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Abstract. In this paper we introduce a Levins-type metapopulation model
with empty and occupied patches, and dispersing population. We structure the
proportion of occupied patches according to the patch-occupancy age. We ob-
serve that patch-occupancy age may destabilize the metapopulation, leading to
persistent oscillations. We also allow for the dispersal rate to vary with the
proportion of empty patches in a monotone or unimodal way. The unimodal
dependence leads to multiple non-trivial equilibria and bistability when the re-
production number of the metapopulation R < 1 but greater than a lower critical
value R∗. We show that the metapopulation will persist independently of its
initial status if R > 1.
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1. Introduction

Metapopulations, classically defined as assemblages of patches that become
empty through population extinction and occupied through colonization, have
become one of the standard paradigms of theoretical and applied ecology [11].
While the first metapopulation models assumed that the per-patch extinction rate
was constant and the per-patch colonization rate was proportional to the density
of occupied patches [18], a great many variations on the theme have since been
explored by ecologists. Simple but important variants allow for different depen-
dences of colonization and extinction rates with occupied patch density, such as
a density-independent patch colonization rate (e.g., mainland-archipelago models
or “propagule rain”) or a density-dependent patch extinction rate (e.g., rescue
effects) [5, 12]. Other more complex variants include models for community dy-
namics (patch occupancy by more than one species) [25]; models allowing variation
in colonization and extinction rates according to patch characteristics such as area
[11]; models allowing distance-dependent colonization [11]; models with dynamic
patches [16]; and, much more generally, models that track distributions of popu-
lation densities within patches rather than simple patch occupancy [15].
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Hastings [14] recently drew attention to the importance of patch age in metapop-
ulation models. He was concerned with age as it affected the probability of dis-
turbance (i.e., extinction of the population within the patch), and commented on
the consequences of different patch age distributions (or equivalently the distri-
bution of times between disturbances) on the persistence of the metapopulation.
Non-constant disturbance rates, or non-exponential distributions of times between
disturbance, imply that some environmental process leads to (e.g.) periodic or
temporally aggregated disturbance. A related question is the importance of patch-
occupancy, as distinct from patch age. Patch-occupancy or population age is
measured from the time of colonization, rather than from the time of the last
disturbance, and variation in extinction rates with patch-occupancy age suggests
ecological (biotic) rather than environmental (abiotic) factors (e.g. resource de-
pletion, attraction or growth of pathogen or predator populations, or other forms
of habitat degradation by the population). Dynamical models that include patch
age or patch-occupancy age have been considered in [13, 4].

In this paper we present formal results on the persistence of metapopulations
with patch-occupancy age-dependent emigration (contribution to colonizing pool)
and extinction rates. We also allow for the possibility that the emigration rate
depends on the fraction of empty patches, as either an increasing function or a
unimodal function of the proportion of available (empty) patches. In terms of
patch occupancy, the first possibility corresponds to a decelerating increase in per-
patch colonization rate with increasing patch occupancy. The second corresponds
to a unimodal function analogous to Harding and McNamara’s [12] “Allee effect”;
they attribute this phenomenon, where patch colonization rates drop at low levels
of patch occupancy, to the difficulty of colonizing patches with small numbers of
colonists because of low genetic diversity or demographic effects such as failure to
mate. (The metapopulation framework has also been applied in epidemiological
contexts, where each individual of the host species is considered a “patch” to be
colonized by disease [23]. In this case, Allee effects correspond to a dose-dependent
mechanism where colonization is more likely to be successful when more infectious
particles are available.) Our model structure attributes this decrease in coloniza-
tion effectiveness to a decreased probability of emigration at low metapopulation
occupancy, but the actual effects are likely to be similar whether the decrease is
caused by processes occurring (1) during emigration, as we suggest here; (2) dur-
ing movement between patches (e.g. because of increased predator efficiency with
small absolute numbers of colonists) or (3) during colonization, because of density-
dependent colonization success [1]. While Allee effects in metapopulations have
been suggested by Hanski [10], Amarasekare [1], and Harding and McNamara [12],
and dependence of emigration on the presence of a (single) empty patch has been
tested in an experimental setting by Le Galliard et al. [17], we are not aware of any
efforts to detect such an effect empirically from records of observed colonizations
and extinctions in natural metapopulations.
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2. A patch-occupancy age structured model with dispersal

In this section we introduce a patch-occupancy age-structured model with dis-
persal. We denote the number of empty patches available for colonization by E(t).
We call the property of a patch being occupied patch occupancy and we denote
the density of the proportion of occupied patches by u(θ, t) where θ is the time
since the last colonization of the patch (i.e., occupancy of the patch after it has
been empty). We will refer to θ as patch-occupancy age. The occupied patches
can become empty due to local population extinction. The per patch rate of lo-
cal population extinction κ(θ) depends on the patch-occupancy age. We assume
that κ(θ) is a continuous bounded function of θ with sup κ(θ) = κ̄. Furthermore,
there is a threshold patch-occupancy age θ∗ and a positive number κ∗ such that
κ(θ) ≥ κ∗ for all θ ≥ θ∗. This assumption guarantees that the probability that the
patch is still occupied for θ time units declines exponentially to zero when θ ≥ θ∗.
Although some models discriminate between habitable and non-habitable patches
[16] we will not make this distinction here.

We determine the per-patch colonization rate by combining all emigrants from all
occupied patches into a dispersal pool: emigration increases colonization rates but
does not affect extinction rates since we assume that the loss of a few individuals
from an established population is negligible. The total number of dispersers is
denoted by D(t). The rate at which dispersers leave the dispersers’ pool to settle
is denoted by γ. We call γ dispersers’ emigration rate. Empty patches are colonized
by dispersers at a colonization rate c. The model takes the form

(2.1)

E ′ =

∫

∞

0

κ(θ)u(θ, t)dθ − cE(t)D(t)

uθ + ut = −κ(θ)u(θ, t)
u(0, t) = cE(t)D(t)

D′ =

∫

∞

0

β(E, θ)u(θ, t)dθ − γE(t)D(t) − ρD(t)

In the above model β(E, θ) is the patch-emigration rate. We will assume that the
patch-emigration rate depends both on the availability of empty patches and the
duration of occupancy of the patch which is the source of emigration (for example,
patch-occupancy age could be considered a surrogate for population size). Fur-
thermore, the emigration rate is a separable function, that is β(E, θ) = α(E)β0(θ)
where the occupancy age dependent component β0(θ) is a continuous and bounded
function sup β0(θ) = β̄. We will consider three cases for dependence of the emi-
gration rate on availability of empty patches:

(1) The function α(E) is a constant, that is the emigration rate does not depend
on the availability of empty patches: α(E) = α = constant (analogous to
the original Levins patch-occupancy model [18]).

