium

E0 is locally asymptotically stable if R0 < 1.

Now assume

R0 > 1.

We rewrite the characteristic equation (2.11) in the form

(λ+ µv + αv) − βhS
∗
v0
S∗

h0

∫ ∞

0
m(τ)e−λτπ1(τ)dτ

∫ ∞

0
βv(a)e

−λaπ2(a)da = 0. (2.13)

We denote

G2(λ) = (λ+ µv + αv) − βhS
∗
v0
S∗

h0

∫ ∞

0
m(τ)e−λτπ1(τ)dτ

∫ ∞

0
βv(a)e

−λaπ2(a)da. (2.14)
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Thus equation (2.13) has turned into the following characteristic equation

G2(λ) = 0. (2.15)

For λ real we have

G2(0) = (µv + αv) − βhS
∗
v0
S∗

h0

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da

= (µv + αv)(1 −R0) < 0.

Furthermore, limλ→∞ G2(λ) = +∞. Hence, the characteristic equation (2.15) has a real positive

root. Therefore, the endemic equilibrium E0 is unstable. This concludes the proof. �

Now we turn to the local stability of the endemic equilibrium E1 if R0 > 1. The result on local

stability of the single-strain equilibrium E1 is summarized below

Proposition 2.2 Assume R0 > 1, then the endemic equilibrium E1 is locally asymptotically stable.

Proof. We study the linearized equation around the endemic equilibrium E1. We introduce the

following notation for the perturbations Sv(t) = S∗
v + xv(t), Iv(t) = I∗v + yv(t), Sh(t) = S∗

h +

xh(t), Eh(τ, t) = E∗
h(τ) + zh(τ, t), Ih(a, t) = I∗h(a) + yh(a, t). The system for the perturbations

becomes (2.16)



























































































dxv(t)

dt
= −S∗

v

∫ ∞

0
βv(a)yh(a, t)da − xv(t)

∫ ∞

0
βv(a)I

∗
h(a)da − µvxv(t),

dyv(t)

dt
= S∗

v

∫ ∞

0
βv(a)yh(a, t)da+ xv(t)

∫ ∞

0
βv(a)I

∗
h(a)da − (µv + αv)yv(t),

dxh(t)

dt
= −βhS

∗
hyv(t) − βhxh(t)I∗v − µhxh(t),

dzh(τ)

dτ
= −(λ+ µh +m(τ))zh(τ, t),

zh(0, t) = βhS
∗
hyv(t) + βhxh(t)I∗v ,

dyh(a)

da
= −(λ+ µh + αh(a) + rh(a))yh(a, t),

yh(0, t) =

∫ ∞

0
m(τ)zh(τ, t)dτ.

(2.16)

An approach similar to [23] (see Appendix B in [23]) can show that the linear stability of the system

is in fact determined by the eigenvalues of the linearized system (2.16). To investigate the point

spectrum, we look for exponential solutions (see the case of the disease-free equilibrium) and obtain

9



a linear eigenvalue problem.























































































λxv = −S∗
v

∫ ∞

0
βv(a)yh(a)da − xv

∫ ∞

0
βv(a)I

∗
h(a)da− µvxv,

λyv = S∗
v

∫ ∞

0
βv(a)yh(a)da + xv

∫ ∞

0
βv(a)I

∗
h(a)da− (µv + αv)yv,

λxh = −zh(0) − µhxh,

dzh(τ)

dτ
= −(λ+ µh +m(τ))zh(τ),

zh(0) = βhS
∗
hyv + βhI

∗
vxh,

dyh(a)

da
= −(λ+ µh + αh(a) + rh(a))yh(a),

yh(0) =

∫ ∞

0
m(τ)zh(τ)dτ.

(2.17)

Solving the differential equation, we have

zh(τ) = zh(0) e−λτπ1(τ),

yh(a) = yh(0) e−λaπ2(a) = zh(0) e−λaπ2(a)

∫ ∞

0
m(τ) e−λτπ1(τ)dτ.

Substituting for yh in the second equation of (2.17), we can obtain the following equation







































(λ+ µv +

∫ ∞

0
βv(a)I

∗
h(a)da)xv + S∗

vb(λ)zh(0) = 0,

−xv

∫ ∞

0
βv(a)I

∗
h(a)da + (λ+ µv + αv)yv − S∗

vb(λ)zh(0) = 0,

(λ+ µh)xh + zh(0) = 0,

−βhI
∗
vxh − βhS

∗
hyv + zh(0) = 0.

(2.18)

By direct calculation, we obtain the following characteristic equation:

(λ+ µv +

∫ ∞

0
βv(a)I

∗
h(a)da)(λ + µv + αv)(λ+ µh + βhI

∗
v ) = βhS

∗
hS

∗
vb(λ)(λ+ µv)(λ+ µh).

(2.19)

We divide both sides by (λ+ µv)(λ+ µh), then we introduce the following notation.

G3(λ) =
(λ+ µv +

∫ ∞

0 βv(a)I
∗
h(a)da)(λ + µv + αv)(λ+ µh + βhI

∗
v )

(λ+ µv)(λ+ µh)
,

G4(λ) = βhS
∗
hS

∗
vb(λ) = βhS

∗
hS

∗
v

∫ ∞

0
m(τ)e−λτπ1(τ)dτ

∫ ∞

0
βv(a)e

−λaπ2(a)da.

(2.20)

Thus (2.19) can be expressed as the the equation

G3(λ) = G4(λ). (2.21)

If λ is a root with <λ ≥ 0, it follows from equation (2.20) that

|G3(λ)| > |λ+ µv + αv| ≥ µv + αv.
(2.22)
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From system (2.2), we have

βhS
∗
vS

∗
h

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da = µv + αv.

Hence,

|G4(λ)| ≤ |G4(<λ)| ≤ G4(0) = βhS
∗
vS

∗
h

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da

= µv + αv < |G3(λ)|.

(2.23)

This leads to contradiction. Hence, for <λ ≥ 0, (2.21) has no solutions. Thus, the characteristic

equation has only solutions with negative real parts. Therefore, the endemic equilibrium E1 is

locally asymptotically stable if R0 > 1. This concludes the proof. �

3 Global stability of the disease-free equilibrium

In the previous section, we have established that equilibria are locally stable, that is, given the

conditions on the parameters, if the initial conditions are close enough to the equilibrium, the

solution will converge to that equilibrium. In this section our objective is to extend these results

to global results. That is, given the conditions on the parameters, convergence to the equilibrium

occurs independently of the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium. We will use a

Lyapunov function to approach the problem. We need to integrate the differential equation along

the characteristic lines. Denote the initial condition by BE(t), BI(t):

BE(t) = Eh(0, t), BI(t) = Ih(0, t).

