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Abstract. This paper investigates a two strain SIS model with diffusion, spa-
tially heterogeneous coefficients of the reaction part and distinct diffusion rates
of the separate epidemiological classes. First, it is shown that the model has
bounded classical solutions. Next, it is established that the model with spa-
tially homogeneous coefficients leads to competitive exclusion and no coexis-
tence is possible in this case. Furthermore, it is proved that if the invasion
number of strain j is larger than one, then the equilibrium of strain i is un-
stable; if, on the other hand, the invasion number of strain j is smaller than
one, then the equilibrium of strain i is neutrally stable. In the case when all
diffusion rates are equal, global results on competitive exclusion and coexis-
tence of the strains are established. Finally, evolution of dispersal scenario is
considered and it is shown that the equilibrium of the strain with the larger
diffusion rate is unstable. Simulations suggest that in this case the equilibrium
of the strain with the smaller diffusion rate is stable.

1. Introduction. Trade-off mechanisms for coexistence of pathogen strains have
been a long standing question in the evolution of pathogens. In the basic SIR model
with multiple strains, the main outcome is competitive exclusion [3] but multiple
mechanisms have been found to cause strain coexistence [15]. One of the most
natural trade-off mechanisms is coexistence generated by a spatial segregation. It
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is intuitively clear that two or more strains can coexists if they occupy different
spatial niches, a process called in ecology niche partitioning.

Competition and dispersal have been more thoroughly studied mathematically
with Lotka-Volterra competition models or chemostat models with diffusion, rather
than epidemic models. In the context of chemostat models, coexistence in the
presence of diffusion was demonstrated by Waltman [19]. Competition in a Lotka-
Volterra model with diffusion was studied extensively (see a review of models in
[16]).

To demonstrate mathematically that multiple strains can coexist when spa-
tial component is involved, one may consider either a multi-patch or a diffusion
model. Article [17] considered a multi-patch multi-strain model and found coexis-
tence caused by the spatial component. Article [10] considered an avian influenza
model with multiple strains, diffusion and non-local transmission terms. They found
coexistence, but it was most likely generated by a different trade-off mechanism,
namely mutation. Tuncer and Martcheva [18] considered a two-strain version of a
SIS model with diffusion, first introduced by Allen et al [2]. What is distinct about
the model in [2] is that in contrast to most diffusion models studied which have
constant coefficients (e.g. [10]), the model in [2] has spatially heterogeneous coeffi-
cients. Article [2] defined R0 in this case, and showed that besides the disease-free
equilibrium, the model has a unique endemic equilibrium. Tuncer and Martcheva
[18] introduced the invasion numbers of the two-strain version and showed analyti-
cally and numerically that if both invasion numbers are larger than one, then there
is a coexistence equilibrium.

Here we consider the same SIS epidemic model with diffusion and two strains,
considered in [18]. In general the model has spatially heterogeneous coefficients in
the reaction part and distinct constant diffusion coefficients. Similar to [2] we define
the reproduction numbers of the strains and the invasion numbers of the strains [18].
Although the model was also studied in [18], here we concentrate on some aspects
that were not discussed in [18]. In particular, we want to study analytically under
what conditions the model leads to competitive exclusion, and what characteristics
of the model really imply coexistence. We begin by showing that a classical solution
exists globally and it is bounded. We show rigorously that if the coefficients of the
reaction part are constant, then coexistence does not occur. This rules out the
possibility that diffusion by itself may be a factor and shows that the assumption
of spatially heterogeneous coefficients is necessary for coexistence. We revisit the
proofs of the fact that if the strain j invasion number is larger than one, then strain
i equilibrium is unstable. We further show that if the invasion number of strain
j is smaller than one, then the equilibrium of strain i is linearly neutrally stable.
We state a result, obtained in [18], that if both invasion numbers are grater than
one, then there is a coexistence equilibrium. In the case when all three diffusion
rates are equal, we establish some global results. In particular, we show that the
boundary equilibria are globally stable under certain conditions, and that the system
is permanent, if both reproduction numbers and both invasion numbers are larger
than one. Finally we discuss the evolution of dispersal. Evolution of dispersal
has been a topic of interest in the ecological modeling literature (see e.g.[5, 12, 13,
14]). Prior results from ecological models suggest that competitors evolve towards
a smaller diffusion rate [6, 9]. Here we show that if the transmission and recovery
rates are spatially heterogeneous and identical for both strains while diffusion rates
for both strains are distinct then there is no coexistence equilibrium. In addition the
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equilibrium of the competitor with the larger diffusion rate is unstable. Numerical
simulations suggest that the equilibrium of the competitor with smaller diffusion
rate is stable but we were unable to show that rigorously.

In the next section, we introduce the model and the reproduction numbers and
invasion numbers. In section 3 we state the main results. In section 4 we provide
some numerical simulations to complement the analytical results. In section 5 we
prove the main results.

2. The model. Suppose that a species is living in a bounded domain Ω with
smooth boundary ∂Ω, and it has the possibility to get infected by a disease with
two pathogen strains. Let S(x, t) be the density of the susceptible individuals and
Ii(x, t) be the density of the infected individuals with strain i (i = 1, 2) at position
x and time t. The movement of susceptible and infected populations is modeled
by random walk described by the Laplacian operator. The positive constants ds, d1
and d2 denote the corresponding diffusion rates for the susceptible and infected
populations. Environmental effects are incorporated in the model via spatially
varying transmission (β1(x), β2(x)) and recovery (γ1(x), γ2(x)) rates. The infection
rate of susceptible individuals is described by the standard incidence. The diffusive
two-strain SIS model [18] is formulated as

∂S

∂t
= dS∆S −

β1(x)SI1
S + I1 + I2

+ γ1(x)I1 −
β2(x)SI2
S + I1 + I2

+ γ2(x)I2, x ∈ Ω, t > 0,

∂I1
∂t

= d1∆I1 +
β1(x)SI1
S + I1 + I2

− γ1(x)I1, x ∈ Ω, t > 0,

∂I2
∂t

= d2∆I2 +
β2(x)SI2
S + I1 + I2

− γ2(x)I2, x ∈ Ω, t > 0,

(1)

with no-flux boundary condition

∂S

∂n
=
∂I1
∂n

=
∂I2
∂n

= 0, on ∂Ω× (0,∞). (2)

Neumann boundary conditions mean that there is no population flux though the
boundary ∂Ω, and that susceptible and infected individuals remain in the domain
Ω. Here the Hölder continuous functions βi(x) and γi(x) (i = 1, 2) are the spatially
dependent disease transmission rates and recovery rates, respectively. We assume
that the initial data S(x, 0) and Ii(x, 0), i = 1, 2, are continuous, and the number
of infected individuals is positive initially:

∫

Ω

Ii(x, 0)dx > 0 with S(x, 0) ≥ 0 and Ii(x, 0) ≥ 0, i = 1, 2. (3)

Let
∫

Ω

(S(x, 0) + I1(x, 0) + I2(x, 0))dx ≡ N > 0, (4)

where N is the total number of individuals at t = 0. Adding the three equations in
(1) and integrating over Ω, we get

