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Abstract. In this paper we consider a non-autonomous multi-strain SIS epidemic
model with periodic coefficients. Reproduction numbers and invasion reproduction
numbers are derived which agree well with their counterparts usually derived from au-
tonomous epidemic models. With conditions on these reproduction numbers typical
results are obtained, such as the local and global stability of the disease-free equi-
librium. Existence and uniqueness of a single-strain periodic solution is established.
Based on conditions on the invasion reproduction numbers, local stability of the single-
strain periodic solution is shown. In a two-strain version of the model, conditions for
uniform strong persistence are derived, and coexistence of the two strains is established.
Coexistence, however, does not occur if the transmission rates of the different strains
are linearly dependent.
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1. Introduction

The incidence of many infectious diseases fluctuates over time and often exhibits peri-
odic behavior. One of the well known examples are data on weekly measles notification
in England and Wales for the period 1948-1968 (see [5], Fig. 6.3). The number of
measles cases per week oscillates with a period between two peaks of two years. Other
childhood diseases such as mumps, chicken-pox, rubella, and pertussis have also been
found to exhibit seasonal behavior. The periodicity of one year in many childhood dis-
eases is attributed to the periodic contact rate the children have during academic school
years. Although not restricted to children, influenza also exhibits distinct seasonality,
with a season in the US spanning the time between October and May. During the first
two-three years after the first case, the number of human cases of avian influenza also
seemed to follow seasonal pattern [34].

Numerous articles have been devoted to explaining the periodicity in the disease in-
cidence rates (see [18] for a review). Various scenarios how periodicity may arise in
epidemic models have been set forward. Those include

(1) the possibility that the presence of certain classes can destabilize the equilibrium
of models with constant coefficients and lead to sustain oscillations,

(2) the possibility that the incidence is not bilinear but has more complex form,
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(3) the possibility that the transmission rates are periodic,
(4) the presence of delay(s) in the model,
(5) the presence of host age-structure,
(6) from the interaction of two strains, one of which mutates into the other [20].

The possibility that the contact rate is periodic has lead to the consideration of epidemic
models with time-dependent coefficients. An epidemic SIS model with periodic contact
rate was first considered by Hethcote [17]. Epidemic SIR and SEIR models with periodic
contact rate were considered by Dietz [15]. The non-autonomous SIR and SEIR models
were further investigated both analytically and numerically by Smith [38] and Schwartz
(see [36] for a review). More recently Zhang and Teng [44] established persistence and
extinction in the disease for a non-autonomous SEIR model with vital dynamics.

One of the key difficulties in working with non-autonomous models is defining the re-
production number R0. Many of the articles in the literature do not define a reproductive
number but work with threshold conditions that fit best the analysis. Junling Ma and
Zhien Ma [27] consider the problem of defining adequate reproduction numbers for var-
ious non-autonomous SIR and SEIR models. The authors argue that the reproduction
number should be defined as the reproduction number of a constant coefficient system
obtained from the non-autonomous system by averaging the time-dependent coefficients.
In all cases they are able to establish local stability of the disease-free equilibrium with
the usual condition on the reproduction number R0angle1. However, Junling Ma and
Zhien Ma show through simulation that the SEIR model can have a solution where the
number of infected individuals goes to zero despite that the reproduction number is
larger than one (see Figure 1 in [27]). Thus, the condition R0 > 1 does not necessarily
lead to persistence.

The causative agents of many diseases are represented by multiple genetically distinct
variants. Early autonomous multi-strain models suggested that competitive exclusion is
the only possible outcome of the competition of many strains. Bremermann and Thieme
[7] show that even if all reproduction numbers are larger than one, only the strain with
the largest reproduction number persists while the remaining strains are eliminated.
These results opened a question regarding the mechanisms that are responsible for the
genetic diversity of pathogens in nature. Mechanisms such as super-infection [30, 33],
coinfection [31], mutation [20], vertical transmission [23], and host age heterogeneity [29]
were proposed as possible mechanisms that support diversity of pathogens. There is a
significant literature devoted to the problem of competition of strains in autonomous
multi-strain epidemic models which is reviewed in [42], [28], and [24].