Integrating along the characteristic lines, we obtain

Eh(τ, t) =











BE(t− τ)π1(τ), t > τ,

ϕ(τ − t)
π1(τ)

π1(τ − t)
, t < τ,

Ih(a, t) =











BI(t− a)π2(a), t > a,

ψ(a− t)
π2(a)

π2(a− t)
, t < a.

(3.1)

Theorem 3.1 Assume

R0 ≤ 1.

Then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. We will use a Lyapunov function. We adopt the logistic function used in [22, 31, 32]. Define

f(x) = x− 1 − lnx.
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We note that f(x) ≥ 0 for all x > 0. f(x) achieves its global minimum at one, with f(1) = 0. Let

q(a) =

∫ ∞

a

βv(s)e
−

∫

s

a
(µh+αh(σ)+rh(σ))dσds,

p(τ) =
βhΛhΛv

µhµv(µv + αv)
q(0)

∫ ∞

τ

m(s)e−
∫

s

τ
(µh+m(σ))dσds.

(3.2)

We notice that

p(0) = R0.

Differentiating (3.2) first, we obtain

q′(a) = −βv(a) + (µh + αh(a) + rh(a))q(a),

p′(τ) = −
βhΛhΛv

µhµv(µv + αv)
q(0)m(τ) + (µh +m(τ))p(τ).

(3.3)

According to (2.6), we have ∆ = βhΛhΛv

µhµv(µv+αv) . So we define the following Lyapunov function:

U1(t) = U11
(t) + U12

(t) + U13
(t) + U14

(t) + U15
(t), (3.4)

where

U11
(t) = ∆f(

Sv

S∗
v0

), U12
(t) =

∆

S∗
v0

Iv(t), U13
(t) = S∗

h0
f(
Sh

S∗
h0

),

U14
(t) =

∫ ∞

0
p(τ)Eh(τ, t)dτ, U15

(t) = ∆

∫ ∞

0
q(a)Ih(a, t)da.

.

Because of the complexity of the expressions, we take the derivative of each component of the

Lyapunov function separately

U ′
11

(t) =
∆

S∗
v0

(

1 −
S∗

v0

Sv

)(

Λv − Sv

∫ ∞

0
βv(a)Ih(a, t)da − µvSv

)

=
∆

S∗
v0

(

1 −
S∗

v0

Sv

)(

µvS
∗
v0

− µvSv − Sv

∫ ∞

0
βv(a)Ih(a, t)da

)

= −
∆µv(Sv − S∗

v0
)2

SvS∗
v0

−
∆

S∗
v0

Sv

∫ ∞

0
βv(a)Ih(a, t)da+ ∆

∫ ∞

0
βv(a)Ih(a, t)da.

(3.5)

U ′
12

(t) =
∆

S∗
v0

(Sv

∫ ∞

0
βv(a)Ih(a, t)da− (µv + αv)Iv)

=
∆

S∗
v0

Sv

∫ ∞

0
βv(a)Ih(a, t)da − βhS

∗
h0
Iv.

(3.6)

Noting that Eh(0, t) = βhShIv, we have

U ′
13

(t) =

(

1 −
S∗

h0

Sh

)(

Λh − βhShIv − µhSh

)

=

(

1 −
S∗

h0

Sh

)(

µhS
∗
h0

− µhSh − βhShIv

)

= −
µh(Sh − S∗

h0
)2

Sh

−Eh(0, t) + βhS
∗
h0
Iv.

(3.7)
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U ′
14

(t) =

∫ ∞

0
p(τ)

∂Eh(τ, t)

∂t
dτ

= −

∫ ∞

0
p(τ)

[

∂Eh(τ, t)

∂τ
+ (µh +m(τ))Eh(τ, t)

]

dτ

= −

[
∫ ∞

0
p(τ)dEh(τ, t) +

∫ ∞

0
(µh +m(τ))p(τ)Eh(τ, t)dτ

]

= −

[

p(τ)Eh(τ, t)|∞0 −

∫ ∞

0
Eh(τ, t)dp(τ) +

∫ ∞

0
(µh +m(τ))p(τ)Eh(τ, t)dτ

]

= p(0)Eh(0, t) − ∆q(0)

∫ ∞

0
m(τ)Eh(τ, t)dτ

= REh(0, t) − ∆q(0)Ih(0, t).

(3.8)

Similarly to (3.8), we obtain

U ′
15

(t) = −∆

∫ ∞

0
q(a)

[

∂Ih(a, t)

∂a
+ (µh + αh(a) + rh(a))Ih(a, t)

]

da

= ∆q(0)Ih(0, t) − ∆

∫ ∞

0
βv(a)Ih(a, t)da.

(3.9)

Now differentiating (3.4) we have

U ′
1(t) = −

∆µv(Sv − S∗
v0

)2

SvS∗
v0

−
∆

S∗
v0

Sv

∫ ∞

0
βv(a)Ih(a, t)da + ∆

∫ ∞

0
βv(a)Ih(a, t)da

+
∆

S∗
v0

Sv

∫ ∞

0
βv(a)Ih(a, t)da − βhS

∗
h0
Iv

−
µh(Sh − S∗

h0
)2

Sh

−Eh(0, t) + βhS
∗
h0
Iv + REh(0, t) − ∆q(0)Ih(0, t)

+∆q(0)Ih(0, t) − ∆

∫ ∞

0
βv(a)Ih(a, t)da.

(3.10)

Canceling all terms that cancel, we simplify the above expression:

U ′
1(t) = −

∆µv(Sv − S∗
v0

)2

SvS∗
v0

−
µh(Sh − S∗

h0
)2

Sh

+ (R0 − 1)Eh(0, t). (3.11)

The last inequality follows from the fact that R0 ≤ 1. Notice that U ′
1 equals zero implies that

Sv = S∗
v0
, Sh = S∗

h0
, Eh(0, t) = 0. We define a set

Θ1 =

{

(Sv, Iv, Sh, Eh, Ih) ∈ Ω

∣

∣

∣

∣

U ′
1(t) = 0

}

.

LaSalle’s Invariance Principle [24] implies that the bounded solutions of (2.2) converge to the largest

compact invariant set of Θ1. We will show that this largest compact invariant set is the singleton

given by the disease-free equilibrium. First, we notice that equality in (3.11) occurs if and only if

Sv = S∗
v0
, Sh = S∗

h0
, Eh(0, t) = 0. Thus, from the solution for the equation along the characteristic

line (3.1), we have that Eh(τ, t) = Eh(0, t − τ)π1(τ) = 0 for all t > τ . Hence, lim
t→∞

Eh(τ, t) = 0 for

t > τ . Noting that

Ih(0, t) =

∫ ∞

0
m(τ)E(τ, t)dτ.
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So we have lim
t→∞

Ih(0, t) = 0. Thus, we have

lim
t→∞

Ih(a, t) = 0, t > a.