(2) The function α(E) is non-constant and increasing. This possibility covers
the case when the patch-emigration rate increases with the availability of
empty patches.
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Figure 1. Possible graph of the function α(E) in Case 3.

(3) The function α(E) is non-constant unimodal and concave down after the
maximum (see Fig. 1). The maximum is attained for Emax and α(Emax) =
αmax. This form of the function reflects the possibility that at the begin-
ning when all patches are empty, and the opportunities for colonization
are ample, the emigration rate at first increases as more and more patches
get occupied and the proportion of empty patches declines. After reaching
some maximum at certain occupancy pattern, the emigration rate declines
as the proportion of empty patches goes to zero. We call the temporary
increase in the patch-emigration rate while the proportion of empty patches
decreases “Allee effect in dispersal”.

With the assumption of separability the equation for the dispersers becomes:

D′ = α(E)

∫

∞

0

β0(θ)u(θ, t)dθ − γE(t)D(t) − ρD(t)

Finally, ρ > 0 is the natural death rate of dispersing individuals. We specify
non-negative initial conditions E(0) = E0, u(θ, 0) = u0(θ) and D(0) = D0 for
the system, and assume that the initial distribution of the proportion of occupied
patches u0(θ) is an integrable function. We denote the total proportion of occupied
patches at time t by U(t); it is given by the integral of the age distribution across
all ages,

U(t) =

∫

∞

0

u(θ, t)dθ =⇒ U0 := U(0) =

∫

∞

0

u0(θ)dθ.

Here U0 denotes the initial proportion of occupied patches. Furthermore, we have
that the initial conditions satisfy E0 + U0 = 1. Integrating the equation for the
proportion of occupied patches we have

U ′(t) = cE(t)D(t) −

∫

∞

0

κ(θ)u(θ, t)dθ.
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Adding the above equation to the equation for E ′(t) we obtain E ′(t) + U ′(t) = 0
which leads to the conclusion that E(t)+U(t) = constant for all time. Thus, from
the assumption for the initial conditions, we have E(t)+U(t) = 1 for all time. The
last equation says that the sum of the proportion of empty and occupied patches
equals all patches. This corresponds to the Levins model [18]. Some authors have
extended the Levins model by assuming that a proportion of all patches 1 − h is
permanently uninhabitable [22, 25, 24, 11], reducing the proportion of all habitable
patches to h < 1: E(t) + U(t) = h. Although we will only consider the case of
all-habitable patches, our results extend to the case when a fixed proportion of all
patches is permanently uninhabitable.

We introduce the probability of a patch still being occupied θ time units after

it is first occupied: π(θ) = e−
∫

θ

0
κ(σ)dσ. We note that the probability function

clearly does not exceed one for all values of θ and that π(θ) approaches zero as θ
goes to infinity as a result of the assumption κ(θ) ≥ κ∗ for θ ≥ θ∗. Furthermore,
integration by parts shows that

(2.2)

∫

∞

0

κ(θ)π(θ)dθ = 1

Intuitively this equality says that every occupied patch will eventually become
empty. Next, we define the quantity

(2.3) B =

∫

∞

0

β0(θ)π(θ)dθ.

We note that if all patches are empty, and one disperser is introduced in the system
and settles on a patch, α(1)B gives the number of secondary dispersers that will be
produced. We call B total patch emigration. A proportion c

γ+ρ
of them will survive

the dispersers’ state and settle on a patch, given that all patches are empty. Thus
the reproduction number of the metapopulation is given by:

(2.4) R =
cα(1)B

γ + ρ

The characteristic lines of the partial differential equation are lines with slope
one. As the partial differential equation reduces to an ordinary differential equation
along these lines, it can be integrated. This procedure is described in more detail
in [6]. It leads to the following solution in terms of E and D:

(2.5) u(θ, t) =







u0(θ − t)
π(θ)

π(θ − t)
θ ≥ t

cE(t − θ)D(t − θ)π(θ) θ < t
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Substituting this expression for u(θ, t) we obtain a closed system of integro-
differential equations for E and D:
(2.6)

E ′ = c

∫ t

0

κ(θ)E(t − θ)D(t − θ)π(θ)dθ + F1(t) − cE(t)D(t)

D′ = cα(E)

∫ t

0

β0(θ)E(t − θ)D(t − θ)π(θ)dθ + F2(t) − γE(t)D(t) − ρD(t)

We note that the first integrals on the right hand side of each equation above are
convolution integrals. The functions F1 and F2 are given functions determined by
the initial condition u0 and the parameters of the system (2.1):

F1(t) =

∫

∞

t

κ(θ)u0(θ − t)
π(θ)

π(θ − t)
dθ, F2(t) =

∫

∞

t

β0(θ)u0(θ − t)
π(θ)

π(θ − t)
dθ.

The function F1(t) and F2(t) go to zero as time goes to infinity. This follows from
the assumptions on the parameters which lead to the following estimate on Fi,
i = 1, 2 for t ≥ θ∗: Fi(t) ≤ Ke−κ∗(t−θ∗)‖u0‖1 where i = 1, 2, ‖u0‖1 is the integral
of the initial condition u0, and K = max{β̄, κ̄}.

In conclusion, consider the case when all parameters in the system (2.1) are
independent of θ: κ(θ) = κ and β0(θ) = β. The system (2.1) turns into a system
of ordinary differential equations which we state here for future reference:

(2.7)
E ′ = κU(t) − cE(t)D(t)
U ′ = cE(t)D(t) − κU(t)
D′ = βα(E)U(t) − γE(t)D(t) − ρD(t)

Using the equality E(t) + U(t) = 1 we can eliminate one of the equations for E or
U and obtain a two-dimensional system.