∂

∂t

∫

Ω

S(x, t) + I1(x, t) + I2(x, t)dx = 0,

which indicates that the total population remains a constant for all time t > 0.
When the movement of infected individuals are affected by the disease we set

ds 6= d1 6= d2. If the infected individuals continue to move despite the disease then
we set ds = d1 = d2.
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Next, we will briefly summarize the results regarding to the dynamics of the
model (1)-(4), but for more details one can refer to [18]. To study the dynamics
of the model, we first obtain the equilibrium solutions. The model (1)-(4) has four
feasible equilibria. The unique disease free equilibrium (DFE), E0 := (S0, I01 , I

0
2 ) =

(N/|Ω|, 0, 0), where |Ω| denotes the measure of the domain Ω, and E0 represents
the state in which both strains die out in the population. We consider two types
of endemic equilibria (EE): strain one/two dominance equilibria and coexistence
equilibria. The I1-only equilibrium E1 = (S∗, I∗1 , 0) represents the state with I

∗

1 (x) >

0 for some x ∈ Ω. Similar statement is true for I2-only equilibrium, E2 = (Ŝ, 0, Î2)

with Î2(x) > 0 for some x ∈ Ω. The coexistence endemic equilibrium E3 = (S̃, Ĩ1, Ĩ2)

if it exists (it may not be unique) represents the state in which Ĩ1 and Ĩ2 are both
nonnegative and nontrivial.

The reproduction number of each strain can be characterized as a variational
problem as stated in [18]. For i = 1, 2, the reproduction number of strain i is

Ri = sup

{

∫

Ω
βiϕ

2dx
∫

Ω
(di|∇ϕ|2 + γiϕ2)dx

: ϕ ∈ H1(Ω) and ϕ 6= 0

}

.

This definition is related to the principal eigenvalue λ∗i of the following eigenvalue
problem

di∆ψ + (βi − γi)ψ + λiψ = 0 in Ω, and
∂ψ

∂n
= 0 on ∂Ω. (5)

It is known that Ri > 1 if and only if λ∗i < 0 and Ri < 1 if and only if λ∗i > 0.
Whether a strain persists when circulating alone is related to the strain specific

reproduction numbers R1 and R2 as stated in the following Lemma 2.1.

Lemma 2.1. The following statements hold:

• If R1 < 1, then I1(x, t) → 0 as t→ ∞ uniformly for x ∈ Ω.
• If R2 < 1, then I2(x, t) → 0 as t→ ∞ uniformly for x ∈ Ω.

The basic reproduction number is defined as R0 = max{R1,R2}. It can be
proved that the DFE is globally asymptotically stable if R0 < 1 and it is unstable
if R0 > 1. Moreover, a unique Ii-equilibrium Ei exists if and only if Ri > 1 for
i = 1, 2.

If the I2-equilibrium E2 exists, i.e. R2 > 1, the ability of strain one to invade
strain two is described by the invasion number R̂1, which is defined by

R̂1 = sup

{

∫

Ω
β1(Ŝ/N̂)ϕ2dx

∫

Ω
(d1|∇ϕ|2 + γ1ϕ2)dx

: ϕ ∈ H1(Ω) and ϕ 6= 0

}

,

where N̂ = Ŝ + Î2. As before, R̂1 is greater than one if and only if the principal
eigenvalue of the following problem

d1∆ψ +

(

β1
Ŝ

N̂
− γ1

)

ψ + λψ = 0 in Ω, and
∂ψ

∂n
= 0 on ∂Ω.

is negative. Similarly, if the I1-equilibrium exists, one can define a corresponding
invasion number as

R̂2 = sup

{

∫

Ω
β2(S

∗/N∗)ϕ2dx
∫

Ω(d2|∇ϕ|
2 + γ2ϕ2)dx

: ϕ ∈ H1(Ω) and ϕ 6= 0

}

,

where N∗ = S∗ + I∗1 , whose magnitude is determined by a related principal eigen-
value.
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As it has been shown in [18], the question of the existence of a coexistence

equilibrium can be reduced to study the positive solution (Ĩ1, Ĩ2) satisfying d1Ĩ1 +

d2Ĩ2 ≤ 1 of the following elliptic problem

0 = d1∆Ĩ1 + Ĩ1

(

β1(x)
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ1(x)

)

, x ∈ Ω,

0 = d2∆Ĩ2 + Ĩ2

(

β2(x)
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ2(x)

)

, x ∈ Ω,

(6)

with boundary condition

∂Ĩ1
∂n

=
∂Ĩ2
∂n

= 0, x ∈ ∂Ω. (7)

The main objective of the present work is to investigate the impact of the coeffi-
cients and diffusion rates on the existence and stability of the equilibria. We show
that there is no coexistence equilibrium if the coefficients are homogenous (while
coexistence equilibrium may exist when the coefficients are heterogeneous by [18]),
which demonstrates that spatial heterogeneity promotes coexistence. We study the
stability of the boundary equilibria, and show that competitive exclusion and co-
existence are both possible when the diffusion rates are the same for susceptible
and infected individuals. We also give evidence that smaller diffusion rate is an
advantage to the pathogens. In the following section we state the main results of
this work.

3. Main results. The following result states that the solution of the model is
bounded and thus exists globally. This actually implies that (1)-(4) has a global
attractor.

Theorem 3.1. The classical solution (S(x, t), I1(x, t), I2(x, t)) of problem (1)-(4)
exists globally and satisfies

lim sup
t→∞

(‖S(·, t)‖∞ + ‖I1(·, t)‖∞ + ‖I2(·, t)‖∞) ≤ K, (8)

where K is some positive constant independent of the initial condition.

We first assume that the coefficients are homogeneous, i.e βi and γi are positive
constants for i = 1, 2. We show that there is no coexistence equilibrium in this
case, which indicates that we are likely to expect either extinction or competitive
exclusion for the two strains (and that also suggests the necessity to consider spatial
inhomogeneous coefficients). Notice that

E1 =

(

γ1N

β1|Ω|
, (1−

γ1
β1

)
N

|Ω|
, 0

)

,

E2 =

(

γ2N

β2|Ω|
, 0, (1−

γ2
β2

)
N

|Ω|

)

,

and the basic reproduction number is

R0 = max{β1/γ1, β2/γ2}.

Basically, we show that when the transmission and recovery rates are assumed to
be constants, the dynamics of the model (1)-(4) resembles the corresponding ODE
model. For the dynamics of the corresponding ODE model, see [18].
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Theorem 3.2. If βi and γi, i = 1, 2, are positive constants such that β1/γ1 6= β2/γ2,
then problem (1)-(4) has no coexistence equilibrium.

The previous theorem states that if all the coefficients are homogeneous, then
there is no coexistence steady state. Is this still the case when the coefficients βi
and γi, i = 1, 2, are spatially-dependent? We will see that this is not true. We
begin our further study with the stability of the boundary equilibria.