Diseases that exhibit seasonality may also be represented by pathogens that experi-
ence mutation and exist as multiple strains. The most notable example of this scenario
is influenza. Several intrinsic mechanisms such as quarantine [35] or host age struc-
ture [8], leading to periodicity in autonomous epidemic models, have been suggested as
possible mechanisms for the influenza seasonality. Other possible mechanisms such as
crowding during cooler months (increased contact rate), weakening of the host immune
system (increased susceptibility), and ability of the viral particles to persist in cooler
temperatures [21] could be modeled with periodic transmission rates. This would re-
quire the development and analysis of multi-strain non-autonomous models. Multi-strain
non-autonomous epidemic models do not seem to have been discussed so far.
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In this paper we consider a multi-strain SIS model with periodic coefficients. Since
we assume the total population size constant and equal to one, we eliminate the variable
for the susceptible individuals. The resulting system is a variant of the classical Lotka-
Volterra n-species competition system. In contrast to multi-strain non-autonomous epi-
demic models, Lotka-Volterra competition systems have been studied extensively not
only in the constant coefficient case but also in the case of time dependent (periodic) co-
efficients. The pioneering work on non-autonomous Lotka-Volterra competition systems
is due to Jim Cushing, whose contribution to science in general, and to mathematical
biology in particular, we are celebrating today on occasion of his 65th birthday. In the
late 1970’s and early 1980’s Cushing authored a number of articles devoted to the non-
autonomous versions of many classical ecological models: Lotka-Volterra predator-prey
models [9, 14], Lotka-Volterra 2-species competition models [10, 11], n-species predator-
prey/competition models [12], and the more-general Kolmogorov systems with periodic
coefficients [13]. In [10] Cushing showed that competing species may coexist in a com-
petitive systems with periodic coefficients even if they will competitively exclude each
other in a system with constant coefficients equal to the time averages of the peri-
odic coefficients. Cushing’s early results were extended [32]. Cushing’s work moti-
vated a number of articles on competitive non-autonomous Lotka-Volterra systems (e.g.
[1, 3, 6, 16, 39, 25]). Even today the questions on global persistence and extinction of
the species in such systems is still being investigated [2, 26, 4].

This paper is structured as follows. Section 2 introduces the model, its re-formulations,
the reproduction numbers and results on extinction of the disease. Section 3 establishes
the existence of a single-strain periodic solution corresponding to each strain. Section 4
derives conditions for the local stability of the single-strain periodic solutions. Section
5 considers a two-strain version of the model and establishes the existence and conver-
gence to a periodic coexistence solution. Section 6 discusses the special case when the
transmission rate is a product of a periodic contact rate and a constant probability of
transmission, and establishes competitive exclusion in that case. Section 7 summarizes
the results and draws conclusions.

2. A non-autonomous SIS model

In this section we introduce a non-autonomous SIS epidemic model with multiple
strains. We study a model with recruitment and deaths. We assume all newly recruited
individuals are susceptible. The recruitment and mortality rate are assumed equal and
denoted by µ(t). The function µ(t) is assumed nonnegative and periodic. In nature the
recruitment rate needs to be periodic if it models seasonality in births. Many species
breed in strictly defined breeding seasons and the birth/recruitment rates may be peri-
odic. The transmission rate of strain i is denoted by βi(t) for i = 1 . . . n. All transmission
rates are also assumed nonnegative and periodic. The transmission rate may be periodic
because of migratory patterns of host species. In human epidemic models the contact
rate can vary with the time in the year as is the case with students academic years.
Finally, we denote by γi(t) the recovery rate from strain i. All recovery rates are also
assumed nonnegative and periodic. All periodic functions have period ω. The SIS model
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with multiple strains takes the form:

(2.1)
dS
dt

= µ(t) −
∑n

j=1 βj(t)SIj − µ(t)S +
∑n

j=1 γj(t)Ij

dIj

dt
= βj(t)SIj − (µ(t) + γj(t))Ij, j = 1, . . . , n

The number of susceptibles in the population is denoted by S(t). The number of indi-
viduals infected by strain j is denoted by Ij(t). The total population is given by

N(t) = S(t) +
n

∑

j=1

Ij(t).

The differential equation satisfied by the total population size is obtained by adding all
equations in the system (2.1):

N ′(t) = µ(t) − µ(t)N(t).

Integrating the equation for the total population size, we get

N(t) = e−
∫ t

0
µ(σ)dσ(N0 − 1) + 1

where N0 is the value of the total population size at time zero. Since
∫

∞

0

µ(σ)dσ = ∞

we have limt N(t) = 1. In the remainder of this article we will assume that the total
population size is constant and rescaled to one. Thus, we will assume that system (2.1)
is subject to the initial conditions S(0) = S0, Ij(0) = I0

j for j = 1, . . . , n that satisfy

S0 +
n

∑

j=1

I0
j = 1.

This assumption implies that N(t) = 1 for all t. We use this equation to eliminate the
number of susceptible individuals S(t). We have

S(t) = 1 −
n

∑

j=1

Ij.

Using this expression the system (2.1) can be rewritten in the form

(2.2)
dIj

dt
= βj(t)(1 −

n
∑

k=1

Ik)Ij − (µ(t) + γj(t))Ij, j = 1, . . . , n

The slightly more general case where the initial conditions do not add to one will lead
to a system similar to (2.2) in which the number 1 is replaced with the given function
N(t). Such a system can be handled similarly to system (2.2) but will not be discussed
in this article. We consider the system (2.2) on the set:

Ω = {(I1, . . . , In) ∈ Rn
+ :

n
∑

k=1

Ik ≤ 1}.

It is easy to see that the set Ω is positively invariant. Our aim is to define basic
reproduction numbers of the strains such that if the parameter-functions µ(t), βj(t),
γj(t) are assumed constant, the reproduction numbers of the strains for the system with
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constant coefficients are recovered. To define the basic reproduction numbers of the
strains, we first introduce the average of a periodic function over its period. If f(t) is a
periodic function of period ω, then the average of f is given by

< f >=
1

ω

∫ ω

0

f(t) dt.

