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Abstract. We formulate an immuno-epidemiological model of coupled “within-host” model of
ODEs and “between-host” model of ODE and PDE, using the Human Immunodeficiency Virus
(HIV) for illustration. Existence and uniqueness of solution to the “between-host” model is estab-
lished, and an explicit expression for the basic reproduction number of the “between-host” model
derived. Stability of disease-free and endemic equilibria is investigated. An optimal control prob-
lem with drug-treatment control on the within-host system is formulated and analyzed; these results
are novel for optimal control of ODEs linked with such first order PDEs. Numerical simulations
based on the forward-backward sweep method are obtained.

Key words: within-host dynamics, between-host dynamics, equilibria, stability, optimal control.
AMS subject classification: 34D20, 35L02, 49K15, 49K20

1 Introduction
There is continuous threat of outbreak of infectious disease despite ongoing advancements in drug
therapies and vaccines [28]. Thus, it is necessary to develop better ways of understanding the
spread of disease. To this effect, immunological and epidemiological models have been proposed
with the aim of controlling the outbreak of infectious diseases.

Mathematical immunology is concerned with the study of disease dynamics in an infected
host, where an infectious agent is spread from cell to cell within one patient [28]. The study of
the interaction between a pathogen and the immune system gives an insight into the mechanism
of disease proliferation. In mathematical epidemiology, the spread of disease in a population of
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hosts is examined with the goal of examining and tracing factors that contribute to the propaga-
tion of pathogens [28]. Epidemiological or between-host models are often structured to capture
discrete immune status, such as susceptible, exposed, infectious, recovered (immune), vaccinated,
time-since-infection to account for variable infectivity (pathogen load) and time-since-recovery to
account for gradual loss of immunity. However, most epidemiological models ignore pathogen
load and dependence of transmissibility on pathogen load, and detailed account of the immune
status during infection [42].

We will investigate linking within-host models with epidemiological models, and as our mo-
tivating scenario, we use the human immunodeficiency virus (HIV), which is a retrovirus. In the
future, we shall consider other scenarios such as Johne’s disease and Toxoplasma gondii, but we
concentrate on HIV for this introduction to our approach. HIV is generally a slow but progres-
sive disease in which the virus is present throughout the body at all stages of the disease, and it is
transmitted from one person to another through specific body fluids such as blood, semen, genital
fluids, and breast milk. The life cycle of HIV infection consists of six stages; namely, binding and
fusion, reverse transcription, integration, transcription, assembly and budding. Several mathemat-
ical epidemiology models of HIV [31, 34, 36, 37, 51] and mathematical immunology models of
HIV [38, 47] have been formulated and analyzed.

The two key features in infectious diseases are the transmission between hosts and the im-
munological process at the individual host level. Understanding how the two features influence
each other can be assisted through modeling. Linking components of the immune system with
the compartments of the epidemic model leads to a two-scale model. Much of the work on such
“linked” models deal with the two levels separately, making “decoupling” assumptions [1].

Despite advancements made with the study of epidemiological, within-host and immunological
models, the outbreak of some diseases cannot still be predicted. This dilemma may be attributed to
the fact that most modeling approaches are either restricted to epidemiological or immunological
formulations, while making decoupling assumptions [28]. Current research focuses on the com-
prehensive modeling approach, called immuno-epidemiological modeling, which investigates the
influence of population immunity on epidemiological patterns, translates individual characteris-
tics such as immune status and pathogen load to population level and traces their epidemiological
significance [13, 30, 42]. Several immuno-epidemiological models have been used to study the
relationship between transmission and virulence [5, 17, 18, 22, 23, 24]. Some of these models
deal with the two processes separately by making decoupling assumptions. Gilchrist and Sasaki
[23] used the nested approach to model host-parasite coevolution in which the within-host model
is independent of the between-host but the between-host model is expressed in terms of dependent
variables of the within-host model. Also, Feng et al. [17] investigated a coupled within-host and
between-host model of Toxoplasma gondii linked via the environment.

Our goals are to use a within-host model coupled with epidemiology model to capture the
impact on the epidemic of giving treatment to individuals, and investigate mathematically such a
coupled ODE/PDE system (well-posedness and optimal control).