Theorem 3.3. Assume that R̂2 > 1. Then the I1-equilibrium (S∗, I∗1 , 0) is unstable

(we assume R1 > 1 such that the I1-equilibrium exists); Assume that R̂1 > 1.

Then the I2-equilibrium (Ŝ, 0, Î2) is unstable (we assume R2 > 1 such that the
I2-equilibrium exists).

One expects that the I1-equilibrium is stable if R̂2 < 1, but we are unable to
prove it here. Instead, we show that:

Theorem 3.4. Assume that R̂2 < 1 and dS = d1. Then the I1-equilibrium
(S∗, I∗1 , 0) is linearly neutrally stable or stable (we assume R1 > 1 such that the
I1-equilibrium exists).

If the two boundary equilibria exist and are unstable, then problem (1)-(4) has
a coexistence equilibrium (this result has been proven in [18]).

Theorem 3.5. Assume that R̂i > 1, i=1, 2. Then problem (1)-(4) has a coexistence
equilibrium.

We then study the global attractivity of the equilibria in the special case if all the
diffusion rates are equal. The global dynamics of (1)-(4) can be largely determined
by the magnitudes of the reproduction and invasion numbers. We present the
following result (consult [1] for the proof) on the global dynamics of the model
(The readers may need to see Section 5.4 for the definition of Ǐ1 and Ǐ2).

Theorem 3.6. Suppose dS = d1 = d2 = d. Then the following statements hold.

1. If R1 > 1 ≥ R2, then the unique boundary equilibrium E1 is globally attractive;
If R2 > 1 ≥ R1, then the unique boundary equilibrium E2 is globally attractive.

2. (Competitive exclusion) Suppose that R1 > 1 and R2 > 1 so that the

boundary equilibria E1 and E2 exist. If R̂1 > 1 and λ1(d, β2−γ2−β2Ǐ1|Ω|/N) ≥

0, then E1 is globally attractive; If R̂2 > 1 and λ1(d, β1−γ1−β1Ǐ2|Ω|/N) ≥ 0,
then E2 is globally attractive.

3. (Coexistence) Suppose that Ri > 1 and R̂i > 1 for i = 1, 2, then there
exists at least one coexistence EE of (1)-(4). Moreover, Problem (1)-(4) is
permanent in the sense that there exist positive constants m and M such that

m ≤ S(x, t), I1(x, t), I2(x, t) ≤M

for all x ∈ Ω and t ≥ T , where T is dependent on the initial conditions.

According to Theorem 3.6, if the coefficients βi and γi are heterogeneous, then
problem (1)-(4) may have a rich dynamical behavior. It is possible for one strain
to exclude the other one, and it is also possible for the two strains to coexist. It is
then natural to ask whether all cases in the theorem are possible. We will see that
they are indeed possible as shown in the following result (For h ∈ C(Ω), we define
h̄ =

∫

Ω
h(x)dx/|Ω| and h+(x) = max{h(x), 0} for any x ∈ Ω).

Theorem 3.7. Suppose dS = d1 = d2 = d. Then the following statements hold.
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(a) If β̄1/γ̄1 > 1 > β̄2/γ̄2, then there exists a positive number d∗ such that for
any d > d∗, the unique boundary equilibrium E1 is globally attractive. If
β̄1/γ̄1 < 1 < β̄2/γ̄2, then there exists a positive number d∗ such that for any
d > d∗, the unique boundary equilibrium E2 is globally attractive.

(b) (Competitive exclusion) If β̄1/γ̄1 > β̄2/γ̄2 > 1 and 1 + γ̄1/β̄1 < 2γ̄2/β̄2,
then there exists a positive number d∗ such that both boundary equilibria E1 and
E2 exist while E1 is globally attractive for any d > d∗; If β̄2/γ̄2 > β̄1/γ̄1 > 1
and 1 + γ̄2/β̄2 < 2γ̄1/β̄1, then there exists a positive number d∗ such that
both boundary equilibria E1 and E2 exist while E2 is globally attractive for any
d > d∗.

(c) (Coexistence) Assume that

(βi(x) − γi(x))
+ > 0 for some x ∈ Ω,

and

min

{

−βi(x) + γi(x) + βi(x)

(

1−
γj(x)

βj(x)

)+

: x ∈ Ω

}

< 0, for i 6= j, i, j = 1, 2.

Then there exists a positive number d∗ such that the model (1)-(4) has a
coexistence equilibrium and it is permanent for any d < d∗.

If βi ≥ γi for i = 1, 2, then the condition in (c) can be simplified as

min

{

γi(x)

βi(x)
−
γj(x)

βj(x)
: x ∈ Ω

}

< 0, for i 6= j, i, j = 1, 2,

which can be interpreted ecologically as niche partitioning.
Finally, we consider the role of the diffusion rates in the model. In the classic

diffusive logistic competition model, it is well-known that the species with smaller
diffusion rate has competitive advantage over the one with larger diffusion rate. So
a natural conjecture is that this is still true for the diffusive epidemic models. To
investigate that, we assume that the coefficients for the two strains are the same,
i.e. β1(x) = β2(x) = β(x) and γ1(x) = γ2(x) = γ(x), and strain one is different
from strain two only by the diffusion rate, i.e. d1 6= d2. Our result does support the
conjecture that the strain with smaller diffusion rate has competitive advantage.

Theorem 3.8. Suppose β1(x) = β2(x) = β(x) and γ1(x) = γ2(x) = γ(x). Assum-
ing that β(x)/γ(x) is non-constant and d1 is not equal to d2, then the model (1)-(4)
has no coexistence equilibrium. Suppose in addition that Ri is greater than one for
i = 1, 2 so that the two boundary equilibria E1 and E2 both exist. Then, if d1 > d2,
the I1-equilibrium E1 is unstable.

4. Numerical simulations. In this section, we investigate the global dynamics
of (1)-(4) numerically. For the numerical scheme and its justification, we refer the
readers to paper [18].

We let Ω = [0, 1]× [0, 1] and choose the initial data:

S(x, y, 0) = 2 + cos(πx) cos(πy),

I1(x, y, 0) = 4 + cos(πx) cos(πy),

I2(x, y, 0) = 3 + cos(πx) cos(πy),

for all the examples below.
Experiment 1 (Homogenous transmission and recovery rates). We first

consider the case that βi and γi, i = 1, 2, are constant. Setting β1 = 4, β2 = 3, γ1 =



8 YIXIANG WU AND NECIBE TUNCER AND MAIA MARTCHEVA

Figure 1. Experiment 1 Total population in the homogeneous
coefficient case

3, γ2 = 1, dS = 3, d1 = 2, and d2 = 1, we obtain 1 < R1 = 4/3 < R2 = 3/1. As
seen in Figure 1, the total population converges to a state where strain two persists
while strain one dies out. We plot the two strains at time t = 150 in Figure 2,
and then one can clearly see that strain two has converged to the non-zero constant
steady state.