It is not hard to see (a proof is given in [43], section 3.1.2) that

lim
t→∞

1

t

∫ t

0

f(s) ds =< f > .

We define the reproduction numbers of the strains as

Rj =
< βj >

< µ > + < γj >
, j = 1, . . . , n.

This definition is basically the same definition as in [27] and a special case of the definition
preceding Theorem 3.1 in [41]. The disease-free equilibrium of the system (2.1) is given
by E0 = (1, 0, . . . , 0). To establish the local stability or instability of the disease-free
equilibrium we linearize around the disease-free equilibrium. Let S(t) = s(t)+1, Ij(t) =
ij(t), for j = 1, . . . n, where s(t) and ij(t) are the perturbations. Clearly ij(t) are
nonnegative, but s(t) does not necessarily have a definite sign. The systems for the
perturbations becomes:

(2.3)
ds
dt

= −
∑n

j=1 βj(t)ij +
∑n

j=1 γj(t)ij
dij
dt

= βj(t)ij − (µ(t) + γj(t))ij, j = 1, . . . , n

Solving the equation for ij(t) we get

ij(t) = ij(0)e
∫ t

0
[βj(s)−(µ(s)+γj(s))] ds

If Rj < 1 then limt→∞ ij(t) = 0 for j = 1, . . . , n. If, however, Rj > 1 for some j, then
ij(t) → ∞. We have established the following result:

Proposition 2.1. The disease-free equilibrium E0 = (1, 0, . . . , 0) of the system (2.1) is
locally asymptotically stable if Rj < 1 for all j = 1, . . . , n. If there exists Rk > 1, then
the disease-free equilibrium E0 is unstable.

In fact a stronger result is possible. The following proposition gives a sufficient condi-
tion for the eradication of strain j. We will see in the next section that if that condition
fails to hold, then the corresponding strain can survive in the absence of competition.

Proposition 2.2. If Rj < 1 for some j, then

Ij(t) → 0 as t → ∞.

To see this result, notice that since S(t) ≤ 1 we have

I ′

j(t) ≤ βj(t)Ij(t) − (µ(t) + γj(t))Ij(t).

Solving this inequality we have

Ij(t) = Ij(0)e
∫ t

0
[βj(s)−(µ(s)+γj(s))] ds

Thus, Ij(t) → 0 as t → ∞.
Proposition 2.2 implies that if Rj < 1 for all j = 1, . . . , n, then the disease-free

equilibrium E0 is globally asymptotically stable.
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3. Existence of single-strain periodic solution

In this section we show that if Rj > 1 for some j and Rk < 1 for all k = 1, . . . , n
and k 6= j, then strain j may survive, while the rest will be eliminated. Without loss of
generality we may assume R1 > 1, and the remaining basic reproduction numbers are
smaller than one. As a first step we assume Ik(0) = 0 for k = 2, . . . , n. This implies
that Ik(t) = 0 for all t. We will show that if R1 > 1, then the equation

(3.1)
dI

dt
= β(t)(1 − I)I − (µ(t) + γ(t))I

has a unique positive periodic solution ξ(t). In the above equation we have omitted
the subscript one. Equation 3.1 is known as the periodic Bernoulli equation and has
received much attention in the literature. As a result the fact that it has a unique
periodic solution is well-known. For alternative approach to it see [43].

We are considering equation (3.1) on the domain

Ω1 = {I : I ∈ [0, 1]}.

To see the existence of a periodic solution, we define the operator P which maps the
interval [0, 1] into itself:

P : [0, 1] −→ [0, 1].

The operator P is the Poincaré map whose action is defined as follows. If I(0) = I0,
then

P(I0) = I(ω, I0)

where, I(t, I0) is the solution of the equation (3.1) which starts at I0. The Poincaré map
is continuously differentiable, one-to-one. It satisfies: P(0) = 0, and P(1) < 1. The
number Ip ∈ [0, 1] is an initial value of a periodic solution if and only if

P(Ip) = Ip

that is, if Ip is a fixed point of the Poincaré map. Therefore, in order to show existence
of a positive, periodic solution of (3.1), we have to show that the Poincaré map has a
fixed point. Denote by

v(t) =
∂I

∂I0

(t, I0).

Then the derivative of the Poincaré map is given as follows:

P ′(I0) =
∂I

∂I0

(ω, I0) = v(ω).

One can obtain the derivative of the Poincaré map by differentiating the equation (3.1)
by the initial condition I0:

v′(t) = v(t)[β(t)(1 − I(t, I0)) − (µ(t) + γ(t)) − β(t)I(t, I0)]

Differentiating the initial condition of I(0) = I0 by I0 we obtain the following initial
condition for v: v(0) = 1. The differential equation for v can be solved. That gives the
following expression for the derivative of the Poincaré map:

P ′(I0) = e
∫ ω

0
[β(t)(1−I(t,I0))−(µ(t)+γ(t))−β(t)I(t,I0)] dt.
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Clearly P ′(I0) > 0. This implies that Poincaré map is increasing. Thus, if I1 and I2 are
two initial conditions satisfying I1 < I2 then P(I1) < P(I2). Furthermore,

P ′(0) = e
∫ ω

0
[β(t)−(µ(t)+γ(t))] dt = eω[<β>−(<µ>+<γ>)].