Our general approach in immuno-epidemiological modeling involves three steps. The first step
involves formulating a within-host model within an infected host. Secondly, construct an epidemi-
ological model to describe the dynamics of host birth and death rates, and transmission of infection
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within the host population. Finally, nest the within-host model within the epidemiological model
by linking the dynamics of the within-host model to the additional host mortality, recovery and
transmission rates of the infection. The within-host and between-host models could be linked via
a structural variable and through coefficients. In the latter case, coefficients of the epidemiolog-
ical model are expressed as functions of the dependent variables of the within-host model. For
example, transmission rate is proportional to within-host viral load and disease-induced death rate
is proportional to parasite load and immune response, while in the former case, the independent
variable of the within-host model is the age-since-infection variable of the between-host model
[24, 42].

This work will have the first results on formulating this two-scale model in a careful mathemat-
ical framework and the first results on optimal control of such a model. We emphasize the novelty
of mathematical results, as well as the importance of the epidemiological and immunological re-
sults. To curtail the proliferation of free virus at the within-host level, we introduce two functions,
representing transmission and virion production suppressing drugs. Our goal is to use optimal con-
trol techniques in the coupled model to minimize free virus at the within-host level and infectious
individuals at the population level, while minimizing the cost of implementing the controls (this
may include toxicity effects). Optimal control of first-order partial differential equations is done
differently than optimal control of parabolic PDEs due to the lack of regularity of solutions to the
first-order PDEs. The steps in justifying the optimal control results are quite different and we use
Ekeland’s Principle [14] to get the existence of an optimal control.

In section 2, we present our within-host and between-host models. The within-host model
is independent of the between-host model, but the between-host model is linked to the within-
host via coefficients and a structural variable. In section 2.1, we prove the boundedness of state
solutions to the within-host model, and existence and uniqueness of solutions to the between-host
model is established. In section 2.2, an explicit expression for the basic reproduction number of the
epidemiological model is derived, steady solutions calculated and stability analysis of equilibrium
points is studied. We formulate and analyze an optimal control problem in section 3, and carry out
numerical simulations in section 4.

2 Within-host and Between-host Models
In this section, we formulate a simple within-host model of HIV and a between-host model of HIV
with age structure. In the within-host model, the independent variable is the time-since-infection
τ and for the between-host model, the independent variables are chronological time t and age-
since-infection τ . Our within-host model is given by the following system of ordinary differential
equations:
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dx

dτ
= r − β1V (τ)x(τ)− µx(τ) (2.1)

dy

dτ
= β1V (τ)x(τ)− d1y(τ) (2.2)

dV

dτ
= ν1d1y(τ)− (δ1 + s1)V (τ)− β̂1V (τ)x(τ) (2.3)

with initial conditions

x(0) = x0, y(0) = y0 and V (0) = V 0, (2.4)

where x is the number of healthy cells (uninfected CD4+ T cells), y is the density of infected
CD4+ T cells, V is the density of free (infectious) virus, r is the recruitment rate of healthy cells,
µ is the death rate of healthy cells, d1 is the death rate of infected cells, β1 is the transmission
rate, β̂1 is the binding rate of free virus to uninfected CD4+ T cells, ν1 is the number of virions
produced at bursting, δ1 is the death rate of virus, and s1 is the shedding rate of virus. See Table 1
for a summary of parameters and units of the within-host model.

Table 1: Within-Host Model Parameters

Quantity Description Units
x Density of healthy CD4+ T-cells cell/mm3

y Density of infected CD4+ T-cells cell/mm3

V Density of free virus virion/mm3

τ Time since start of infection days
r Source term for healthy cells (CD4+ T-cells) cell mm−3 day−1

µ Natural death rate of healthy cells day−1

β1 T cells infection rate by virus mm3 virion−1 day−1

β̂1 Binding rate of free virus to uninfected mm3 cell−1 day−1

CD4+ T cells
d1 Death rate of infected cells day−1

ν1 Virion production rate virion cell−1

δ1 Death rate of free virus day−1

s1 Shedding rate of free virus day−1

Our between-host SI (susceptible, infected) model assumes that the infected class is related to
the within-host behavior of a particular individual, and individuals in this class are structured by
both chronological time t and age of infection (age-since-infection), τ . Thus, our between-host
model is:
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dS

dt
= Λ− S(t)

N(t)

∫ A

0

c1s1V (τ)i(τ, t)dτ −m0S(t) in (0, T ) (2.5)

∂i(τ, t)

∂t
+
∂i(τ, t)

∂τ
= −m(V (τ))i(τ, t) in (0, T )× (0, A) (2.6)

i(0, t) =
S(t)

N(t)