Experiment 2 and 3 (Equal diffusion). For the next two examples we
consider the case when the diffusion rates are equal, i.e. dS = d1 = d2 = d. First ,
we let

β1 = 1− x, β2 = x,

γ1 =
1

6
, γ2 =

3

8
,

and choose a rather large number as the diffusion rate, i.e. d = 20. We can easily
compute β̄1 = β̄2 = 1/2, γ̄1 = 1/6, and γ̄2 = 3/8. Then we have β̄1/γ̄1 > β̄2/γ̄2 > 1
and 1+ γ̄1/β̄1 < 2γ̄2/β̄2. Moreover by Theorem 3.7, the I1-equilibrium E1 is globally
attractive if the diffusion rate is large, which is confirmed in Figure 3.

For the next experiment, we set

β1 = 2, β2 = 2,

γ1 =
4

5
xy, γ2 = (1− x)(1 − y),

and choose the diffusion rate dS = d1 = d2 = 0.05. We can check that the conditions
in (c) of Theorem 3.7 hold and we expect that the two strains would coexist. Fig-
ure 4 shows that the solution converges to a coexistence equilibrium whose spatial
structure is shown in Figure 5.
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Figure 2. Experiment 1 The two pathogen strains at final time
t = 150

Figure 3. Experiment 2 Total population with large diffusion rate

Experiment 4 (Effect of diffusion). Finally, we study the role of diffusion.
Here the two strains are only different by the diffusion rates, so we let

β1 = β2 = 3 + cosπx cosπy,

γ1 = γ2 = 2 + sinπx sin πy,
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Figure 4. Experiment 3 Total population with small diffusion rate

and set dS = 3, d1 = 2 and d2 = 1. Since strain two has a smaller diffusion rate, we
expect that it has competitive advantage over strain one. Indeed, Figure 6 shows
that the total population of strain one is decreasing to zero while strain two persists
in the long run. This observation is consistent with what we expected, although it
takes longer time to see the trend compared with the previous cases.

5. Proof of the main results.

5.1. Proof of Theorem 3.1. It is easy to see that the solution is positive in
Ω × (0, Tmax) by the maximum principle, where Tmax is the maximum existence
time of solution. Adding the three equations in (1) and integrating over Ω, we find

∂

∂t

∫

Ω

S(x, t) + I1(x, t) + I2(x, t)dx = 0,

which together with the positivity of solution implies that

‖S(x, t)‖1 + ‖I1(·, t)‖1 + ‖I2(·, t)‖1 = N, t ∈ [0, Tmax).

Since

| −
β1(x)SI1
S + I1 + I2

+ γ1(x)I1 −
β2(x)SI2
S + I1 + I2

+ γ2(x)I2| ≤ c1S + c2I1 + c3I2,

|
β1(x)SI1
S + I1 + I2

− γ1(x)I1| ≤ (c1 + c2)I1,

|
β2(x)SI2
S + I1 + I2

− γ2(x)I2| ≤ (c1 + c3)I2,

where

c1 = max
x∈Ω

β1(x) + max
x∈Ω

β2(x), c2 = max
x∈Ω

γ1(x), and c3 = max
x∈Ω

γ2(x),
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Figure 5. Experiment 4 Susceptible and infected individuals at
time t = 100. The top figure is showing the final state of susceptible
individuals. The bottom figure is showing the coexistence of strains
I1 and I2 at time t = 100.

it then follows from Theorem 1 of [7] that the solution exists for all time and there
exists a positive number K such that

lim sup
t→∞

(‖S(·, t)‖∞ + ‖I1(·, t)‖∞ + ‖I2(·, t)‖∞) ≤ K.

�

5.2. Proof of Theorem 3.2. It suffices to show that (6)-(7) has no positive solu-

tion with d1Ĩ1 + d2Ĩ2 ≤ 1. Without loss of generality, we assume β1/γ1 > β2/γ2.
We first consider the case that β1/γ1 > β2/γ2 > 1. Let X = C(Ω)×C(Ω) be the

ordered Banach space with positive cone K = C(Ω)+ × (−C(Ω)+). Let ≤K be the
order generated by K. Denote by X+ = C(Ω)+ × C(Ω)+ the usual positive cone,
which generates the usual order ≤ on X .
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Figure 6. Total population in the case d1 > d2

Let T : [0,∞) × X+ → X+ be the semiflow induced by the solution of the
following parabolic system

∂Ĩ1
∂t

= d1∆Ĩ1 + Ĩ1

(

β1
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ1

)

, on Ω× (0,∞),

∂Ĩ2
∂t

= d2∆Ĩ2 + Ĩ2

(

β2
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ2

)

, on Ω× (0,∞),

(9)

subject to Neumann boundary condition

∂Ĩ1
∂n

=
∂Ĩ2
∂n

= 0, on ∂Ω× (0,∞). (10)

The system (9)-(10) has only three boundary equilibria:

F0 = (0, 0), F1 =







1−
γ1
β1

d1(1−
γ1
β1

) + ds
γ1
β1

, 0






, F2 =






0,

1−
γ2
β2

d2(1 −
γ2
β2

) + ds
γ2
β2






.

To see these three equilibria are the only boundary equilibria, we let Ĩ2 = 0. Then
the first equation of (9) becomes

∂Ĩ1
∂t

= d1∆Ĩ1 + Ĩ1

(

β1
1− d1Ĩ1

1 + (ds − d1)Ĩ1
− γ1

)

.

It has been shown in Lemma 3.3 of [2] that this equation with Neumann boundary
condition has a unique positive equilibrium, which implies the uniqueness of I1-
equilibrium. Moreover, one can easily check that F1 is an I1-equilibrium, and hence
it is the unique one. Similarly, we can see that F2 is the unique I2-equilibrium.
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Let

D := {x ∈ X : (0, 1/d2) ≤K x ≤K (1/d1, 0)} = [0, 1/d1]× [0, 1/d2],

and

g1(Ĩ1, Ĩ2) = Ĩ1

(

β1
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ1

)

,

g2(Ĩ1, Ĩ2) = Ĩ2

(

β2
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ2

)

.

We can check that

∂gi

∂Ĩj
< 0 on (0, 1/d1]× (0, 1/d2], for i 6= j, i, j = 1, 2. (11)

We claim that D is invariant for T (t). To see this, let (Ĩ1,0, Ĩ2,0) ∈ D and we

want to show T (t)(Ĩ1,0, Ĩ2,0) = (Ĩ1(·, t), Ĩ2(·, t)) ∈ D for all t > 0. For simplicity,

we only consider the case Ĩ1,0 6= 0 and Ĩ2,0 6= 0. Then we have Ĩ1(x, t) > 0 and

Ĩ2(x, t) > 0 for all x ∈ Ω and t > 0. Assume to the contrary that T (t) first leaves
D at t0. By (11), we have that

∂Ĩi
∂t

< di∆Ĩi + Ĩi

(

βi
1− diĨi

1 + (ds − di)Ĩi
− γi

)

, on Ω× (0, t0],

for i = 1, 2. Let J̃i be the solution of the problem

∂J̃i
∂t

= di∆J̃i + J̃i

(

βi
1− diJ̃i

1 + (ds − di)J̃i
− γi

)

, on Ω× (0, t0],

∂J̃i
∂n

= 0, on ∂Ω× (0, t0],

J̃i(x, 0) = Ĩi,0(x), x ∈ Ω.