Therefore, we conclude that the disease-free equilibrium is globally stable. This completes the

proof. �

Our next step is to show the global asymptotic stability of the epidemic equilibrium in system

(2.2)

4 The uniform strong persistence of vector-borne disease

In the previous section, we saw that if the reproduction number is less or equal to one, The vector-

borne disease dies out. In this section, we assume that for R0 > 1,we will show that the vector-borne

disease persists.

From Proposition 2.2 we know that under the specified conditions the equilibrium E1 is locally

asymptotically stable. It remains to be established that E1 is globally stable. We expect to show this

result using a Lyapunov function, similar to the one used in [22, 31, 32]. With f(x) = x− 1− lnx,

we define the following Lyapunov function

U2(t) = U21
(t) + U22

(t) + U23
(t) + U24

(t) + U25
(t) + U26

(t) + U27
(t) + U28

(t), (4.1)

where






































































































































U21
(t) =

1

q(0)
∫ ∞

0 m(τ)π1(τ)dτ
f

(

Sv

S∗
v

)

,

U22
(t) =

1

S∗
vq(0)

∫ ∞

0 m(τ)π1(τ)dτ
I∗vf

(

Iv
I∗v

)

,

U23
(t) = S∗

hf

(

Sh

S∗
h

)

,

U24
(t) =

1

R

∫ ∞

0
p(τ)E∗

h(τ)f

(

Eh(τ, t)

E∗
h(τ)

)

dτ,

U25
(t) =

1

q(0)
∫ ∞

0 m(τ)π1(τ)dτ

∫ ∞

0
q(a)I∗h(a)f

(

Ih(a, t)

I∗h(a)

)

da,

U26
(t) =

∫ ∞

t

S∗
h

Sh(s)
Eh(0, s)ds,

U27
(t) =

∫ ∞

t

Sh(s)

S∗
h

(E∗
h(0))2

Eh(0, s)
ds,

U28
(t) = 2E∗

h(0)t.

(4.2)

One difficulty with the Lyapunov function U2 above is that the component U21
is not defined if

Sv = 0, the component U22
is not defined if Iv = 0, the component U23

, U26
is not defined if

Sh = 0, the component U24
is not defined if Eh(τ, t) = 0, and the component U25

is not defined

if Ih(a, t) = 0. To show that the Lyapunov function above is valid, we need to show that Dengue
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virus persists both in the hosts and in the vector. For this to be the case, we need to guarantee

that the initial conditions we start from are non-trivial, that is, the initial conditions are such

that they lead to new infections of individuals and mosquitoes either initially or at some future

point. Mathematically speaking this means that the support of the initial density of susceptible

individuals Sh0
intersects the support of βh or the support of the initial density of susceptible

individuals Sv0
intersects the support of βv(a) either initially or at some future point. Thus, we

define the following set

Ω̂1 =

{

ϕ ∈ L1
+(0,∞)

∣

∣

∣

∣

∃s ≥ 0 :

∫ ∞

0
m(τ + s)ϕ(τ)dτ > 0

}

,

Ω̂2 =

{

ψ ∈ L1
+(0,∞)

∣

∣

∣

∣

∃s ≥ 0 :

∫ ∞

0
βv(a+ s)ψ(a)da > 0

}

.

Define

Ω0 = R+ × R+ × R+ × Ω̂1 × Ω̂2.

Finally, define X0 = Ω ∩ Ω0. We notice that X0 is forward invariant. It is not hard to see that

Ω is a forward invariant. To see that Ω̂2 is forward invariant, let us assume that the inequality

holds for the initial condition. The inequality says that the condition is such that if the support of

βv(a) is transferred s units to the right, it will intersect the support of the initial condition. But if

that happens for the initial time, it will happen for any other time since the support of the initial

condition only moves to the right. Similarly, Ω̂1 is also forward invariant.

We want to formulate the persistence result for Dengue virus which on one side will justify the

use of the Lyapunov functional U2(t), and on the other, will show that when R0 > 1 the disease

persists in the form of Dengue virus. Consequently, we identify conditions which lead to the

prevalence in individuals and mosquitos being bounded away from zero. There are many different

types of persistence [28]. We identify here the two that we will be working with. We call strain one

uniformly weakly persistent if there exists some γ > 0 independent of the initial conditions such

that

lim sup
t→∞

∫ ∞

0
Eh(τ, t)dτ > γ whenever

∫ ∞

0
ϕ(τ)dτ > 0,

lim sup
t→∞

∫ ∞

0
Ih(a, t)da > γ whenever

∫ ∞

0
ψ(a)da > 0,

and

lim sup
t→∞

Iv(t) > γ whenever Iv0
> 0.

for all solutions of model (2.2). One of the important implications of uniform weak persistence of

the disease is that the disease-free equilibrium is unstable. We call Dengue virus uniformly strongly

persistent if there exists some γ > 0 independent of the initial conditions such that

lim inf
t→∞

∫ ∞

0
Eh(τ, t)dτ > γ whenever

∫ ∞

0
ϕ(τ)dτ > 0,

lim inf
t→∞

∫ ∞

0
Ih(a, t)da > γ whenever

∫ ∞

0
ψ(a)da > 0,
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and

lim inf
t→∞

Iv(t) > γ whenever Iv0
> 0.

for all solutions of model (2.2). It is evident from the definitions that, if the disease is uniformly

strongly persistent, it is also uniformly weakly persistent. To show uniform strong persistence for

the vector-borne disease, we need to show two components.

1. We have to show that the vector-borne disease is uniformly weakly persistent.

2. We need to show that the solution semiflow of system (2.2) has a global compact attractor

T.

First, we show uniform weak persistence of Dengue virus. The following proposition states that

result.

Proposition 4.1 Assume R0 > 1. Then, for all initial conditions that belong to X0, Dengue virus

is uniformly weakly persistent, that is, there exists γ > 0 such that

lim sup
t

βhIv(t) ≥ γ, lim sup
t

∫ ∞

0
m(τ)Eh(τ, t)dτ ≥ γ, lim sup

t

∫ ∞

0
βv(a)Ih(a, t)da ≥ γ.

Proof. We argue by contradiction. Assume that Dengue virus dies out. In particular, assume that

for every ε > 0 and an initial condition in X0 we have

lim sup
t

βhIv(t) < ε, lim sup
t

∫ ∞

0
m(τ)Eh(τ, t)dτ < ε, lim sup

t

∫ ∞

0
βv(a)Ih(a, t)da < ε.

Hence, there exist T > 0 such that for all t > T , we have

βhIv(t) < ε,

∫ ∞

0
m(τ)Eh(τ, t)dτ < ε,

∫ ∞

0
βv(a)Ih(a, t)da < ε.

By shifting the dynamical system we may assume that the above inequality holds for all t ≥ 0.