This implies that P ′(0) > 1 because R1 > 1. Hence, for I0 small enough we have

P(I0) − P (0)

I0

≈ P ′(0) > 1.

Therefore,

P(I0) > I0

for I0 small enough. Since P(1) < 1 then P(I0) − I0 changes sign in the interval (0,1).
Therefore, there exists Ip, such that

P(Ip) = Ip.

This establishes the existence of a positive periodic solution of (3.1).
To show uniqueness, assume there exist two fixed points Ip1 and Ip2 which are distinct.

Without loss of generality we may assume Ip1 < Ip2. We have

(3.2) |Ip1 − Ip2| = |P (Ip1) − P(Ip2)| = |P ′(Im)||Ip1 − Ip2|

where Im satisfies Ip1 < Im < Ip2. These last inequalities imply

I(t, Ip1) < I(t, Im) < I(t, Ip2).

First, we note that if I(t, Ip) is a periodic solution that satisfies equation (3.1), then
∫ ω

0

[β(t)(1 − I(t, Ip)) − (µ(t) + γ(t))] dt = 0.

Hence,

(3.3)
P ′(Im) = e

∫ ω

0
[β(t)(1−I(t,Im))−(µ(t)+γ(t))−β(t)I(t,Im)] dt

< e
∫ ω

0
[β(t)(1−I(t,Ip1))−(µ(t)+γ(t))−β(t)I(t,Im)] dt

= e−
∫ ω

0
β(t)I(t,Im) dt < 1

Thus, we obtain a contradiction with (3.2). The contradiction is a result of the assump-
tion that we have two distinct positive periodic solutions.

Summarizing the results in this section we have the following Theorem.

Theorem 3.1. For each i for which Ri > 1, there exist a unique, positive periodic func-
tion ξi(t) such that (0, 0, . . . , 0, ξi(t), 0 . . . , 0) is a solution to the system (2.2). Further-
more, if (0, . . . , 0, Ii(t), 0 . . . , 0) is a solution of the system (2.2) starting from Ii(0) > 0,
we have

(3.4) lim
t→∞

|Ii(t) − ξi(t)| = 0.

To complete the proof of the Theorem we have to establish the convergence to the
periodic solution. We again assume that R1 > 1, and we consider the solutions of
equation (3.1). Let I(t) is an arbitrary solution, starting from the initial condition I0.
We recall that Ip is the initial condition for the periodic solution. We assume that
I0 6= Ip. We have two choices P(I0) > I0 or P(I0) < I0. Assume P(I0) < I0. The other
case can be addressed in a similar way. Since the Poicarè map is increasing, we have
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Pn(I0) < Pn−1(I0). Consequently, the sequence {Pn(I0)}
∞

n=0 is decreasing, and since it
is bounded, it must have a limit:

lim
n→∞

Pn(I0) = I∞.

The number I∞ is necessarily a fixed point of the Pincarè map P(I∞) = I∞. Thus,
I∞ = 0 or I∞ = Ip. Assume that I∞ = 0. Then for some N the number PN(I0) is
small enough so that from the properties of the Poincarè map we have PN+1(I0) >
PN(I0) which contradicts the fact that the sequence is decreasing. Therefore, I∞ = Ip.
Consequently, the limit (3.4) holds. This completes the proof of the Theorem.

4. Local stability of the single-strain periodic solutions

The single-strain periodic solutions Ei(t) = (0, 0, . . . , 0, ξi(t), 0 . . . , 0) play the role of
the dominance equilibria in models with constant coefficients. Just as in the constant
coefficient case, the stability properties of these single-strain periodic solutions determine
the outcome of the competition of the strains. Determining the global stability of the
single-strain periodic solutions is only possible in some cases but it is difficult in the
general case. We, however, can consider the local stability. To determine the local
stability of each single strain periodic solution, one linearizes the system (2.2) around
the single-strain periodic solution. Without loss of generality we may consider the single-
strain solution corresponding to periodic solution for strain one E1(t) = (ξ1(t), 0 . . . , 0).
The other cases are symmetrical. Let I1(t) = x1(t)+ ξ1(t) and Ij(t) = xj(t), where xj(t)
with j = 1, . . . , n are the perturbations. Then the linearized system takes the form:

(4.1)

dx1
dt

= β1(t)(1 − ξ1(t))x1 − β1(t)ξ1(t)
∑n

k=1 xk − (µ(t) + γ1(t))x1,
dxj

dt
= βj(t)(1 − ξ1(t))xj − (µ(t) + γj(t))xj, j = 2 . . . n

The linear system (4.1) can be written in vector form as x′(t) = A(t)x(t) where A(t) is
the time-dependent matrix of the coefficients. The linearized systems gives the dynamics
of the solutions near a periodic solution. To investigate the the stability of the zeroth
solution of the linearized system, one has to use Floquet Theory. To use these theory, one
needs a fundamental matrix. To find a fundamental matrix, we have to find a system of
linearly independent solution of the system, that is we have to solve the system. Clearly,
setting xk(t) = 0 for k = 2, . . . , n, and then solving the first equation, will give us one
solution. The first equation becomes:

(4.2)
dx1

dt
= β1(t)(1 − ξ1(t))x1(t) − β1(t)ξ1(t)x1(t) − (µ(t) + γ1(t))x1(t) = a11(t)x1(t),

one solution of which is x1(t) = e
∫ t

0
a11(s)ds, where a11(t) denotes the coefficient of x1

in the right hand side. Hence, (x1(t), 0, . . . , 0) is the first column of the fundamental
matrix. To obtain the remaining solutions, we set xj(t) = 0 for j = 2, . . . , n and j 6= k,
where k 6= 1. Then we solve the kth equation:

xk = e
∫ t

0
akk(s)ds

where akk(t) is the coefficient in front of xk in the right hand side of the kth equation
in the system (4.1). This value of xk(t) is substituted in the first equation, and the
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first equation is then solved. The solution of the first equation in this case is a com-
plex expression, which will be denoted by x1k(t). The following fundamental matrix is
obtained:

Φ(t) =











e
∫ t

0
a11(s)ds x12(t) . . . x1n(t)

0 e
∫ t

0
a22(s)ds . . . 0

. . . . . . . . . . . .

0 0 . . . e
∫ t

0
ann(s)ds











The Floquet multipliers are the eigenvalues of the matrix Φ(ω). It is straightforward to
see that they are

e
∫ ω

0
a11(s)ds, . . . , e

∫ ω

0
ann(s)ds.

From here one can read off the Floquet exponents. The first Floquet exponent is different
from the remaining exponents, and is given by the expression

(4.3) λ11 =
1

ω

∫ ω

0

[β1(s)(1 − ξ1(s)) − β1(s)ξ1(s) − (µ(s) + γ1(s))] ds.

We recall that ξ1(t) is the periodic solution of the first equation. Therefore, this periodic
solution satisfies the equation (3.1). We integrate equation (3.1) from zero to ω. Since
we have

∫ ω

0

ξ′1(t)dt = 0

we also have that
∫ ω

0

[β1(s)(1 − ξ1(s)) − (µ(s) + γ1(s))] ds = 0.

Hence, the Floquet exponents are:

(4.4)

λ11 = −
1

ω

∫ ω

0

β1(s)ξ1(s) ds

λ12 =
1

ω

∫ ω

0

[β2(s)(1 − ξ1(s)) − (µ(s) + γ2(s))] ds

. . .

λ1n =
1

ω

∫ ω

0

[βn(s)(1 − ξ1(s)) − (µ(s) + γn(s))] ds

Clearly, the Floquet exponent λ11 < 0. Thus, the stability of the zero solution of
the linearized system, and therefore the linear stability of the single-strain oscillatory
solution E1(t) of the system (2.2), depends on the remaining Floquet exponents. If
λ1j < 0 for all j = 2, . . . , n, then the single-strain oscillatory solution E1(t) is locally
asymptotically stable. If there exists λ1k > 0 for some 2 ≤ k ≤ n, then the single-strain
oscillatory solution E1(t) is unstable.

From the Floquet exponents we can define the invasion reproduction numbers of strain
j at the equilibrium of strain one:

R̂1
j =

< βj(1 − ξ1) >

< µ > + < γj >
for j = 2, . . . , n.

The invasion reproduction numbers and the Floquet exponents are related: R̂1
j < 1

if and only if λ1j < 0. The results of this section can be summarized in the following
theorem.
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Theorem 4.1. The single-strain periodic solution Ei(t) = (0, . . . , 0, ξi(t), 0, . . . , 0) is
locally asymptotically stable if

R̂i
j < 1 for all j = 1, . . . , n; j 6= i.

If R̂i
j > 1 for some j 6= i, then the single-strain periodic solution Ei(t) is unstable.

In the remainder of this section we establish global stability of the single-strain periodic
solution Ei(t) under given conditions. These conditions are sufficient but not necessary.
We again derive the result for the single-strain periodic solution of strain one. Analogous
results hold for the other single-strain periodic solutions.

Theorem 4.2. If R1 > 1 and Rj < 1 for j = 2, . . . , n, then the single-strain periodic
solution E1(t) = (ξ1(t), 0, . . . , 0) is globally stable.

To see this result we use Proposition 2.2. Let ǫ > 0 be small so that (1 − nǫ)R1 > 1.
Since Proposition 2.2 implies that Ij(t) → 0 for j = 2, . . . , n as t → ∞. Then there
exists T such that

Ij(t) ≤ ǫ for t ≥ T, j = 2, . . . , n.

By shifting the dynamical system (2.2) we may assume that

Ii(t) ≤ ǫ for all t.