3. Subthreshold and supertheshold equilibria of the system and

their linear stability

In this section we consider the time independent solutions of the system (2.1).
These solutions satisfy a system in which the time derivatives are equal to zero.
Let E and D be time-independent, that is constant. Then u(θ) satisfies a simple
ordinary differential equation which can be solved to give u(θ) = cEDπ(θ) where
E and D are still to be determined. Next, substituting this expression in the first
equation in the time independent system it can be seen that thanks to identity
(2.2) it is automatically satisfied for all values of E and D. Finally, substituting
the expression for u(θ) in the third equation of the time independent version of
system (2.1) we obtain the following equation

α(E)cED

∫

∞

0

β0(θ)π(θ)dθ − γED − ρD = 0

This equation is satisfied when D = 0. This gives the first equilibrium of the
system — the extinction equilibrium. From the fact that the number of dispersers
is zero we get u(θ) = 0 and, consequently, the proportion of occupied patches is
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zero: U = 0. Thus from the equality E +U = 1 we have E = 1 and all patches are
empty — the metapopulation is extinct. The extinction equilibrium is the ordered
triple E0 = (1, 0, 0). We conclude that dispersal is necessary for population to
persist. Next, if D 6= 0 then it can be canceled from the equation above and we
obtain an equation in E which with the notation for the integral introduced in
(2.3) takes the form:

(3.1) cα(E)EB = γE + ρ

The number of solutions of this equation in the interval (0, 1) depends on the func-
tion α(E). The three cases for α(E) that we consider give the following equilibria:

Case 1: If α(E) = α = constant then equation (3.1) is linear. Since the left
hand side is zero when E = 0 while the right hand side is ρ, this equation has
exactly one solution if and only if when E = 1 the left hand side is larger than the
right hand side, that is if and only if R > 1. The unique solution can be explicitly
computed. From (3.1) the value of E∗ is

(3.2) E∗ =
ρ

cαB − γ
=

ρ

(γ + ρ)R− γ
.

We note that R > 1 implies both that E∗ > 0 and E∗ < 1. We determine
the corresponding value of D∗ from the equation E∗ + U∗ = 1. Substituting the
respective value of u∗(θ) we get the equation for D∗: E∗ + cE∗D∗P = 1 where P
is the integral from zero to infinity of π(θ),

∫

∞

0
π(θ)dθ. Therefore,

(3.3) D∗ =
1 − E∗

cE∗P
=

(γ + ρ)(R− 1)

cρP
.

Finally the corresponding value of U∗ is

(3.4) U∗ =
(γ + ρ)(R− 1)

(γ + ρ)R− γ
.

As expected the proportion of occupied patches at equilibrium U∗ increases with
increasing of the reproduction number R, emigration rate α, and total patch emi-
gration B, and decreases when the natural death rate of dispersers ρ increases —
a conclusion that can be reached by taking the corresponding derivatives in the
expression above. We summarize this discussion in the proposition at the end of
Case 2.

Case 2: When α(E) is an increasing function of E, an argument as in Case 1
shows that if R > 1 then the equation (3.1) has at least one solution. We claim
that if R > 1 then the equation (3.1) has exactly one solution and if R < 1 then
it has no solutions. To see this, rewrite equation (3.1) in the form

(3.5) cα(E)B = γ +
ρ

E
.

The right hand side is an increasing function of E while the left hand side is a
decreasing function of E. Consequently, there is at most one intersection. Hence,
if R > 1 there is a unique solution.
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Figure 2. The decreasing curve is γ+ ρ

E
. Its tangent at the second

point of intersection is TR. The non-monotone function is a scalar
multiple of the function α(E), that is cα(E)B. Its tangent is TL.

When R < 1 the same argument as above shows that there is at most one
solution. If we assume that cα(E∗)E∗B = γE∗ + ρ for some E∗ < 1 then the
left-hand side is above the right-hand side for E > E∗ and, in particular for E = 1
we have cα(1)B > γ + ρ which implies R > 1 — a contradiction. Thus, E∗ does
not exist and there are no solutions.

Let E∗ < 1 be the unique solution when R > 1. Its value cannot be explicitly
computed without further knowledge of the function α(E). Then the corresponding
value of D∗ can be computed from the first expression in (3.3). We summarize
these results in the following proposition.

Proposition 3.1. Let α(E) be a constant (α(E∗) = α) or an increasing function of
E. Then the system (2.1) has a unique nontrivial equilibrium E = (E∗, cE∗D∗π(θ), D∗)
if and only if R > 1. In the case when α(E∗) = α the values of E∗ and D∗ are
given respectively in (3.2) and (3.3).

Case 3: When α(E) is unimodal and α(E) is concave down for E > Emax

we claim that if R > 1 there is always a unique solution of equation (3.1). For
R∗ < R < 1 there are exactly two solutions if ρ

γ+ρ
α(1) < −α′(1) and no solutions

otherwise. We note that α′(1) < 0 here as α is a decreasing function near one. To
see this consider first the case when R > 1. From the argument in Case 1 we know
that there is at least one solution. Assume there is another intersection of the
curves in equation (3.5), namely E∗

2 . It necessarily occurs for E∗

2 > Emax because
for E < Emax there could be at most one intersection. Let P = (E∗

2 , Y ), where
Y = cα(E∗

2)B, be the point of intersection. Let TL be the tangent of cα(E)B and
TR be the tangent of γ + ρ/E at the point P . Whenever α(E) is concave down
it lies below its tangent, that is, cα(E)B is smaller than TL for E > E∗

2 > Emax.
The curve γ + ρ/E is everywhere concave up and thus lies above its tangent TR.
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Figure 3. Backward bifurcation diagram with respect to the re-
production number R. In the case R∗ < R < 1 there are two non-
trivial equilibria - the lower one is stable, at least in the constant
coefficient case, while the upper one is unstable.