From the first equation in (2.2), and taking into account the above inequality, we have

S′
v(t) ≥ Λv − εSv − µvSv, S′

h(t) ≥ Λh − εSh − µhSh.

Therefore,

lim sup
t→∞

Sv(t) ≥ lim inf
t→∞

Sv(t) ≥
Λv

ε+ µv
, lim sup

t→∞
Sh(t) ≥ lim inf

t→∞
Sh(t) ≥

Λh

ε+ µh

.

Recall that we are using the following notation BE(t) = Eh(0, t), BI(t) = Ih(0, t). Using the

inequality above we obtain















BE(t) = Eh(0, t) = βhShIv ≥ βh

Λh

ε+ µh

Iv,

dIv(t)

dt
≥

Λv

ε+ µv

∫ ∞

0
βv(a)Ih(a, t)dα − (µv + αv)Iv .

(4.3)
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Now, we apply expression (3.1) to obtain the following system of inequalities in BE(t), BI(t) and

Iv(t):


































BE(t) ≥ βh

Λh

ε+ µh

Iv,

BI(t) =

∫ ∞

0
m(τ)Eh(τ, t)dτ ≥

∫ t

0
m(τ)BE(t− τ)π1(τ)dτ,

dIv(t)

dt
≥

Λv

ε+ µv

∫ t

0
βv(a)BI(t− a)π2(a)dα − (µv + αv)Iv.

(4.4)

We will take the Laplace transform of both sides of inequalities (4.4). Since all functions above are

bounded, their Laplace transform exists for λ > 0. We denote by B̂E(λ) the Laplace transform

of BE(t), by B̂I(λ) the Laplace transform of BI(t), and by Îv(λ) the Laplace transform of Iv(t).

Furthermore,

K̂1(λ) =

∫ ∞

0
m(τ)π1(τ)e

−λτdτ, K̂2(λ) =

∫ ∞

0
βv(a)π2(a)e

−λada. (4.5)

Taking the Laplace transform of inequalities (4.4) and using the convolution property of the Laplace

transform, we obtain the following system of inequalities for B̂E(λ), B̂I(λ) and Îv(λ).































B̂E(λ) ≥ βh
Λh

ε+ µh

Îv(λ),

B̂I(λ) ≥ K̂1(λ)B̂E(λ),

λÎv(λ) − Iv(0) ≥
Λv

ε+ µv
K̂2(λ)B̂I(λ) − (µv + αv)Îv(λ).

(4.6)

Eliminating B̂I(λ) and λÎv(λ) from the system above, we obtain

B̂E(λ) ≥
βhΛvΛhK̂1(λ)K̂2(λ)

(ε+ µv)(ε+ µh)(λ+ µv + αv)
B̂E(λ) +

βhΛh

(ε+ µh)(λ+ µv + αv)
Iv(0).

This last inequality should hold for the given ε ≈ 0 and for any λ > 0. But this is impossible since

for ε ≈ 0 and λ ≈ 0, the coefficient in front B̂E(λ) on the right hand side is approximately R0 > 1,

that is,
βhΛvΛhK̂1(λ)K̂2(λ)

(ε+ µv)(ε + µh)(λ+ µv + αv)
≈ R0 > 1.

In addition, there is another positive term on the right side of this equality. This is a contradiction

with our assumption that

lim sup
t

βhIv(t) < ε, lim sup
t

∫ ∞

0
m(τ)Eh(τ, t)dτ < ε, lim sup

t

∫ ∞

0
βv(a)Ih(a, t)da < ε.

Therefore, there exists γ > 0 such that for any initial condition in X0, we have

lim sup
t

βhIv(t) ≥ γ, lim sup
t

∫ ∞

0
m(τ)Eh(τ, t)dτ ≥ γ, lim sup

t

∫ ∞

0
βv(a)Ih(a, t)da ≥ γ.

In addition, the differential equation for Iv can be rewritten in the form

dIv
dt

≥
Λvγ

γ + µv
− (µv + αv)Iv,
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which in turn, implies a lower bound for Iv. This concludes the proof. �

Our next goal is to prove that system (2.2) has a global compact attractor T. As a first step,

we define the semiflow Ψ of the solutions of system (2.2)

Ψ

(

t : Sv0
, Iv0

, Sh0
, ϕ(·), ψ(·)

)

=

(

Sv(t), Iv(t), Sh(t), Eh(τ, t), Ih(a, t)

)

.

The semiflow is a mapping Ψ : [0,∞)×X0 → X0. A set T in X0 is called a global compact attractor

for Ψ, if T is a maximal compact invariant set and if for all open sets U containing T and all

bounded sets B of X0 there exists some T > 0 such that Ψ(t,B) ⊆ U, for all t > T . The following

proposition establishes the presence of a global compact attractor.

Proposition 4.2 Assume R0 > 1. Then, there exists T, a compact subset of X0, which is a global

attractor for the solution semiflow Ψ of (2.2) in X0. Moreover, T is invariant under the solution

semiflow, that is

Ψ(t, x0) ⊆ T for every x0 ∈ T, ∀t ≥ 0.

Proof To establish this result, we will apply Lemma 3.1.3 and Theorem 3.4.6 in [29]. To show

the assumptions of Lemma 3.1.3 and Theorem 3.4.6 in [29], we split the solution semiflow into two

components. For an initial condition x0 ∈ X0 we have Ψ(t, x0) = Ψ̂(t, x0) + Ψ̃(t, x0). The splitting

is done in such a way that Ψ̂(t, x0) → 0 as t → ∞ for every x0 ∈ X0, and for a fixed t and any

bounded set B in X0, the set {Ψ̃(t, x0) : x0 ∈ B} is precompact. The two components of the

semiflow are defined as follows:

Ψ̂

(

t : Sv0
, Iv0

, Sh0
, ϕ(·), ψ(·)

)

=

(

0, 0, 0, Êh(·, t), Îh(·, t)

)

,

Ψ̃

(

t : Sv0
, Iv0

, Sh0
, ϕ(·), ψ(·)

)

=

(

Sv(t), Iv(t), Sh(t), Ẽh(·, t), Ĩh(·, t)

)

, (4.7)

whereEh(τ, t) = Êh(τ, t)+Ẽh(τ, t), Ih(a, t) = Îh(a, t)+Ĩh(a, t) and Êh(τ, t), Îh(a, t), Ẽh(τ, t), Ĩh(a, t)

are the solutions of the following equations (the remaining equations are as in system (2.2))


























∂Êh

∂t
+
∂Êh

∂τ
= −(µh +m(τ))Êh(τ, t),

Êh(0, t) = 0,

Êh(τ, 0) = ϕ(τ),

(4.8)



























∂Îh
∂t

+
∂Îh
∂a

= −(µh + αh(a) + rh(a))Îh(τ, t),

Îh(0, t) = 0,

Îh(a, 0) = ψ(a).