Thus, the solution of the first equation in system (2.2) satisfies the following inequalities:

(4.5) β1(t)(1 − nǫ − I1)I1 − (µ(t) + γ1(t))I1 ≤
dI1

dt
≤ β1(t)(1 − I1)I1 − (µ(t) + γ1(t))I1

Together with the above inequalities, consider the following equations:

(4.6)
dX1
dt

= β1(t)(1 − X1)X1 − (µ(t) + γ1(t))X1

dY1
dt

= β1(t)(1 − nǫ − Y1)Y1 − (µ(t) + γ1(t))Y1

The solution of the first equation of system (2.2) I1(t) satisfies

(4.7) Y ǫ
1 (t) ≤ I1(t) ≤ X1(t),

where X1(t) and Y ǫ
1 (t) are the solutions of the above two equations with the same initial

conditions. The smaller the ǫ, the closer is the solution Y ǫ
1 (t) to X1(t). We saw in

Section 3 that the first equation in (4.6) has a unique periodic solution ξ1(t). Similar
deliberations as in Section 3 can show that the same is true for the second equation in
(4.6), particularly because (1−nǫ)R1 > 1. Denote by ξǫ

1(t) the unique periodic solution
of the second equation of (4.6). It can similarly be shown that that periodic solution is
globally stable. Taking the limit as t → ∞ in inequalities (4.7) by Theorem 3.1 we get

ξǫ
1(t) ≤ I1(t) ≤ ξ1(t).

Since the above inequalities are valid for any ǫ no matter how small, we obtain that
I1(t) → ξ1(t) as t → ∞. This completes the proof.
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5. Coexistence

In this section we show that coexistence in a oscillatory regime is possible. Although
we believe that the result below can be extended to n strains we consider a two-strain
version of the model (2.2).

(5.1)
dI1
dt

= β1(t)(1 − I1 − I2)I1 − (µ(t) + γ1(t))I1,
dI2
dt

= β2(t)(1 − I1 − I2)I2 − (µ(t) + γ2(t))I2.

The system (5.1) is competitive ([37], p. 33). If we denote by fi(t, I1, I2) the right hand
side of equation i, for i = 1, 2, then

(5.2)

∂f1

∂I2
= −β1(t)I1 ≤ 0

∂f2

∂I1
= −β2(t)I2 ≤ 0

Let P be the Poincarè map for the system (5.1). Therefore, if I0 = (I1(0), I2(0)), then
P(I0) = (I1(ω, I1(0)), I2(ω, I2(0))). The following Theorem can be found in [40], p.170.

Theorem 5.1. Let the sequence {Pn(I0)}
∞

n=1 be bounded. Then the sequence is converg-
ing, that is there exists Ip such that

lim
n→∞

Pn(I0) = Ip.

Moreover, Ip is a fixed point of the Poincarè map P(Ip) = Ip.

This theorem says that if (I1(t), I2(t)) is an arbitrary solution of system (5.1) starting
from an arbitrary initial condition (I1(0), I2(0)), then there exists a periodic solution of
the system (5.1), denoted by (η1(t), η2(t)) such that the solution (I1(t), I2(t)) converges
to that periodic solution. The theorem does not say whether η1(t) 6= 0 and η2(t) 6= 0.
Thus, in theory the limit periodic solution could be one of the single-strain periodic
solutions E1(t) or E2(t) whose existence was established in the previous sections.

In what follows we show that under certain conditions the solution of the system (5.1)
is persistent. We say that strain i is weakly uniformly persistent, if there exists δ > 0,
independent of the initial conditions, such that

lim sup
t→∞

Ii(t) ≥ δ for i = 1, 2.

We say that strain i is uniformly strongly persistent if there exists a number δ > 0,
independent of the initial conditions, such that

lim inf
t→∞

Ii(t) ≥ δ for i = 1, 2.

Clearly, if a strain is uniformly strongly persistent, it is also uniformly weakly persistent.
The opposite statement is not true. We establish the uniform strong persistence for both
strains in the following theorem.

Theorem 5.2. Assume Rj > 1 and that the invasion reproduction number of strain i

is larger than one, R̂j
i > 1. Then, strain i is uniformly strongly persistent.

To see this result assume without loss of generality R1 > 1 and R̂1
2 > 1. The first

condition guarantees that strain one in the absence of strain two has a nontrivial periodic
solution. The second condition says that strain two can invade the periodic solution of
strain one. A consequence of the second condition is that R2 > 1. We will establish
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uniformly strong persistence of strain two. The other case is established in the same
way. First we establish the uniformly weak persistence. Assume the contrary, that is
assume that for every ǫ we have lim supt→∞

I2(t) ≤ ǫ/2. Then for a fixed ǫ > 0 there
exists T such that for all t > T , we have I2(t) ≤ ǫ.

From the first equation in (5.1) we obtain the following inequality:

I ′

1 ≤ β1(t)(1 − I1)I1 − (µ(t) + γ1(t))I1(t).

Let X(t) be the solution of the equation corresponding to the above inequality and
starting from the same initial condition as I1 in the system (5.1). Thus, X(t) solves:

(5.3) X ′(t) = β1(t)(1 − X(t))X(t) − (µ(t) + γ1(t))X(t).