At the point P the tangent TL crosses TR, going from above TR to below TR.
Consequently, cα(E)B < TL < TR < γ + ρ

E
for E > E∗

2 . Consequently there are no
more intersections of the two curves in the interval (E∗

2 , 1). Hence for E = 1 we
have cα(1)B < γ + ρ which implies R < 1 — a contradiction. We conclude that
E∗

2 does not exist and the solution is unique (see Fig. 2).
In the case R < 1 there are equilibria if and only if a backward bifurcation occurs,

that is, the nontrivial equilibrium bifurcates from the extinction equilibrium and
even for E∗ very close to one it exists for values of the reproduction number below
one (see Fig. 3). Since there is always a unique equilibrium for R > 1 it is not
possible to have nontrivial equilibria for R < 1 if the bifurcation at the critical
value R = 1 is forward. If we consider R as a function of E we can find that
function explicitly if in (3.1) we solve for R to obtain

R =
α(1)

γ + ρ

γE + ρ

α(E)E
.

Then (see Fig. 3) the bifurcation is backward if the derivative of R with respect
to E when E = 1 is positive - respectively, the slope of the tangent line at (1, 1) is
positive:

dR

dE
|E=1 > 0.

This leads to the necessary and sufficient condition for existence of backward bi-
furcation ρ

γ+ρ
α(1) < −α′(1). From this inequality we see that increased rate of

colonization of new patches or decreased mortality of dispersers increase the chance
of subthreshold and multiple equilibria. Furthermore, the larger the decline of α
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near one, that is, the more pronounced the Allee effect in dispersal, the more likely
it is the backward bifurcation to occur.

If subthreshold equilibria occur, there are at least two of them — E∗

1 and E∗

2

— since at E∗

1 the left-hand side of (3.1) becomes from smaller to larger than the
right-hand side and at E∗

2 the left-hand side of (3.1) becomes from larger to smaller
than the right-hand side and stays smaller until E = 1 in accordance with R < 1.
An argument as above shows that for E > E∗

2 there can be no more intersections.
Thus, there are exactly two equilibria for R∗ < R < 1. Looking at Fig. 3 we see
that if 0 < R < R∗ there are no equilibria. Since R′ < 0 when E is near zero and
R′ > 0 when E = 1 then there is an Ê such that R′ = 0 when E = Ê and the
function R attains a minimum at that point. Let

R∗ =
α(1)

γ + ρ

γÊ + ρ

α(Ê)Ê
.

The value R∗ is called minimal transition value [29]. After the solutions of (3.1)
have been determined, the corresponding values of D∗ are determined from the
first expression in (3.3). We summarize this result in the following proposition:

Proposition 3.2. Let α(E) be unimodal and concave down after its maximum
function of E. The the system (2.1) has a unique nontrivial equilibrium E =
(E∗, cE∗D∗π(θ), D∗) if R > 1. If R∗ < R < 1 there are two nontrivial equilibria
E1 = (E∗

1 , cE
∗

1D
∗

1π(θ), D∗

1) and E2 = (E∗

2 , cE
∗

2D
∗

2π(θ), D∗

2) if and only if ρ

γ+ρ
α(1) <

−α′(1). If 0 < R < R∗ there are no non-trivial equilibria.

If α(E) is not concave down after its maximum, then there can be more equi-
libria. We call an equilibrium simple if it satisfies (3.1) but does not satisfy the
equation obtained by differentiating (3.1) — that is, the curve in the left-hand side
of (3.1) crosses the curve at the right-hand side and the tangents at the intersection
point have different slopes. If that condition is not satisfied we call the equilibrium
not simple. In the case when R > 1 if all equilibria are simple there must be an
odd number of them. In the case when R < 1 if all equilibria are simple there
must be an even number of them.

Concerning the stabilities of the equilibria, some partial results are given the
propositions below. Their justification can be found in Appendix A. We have full
understanding of the local stability of the extinction equilibrium.

Proposition 3.3. If R < 1 then the extinction equilibrium E0 is locally asymptot-
ically stable. If R > 1 the extinction equilibrium is unstable.

When there are multiple non-extinction equilibria and they are all simple we
can show that every other one is unstable. Suppose they are ordered in increasing
order of the equilibrium value of empty patches E∗, namely, E1 < E2 < · · · < En.
Proposition 3.2 gives the specific conditions for two equilibria to exist. We have
the following result on the instability of every other one of them:

Proposition 3.4. If there are multiple non-extinction equilibria which are all sim-
ple and ordered in an increasing order of E∗, then every other one is unstable with
the even-numbered ones being unstable.
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Figure 4. Total proportion of occupied patches U(t) exhibits
sustained oscillation as a result of the presence of patch-occupancy
age structure. Parameters as given in text.

In particular for the subthreshold equilibria in Proposition 3.2 E2 is unstable.
We note that the present bifurcation diagram (see Fig 3) is a mirror image of the
usual one (see e.g. [20], or Fig. 4.2 in [11]) and the extinction equilibrium is at
the largest value of the bifurcation variable, rather than the smallest value. The
remaining equilibria are locally asymptotically stable at least in the case when all
parameters of the system are constant, that is for the system (2.7).

Proposition 3.5. Let κ(θ) = κ and β0(θ) = β be constant. If the non-extinction
equilibria are all simple and ordered in increasing order of E∗, then every other
one is stable with odd-numbered equilibria being locally asymptotically stable. Fur-
thermore, if R > 1 and there is a unique non-trivial equilibrium, then it is locally
and globally stable.

The situation with the patch-occupancy age structured model (2.1) is rather
different. Even when there is only one non-extinction equilibrium in the case
R > 1 this equilibrium may lose stability and sustain oscillations through Hopf
bifurcation occur if the parameters κ(θ) and β0(θ) vary in particular ways with
age. This situation is illustrated here in Fig. 4 where the parameters are taken as
follows: ρ = 2.1248, c = 19.713435, γ = 19.713435, α(E) = 2,

κ(θ) =

{

0 0 ≤ θ ≤ 3

10 θ > 3
β0(θ) =

{

10θ(1 − θ) 0 ≤ θ ≤ 1

0 θ > 1

with R ≈ 3. Thus, the dependence of local extinction and emigration of a patch
duration of occupancy can lead to a different and more complex dynamical behavior
of the system. This situation has been known to occur in epidemiological models
with host age. Dependence of transition rates on both chronological age and
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infection age (equivalent to our patch-occupancy age) has been found to destabilize
the equilibrium and cause sustained oscillations [26, 28, 19].