(4.9)

and


























∂Ẽh

∂t
+
∂Ẽh

∂τ
= −(µ+m(τ))Ẽh(τ, t),

Ẽh(0, t) = βhShIv,

Ẽh(τ, 0) = 0.

(4.10)
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





























∂Ĩh
∂t

+
∂Ĩh
∂a

= −(µh + αh(a) + rh(a))Ĩh(τ, t),

Ĩh(0, t) =

∫ ∞

0
m(τ)Ẽh(τ, t)dτ,

Ĩh(τ, 0) = 0.

(4.11)

System (4.8) is decoupled from the remaining equations. Using the formula (3.1) to integrate along

the characteristic lines, we obtain

Êh(τ, t) =











0, t > τ,

ϕ(τ − t)
π1(τ)

π1(τ − t)
, t < τ,

(4.12)

Îh(a, t) =











0, t > a,

ψ(a− t)
π2(a)

π2(a− t)
, t < a.

(4.13)

Integrating Êh with respect to τ , we obtain:
∫ ∞

t

ϕ(τ − t)
π1(τ)

π1(τ − t)
dτ =

∫ ∞

0
ϕ(τ)

π1(t+ τ)

π1(τ)
dτ ≤ e−µht

∫ ∞

0
ϕ(τ)dτ → 0,

as t→ ∞. Integrating Îh with respect to a, we obtain:
∫ ∞

t

ψ(a− t)
π2(a)

π2(a− t)
da =

∫ ∞

0
ψ(a)

π2(t+ a)

π2(a)
da ≤ e−µht

∫ ∞

0
ψ(a)da→ 0,

as t → ∞. This shows the first claim, that is, it shows that Ψ̂(t, x0) → 0 as t → ∞ uniformly for

every x0 ∈ B ⊆ X0, where B is a ball of a given radius.

To show the second claim, we need to show compactness. We fix t and let x0 ∈ X0. Note that

X0 is bounded. We have to show that for that fixed t the family of functions defined by

Ψ̃(t, x0) =

(

Sv(t), Iv(t), Sh(t), Ẽh(τ, t), Ĩh(a, t)

)

,

obtained by taking different initial conditions in X0 is a compact family of functions. The family

{Ψ̃(t, x0)|x0 ∈ X0, t− fixed} ⊆ X0,

and, therefore, it is bounded. Thus, we have established the boundedness of the set. To show

compactness we first see that the remaining conditions of the Frechet-Kolmogorov Theorem [12].

The third condition in the Frechet-Kolmogorov Theorem for compactness in L1 is trivially satisfied

since Ẽh(τ, t) = 0 for τ > t and Ĩh(a, t) = 0 for a > t. To see the second condition of that Theorem,

we have to bound by two constants the L1-norms of ∂Eh/∂τ and ∂Ih/∂a. To derive that bound,

first notice that

Ẽh(τ, t) =











B̃E(t− τ)π1(τ), t > τ,

0, t < τ,

Ĩh(α, t) =











B̃I(t− a)π2(a), t > a,

0, t < a,

(4.14)
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where
B̃E(t) = βhSh(t)Iv(t),

B̃I(t) =

∫ ∞

0
m(τ)Ẽh(τ, t)dτ =

∫ t

0
m(τ)B̃E(t− τ)π1(τ)dτ.

(4.15)

First, we notice that for x0 ∈ X0, B̃E(t) is bounded. We can see that by recalling that Sh and Iv

are bounded. Hence, the B̃E(t) satisfies

B̃E(t) ≤ k1.

Therefore, we obtain

B̃I(t) =

∫ t

0
m(τ)B̃E(t− τ)π1(τ)dτ ≤ k2

∫ t

0
B̃E(t− τ)dτ = k2

∫ t

0
B̃E(τ)dτ ≤ k1k2t.

Next, we differentiate (4.14) with respect to τ and a:

∣

∣

∣

∣

∂Ẽh(τ, t)

∂τ

∣

∣

∣

∣

≤







|B̃′
E(t− τ)|π1(τ) + B̃E(t− τ)|π′1(τ)|, t > τ,

0, t < τ,

∣

∣

∣

∣

∂Ĩh(a, t)

∂a

∣

∣

∣

∣

≤







|B̃′
I(t− a)|π2(a) + B̃I(t− a)|π′2(a)|, t > a,

0, t < a.

We have to see that |B̃′
E(t− τ)|, |B̃′

I(t− a)| are bounded. Differentiating (4.15), we obtain

B̃′
E(t) = βh

(

S′
h(t)Iv(t) + Sh(t)I ′v(t)

)

,

B̃′
I(t) = m(t)B̃E(0)π1(t) +

∫ t

0
m(τ)B̃′

E(t− τ)π1(τ)dτ.

(4.16)

Taking an absolute value and bounding all terms, we can rewrite the above equality as the following

inequality:

|B̃′
E(t)| ≤ k3, |B̃′

I(t)| ≤ k4.

Putting all these bounds together, we have

‖ ∂τ Ẽh ‖ ≤ k3

∫ ∞

0
π1(τ)dτ + k1(µh + m̄)

∫ ∞

0
π1(τ)dτ < b1,

‖ ∂aĨh ‖ ≤ k4

∫ ∞

0
π2(a)da+ k1k2(µh + ᾱh + r̄h)t

∫ ∞

0
π2(a)da < b2,

where m̄ = supτ{m(τ)}, ᾱh = supa{αh(a)}, r̄h = supa{rh(a)}. To complete the proof, we notice

that
∫ ∞

0
|Ẽh(τ + h, t) − Ẽh(τ, t)|dτ ≤‖ ∂τ Ẽh ‖ |h| ≤ b1|h|,

∫ ∞

0
|Ĩh(a+ h, t) − Ĩh(a, t)|dτ ≤‖ ∂aĨh ‖ |h| ≤ b2|h|.
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Thus, the integral can be made arbitrary small uniformly in the family of functions. That establishes

the second requirement of the Frechét-Kolmogorov Theorem. We conclude that the family is

compact. �

Now we have all components to establish the uniform strong persistence. The next proposition

states the uniform strong persistence of iv and Eh.

Proposition 4.3 Assume R0 > 1. Then, for all initial conditions that belong to X0, The vector-

borne disease persists, that is, there exists γ > 0 such that

lim inf
t

βhIv(t) ≥ γ, lim inf
t

∫ ∞

0
m(τ)Eh(τ, t)dτ ≥ γ, lim inf

t

∫ ∞

0
βv(a)Ih(a, t)da ≥ γ.