Then we have I1(t) ≤ X(t) for all t. Since R1 > 1, we know that equation (5.3) has
a unique periodic solution ξ1(t), and every solution to equation (5.3) approaches that
periodic solution. Thus, X(t) → ξ1(t) as t → ∞. We note that ξ1(t) is also the periodic
function in the single-strain periodic solution E1(t). Furthermore, there exists T1 such
that for all t > T1 we have

I1(t) ≤ ξ1(t) + ǫ.

Shifting the dynamical system we may assume that I2(t) ≤ ǫ and I1(t) ≤ ξ1(t) + ǫ for
all t > 0. Using these inequalities in the second equation of system (5.1) we have

I ′

2(t) ≥ β2(t)(1 − ξ1(t) − 2ǫ)I2(t) − (µ(t) + γ2(t))I2(t)

Solving this inequality we have

I2(t) ≥ I2(0)e
∫ t

0
[β2(s)(1−ξ1(s))−(µ(s)+γ2(s))] ds−2ǫ

∫ t

0
β2(s) ds.

Assuming ǫ is small enough so that

(5.4)

1

t

{∫ t

0

[β2(s)(1 − ξ1(s)) − (µ(s) + γ2(s))] ds − 2ǫ

∫ t

0

β2(s) ds

}

→< µ + γ2 > (R̂1
2 − 1) − 2ǫ < β2 >> 0

we get that I2(t) → ∞ as t → ∞. That is a contradiction with our assumption that I2(t)
is not uniformly weakly persistent. To show uniform strong persistence we use Theorem
2.3 in [41]. The existence of a compact attractive set follows from the fact that solutions
are bounded Ij(t) ≤ 1 for all t > 0. The first condition in the theorem follows from the

fact that I2(t) ≥ I2(s)e
−

∫ t

s
µ(σ)+γ2(σ) dσ > 0 for all s > 0 such that I2(s) > 0. Property

(PS) can be established as in the case of the SIRS model in [41]. Then Theorem 2.3 in
[41] implies the uniform strong persistence.

The above result leads to the following Corollary.

Corollary 5.1. Assume R1 > 1 and R2 > 1 and that both invasion reproduction num-
bers are larger than one, that is R̂2

1 > 1 and R̂1
2 > 1. Then, every solution converges to

a coexistence periodic solution E∗(t) = (η1(t), η2(t)), where η1(t) 6= 0 and η2(t) 6= 0.

To see this corollary, we notice that under the above conditions Theorem 5.2 implies
that both I1(t) and I2(t) are uniformly strongly persistent, that is there exists δ > 0
such that

lim inf
t→∞

I1(t) ≥ δ lim inf
t→∞

I2(t) ≥ δ
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Figure 1. This figure gives an example of coexistence of the two strains
in the population. The left figure illustrates that the number infected
individuals with strain one I1(t) persists and tends to an oscillatory so-
lution. The right figure illustrates that the number infected individu-
als with strain two I2(t) persists and tends to an oscillatory solution.
The parameter values for both figures are: β1(t) = 1.1(1 + 0.9 sin(t)),
β2(t) = 1.5(1 + 0.1 cos(t)), γ1 = 0.1, γ2 = 0.5, µ = 0.5. The reproduction
numbers of the two strains are R1 = 1.83333, R2 = 1.5.

for all initial conditions (I1(0), I2(0)) with both components being nonzero. Theorem
5.1 implies, however, that those solutions converge to a periodic solution (η1(t), η2(t)).
Since,

lim inf
t→∞

Ii(t) = lim inf
t→∞

ηi(t) > δ

we have that the two components of the periodic solution η1(t) and η2(t) are both
nonzero. Therefore, the convergence is to a coexistence periodic solution.

We illustrate the periodic coexistence in Figure 1. The results in Theorem 5.2 and
Corollary 5.1 presumably can be obtained from [32] but the rescaling there makes the
mathematical conditions imposed difficult to interpret biologically.

6. Is periodicity in the contact rate sufficient for coexistence?

We motivated the consideration of multi-strain epidemic models with periodic coef-
ficients by the observed periodicity in childhood diseases and influenza. In the case of
the childhood diseases it has been suggested that periodicity stems from the school-year
system which makes the contact rate among children periodic. Is periodic contact rate
sufficient to sustain pathogen diversity? We address this question in this section. We
recall that in the constant coefficient case the transmission rate of strain i is a product
of the contact rate of the population c (assuming that all classes have the same contact
rate) and the probability of transmission of strain i – pi:

βi = cpi.

We consider the model (2.1) under the assumption that the strain-specific periodic trans-
mission rate βi(t) is represented as follows:

βi(t) = c(t)pi
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where the contact rate c(t) is a nonnegative periodic function of period ω and the
probability of transmission of strain i remains constant. The reproduction number of
strain i is then given by:

Ri =
pi < c >

< µ > + < γi >
.