∫ A

0

c1s1V (τ)i(τ, t)dτ, for t ∈ (0, T ) (2.7)

S(0) = S0, i(τ, 0) = i0(τ) for τ ∈ (0, A), t = 0, (2.8)

where S(t) is the number of susceptible individuals at time t, i(τ, t) is the density of infected
individuals at time t and age-since-infection τ , m(V (τ)) is the death rate of infected hosts (a
function of viral load), Λ is the recruitment rate of susceptible individuals, and m0 is the death rate
of susceptible individuals. The transmission rate is assumed to be proportional to the viral load of
the infected individuals, calculated by integrating with respect to τ ,

∫ A
0
c1s1V (τ)i(τ, t)dτ , where

c1 is the contact rate between susceptible and infected individuals. Thus, the new infectious process
of the population at time t, denoted by i(0, t), depends on the age distribution of the population at
time t, as determined by the integral of i(τ, t) over all ages, weighted with the specific transmission
rate β(τ) = c1s1V (τ). The number of susceptible and infectious individuals in the population at
time t = 0 are given by S(0) = S0 > 0 and i(τ, 0) = i0(τ), respectively. Thus, i(τ, 0) is the initial
age distribution of infectious individuals in the population, with i0 being a known nonnegative
function of age-since-infection, τ .

Table 2: Between-Host Model Parameters

Quantity Description Units
τ Age-since-infection days
t Chronological time years
A Maximal age-since-infection years
S(t) Susceptible individuals at time t humans
i(τ, t) Infected individuals of age τ and time t humans
S(0) Initial population of susceptible individuals humans
i(τ, 0) Initial population of infectious individuals humans

of age-since-infection τ
i(0, t) Newborns at time t humans
Λ Recruitment rate of susceptible humans humans year−1

m0 Natural death rate of susceptible humans year−1

m(V ) Death rate of infectious humans year−1

c1 Contact rate between susceptible and infectious humans mm3 virion−1 year−1

The total population of infectious individuals from birth to maximal age-since-infection, A, is
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defined as

I(t) =

∫ A

0

i(τ, t)dτ,

and the total population size of individuals in the population is N(t) = S(t) + I(t). For the sake
of introduction to our method, we assume the simplest form for the mortality function [12], m(V ),
as

m(V (τ)) = m0 + µ1V (τ),

so that in the absence of the virus, individuals die naturally at rate m0. The term µ1V (τ) gives
the additional host mortality due to the virus. See Coombs et al. [12] for other forms of mortality
functions.

2.1 Boundedness and Existence of Solutions
For positive initial data, standard results give that the state variables of the within-host model stay
positive for all time, and differential inequalities [15] can be used to establish boundedness of state
solutions. The positivity and boundedness of state solutions of the within-host model will be used
in the proof of existence of solutions to the between-host system and global stability of disease-free
equilibrium of the epidemiological model.

Theorem 2.1. Given the state equations (2.1) – (2.3), with positive initial conditions (2.4), there
exist constants Ĉ, C̃, C > 0 such that 0 < x(τ) ≤ Ĉ, 0 < y(τ) ≤ C̃ and 0 < V (τ) ≤ C, for all
τ > 0.

We develop a representation formula for the solution (if it exists) to the epidemiological model
determined by the methods of integrating factor and characteristics [7, 52], and prove the existence
and uniqueness of the solution. We use the method of integrating factor to represent the solution of
the first-order ordinary differential equation that models the population of susceptible individuals
and the method of characteristics for the first-order partial differential equations representing infec-
tious individuals in the population [32, 43]. A typical approach towards proving well-posedness of
a differential equation problem is to write the problem in integral form. To do this, we integrate the
differential equation (2.6) along the characteristic line τ − t = constant and consider cases where
τ > t and τ < t, which gives our representation formula for the solution to the epidemiological
model:

S(t) = S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)

+

∫ t

0

e−(m0+α)(t−s)S(s)

(
α− 1

N(s)

∫ A

0

c1s1V (τ)i(τ, s)dτ

)
ds (2.9)

i(τ, t) =

{
S(t−τ)
N(t−τ)

e−
∫ τ
0 m(V (s))ds

∫ A
0
c1s1V (r)i(r, t− τ)dr, τ < t

i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds, τ > t,

where S(t) in (2.9) is a representation formula for the solution to the differential equation
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dS

dt
+ αS(t) = Λ + αS(t)− S(t)

N(t)

∫ A

0

c1s1V (τ)i(τ, t)dτ −m0S(t),

with α ≥ c1s1C > 0. This differential equation is equivalent to equation (2.5).
To prove the existence and uniqueness of solution, we define our state solution space as

X = {(S, i) ∈ L∞(0, T )× L∞(0, T ;L1(0, A))|S(t) ≥ ε > 0, i(τ, t) ≥ 0, sup
t
S(t) <∞

and sup
t

∫ A

0

i(τ, t)dτ <∞ a.e. t},

whereL∞(0, A) is the space of all essentially bounded functions on (0, A), and ε = min
{
S0,

Λ
m0+α

}
.