4. Scenarios for persistence and extinction of the metapopulation

A metapopulation is defined as a set of populations occupying separate areas
and connected by dispersal. From this description it is clear that dispersal is a
vital element of the survival of the metapopulation. We saw that if there is no
dispersal only the extinction equilibrium exists. Thus, processes related and es-
sential to population dispersal are vital for the persistence of the metapopulation.
In particular, if there is no emigration, that is if β(E, θ) = 0, there is no source of
dispersers. The disperser population will die out and with it the entire metapop-
ulation. In the model (2.1) this is easy to see since D′ ≤ −ρD, or equivalently
D(t) ≤ D0e

−ρt which implies that D(t) → 0 as t → ∞. From the expression for u
in (2.5) one can see that the extinction of the dispersers population automatically
leads to decline to zero of the proportion of occupied patches and the vanishing of
the metapopulation.

Another process critical for the metapopulation survival is new patch coloniza-
tion. If there is no colonization of empty patches c = 0, then the process of turn-
ing empty patches into occupied is interrupted and the initial supply of occupied
patches gradually declines to zero. We summarize these results in the following
proposition.

Proposition 4.1. If there is no emigration into the disperser pool β(E, θ) = 0 or
there is no colonization of empty patches c = 0 then the metapopulation is bound
to go extinct, that is, U(t) → 0 and D(t) → 0 while E(t) → 1, independently of
the initial conditions.

When all parameters are non-trivial then the fate of the metapopulation is to
some extent described by its basic reproduction number. We already saw in Sec-
tion 3 that the extinction equilibrium is locally asymptotically stable if R < 1.
In particular this means that for initial conditions sufficiently close to the extinc-
tion equilibrium the metapopulation will go extinct. In the case when there can
be subthreshold equilibria while R∗ < R < 1 this is perhaps the sharpest pos-
sible result on extinction as one of the subthreshold equilibria might be locally
stable. Therefore solutions that start sufficiently close to it will converge to a
non-extinction equilibrium and for these initial statuses the metapopulation will
in fact persist despite that R < 1. This outcome is a result of the Allee effect in
dispersal, that is of the fact that the emigration rate is increasing with decreas-
ing availability of empty patches (E). We expect, although we have not shown
rigorously, that if R < R∗ the metapopulation will go extinct independently of
the starting conditions. In this case the colonization ability of the population is
simply too small to sustain the metapopulation. In the case when α is constant or
increasing, there are no subthreshold equilibria. We conjecture that in this case if
R < 1 the extinction equilibrium is also globally stable and the metapopulation
will vanish independently of its initial status.
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If R > 1 the metapopulation persists. We distinguish two forms of persistence
– uniform weak persistence and uniform strong persistence. Formally, we call the
metapopulation uniformly weakly persistent if there exists an η > 0, independent
of the initial conditions, such that if D0 > 0 we also have

lim sup
t

D(t) > η.

Roughly speaking, the population is uniformly weakly persistent if the number of
dispersers is above a certain constant value at least occasionally, independent of
the initial condition.

In Appendix B we establish that the metapopulation described by the model
(2.1) is uniformly weakly persistent when R > 1.

Formally, we call the metapopulation uniformly strongly persistent if there exists
an η > 0, independent of the initial conditions, such that if D0 > 0 we also have

lim inf
t

D(t) > η.

Intuitively, the uniform strong persistence of the metapopulation means that the
number of dispersers stays above certain constant value η for all time after some
initial time t0 > 0. If the metapopulation is uniformly strongly persistent, it is
also uniformly weakly persistent. The converse is not always true but our results
below show that it is for the metapopulation described by the model (2.1).

If the solutions of (2.1) are uniformly weakly persistent, they are uniformly
strongly persistent if they are attracted in time by a maximal compact set. In
Appendix B we explain the concept of maximal compact set and we show that
to be the case for the system (2.1). In Appendix B we also establish that the
metapopulation described by the model (2.1) is uniformly strongly persistent when
R > 1:

Proposition 4.2. If R > 1 then the metapopulation is uniformly strongly persis-
tent.

Both uniformly weak and uniformly strong persistence require the metapopula-
tion to stay away from extinction independently of its initial status. In particular
uniform weak persistence implies that the extinction equilibrium is unstable. For
these reasons, when R < 1 although the metapopulation may persist for some
initial conditions, it is neither uniformly weakly, nor uniformly strongly persistent.

5. Conclusions

We have explored the effects of two interacting kinds of complexity in patch-
occupancy models, dependence of emigration (colonization) rate on occupancy and
of emigration and extinction on patch-occupancy age. As is typical, we find that
the ability of the metapopulation to persist (instability of the extinction equilib-
rium) depends only on the reproductive number R, which in turn depends only
on the colonization probability c, mortality rate ρ, the expected lifetime emigra-
tion B, and the emigration rate at low densities α(1); the potential dynamical
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complexities disappear in the low-density limit. However, the number and sta-
bility of non-trivial equilibria does depend critically on the details of the model.
For unimodal α(E) (dependence of emigration or effective colonization rate on
total occupancy), two or more stable equilibria are possible (more than two only if
α(E) is not concave down above its maximum). While multiple stable equilibria in
metapopulation dynamics have been observed before [10, 12] and also in the con-
text of size-structured metapopulations [7, 8, 2, 3, 21], our paper gives formal and
rigorous characterization of when and how many of them can exist. Dependence
on patch-occupancy age, although at least as ecologically plausible as Allee effects
[31], has only been explored through its analogues in disease dynamics [26, 28, 19],
where it has been shown to have the potential to destabilize metapopulation dy-
namics. However, we are also able to show that despite any possible oscillatory
dynamics, the metapopulation will still persist as long as R > 1. Harding and Mc-
Namara [12] recommended that ecologists “systematically investigate how the form
of the colonization and extinction functions affects metapopulation dynamics”; we
suggest that in order to understand the long-term dynamics of metapopulations,
ecologists should try to characterize the dependence of colonization and extinction
rate both on metapopulation occupancy and on patch-occupancy age.
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Appendix A. Local stability of equilibria