Surprisingly, coexistence does not occur, and competitive exclusion is the only out-
come of the multi-strain competition in periodic environments, even if the remaining
parameters µ(t) and γi(t) are still assumed periodic (see [42]). As before, the strain with
the largest reproductive number eliminates the rest. This result is established in the
following theorem, where we have assumed without loss of generality that strain one has
the largest reproduction number.

Theorem 6.1. Assume Ri > 1 for i = 1, . . . , n. Assume, in addition, that R1 > Rj

for j = 2, . . . , n. Then,

Ij(t) → 0 j = 2, . . . , n, as t → ∞

and

I1(t) → ξ1(t) as t → ∞.

To see the claim in this theorem, for a fixed j > 1 consider the quantity

η(t) =
I

pj

1 (t)

Ip1

j (t)
.

Differentiating η with respect to time we get:

η′(t) = η(t)[p1pjc(t)S(t) − pj(µ(t) + γ1(t))] − η(t)[p1pjc(t)S(t) − p1(µ(t) + γj(t))]

Simplifying the expression on the right hand side we obtain:

η′(t) = η(t)[p1(µ(t) + γj(t)) − pj(µ(t) + γ1(t))].

Dividing by η(t), integrating from zero to t, and dividing by t to get the averages, we
are lead to:

1

t
ln

η(t)

η(0)
= p1pj

[

1

t

∫ t

0

µ(σ) + γj(σ)

pj

dσ −
1

t

∫ t

0

µ(σ) + γ1(σ)

p1

dσ

]

.

Taking the limit as t → ∞, the right hand side above converges to the positive number

p1pj < c >

(

1

Rj

−
1

R1

)

.

Since limt→∞ ln η(t)
η(0)

> 0 and η(0) > 0, then clearly η(t) → ∞ as t → ∞. Since I1(t) is

bounded, the fact that η(t) → ∞ as t → ∞ implies that

Ij(t) → 0 as t → ∞.

Then, similarly to 4.2 one can show that strain one persists, and in fact the solutions
of the system (2.2) converge to E1(t).
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7. Summary of results

In this paper we introduce an n-strain SIS model with periodic coefficients. The birth
and death rates are assumed to be the same so that the total population is constant and
equal to one. That is, the number of individuals in each class is in fact the proportion
of individuals in the various classes. For this model we succeed in defining reproduction
numbers for each strain Ri which agree with the corresponding reproduction numbers of
the autonomous system obtained from system (2.1) by assuming all coefficients constant
and equal to the averages of time dependent coefficients. We establish the following
results:

(1) There is a unique disease-free equilibrium which is locally and globally stable if all
reproduction numbers are smaller than one. The disease-free equilibrium is un-
stable if one of the reproduction number is greater than one. These observations
agree with similar observations made for multi-strain autonomous models.

(2) Moreover, we establish that if Ri < 1 for any strain i, then the number of
individuals infected with this strain will go to zero, independently of the behavior
of the other infective classes.

(3) We establish that to each strain there corresponds a unique single-strain periodic
solution, if its reproduction number is greater than one. This periodic solution
is globally stable in the hyper-plane where all other strains are extinct.

(4) The single-strain periodic solution is locally stable if the invasion numbers of all
other strains at the equilibrium of the resident strain are less than one. The
single-strain periodic solution is unstable if there is an invasion number grater
than one.

(5) For the model with two strains we establish the existence of at least one periodic
coexistence solution. As a part of this result, we derive conditions on the re-
production numbers and invasion reproduction numbers that guarantee uniform
strong persistence of a strain.

(6) Finally, for the n-strain model we establish that if the transmission rate is pe-
riodic because the contact rate is periodic, but the probability of transmission
given a contact is constant, βi(t) = c(t)pi, then coexistence does not occur, and
competitive exclusion is the only outcome. In agreement with the autonomous
system the strain with the largest reproduction number eliminates the rest.

The techniques used to establish competitive exclusion for the multi-strain SIR model
in [7] could be used to establish that competitive exclusion is the only outcome in the
autonomous version of model (2.1) with constant coefficients equal to the averages of
the periodic coefficients. In contrast, our results show that the non-autonomous model
(2.1) allows for coexistence. This result, however, is not entirely surprising. Coexistence
between two competing bacteria as a result of periodicity in the dilution rate has been
obtained in [40]. What causes the coexistence in our case? Our results shaw that
coexistence occurs as a result of distinct, periodic transmission rates for the strains βi(t)
which are not linearly dependent. As Figure 1 shows in this case periodicity in the death
and recovery rates is not necessary. If the transmission rates are periodic only because
of the contact rate, that is, they have the form:

βi(t) = pic(t) i = 1, . . . , n
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competitive exclusion is the only outcome. This observation has an interesting impli-
cation for influenza. The periodicity in influenza prevalence has facinated researchers
for quite some time. Influenza seasonality is still not very well understood. Multiple
hypotheses have been set forth [21]. Our results here suggest that from the hypotheses
seth forth in [21], the mechanism(s) that have the potential to lead to influenza’s season-
ality, given influnza’s genetic diversity, are those that could lead to periodic probability
of transmission/susceptibility.
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