We define a map
L : X → X, L(S, i) = (L1(S, i), L2(S, i)),

where

L1(S, i)(t) = S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)

+

∫ t

0

e−(m0+α)(t−s)S(s)

(
α− 1

N(s)

∫ A

0

c1s1V (τ)i(τ, s)dτ

)
ds, (2.10)

and

L2(S, i)(τ, t) =

{
S(t−τ)
N(t−τ)

e−
∫ τ
0 m(V (s))ds

∫ A
0
c1s1V (r)i(r, t− τ)dr, τ < t

i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds, τ > t

(2.11)

The following assumptions will be useful in establishing a Lipschitz property for the within-host
and between-host state solutions in terms of control functions (See section 3), and in proving
existence and uniqueness of solution to the epidemiological model:
• S0, m0, Λ, c1 and s1 are positive constants,
• V is given, such that 0 < V (τ) ≤ C for all τ > 0
•m(s) is non-negative and Lipschitz continuous,
• i0(τ) is non-negative for all τ ∈ (0, A),
•
∫ A

0
i0(τ)dτ ≤M and 0 < S0 ≤M .

Theorem 2.2. For T <∞, there exists a unique non-negative solution (S, i) to the epidemiological
system (2.5)−(2.7).

Proof. First, we show that the map L maps X into itself. Indeed,

|L1(S, i)|(t) ≤ |S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)|+

∣∣∣∣α ∫ t

0

S(s)e−(m0+α)(t−s)ds

∣∣∣∣
+

∣∣∣∣∫ t

0

e−(m0+α)(t−s) S(s)

N(s)

∫ A

0

c1s1V (τ)i(τ, s)dτds

∣∣∣∣
7
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≤ M + | Λ

m0 + α
(1− e−(m0+α)T )|+ α

m0 + α
sup
s
S(s)

+
K1

m0 + α

(
sup
s

∫ A

0

i(τ, s)dτ

)
<∞,

where K1 depends on the contact rate between susceptible and infectious individuals, shedding
rate of free virus and the bound on the population of free virus. Next, we estimate the second
component.∫ A

0

|L2(S, i)|(τ, t)dτ =

∫ t

0

∣∣∣∣ S(t− τ)

N(t− τ)
e−

∫ τ
0 m(V (ω))dω

∫ A

0

c1s1V (r)i(r, t− τ)dr

∣∣∣∣ dτ
+

∫ A

t

∣∣∣i01(τ − t)e−
∫ t
0 m(V2(τ−t+s))ds

∣∣∣ dτ
≤

∫ t

0

∣∣∣∣∫ A

0

c1s1V (r)i(r, t− τ)dr

∣∣∣∣ dτ +

∫ A

0

i0(τ)dτ

≤ K2T

(
sup
ξ

∫ A

0

i(r̂, ξ)dr̂

)
+M <∞,

where r̂ = r, ξ = t − τ , K2 depends on the contact rate between susceptible and infectious
individuals, shedding rate of free virus and the bound on the population of free virus. Finally, we
show that L1(S, i)(t) ≥ ε and L2(S, i)(τ, t) ≥ 0, for all τ > 0 and t > 0. Now, from Theorem 2.1,
we obtain

L1(S, i)(t) ≥ S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t) +

∫ t

0

e−(m0+α)(t−s)S(s)(α− c1s1C)ds

≥ S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)

≥ ε > 0,

due to the convex combination of S0 and Λ
m0+α

. Also, L2(S, i)(τ, t) ≥ 0 since S(t) ≥ ε > 0 and
i(τ, t) ≥ 0. Hence, L maps X to X.