Proof. We apply Theorem 2.6 in [13]. We consider the solution semiflow Ψ on X0. We define

three functionals ρj : X0 →R+, j = 1, 2, 3 as follows:






























ρ1(Ψ(t, x0)) = βhIv(t),

ρ2(Ψ(t, x0)) =

∫ ∞

0
m(τ)Ẽh(τ, t)dτ,

ρ3(Ψ(t, x0)) =

∫ ∞

0
βv(a)Ĩh(a, t)da.

Proposition 4.1 implies that the semiflow is uniformly weakly ρ-persistent. Proposition 4.2 shows

that the solution semiflow has a global compact attractor T. Total orbits are solutions to the

system (2.2) defined for all times t ∈ R. Since the solution semiflow is nonnegative, we have that

for any s and any t > s

βhIv(t) ≥ βhIv(s)e
−(µv+αv)(t−s),

∫ ∞

0 m(τ)Ẽh(τ, t)dτ = BI(t) =

∫ t

0
m(τ)B̃E(t− τ)π1(τ)dτ ≥ k1

∫ t

0
B̃E(t− τ)dτ

= k1

∫ t

0
B̃E(τ)dτ = k1

∫ t

0
βhSh(τ)Iv(τ)dτ

≥ k2

∫ t

0
Iv(τ)dτ = k2

∫ t

0
Iv(s)e

−(µv+αv)(τ−s)dτ

=
k2Iv(s)

µv + αv
e(µv+αv)s(1 − e−(µv+αv)t),

∫ ∞

0
βv(a)Ĩh(a, t)da =

∫ t

0
βv(a)B̃I(t− a)π2(a)da ≥ k3

∫ t

0
B̃I(t− a)da

= k3

∫ t

0
B̃I(a)da

≥
k2k3Iv(s)

µv + αv
e(µv+αv)s

∫ t

0
(1 − e−(µv+αv)a)da.

Therefore, βhIv(t) > 0,
∫ ∞

0 m(τ)Ẽh(τ, t)dτ > 0,
∫ ∞

0 βv(a)Ĩh(a, t)da > 0 for all t > s, provided

Ĩv(s) > 0. Theorem 2.6 in [13] now implies that the semiflow is uniformly strongly ρ-persistent.

Hence, there exists γ such that

lim inf
t

βhIv(t) ≥ γ, lim inf
t

∫ ∞

0
m(τ)Eh(τ, t)dτ ≥ γ, lim inf

t

∫ ∞

0
βv(a)Ih(a, t)da ≥ γ.
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Corollary 4.1 Assume R0 > 1 . There exists constants ϑ > 0 and M > 0 such that for each orbit

(Sv(t), Iv , Sh(t), Eh(τ, t), Ih(a, t)) of Ψ in T, we have

ϑ ≤ Sv(t) ≤M, ϑ ≤ Sh(t) ≤M, ∀t ∈ R,

and

ϑ ≤ βhIv(t) ≤M, ϑ ≤

∫ ∞

0
m(τ)Eh(τ, t)dτ ≤M, ∀t ∈ R.

In the next section we show that equilibrium E1 is globally stable.

5 Global stability of the strain one equilibrium

Now we are ready to establish the global stability of the equilibrium E1. To demonstrate that with

the Lyapunov function defined in (4.1) we have to establish that U ′
2(t) ≤ 0 along the solution curves

of system (2.2). The following proposition summarizes the result.

Proposition 5.1 Assume R0 > 1. Then, equilibrium E1 is globally asymptotically stable, that is,

for any initial condition x0 ∈ X0 the solution semiflow converges to E1.

Proof. Since R1 > 1, for any initial condition x0 ∈ X0 we can find a complete orbit (Sv(t), Iv(t),

Sh(t), Eh(τ, t), Ih(a, t)) of Ψ in T (similarly to the proof of Proposition 4.2) for which the inequalities

in Corollary 4.1 hold and, consequently, there exist ε1 > 0 and M1 > 0 such that

ε1 ≤
Iv
I∗v

≤M1, ε1 ≤
Eh(τ, t)

E∗
h(τ)

≤M1, ε1 ≤
Iv(a, t)

I∗v (a)
≤M1.

This makes the Lyapunov function defined in (4.1) well defined.

Because of the complexity of the expressions, we make the derivative of each component of the

Lyapunov function separately (see (4.1)).

U ′
21

(t) =
1

S∗
vq(0)

∫ ∞

0
m(τ)π1(τ)dτ

(

1 −
S∗

v

Sv

)(

Λv − Sv

∫ ∞

0
βv(a)Ih(a, t)da − µvSv

)

=
1 − S∗

v

Sv

S∗
vq(0)

∫ ∞

0
m(τ)π1(τ)dτ

[

S∗
v

∫ ∞

0
βv(a)I

∗
h(a)da+ µvS

∗
v − Sv

∫ ∞

0
βv(a)Ih(a, t)da − µvSv

]

= −
µv(Sv − S∗

v)2

S∗
vSvq(0)

∫ ∞

0
m(τ)π1(τ)dτ

+
1

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)I

∗
h(a)

(

1 −
S∗

v

Sv
−
SvIh(a, t)

S∗
vI

∗
h(a)

+
Ih(a, t)

I∗h(a)

)

da.

(5.1)
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Next, we need to take the time derivative of U22
.

U ′
22

(t) =
1 − I∗v

Iv

S∗
vq(0)

∫ ∞

0
m(τ)π1(τ)dτ

(

Sv

∫ ∞

0
βv(a)Ih(a, t)da − (µv + αv)Iv

)

=
1 − I∗v

Iv

S∗
vq(0)

∫ ∞

0
m(τ)π1(τ)dτ

(

Sv

∫ ∞

0
βv(a)Ih(a, t)da −

S∗
v

∫ ∞

0
βv(a)I

∗
h(a)da

I∗v
Iv

)

=

(1 − I∗v
Iv

)S∗
v

∫ ∞

0
βv(a)I

∗
h(a)

(

SvIh(a, t)

S∗
vI

∗
h(a)

−
Iv
I∗v

)

da

S∗
vq(0)

∫ ∞

0
m(τ)π1(τ)dτ

=

∫ ∞

0
βv(a)I

∗
h(a)

(

SvIh(a, t)

S∗
vI

∗
h(a)

−
Iv
I∗v

−
SvIh(a, t)I∗v
S∗

vI
∗
h(a)Iv

+ 1

)

da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

,

(5.2)

and

U ′
23

(t) =

(

1 −
S∗

h

Sh

)(

Λh − βhShIv − µhSh

)

=

(

1 −
S∗

h

Sh

)(

E∗
h(0) + µhS

∗
h −Eh(0, t) − µhSh

)

= −
µh(Sh − S∗

h)2

Sh

+

(

E∗
h(0) −Eh(0, t) −

S∗
h

Sh

E∗
h(0) +

S∗
h

Sh

Eh(0, t)

)

.