We consider the linearization of the system (2.1). If E = (E∗, u∗(θ), D∗) is an
equilibrium we denote its perturbations by ǫ(t), χ(θ, t) and d(t) respectively, that
is E(t) = E∗ + ǫ(t), u(θ, t) = u∗(θ) + χ(θ, t) and D(t) = D∗ + d(t). Substituting in
the system (2.1) and taking into account the equations for the equilibria we obtain
the following system for the perturbations:

(A.1)

ǫ′(t) =

∫

∞

0

κ(θ)χ(θ, t)dθ − cE∗d(t) − cD∗ǫ(t)

χθ + χt = −κ(θ)χ(θ, t)
χ(0, t) = cE∗d(t) + cD∗ǫ(t)

d′(t) = α(E∗)

∫

∞

0

β0(θ)χ(θ, t)dθ + cα′(E∗)E∗D∗Bǫ(t)

−γE∗d(t) − γD∗ǫ(t) − ρd(t)

We look for exponential solutions ǫ(t) = eλtǭ, χ(θ, t) = eλtχ̄(θ), d(t) = eλtd̄ where
ǭ, d̄ are constants. In the remaining considerations we drop the bars. Substituting
these forms in the system above we obtain a linear eigenvalue problem which
consists of one ordinary differential equation that corresponds to the equation for
χ and two integral equations. Solving the differential equation we obtain χ(θ) =
(cE∗d+ cD∗ǫ)e−λθπ(θ). Substituting into the integrals in the equations for ǫ and d
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we obtain a linear system for ǫ and d whose coefficients depend on λ. This system
has a non-zero solution if and only if the determinant is zero. This condition leads
to the characteristic equation of the system (2.1):

(A.2)
[λ + ρ + γE∗ − cE∗α(E∗)B(λ)][λ + cD∗ − cD∗K(λ)]

= cE∗D∗ [cα(E∗)B(λ) + cα′(E∗)E∗B − γ] (K(λ) − 1)

where B(λ) and K(λ) are the following Laplace transforms:

(A.3) B(λ) =

∫

∞

0

β0(θ)e
−λθπ(θ)dθ, K(λ) =

∫

∞

0

κ(θ)e−λθπ(θ)dθ.

Denoting by L(λ) the Laplace transform of π(θ) we note that integration by parts
leads to K(λ) + λL(λ) = 1. We note here that this identity implies that λ = 0
is a solution of the equation (A.2). However, if E is a simple equilibrium, λ = 0
is not an eigenvalue. To see this let λ = 0 and let E be a non-trivial simple
equilibrium. In the eigenvalue problem corresponding to (A.1) the first equation is
automatically satisfied. Taking into account (3.1) from the last equation we obtain
D∗(cα(E∗)B + cα′(E∗)E∗B − γ)ǫ = 0 which implies that ǫ = 0. The coefficient
is non-zero since E is simple. Linearizing the identity E(t) + U(t) = 1 leads to
ǫ + (cE∗d + cD∗ǫ)L(λ) = 0 from which it follows that d = 0 if ǫ = 0.

Using the identity K(λ) + λL(λ) = 1 and some algebra one can rewrite the
characteristic equation in the form:
(A.4)

(λ + ρ)[1 + cD∗L(λ)] + cE∗cD∗ [α(E∗)B(λ) + α′(E∗)E∗B] L(λ) + γE∗ =
= cE∗α(E∗)B(λ)[1 + cD∗L(λ)]

Concerning the extinction equilibrium, one can see directly from the system
(A.1) that λ = 0 is not an eigenvalue. The eigenvalues corresponding to the
extinction equilibrium are solutions of the following characteristic equation of the
extinction equilibrium, obtained from the expression above with E∗ = 1 and D∗ =
0:

(A.5) λ + ρ + γ = cα(1)B(λ)

If R > 1 this equation has a positive real solution. To see that notice that for
λ = 0 we have ρ + γ < cα(1)B where B(0) = B. For λ > 0 and real the left-hand
side increases from ρ+γ to infinity while the right-hand side decreases from cα(1)B
to zero. Thus, the two must intersect for λ∗ > 0. Consequently, the extinction
equilibrium E0 is unstable.

If R < 1 consider λ’s with nonnegative real part: λ = x + iy. In this case
|λ + ρ + γ| > x + ρ + γ ≥ ρ + γ. At the same time |cα(1)B(λ)| ≤ cα(1)B(x) ≤
cα(1)B(0) = cα(1)B = (ρ+γ)R < ρ+γ. Thus, the equation (A.5) has no solution
λ with nonnegative real part. Consequently, the extinction equilibrium is locally
asymptotically stable which justifies Proposition 3.3.

To see the claim in Proposition 3.4 let F(λ) denote the left-hand side in (A.4)
and G(λ) denote the right hand side of (A.4). An equilibrium value of empty
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patches E∗ is a solution of (3.1). If we consider the left-hand side and the right-
hand side of (3.1) as functions of the variable E the key observation that gives
us this result is how the slopes of these two curves relate at an even-numbered
equilibrium. In particular, for every even-numbered equilibrium the left-hand side
crosses the right-hand side from above to below. Consequently, the left-hand side
has a smaller slope than the right-hand side. Equivalently,

cα′(E∗)E∗B + cα(E∗)B < γ

Using this inequality we have that F(0) < (ρ + γE∗)(1 + cD∗P) while by (3.1)
G(0) = cE∗α(E∗)B(1+cD∗P) = (ρ+γE∗)(1+cD∗P). Consequently, F(0) < G(0).
Furthermore, for λ real, F(λ) → ∞ while G(λ) → 0 as λ → ∞. Hence, there is a
real and positive λ that solves the equation F(λ) = G(λ).