(12)

Then by the comparison principle, we have Ĩi < J̃i on Ω × (0, t0] for i = 1, 2.
Moreover, one can check that 1/di is an upper solution of problem (12), which

implies J̃i ≤ 1/di on Ω × [0, t0] for i = 1, 2. Thus we have 0 < Ĩi(x, t) < 1/di on

Ω× (0, t0] for i = 1, 2, which contradicts the assumption that T (t)(Ĩ1,0, Ĩ2,0) leaves
D at t0.

By (11) andD ⊆ [0, 1/d1]×[0, 1/d2], T (t) : [0,∞)×D → D is a strictly monotone
semiflow with respect to the order ≤K . Moreover, T (t) satisfies all the conditions of
Proposition 2.4 in [8](also see the remark after this proposition), and thus exactly
one of the following holds:

(a) There exists a positive equilibrium of T in D;
(b) There is a monotone orbit in D from F1 to F2;
(c) There is a monotone orbit in D from F2 to F1.

We claim that (a) is not possible. To see this, we consider the ordinary differential
equation system

dĨ1
dt

= Ĩ1

(

β1
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ1

)

,

dĨ2
dt

= Ĩ2

(

β2
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ2

)

.



14 YIXIANG WU AND NECIBE TUNCER AND MAIA MARTCHEVA

The solution of this system induces a semiflow T ′ : [0,∞) × D′ → D′, which is
strictly monotone with respect to the order ≤K′ (Here K ′ is the positive cone
R

+ × (−R
+) of the order ≤K′ , and D′ = [0, 1/d1]× [0, 1/d2] is a subset of R+ ×R

+

instead of X+). So similar to the semiflow T , T ′ also satisfies exactly one of (a)-(c).
For T ′, it is easy to check that there is no positive equilibrium in D′. Hence there
is either an orbit of T ′ from F1 to F2 or from F2 to F1, which can be viewed as an
orbit for T if we take a real number as a constant function on Ω. Hence (a) is not
possible for T . Therefore, the model (1)-(4) has no coexistence equilibrium.

We then consider β1/γ1 > 1 > β2/γ2 or 1 ≥ β1/γ1 > β2/γ2. In this case, we
have R2 < 1, which leads to I2 → 0 as t → ∞ by Lemma 2.1. Hence there is no
coexistence equilibrium.

Finally, we assume β1/γ1 > β2/γ2 = 1. Then the second equation in (6) becomes

− d2∆Ĩ2 = −
dSβ2Ĩ2(Ĩ1 + Ĩ2)

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
, x ∈ Ω. (13)

Supposing that (Ĩ1, Ĩ2) is a positive solution of (6) with d1Ĩ1 + d2Ĩ2 ≤ 1, then

the right hand side of (13) is negative. Multiplying both sides of (13) by Ĩ2 and
integrating over Ω, we have a contradiction. So (6) has no positive solution, and
hence (1)-(4) has no coexistence equilibrium. �

5.3. Proof of Theorem 3.3 and 3.4. We need the following well-known eigen-
value comparison result.

Lemma 5.1. Suppose that h ∈ L∞(Ω) and d > 0. Let λ1(d, h) be the principal
eigenvalue of

d∆φ+ hφ+ µφ = 0, in Ω,
∂φ

∂n
= 0, on ∂Ω.

(14)

If h1(x) ≤ h2(x) in Ω with hi ∈ L∞(Ω) for i = 1, 2, then λ1(d, h1) ≥ λ1(d, h2)
with equality holds if and only if h1 = h2 a.e. in Ω. If h is non-constant, then
λ1(d1, h) < λ1(d2, h) if d1 < d2.

We now prove that the I1-equilibrium is unstable if R̂2 > 1. Note that R̂2 > 1
if and only if λ∗ < 0, where λ∗ is the principal eigenvalue of the following problem

d2∆ψ +

(

β2
S∗

N∗
− γ2

)

ψ + λψ = 0, x ∈ Ω and
∂ψ

∂n
= 0, x ∈ ∂Ω. (15)

We now prove Theorem 3.3.

Proof. We only prove the first part of the theorem. To investigate the stability of the
I1-equilibrium, we linearize (1) around (S∗, I∗1 , 0) by setting S(x, t) = S∗(x)+φ̃(x, t),

I1(x, t) = I∗1 (x) + ψ̃1(x, t) and I2(x, t) = ψ̃2(x, t), and drop the higher order terms.

Then we look for solutions of the form φ̃(x, t) = e−λtφ(x), ψ̃1(x, t) = e−λtψ1(x),
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and ψ̃2(x, t) = e−λtψ2(x). Then we obtain the following eigenvalue problem

dS∆φ − β1(
I∗1
N∗

)2φ−

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 +

(

β1
S∗I∗

(N∗)2
− β2

S∗

N∗
+ γ2

)

ψ2 + λφ = 0,

d1∆ψ1 + β1(
I∗1
N∗

)2φ+

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 − β1
S∗I∗

(N∗)2
ψ2 + λψ1 = 0,

d2∆ψ2 +

(

β2
S∗

N∗
− γ2

)

ψ2 + λψ2 = 0,

∂φ

∂n
=
∂ψ1

∂n
=
∂ψ2

∂n
= 0, on ∂Ω.

(16)

By the principle of linearized stability, it suffices to show that problem (16) has a

solution (λ, φ, ψ1, ψ2) with λ < 0 and ψ2 > 0 on Ω. Since R̂2 > 1, we have λ∗ < 0.
Set λ = λ∗ and let ψ2 be a corresponding positive eigenfunction. Then we only
need to prove that the following problem has a solution

dS∆φ +

(

λ∗ − β1(
I∗1
N∗

)2
)

φ−

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 = −

(

β1
S∗I∗

(N∗)2
− β2

S∗

N∗
+ γ2

)

ψ2,

d1∆ψ1 +

(

β1(
S∗

N∗
)2 − γ1 + λ∗

)

ψ1 + β1(
I∗1
N∗

)2φ = β1
S∗I∗

(N∗)2
ψ2,

∂φ

∂n
=
∂ψ1

∂n
= 0, on ∂Ω.

(17)

Since λ∗−β1(
I∗1
N∗

)2 < 0, for any fixed ψ1 ∈ Cα(Ω), the following problem always

has a unique solution in C2,α(Ω)

dS∆φ+

(

λ∗ − β1(
I∗1
N∗

)2
)

φ−

(

β1(
S∗

N∗
)2 − γ1

)

ψ1

= −

(

β1
S∗I∗

(N∗)2
− β2

S∗

N∗
+ γ2

)

ψ2,

∂φ

∂n
= 0, on ∂Ω.

(18)

So we can define T : Cα(Ω) → C2+α(Ω) by setting T (ψ1) = φ for any ψ1 ∈ Cα(Ω),
where φ is the unique solution of problem (18).