(5.3)

Differentiating U24
(t), we have

U ′
24

(t) =
1

R

∫ ∞

0
p(τ)E∗

h(τ)f ′
(

Eh(τ, t)

E∗
h(τ)

)

1

E∗
h(τ)

∂Eh(τ, t)

∂t
dτ

= −
1

R

∫ ∞

0
p(τ)E∗

h(τ)f ′
(

Eh(τ, t)

E∗
h(τ)

)

1

E∗
h(τ)

(

∂Eh(τ, t)

∂τ
+ (µh +m(τ))Eh(τ, t)

)

dτ

= −
1

R

∫ ∞

0
p(τ)E∗

h(τ)df

(

Eh(τ, t)

E∗
h(τ)

)

= −
1

R

[

p(τ)E∗
h(τ)f

(

Eh(τ, t)

E∗
h(τ)

)
∣

∣

∣

∣

∞

0

−

∫ ∞

0
f

(

Eh(τ, t)

E∗
h(τ)

)

d

(

p(τ)E∗
h(τ)

)]

=
1

R

[

p(0)E∗
h(0)f

(

Eh(0, t)

E∗
h(0)

)

− ∆q(0)

∫ ∞

0
m(τ)E∗

h(τ)f

(

Eh(τ, t)

E∗
h(τ)

)

dτ

]

= E∗
h(0)f

(

Eh(0, t)

E∗
h(0)

)

−

∫ ∞

0
m(τ)E∗

h(τ)f(
Eh(τ, t)

E∗
h(τ)

)dτ

∫ ∞

0
m(τ)π1(τ)dτ

= Eh(0, t) −E∗
h(0) −E∗

h(0) ln
Eh(0, t)

E∗
h(0)

−

∫ ∞

0
m(τ)E∗

h(τ)f(
Eh(τ, t)

E∗
h(τ)

)dτ

∫ ∞

0
m(τ)π1(τ)dτ

.

(5.4)
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The above equality follows from (4.1) and the fact

p′(τ)E∗
h(τ) + p(τ)E ′∗

h (τ)

=

[

− ∆q(0)m(τ) + (µh +m(τ))p(τ)

]

E∗
h(τ) − p(τ)(µh +m(τ))E∗

h(τ)

= −∆q(0)m(τ)E∗
h(τ).

We also have

q′(τ)I∗h(a) + q(a)I ′∗h (a)

=

[

− βv(a) + (µh + αh(a) + rh(a))q(a)

]

I∗h(a) − q(a)(µh + αh(a) + rh(a))I∗h(a)

= −βv(a)I
∗
h(a).

Similar to the differentiation of U24
(t), we have

U ′
25

(t) =
1

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
q(a)I∗h(a)f ′

(

Ih(a, t)

I∗h(a)

)

1

I∗h(a)

∂Ih(a, t)

∂t
da

= −
1

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
q(a)I∗h(a)df

(

Ih(a, t)

I∗h(a)

)

=

q(0)I∗h(0)f( Ih(0,t)
I∗
h
(0) ) −

∫ ∞

0
βv(a)I

∗
h(a)f(

Ih(a, t)

I∗h(a)
)da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

=

∫ ∞

0
m(τ)E∗

h(τ)(
Ih(0, t)

I∗h(0)
− 1 − ln

Ih(0, t)

I∗h(0)
)dτ

∫ ∞

0
m(τ)π1(τ)dτ

−

∫ ∞

0
βv(a)I

∗
h(a)f(

Ih(a, t)

I∗h(a)
)da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

.

(5.5)

Finally, we differentiate U26
(t), U27

(t) with respect to t, and we have

U ′
26

(t) = −
S∗

h

Sh

Eh(0, t), (5.6)

U ′
27

(t) = −
Sh

S∗
h

(E∗
h(0))2

Eh(0, t)
. (5.7)
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Adding all five components of the Lyapunov function, we have

U ′
2(t) = −

µv(Sv − S∗
v )2

S∗
vSvq(0)

∫ ∞

0
m(τ)π1(τ)dτ

+
1

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)I

∗
h(a)

(

1 −
S∗

v

Sv
−
SvIh(a, t)

S∗
vI

∗
h(a)

+
Ih(a, t)

I∗h(a)

)

da

+

∫ ∞

0
βv(a)I

∗
h(a)

(

SvIh(a, t)

S∗
vI

∗
h(a)

−
Iv
I∗v

−
SvIh(a, t)I∗v
S∗

vI
∗
h(a)Iv

+ 1

)

da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

−
µh(Sh − S∗

h)2

Sh

+

(

E∗
h(0) −Eh(0, t) −

S∗
h

Sh

E∗
h(0) +

S∗
h

Sh

Eh(0, t)

)

+Eh(0, t) −E∗
h(0) −E∗

h(0) ln
Eh(0, t)

E∗
h(0)

−

∫ ∞

0
m(τ)E∗

h(τ)f(
Eh(τ, t)

E∗
h(τ)

)dτ

∫ ∞

0
m(τ)π1(τ)dτ

+

∫ ∞

0
m(τ)E∗

h(τ)(
Ih(0, t)

I∗h(0)
− 1 − ln

Ih(0, t)

I∗h(0)
)dτ

∫ ∞

0
m(τ)π1(τ)dτ

−

∫ ∞

0
βv(a)I

∗
h(a)f(

Ih(a, t)

I∗h(a)
)da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

−
S∗

h

Sh

Eh(0, t) −
Sh

S∗
h

(E∗
h(0))2

Eh(0, t)
+ 2E∗

h(0).

(5.8)

Canceling all terms that cancel, we simplify (5.8):

U ′
2(t) = −

µv(Sv − S∗
v)2

S∗
vSvq(0)

∫ ∞

0
m(τ)π1(τ)dτ

−
µh(Sh − S∗

h)2

Sh

+

∫ ∞

0
βv(a)I

∗
h(a)(3 −

S∗
v

Sv
−
Iv
I∗v

−
SvIh(a, t)I∗v
S∗

vI
∗
h(a)Iv

+ ln
Ih(a, t)

I∗h(a)
)da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

−
S∗

h

Sh

E∗
h(0) −

Sh

S∗
h

(E∗
h(0))2

Eh(0, t)
−E∗

h(0) ln
Eh(0, t)

E∗
h(0)

+ 2E∗
h(0)

+

∫ ∞

0
m(τ)E∗

h(τ)(
Ih(0, t)

I∗h(0)
−
Eh(τ, t)

E∗
h(τ)

+ ln
Eh(τ, t)

E∗
h(τ)

I∗h(0)

Ih(0, t)
)dτ

∫ ∞

0
m(τ)π1(τ)dτ

.

(5.9)

Noting that
∫ ∞

0
m(τ)E∗

h(τ)

(

Ih(0, t)

I∗h(0)
−
Eh(τ, t)

E∗
h(τ)

)

dτ = 0,

∫ ∞

0
m(τ)E∗

h(τ)

(

Eh(τ, t)

E∗
h(τ)

I∗h(0)

Ih(0, t)
− 1

)

= 0.