To see the claim in Proposition 3.5 we notice that if we eliminate U = 1 − E
from the system (2.7) we obtain

(A.6)
E ′ = κ(1 − E) − cED
D′ = βα(E)(1 − E) − γED − ρD

Setting the derivatives equal to zero we obtain the following equations for the
equilibria

(A.7) κ(1 − E) = cEDβα(E)(1 − E) = (γE + ρ)D

We multiply the second equation by κ and use the first equation to replace κ(1−E)
by cED. We can then eliminate D since we are only interested in nontrivial
equilibria and D 6= 0 for those. We reach the following equation for the equilibrium
value of E:

(A.8) cβα(E)E = (γE + ρ)κ

which is exactly the equation we will obtain from (3.1) by setting all parameters
constant. We also have for the odd numbered equilibria

(A.9) cβα′(E∗)E∗ + cβα(E∗) > γκ

The Jacobian of the system (A.6) at equilibrium (E∗, D∗) is given by

(A.10) J =

(

−κ − cD∗ −cE∗

βα′(E∗)(1 − E∗) − βα(E∗) − γD∗ −γE∗ − ρ

)

Since the trace is clearly always negative, the eigenvalues have negative real parts
if and only if the discriminant is positive. The discriminant is given by

(A.11) (κ + cD∗)(γE∗ + ρ) + cE∗[βα′(E∗)(1 − E∗) − βα(E∗) − γD∗]

We notice that if we distribute the sum in the first parenthesis the term κ(γE∗+ρ)
can be replaced by the left-hand side of equation (A.8) while the term cD∗(γE∗ +
ρ) = βcα(E∗)(1 − E∗) from the second equation for the equilibria in the system
(A.7). Combining these two terms back again we see that (γE∗ + ρ)(κ + cD∗) =
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βcα(E∗). ¿From the first equation for the equilibria the term γcE∗D∗ = γκ(1−E∗).
After replacing these expressions in the discriminant, it becomes

(A.12)
βcα(E∗) + βcα′(E∗)E∗(1 − E∗) − βcα(E∗)E∗ − γκ(1 − E∗)

= [βcα′(E∗)E∗ + βcα(E∗) − γκ](1 − E∗)

The expression in the brackets [·] is positive exactly when E∗ is the equilibrium
value of empty patches in an odd numbered equilibrium (see inequality (A.9))
and negative in even-numbered equilibria. This implies local stability of the odd-
numbered equilibria and instability of the even-numbered equilibria which we know
from the age-dependent case.

If there is a unique non-extinction equilibrium, then it is locally stable. This
is, in particular, the case when α is constant or α(E) is strictly increasing. When
the system (2.7) is reduced by eliminating through the identity U(t) = 1 − E(t)
it becomes a 2 × 2 system. Then Dulac’s criterion applies (see [19]) and leads to
global stability of the non-trivial equilibrium.

Appendix B. Uniformly weak and uniformly strong persistence of

the metapopulation

First we show that if R > 1 the metapopulation is uniformly weakly persistent.

Proposition B.1. If R > 1 then the metapopulation is uniformly weakly persis-
tent.

To see this, we show that there exists an η1 > 0 such that lim supt D(t) > η1

if D(0) > 0. We proceed by contradiction. We assume the contrary, that is, we
assume that for every η0 > 0 no matter how small we have lim supt D(t) < η0 for
any initial condition. This in particular means that there exists t0 > 0 such that
D(t) < η0 for all t ≥ t0. Now, let τ = t − t0. We can evaluate the system (2.1)

at τ + t0 and set D̂(τ) = D(τ + t0), Ê(τ) = E(τ + t0) and û(θ, τ) = u(θ, τ + t0).
We obtain the same system as (2.1) for the variables with hats and in τ . However

D̂(0) = D(t0) < η0. Dropping the hats and renaming τ as t we see that for the
original system we may assume without loss of generality that D(t) < η0 for all
t ≥ 0. This property is referred to as the semiflow property of the system. Using
formula (2.5) in the identity E + U = 1 we obtain E(t) = 1 − φ(t) where φ ≥ 0

φ(t) = c

∫

∞

0

E(t − θ)D(t − θ)π(θ)dθ + F3(t)

The function φ(t) is a “small” function and can be bounded. In particular, E(t) ≤
1, D(t) ≤ η0 for all t ≥ 0. The function F3(t) is given by

(B.1) F3(t) =

∫

∞

t

u0(θ − t)
π(θ)

π(θ − t)
dθ

and satisfies F3(t) ≤ e−κ∗(t−θ∗)‖u0‖1 similarly to the functions Fi(t) for i = 1, 2.
Consequently, there exists t1 such that F3(t) ≤ η0 for all t ≥ t1. Thus for t ≥ t1
we have φ(t) ≤ cη0P + η0 = η where we have denoted by η = cη0P + η0. We recall
that P is the integral of π and is a constant just as c. Since η is proportional to
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η0 it is also small. Consequently, E(t) ≥ 1 − η for all t ≥ t1. Using again the
semiflow property of the system we get E(t) ≥ 1 − η for all t ≥ 0. Furthermore,
expanding α in Taylor’s series (assuming this can be done near one) α(E) =
α(1 − φ(t)) = α(1) − α′(1)φ(t) + H(φ(t)) where H(φ(t)) denotes the higher order
terms in φ. The first case for α(E) is simple. In the second case α′(1) > 0 so
α′(1)φ(t) − H(φ(t)) > 0 and at the same time α′(1)φ(t) − H(φ(t)) ≤ Cη where
C > 0 is a positive constant. Consequently, α(E) ≥ α(1) − Cη. In the third case
α′(1) < 0 and therefore −α′(1)φ(t) + H(φ(t)) > 0 which leads to the conclusion
that α(E) ≥ α(1). Summarizing, in all three cases we have α(E) ≥ α(1) − Cη.
¿From the integro-differential equation for D in (2.6) we have after neglecting F2

and using the inequalities above the following inequality:

D′(t) ≥ c[α(1) − Cη](1 − η)

∫ t

0

β0(θ)D(t − θ)π(θ)dθ − γD − ρD

Taking the Laplace transform from both sides of this inequality and denoting the
Laplace transform of D by D̂(λ) we have

λD̂(λ) − D(0) ≥ {c[α(1) − Cη](1 − η)B(λ) − (γ + ρ)} D̂(λ)

Moving λD̂(λ) to the right-hand side and factoring out (γ + ρ + λ) we have

−D(0) ≥ (γ + ρ + λ)

{

c[α(1) − Cη](1 − η)B(λ)

γ + ρ + λ
− 1

}

D̂(λ)

For λ = 0 and η = 0 the expression in the big brackets on the right-hand side is
equal to (R − 1) and therefore the right-hand side is positive for λ and η small
enough, while the left-hand side is negative and cannot be larger. This is a con-
tradiction with our assumption that for every η0 we have lim supt D(t) < η0. Con-
sequently there is an η1 such that lim supt D(t) ≥ η1. This justifies that the
metapopulation is uniformly weakly persistent if R > 1.