Since d1∆I
∗

1 +(β1S
∗/N∗−γ1)I

∗

1 = 0, we have λ1(d1, β1S
∗/N∗−γ1) = 0. It then

follows from Lemma 5.1 that λ1(d1, β1(S
∗/N∗)2 − γ1) > 0. So λ∗ can not be an

eigenvalue of the following problem

d1∆ψ1 +

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 + λψ = 0, in Ω,

∂ψ1

∂n
= 0, on ∂Ω.

(19)

Hence for any φ ∈ Cα(Ω), by the Fredholm alternative, the following problem
always has a unique solution in C2,α(Ω)

d1∆ψ1 +

(

β1(
S∗

N∗
)2 − γ1 + λ∗

)

ψ1 + β1(
I∗1
N∗

)2φ = β1
S∗I∗

(N∗)2
ψ2, in Ω,

∂ψ1

∂n
= 0, on ∂Ω.

(20)

So we can define W : Cα(Ω) → C2+α(Ω) by setting W (φ) = ψ1 for any φ ∈ Cα(Ω),
where ψ1 is the unique solution of (20).

By the Cα-estimate, the composition TW : Cα(Ω) → Cα(Ω) is compact. Hence
by the Schauder fixed point theorem, there exists φ ∈ Cα(Ω) such that TW (φ) = φ.
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Let ψ1 =W (φ). It then follows from T (ψ1) = φ and W (φ) = ψ1 that (φ, ψ1) solves
problem (17).

We now prove Theorem 3.4.

Proof. We proceed analogously as the proof of Theorem 3.3, and this leads to the
following eigenvalue problem

dS∆φ − β1(
I∗1
N∗

)2φ−

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 +

(

β1
S∗I∗

(N∗)2
− β2

S∗

N∗
+ γ2

)

ψ2 + λφ = 0,

d1∆ψ1 + β1(
I∗1
N∗

)2φ+

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 − β1
S∗I∗

(N∗)2
ψ2 + λψ1 = 0,

d2∆ψ2 +

(

β2
S∗

N∗
− γ2

)

ψ2 + λψ2 = 0,

∂φ

∂n
=
∂ψ1

∂n
=
∂ψ2

∂n
= 0, on ∂Ω.

(21)

By the principle of linearized stability, we need to show that all the eigenvalues of
problem (21) have nonnegative real parts. Suppose that (λ, φ, ψ1, ψ2) is an eigen-
pair. If ψ2 6= 0, then λ is an eigenvalue of problem (15). Hence, λ is real and

λ ≥ λ∗. Since R̂2 < 1, we have λ∗ > 0 and so λ > 0. Therefore, we suppose that
ψ2 = 0 and then problem (21) can be simplified as

dS∆φ− β1(
I∗1
N∗

)2φ−

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 + λφ = 0, in ∂Ω,

d1∆ψ1 + β1(
I∗1
N∗

)2φ+

(

β1(
S∗

N∗
)2 − γ1

)

ψ1 + λψ1 = 0, in ∂Ω,

∂φ

∂n
=
∂ψ1

∂n
= 0, on ∂Ω.

(22)

Adding the first two equations in (22) and by dS = d1, we have

dS∆(φ + ψ1) + λ(φ+ ψ1) = 0.

If φ + ψ1 6= 0, λ is an eigenvalue of −dS∆, and it is well-known that it must be
non-negative. Therefore, we suppose φ + ψ1 = 0. Multiplying both sides of the
second equation of (22) by ψ1 and integrating over Ω, we get

λ

∫

Ω

ψ2
1dx = d1

∫

Ω

|▽ψ1|
2dx−

∫

Ω

(

β1(
S∗

N∗
)2 − γ1

)

ψ2
1dx+

∫

Ω

β1(
I∗1
N∗

)2ψ2
1dx.

Noticing

λ(d1, β1(
S∗

N∗
)2−γ1) = inf

ω∈H1(Ω)

{∫

Ω

(

d1|▽ω|
2 −

(

β1(
S∗

N∗
)2 − γ1

)

ω2

)

dx,

∫

Ω

ω2dx = 1

}

and λ(d1, β1(
S∗

N∗
)2 − γ1) > 0 (see the proof of Theorem 3.3), we have

λ

∫

Ω

ψ2
1dx ≥ λ(d1, β1(

S∗

N∗
)2 − γ1) ·

∫

Ω

ψ2
1dx+

∫

Ω

β1(
I∗1
N∗

)2ψ2
1dx > 0.

Therefore, λ is positive and the proof is completed.
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5.4. Equal Diffusion Rates Case. In this section, we suppose that the suscep-
tible and infected individuals have the same diffusion rates, i.e. dS = d1 = d2 = d.
Adding the three equations in (1), we have

∂(S + I1 + I2)

∂t
= d∆(S + I1 + I2).

It then follows from the condition on initial data,
∫

Ω

(S(x, 0) + I1(x, 0) + I2(x, 0))dx = N,

that S+ I1+ I2 → N/|Ω| uniformly in Ω. This suggests that (1)-(4) can be reduced
to

∂I1
∂t

= d∆I1 +

(

β1(x) − γ1(x) −
|Ω|

N
β1I1 −

|Ω|

N
β1I2

)

I1, x ∈ Ω, t > 0,

∂I2
∂t

= d∆I2 +

(

β2(x) − γ2(x) −
|Ω|

N
β2I1 −

|Ω|

N
β2I2

)

I2, x ∈ Ω, t > 0,

∂I1
∂n

=
∂I2
∂n

= 0, x ∈ ∂Ω, t > 0,

and the equilibria correspond to nonnegative solutions of the following elliptic prob-
lem:

0 = d∆Ĩ1 +

(

β1(x) − γ1(x)−
|Ω|

N
β1Ĩ1 −

|Ω|

N
β1Ĩ2

)

Ĩ1, x ∈ Ω,

0 = d∆Ĩ2 +

(

β2(x) − γ2(x)−
|Ω|

N
β2Ĩ1 −

|Ω|

N
β2Ĩ2

)

Ĩ2, x ∈ Ω,

∂Ĩ1
∂n

=
∂Ĩ2
∂n

= 0, x ∈ ∂Ω.

(23)

Then (I∗1 , 0) is the I1-equilibrium of (23) if R1 > 1 (with E1 = (N/|Ω| −

I∗1 , I
∗

1 , 0) be the corresponding boundary equilibrium of (1)-(4)) and (0, Î2) is the I2-

equilibrium if R2 > 1 (with E2 = (N/|Ω| − Î2, 0, Î2) be the corresponding boundary
equilibrium of (1)-(4)).