(5.10)
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Indeed,
∫ ∞

0
m(τ)E∗

h(τ)

(

Ih(0, t)

I∗h(0)
−
Eh(τ, t)

E∗
h(τ)

)

dτ

=
Ih(0, t)

I∗h(0)

∫ ∞

0
m(τ)E∗

h(τ)dτ −

∫ ∞

0
m(τ)Eh(τ, t)dτ,

=
Ih(0, t)

I∗h(0)
I∗h(0) − Ih(0, t) = 0,

∫ ∞

0
m(τ)E∗

h(τ)

(

Eh(τ, t)

E∗
h(τ)

I∗h(0)

Ih(0, t)
− 1

)

=
I∗h(0)

Ih(0, t)

∫ ∞

0
m(τ)Eh(τ, t)dτ −

∫ ∞

0
m(τ)E∗

h(τ)dτ

=
I∗h(0)

Ih(0, t)
Ih(0, t) − I∗h(0) = 0.

(5.11)

Using (5.10) to simplify (5.9) we obtain

U ′
2(t) = −

µv(Sv − S∗
v)2

S∗
vSvq(0)

∫ ∞

0
m(τ)π1(τ)dτ

−
µh(Sh − S∗

h)2

Sh

−

∫ ∞

0
βv(a)I

∗
h(a)[f(

S∗
v

Sv
) + f(

Iv
I∗v

) + f(
SvIh(a, t)I∗v
S∗

vI
∗
h(a)Iv

)]da

q(0)

∫ ∞

0
m(τ)π1(τ)dτ

−E∗
h(0)

[

f

(

S∗
h

Sh

)

+ f

(

Sh

S∗
h

E∗
h(0)

Eh(0, t)

)]

,

−
1

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
m(τ)E∗

h(τ)f

(

Eh(τ, t)I∗h(0)

E∗
h(τ)Ih(0, t)

)

dτ.

(5.12)

Hence, U ′
2(t) ≤ 0. Define,

Θ2 =

{

(Sv, Iv , Sh, Eh, Ih) ∈ X0

∣

∣

∣

∣

U ′
2(t) = 0

}

.

We want to show that the largest invariant set in Θ2 is the singleton E1. First, we notice that

equality in (5.9) occurs if and only if Sv(t) = S∗
v , Sh(t) = S∗

h, Iv(t) = I∗v , and

Ih(a, t)

I∗h(a)
= 1,

E∗
h(0)

Eh(0, t)
= 1,

Eh(τ, t)I∗h(0)

E∗
h(τ)Ih(0, t)

= 1. (5.13)

Thus, we obtain

Ih(a, t) = I∗h(a), Eh(0, t) = E∗
h(0).

According to (4.1),

Eh(τ, t) = BE(t− τ)π1(τ) = Eh(0, t− τ)π1(τ) = E∗
h(0)π1(τ) = E∗

h(τ), t > τ.

Furthermore, we obtain Eh(τ, t) = E∗
h(τ). We conclude that the largest invariant set in Θ2 is the

singleton E1. Reasoning similarly to [22] can show that the compact global attractor T = {E1}. �
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6 Discussion

In this paper, we formulate a partial differential equation (PDE) model describing the transmission

dynamics of a vector-borne disease that incorporates both incubation age of the exposed hosts and

infection age of the infectious hosts. An explicit formula for the basic reproduction number R0 is

obtained for the infection-age structured vector-host epidemic model. We show that if R0 of system

(2.2) is less or equal to one, the disease-free equilibrium is locally and globally asymptotically stable.

That means the disease dies out while the endemic equilibrium is not feasible. On the other hand,

we show that if R0 is greater than one, system (2.2) is permanent and the endemic equilibrium

is globally asymptotically stable. Therefore the disease becomes endemic. As a result, the global

stability of the equilibria of system (2.2) is completely determined by its basic reproductive number

R0. Hence, to control the disease, a strategy should be devised to reduce the reproduction number

to below one.

Examining the reproduction number more closely reveals that the relative impact of the recruit-

ment rate of susceptible vectors Λv, the transmission rate βh and the specific age-since-infection

transmission coefficient βv(a) of the infected host individuals increases R0. It is easy to see that

R0 is an decreasing function of the death rate of the vector individuals µv and the recovery rate

of the infected vector individuals αv. It is also evident that R0 decreases with the rates rh(a) and

αh(a) that give recovery and disease-induced mortality of infected hosts.

Furthermore, to see the link between R0 and the removal rate of the exposed host individuals

with the incubation age τ , we first need to transform the reproduction number R0. We will use

the representation of R0 given in (2.3) and (2.5).

R0 =
βhΛvΛh

µvµh(µv + αv)

∫ ∞

0
m(τ)π1(τ)dτ

∫ ∞

0
βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

∫ ∞

0
m(τ)e−µhτe−

∫

τ

0
m(σ)dσdτ

∫ ∞

0
βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

[

−

∫ ∞

0
(µh − µh −m(τ))e−µhτe−

∫

τ

0
m(σ)dσdτ

]
∫ ∞

0
βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

[

1 − µh

∫ ∞

0
e−µhτe−

∫

τ

0
m(σ)dσdτ

]
∫ ∞

0
βv(a)π2(a)da.

Denoting by

ρ =

∫ ∞

0
e−µhτe−

∫

τ

0
m(σ)dσdτ.

We obtain

R0 =
βhΛvΛh

µvµh(µv + αv)

∫ ∞

0
βv(a)π2(a)da

(

1 − µhρ

)

.

Taking the ρ derivatives of R0

dR0

dρ
= −µh

βhΛvΛh

µvµh(µv + αv)

∫ ∞

0
βv(a)π2(a)da < 0.
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We have that ρ decrease with the increase of m(τ) and R0 decreases with increase of ρ. Thus we

have that increasing m(τ) increases the reproduction number R0.

In conclusion, our model and its analysis suggest that a better strategy of beginning mosquito

control is to remove possible breeding grounds, because the larvae and pupae cycle of the mosquito

is aquatic. Mosquitoes lay eggs in stagnant water, that is to say, larvae need standing water to

prosper, so we must remove items that retain standing water or construct ways to keep the water

moving. Furthermore, we can look for shaded rest areas used by adult mosquitoes and eliminate

them. When we are outside during the day and evening hours, we can wear long sleeves and pants

to prevent the bites of mosquitoes and the transmission of disease. If the infected host individuals

who are in the latent period take an active drug therapy in time, the total number of the infected

hosts with the virus may become small. At last it is interesting that the disease prevalence will

decrease with the increase of the disease induced death rate αh(a) at the age of infection a.
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