Next, we continue with establishing the uniform strong persistence. The main
component necessary to establish this result is to verify that the solutions of the
system (2.1) have a global compact attractor. A global compact attractor K is a
maximal compact invariant set such that for any open set that contains K, all
solutions of the system (2.1) that start at zero from a bounded set, are contained
in that open set, at least for sufficiently large time. For more precise definition see
[9], Section 3.4.

Solutions of the system (2.1) are bounded. This is obvious for E(t) ≤ 1 and
U(t) ≤ 1 but it is also true for the dispersing population. From the last equation
in (2.1) we have D′ ≤ αmaxβ̄ − ρD. Consequently,

D(t) ≤ e−ρt

(

D0 −
αmaxβ̄

ρ

)

+
αmaxβ̄

ρ

This implies that D(t) ≤ αmaxβ̄

ρ
, at least for t large enough. Thus, all solutions that

start from a bounded set remain bounded. Furthermore, any set Sr = {(E,U,D) :

E + U = 1, D ≤ r} with r ≥ αmaxβ̄

ρ
is invariant, that is solutions (E,U,D) that
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start in it remain in it. In addition, the solutions that start in any bounded set,
end in Sr for time large enough. See [9], Section 3.4.

We split the expression for u(θ, t) in two components: one component corre-
sponds to taking the partial differential equation in (2.1) with the boundary con-
dition and zero initial condition:

û(θ, t) =

{

0 θ ≥ t

cE(t − θ)D(t − θ)π(θ) θ < t

the other - corresponds to taking the partial differential equation in (2.1) with zero
boundary condition and the initial condition:

ũ(θ, t) =







u0(θ − t)
π(θ)

π(θ − t)
θ ≥ t

0 θ < t

Clearly, u(θ, t) = û(θ, t) + ũ(θ, t). Consequently, we consider the system (2.1)
with û in place of u and solutions (E(t), û(θ, t), D(t)) and the “solutions” that ũ
generates: (0, ũ(θ, t), 0). Both solutions are non-negative.

We show that ũ → 0 at t → ∞ or more precisely we show that the integral of ũ
goes to zero as time goes to infinity. That integral is given by F3(t) in (B.1) and
we already saw that F3(t) ≤ e−κ∗(t−θ∗)‖u0‖1. Clearly F3(t) goes to zero as time
goes to infinity. In addition, the same is true for ũ for every θ fixed.

Considering the solutions (E(t), û(θ, t), D(t)) we see that they are also bounded
since û ≤ u. Consider all initial data that are in the set of (E0, U0, D0) satisfying
E0+U0 = 1 and D0 ≤ K where K is some constant. We show that for a fixed t large
enough, the family of functions (E(t), û(·, t), D(t)) obtained from taking various
initial conditions for D0 is a compact family of functions. Then by Lemma 3.2.3 and
Theorem 3.4.6 in [9] the solutions of (2.1) have a global compact attractor. To see
the compactness of the family of functions (E(t), û(·, t), D(t)) we use the Fréchet-
Kolmogorov theorem for compactness (see e.g. [30]). From the three conditions in
the theorem the first and the third have already been established since the third
follows trivially from the fact that û(θ, t) = 0 for θ > t. The second condition
follows from the uniform (with respect to all functions in the family) boundedness
of the derivatives with respect to θ of û. Differentiating û we get

ûθ =











0 θ > t

−c[E ′(t − θ)D(t − θ) + E(t − θ)D′(t − θ)]π(θ)

−cκ(θ)cE(t − θ)D(t − θ)π(θ) θ < t

¿From the differential equation for E taking into account that κ(θ) ≤ κ̄ we have

E ′ ≤ κ̄. For D0 ≤ K we have that D ≤ K + β̄αmax

ρ
= K1. Consequently,

E ′ ≥ −cED ≥ −cK1. To bound D′ we notice that D′ ≤ β̄αmax while D′ ≥
−γED−ρD ≥ −(γ+ρ)K1. Let M be the maximum of the constants κ̄, (γ+ρ)K1,
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and β̄αmax. Then |E ′| ≤ M and |D′| ≤ M . Hence,

|ûθ(θ, t)| ≤

{

0 θ > t

cM(K1 + 1)π(θ) + cK1κ(θ)π(θ) θ < t

Consequently,
∫

∞

0

|ûθ(θ, t)|dθ ≤ cM(K1 + 1)P + cK1 = C

where the constant C depends on the parameters of the system and the bound on
the initial conditions K. The second condition in the Fréchet-Kolmogorov theorem
follows directly.

Thus, we have established that there is a global compact attractor. To com-
plete the proof of uniformly strong persistence we use Theorem 2.6 in [27]. If
Ψ(t, E0, u0, D0) = (E(t), u(·, t), D(t)) denotes the solution of the system (2.1) that
starts from the initial condition (E0, u0, D0) we define

ψ(Ψ(t, E0, u0, D0)) = D(t)

We established that if R > 1 then the solutions are uniformly weakly ψ-persistent.
Furthermore, the solution has a global compact attractor. Since the solutions are
nonnegative we have that D(t) ≥ D(s)e−(γ+ρ)(t−s) for time t > s. Therefore D(t)
is strictly positive, provided D(s) > 0. Thus, the conditions of Theorem 2.6 in [27]
are satisfied and the solutions are uniformly ψ-persistent. We conclude that there
exists η > 0 so that lim inft D(t) ≥ η.
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