Suppose that R2 > 1 such that (0, Î2) exists. If R̂1 > 1, then the following
eigenvalue problem

d∆ψ +

(

β1
Ŝ

N̂
− γ1

)

ψ + λ1ψ = 0, x ∈ Ω, and
∂ψ

∂n
= 0, x ∈ ∂Ω,

has a negative principal eigenvalue, i.e. λ1(d, β1Ŝ/N̂ − γ1) = λ1(d, β1 − γ1 −

β1Î2|Ω|/N) < 0, and so the problem

d∆I +

(

β1 − γ1 −
|Ω|

N
β1I −

|Ω|

N
β1Î2

)

I = 0, x ∈ Ω, and
∂I

∂n
= 0, x ∈ ∂Ω,

has a unique positive solution Ǐ1. Similarly, if R2 > 1 and R̂1 > 1, we can find Ǐ2
as the unique positive solution of

d∆I +

(

β2 − γ2 −
|Ω|

N
β2I

∗

1 −
|Ω|

N
β2I

)

I = 0, x ∈ Ω, and
∂I

∂n
= 0, x ∈ ∂Ω.
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Our main technique (see [2, 4]) in the following proof is that the principal eigen-
value λ1(d, h) (with h Hölder continuous) of the following eigenvalue problem

d∆φ + hφ+ λφ = 0, in Ω,
∂φ

∂n
= 0, on ∂Ω.

(24)

depends continuously on h ∈ L∞(Ω) and d, and it satisfies that

lim
d→0

λ1(d, h) → min{−h(x) : x ∈ Ω} and lim
d→∞

λ1(d, h) → −h̄, (25)

where h̄ is the spatial average of h, i.e. h̄ =
∫

Ω h(x)dx/|Ω|.
We now prove Theorem 3.7.

Proof. (a) Suppose that β̄1/γ̄1 > 1 > β̄2/γ̄2. To show E1 is globally attractive, it
suffices to check R1 > 1 > R2 by Theorem 3.6. Note that the magnitudes of the
basic reproduction numbers are determined by the signs of the principal eigenvalues
of the corresponding eigenvalue problems. Since λ1(d, β1 − γ1) → −β̄1 + γ̄1 < 0
and λ1(d, β2 − γ2) → −β̄2 + γ̄2 > 0 as d → ∞, there exists d∗ > 0 such that one
has R1 > 1 > R2 when d > d∗. The second part of the statement can be proved
analogously.

(b) Suppose β̄1/γ̄1 > β̄2/γ̄2 > 1 and 1 + γ̄1/β̄1 < 2γ̄2/β̄2. Similar to (a), there
exists d′ > 0 such that R1 and R2 are both greater than one, and so both E1 and
E2 exist for all d > d′. Since Î2 satisfies

d∆I2 + (β2 − γ2 −
|Ω|

N
β2I2)I2 = 0, in Ω,

∂I2
∂n

= 0, on ∂Ω,
(26)

we have that

Î2 →
β2 − γ2
|Ω|

N
β̄2

=
N

|Ω|
(1 −

γ̄2

β̄2
) > 0 (27)

in C(Ω) as d→ ∞.
We claim that

λ1(d, β1 − γ1 −
|Ω|

N
β1Î2) → β̄1(

γ̄1

β̄1
−
γ̄2

β̄2
) < 0, as d→ ∞.

To see this, let ǫ > 0 be given. For the sake of convenience, denote λ1(d, β1 − γ1 −
|Ω|

N
β1Î2) by λ̂(d). By (27), there exists d′′ > d′ such that

N

|Ω|
(1−

γ̄2

β̄2
)− ǫ < Î2 <

N

|Ω|
(1−

γ̄2

β̄2
) + ǫ,

for any d > d′′. By Lemma 5.1, we have

λ1

(

d, β1 − γ1 −
|Ω|

N
β1

(

N

|Ω|
(1−

γ̄2

β̄2
)− ǫ

))

≤ λ̂(d) ≤ λ1

(

d, β1 − γ1 −
|Ω|

N
β1

(

N

|Ω|
(1−

γ̄2

β̄2
) + ǫ

))

for any d > d′′. It then follows from (25) that

β̄1

(

γ̄1

β̄1
−
γ̄2

β̄2
−

|Ω|

N
ǫ

)

≤ lim inf
d→∞

λ̂(d) ≤ lim sup
d→∞

λ̂(d) ≤ β̄1

(

γ̄1

β̄1
−
γ̄2

β̄2
+

|Ω|

N
ǫ

)

.

Then the claim follows since ǫ is arbitrary.
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We know that R̂1 > 1 if and only if λ1(d, β1 − γ1 −
|Ω|

N
β1Î2) < 0. So by the

claim, there exists d̂ > d′′ such that R̂1 > 1 for any d ≥ d̂. Since Ǐ1 satisfies

d∆I1 +

(

β1 − γ1 −
|Ω|

N
β1I1 −

|Ω|

N
β1Î2

)

I1 = 0, in Ω,

and Ǐ1 depends on Î2 continuously, we have

Ǐ1 →
N

|Ω|

(

γ̄2

β̄2
−
γ̄1

β̄1

)

, as d→ ∞.

Then similar to the previous claim, we can show that

λ1(d, β2 − γ2 −
|Ω|

N
β2Ǐ1) → β̄2

(

2
γ̄2

β̄2
− 1−

γ̄1

β̄1

)

, as d→ ∞.

Hence, there exists d∗ > d̂ such that R̂1 > 1 and λ1(d, β2 − γ2−β2Ǐ1|Ω|/N) ≥ 0 for
any d > d∗. So by Theorem 3.6, the proof of the first part is complete. The second
part of the statement can be proved similarly.

(c) Since

λ1(d, βi − γi) → min{−βi(x) + γi(x) : x ∈ Ω} < 0, as d→ 0,

there exists d′ > 0 such that Ri is greater than one for i = 1, 2 and for any d < d′.
So the two boundary equilibria exist for all d < d′ and

I∗1 →
(β1 − γ1)

+

|Ω|

N
β1

and Î2 →
(β2 − γ2)

+

|Ω|

N
β2

, as d→ 0.

Then similar to (b), we can show that

λ1(d, β1−γ1−
|Ω|

N
β1Î2) → min

{

−β1(x) + γ1(x) + β1(x)(1 −
γ2(x)

β2(x)
)+ : x ∈ Ω

}

< 0

and

λ1(d, β2−γ2−
|Ω|

N
β2I

∗

1 ) → min

{

−β2(x) + γ2(x) + β2(x)(1 −
γ1(x)

β1(x)
)+ : x ∈ Ω

}

< 0

as d → 0. Hence there exists d∗ < d′ such that Ri and R̂i are both greater than
one for i = 1, 2 and for all d < d∗. Therefore, the model (1)-(4) has a coexistence
endemic equilibrium and it is permanent for all d < d∗.

5.5. Proof of Theorem 3.8. Without loss of generality, we assume d1 > d2. We
need to show that the following problem has no positive solution:

0 = d1∆Ĩ1 + Ĩ1f(Ĩ1, Ĩ2), x ∈ Ω,

0 = d2∆Ĩ2 + Ĩ2f(Ĩ1, Ĩ2), x ∈ Ω,
(28)

with boundary condition

∂Ĩ1
∂n

=
∂Ĩ2
∂n

= 0, x ∈ ∂Ω, (29)

where

f(Ĩ1, Ĩ2) =

(

β(x)
1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
− γ(x)

)

.
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Assume to the contrary that (Ĩ1, Ĩ2) is a positive solution of (28)-(29). Then Ii,
i = 1, 2, is a positive eigenvector of the following eigenvalue problem corresponding
to eigenvalue λ = 0

di∆ψ + ψf(Ĩ1, Ĩ2) + λψ = 0, x ∈ Ω, and
∂ψ

∂n
= 0, x ∈ ∂Ω.

The positivity of Ĩi implies that zero is the principal eigenvalue, i.e. λ1(di, f(Ĩ1, Ĩ2)) =

0, for i = 1, 2. If f(Ĩ1, Ĩ2) is non-constant, then it follows from d1 > d2 and Lemma
5.1 that

0 = λ1(d1, f(Ĩ1, Ĩ2)) > λ1(d2, f(Ĩ1, Ĩ2)) = 0,

which is a contraction. Hence f(Ĩ1, Ĩ2) is a constant. Integrating both sides of the

two equations of (28) over Ω, we find that f(Ĩ1, Ĩ2) = 0. Then by (28), we have

that d1∆Ĩ1 = d2∆Ĩ2 = 0. Therefore, Ĩ1 and Ĩ2 are positive constants. Note that
f(Ĩ1, Ĩ2) = 0 leads to

1− d1Ĩ1 − d2Ĩ2

1 + (ds − d1)Ĩ1 + (ds − d2)Ĩ2
=
γ(x)

β(x)
.

The left hand side of this equation is constant because Ĩ1 and Ĩ2 are positive con-
stants. However, the right hand side is non-constant, which is a contradiction. So
the assumption is false and problem (1) has no positive endemic equilibrium.

We now supposeR1 andR2 are both greater than one and then the two boundary
equilibria E1 and E2 exist. We want to prove that E1 is unstable if d1 > d2. Since
I∗1 satisfies that

d1∆I
∗

1 +

(

β(x)
S∗

N∗
− γ(x)

)

I∗1 = 0,

I∗1 is a positive eigenvector corresponding to eigenvalue λ = 0 of the following
problem

d1∆ψ +

(

β
S∗

N∗
− γ

)

ψ + λψ = 0, x ∈ Ω, and
∂ψ

∂n
= 0, x ∈ ∂Ω.

The positivity of I∗1 implies that zero is the principal eigenvalue, i.e. λ1(d1, βS
∗/N∗−

γ) = 0. It then follows from d1 > d2 and Lemma 5.1 that

0 = λ1(d1, βS
∗/N∗ − γ) > λ1(d2, βS

∗/N∗ − γ).

Hence the principal eigenvalue λ∗ of problem (15) is negative, and so R̂2 > 1. Thus
by Theorem 3.3, the I1-equilibrium (S∗, I∗1 , 0) is unstable. �

Acknowledgment. The authors N. Tuncer and M. Martcheva acknowledge sup-
port from the National Science Foundation (NSF) under grants DMS-1515661/DMS-
1515442.

REFERENCES

[1] A.S. Ackleh, K. Deng and Y. Wu, Competitive Exclusion and Coexistence in a Two-Strain
Pathogen Model with Diffusion, Math. Biosci. Eng. 13 (2016), p. 1?18.

[2] L.J.S. Allen, B.M. Bolker, Y. Lou and A.L. Nevai, Asymptotic Profiles of the steady states
for an SIS epidemic reaction-diffusion model, Discrete and Continuous Dynamical Systems,

Series A 21 (2008), p. 1–20.
[3] H. J. Bremermann, and H.R. Thieme, A competitive exclusion principle for pathogen viru-

lence, J. Math. Biol. 27 (1989), p. 179–190.
[4] R.S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley, Chich-

ester, West Sussex, UK, 2003.

http://www.ams.org/mathscinet-getitem?mr=MR3411568&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2379454&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0991049 &return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2191264&return=pdf


TWO STRAIN SIS MODEL 21

[5] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal,
Discrete and Continuous Dynamical Systems 34 (2014), p. 1701–1745.

[6] J. Dockery, V. Hutson, K. Mischaikow, P. Polácik, The evolution of slow dispersal rates: a
reaction diffusion model, J. Math. Biol. 37 (1998), p. 61–83.

[7] L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems,
Communications in Partial Differential Equations 22 (1997), p. 413–433.

[8] S. Hsu, H. Smith and P. Waltman, Competitive exclusion and coexistence for competitive
systems on ordered Banach spaces, Transactions of the American Mathematical Society 348
(1996), p. 4083–4094.

[9] V. Hutson, K. Mischaikow, P. Polácik, The evolution of dispersal rates in a heterogeneous
time-periodic environment, J. Math. Biol. 43 (2001), p. 501–533.

[10] K.I. Kim, Z. Lin, L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear

Analysis: Real World Applications 11 (2010), p. 313–322.
[11] K. Lam and W.-M. Ni, Uniqueness and Complete Dynamics in heterogeneous Completion-

Diffusion Systems, SIAM J. Appl. Math. 72 (2012), p. 1695–1712.
[12] K. Lam, Y. Lou, F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol.

Dyn. 9 (2015), p. 188-212.
[13] Y. Lou, P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of

boundary conditions, J. Differential Equations 259 (2015), p. 141–171.
[14] Y. Lou, F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol.

69 (2014), p.1319–1342.
[15] M. Martcheva, B.M. Bolker and R.D. Holt, Vaccine-induced pathogen strain replacement:

what are the mechanisms? J. Royal Sco. Interface 5 (18) (2008), p. 3–13.
[16] M. Mimura, Coexistence in Competition-Diffusion Systems, Differential Equations Models in

Biology, Epidemiology and Ecology Lecture Notes in Biomathematics 92, (1991), p. 235–246.
[17] Z. Qiu, Q. Kong, X. Li, M. Martcheva, The vector-host epidemic model with multiple strains

in a patchy environment, J. Math. Anal. Appl. 405 (2013), p. 12–36.
[18] N. Tuncer and M. Martcheva, Analytical and numerical approaches to coexistence of strains in

a two- strain SIS model with diffusion, Journal of Biological Dynamics 6 (2012), p. 406–439.
[19] P. Waltman, Coexistence in chemostat-like models, Rocky Mountain J. Math. 20 (1990), p.

777–807.

E-mail address: ywu743@uwo.ca

E-mail address: ntuncer@fau.edu

E-mail address: maia@ufl.edu

http://www.ams.org/mathscinet-getitem?mr=MR3124710&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1636644&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1443044&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1373638&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1874400&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2570551&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3022283&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3360875&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3335923&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3275198&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1193485 &return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3053483&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2897882&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1096551&return=pdf
mailto:ywu743@uwo.ca
mailto:ntuncer@fau.edu
mailto:maia@ufl.edu

	1. Introduction
	2. The model
	3. Main results
	4. Numerical simulations
	5. Proof of the main results
	5.1. Proof of Theorem 3.1
	5.2. Proof of Theorem 3.2
	5.3. Proof of Theorem 3.3 and 3.4
	5.4. Equal Diffusion Rates Case
	5.5. Proof of Theorem 3.8

	Acknowledgment
	REFERENCES