Next, we show that the operator L admits a unique fixed point. To do this, we define an iterative
sequence [43]

(S(n+1)(t), i(n+1)(τ, t)) = (L1(S(n)(t), i(n)(τ, t)), L2(S(n)(t), i(n)(τ, t))), (2.12)

where

S(n+1)(t) = S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)

+

∫ t

0

e−(m0+α)(t−s)S(n)(s)

(
α− 1

N (n)(s)

∫ A

0

c1s1V (τ)i(n)(τ, s)dτ

)
ds

i(n+1)(τ, t) =

{
S(n)(t−τ)

N(n)(t−τ)
e−

∫ τ
0 m(V (s))ds

∫ A
0
c1s1V (s)i(n)(s, t− τ)ds, τ < t

i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds, τ > t.
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We set S(0)(t) = 0, i(0)(τ, t) = 0, and

S(1)(t) = S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t)

i(1)(τ, t) =

{
0, τ < t

i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds, τ > t,

and define a sequence for the total population as

N (n)(t) = S(n)(t) +

∫ A

0

i(n)(τ, t)dτ.

To show that the sequence of functions {(S(n)(t), i(n)(τ, t))} converges for all n ≥ 0, we introduce
the notation

Fn(t) = |S(n+1)(t)− S(n)(t)|

In(t) =

∫ A

0

|i(n+1)(τ, t)− i(n)(τ, t)|dτ, (2.13)

so that Nn(t) = Fn(t) + In(t). Now,

F0 = S0e
−(m0+α)t +

Λ

m0 + α
(1− e−(m0+α)t) ≤ max

{
S0,

Λ

m0 + α

}
and I0 =

∫ A
0
i0(τ)dτ , so that N0 = max

{
S0,

Λ
m0+α

}
+
∫ A

0
i0(τ)dτ . Next, for n = 1, we get

F1 = |S(2)(t)− S(1)(t)|

=

∣∣∣∣∫ t

0

e−(m0+α)(t−s)S(1)(s)

(
α− 1

N (1)(s)

∫ A

0

c1s1V (τ)i(1)(τ, s)dτ

)
ds

∣∣∣∣
≤ max

{
S0,

Λ

m0 + α

}
α + c1s1C

α +m0

, (2.14)

and

I1(t) =

∫ A

0

|i(2)(τ, t)− i(1)(τ, t)|dτ

=

∫ t

0

S(1)(t− τ)

N (1)(t− τ)
e−

∫ τ
0 m(V (s))ds

∫ A

t

c1s1V (s)i0(s+ τ − t) π(τ)

π(τ − s)
dsdτ

≤ c1s1C

m0

∫ A

0

i0(ξ)dξ, (2.15)

where ξ = s + τ − t and π(τ) = e−
∫ τ
0 m(V (s))ds. Thus, combining equations (2.14) and (2.15), we

have N1(t) ≤ ĈN0, for all t. Next, we consider the equations for S and i, and use induction. First,
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Fn(t) = |S(n+1)(t)− S(n)(t)|

≤ α

∫ t

0

e−(m0+α)(t−ξ)|S(n)(ξ)− S(n−1)(ξ)|dξ

+

∫ t

0

e−(m0+α)(t−ξ)
∣∣∣∣∫ A

0

c1s1V (τ)

(
S(n)(ξ)i(n)(τ, ξ)

N (n)(ξ)
− S(n−1)(ξ)i(n−1)(τ, ξ)

N (n−1)(ξ)

)
dτ

∣∣∣∣ dξ
≤ α

∫ t

0

|S(n)(ξ)− S(n−1)(ξ)|dξ +

∫ t

0

∫ A

0

c1s1V (τ) |G(τ, ξ)| dτdξ, (2.16)

where

G(τ, ξ) =
S(n)(ξ)

N (n)(ξ)

(
i(n)(τ, ξ)− i(n−1)(τ, ξ)

)
+
i(n−1)(τ, ξ)

N (n−1)(ξ)

(
S(n)(ξ)− S(n−1)(ξ)

)
+
i(n−1)(τ, ξ)S(n)(ξ)

N (n)(ξ)
− i(n−1)(τ, ξ)S(n)(ξ)

N (n−1)(ξ)

=
S(n)(ξ)

N (n)(ξ)

(
i(n)(τ, ξ)− i(n−1)(τ, ξ)

)
+
i(n−1)(τ, ξ)

N (n−1)(ξ)

(
S(n)(ξ)− S(n−1)(ξ)

)
+
i(n−1)(τ, ξ)

N (n−1)(ξ)

S(n)(ξ)

N (n)(ξ)

(
S(n−1)(ξ)− S(n)(ξ)

)
(2.17)

+
i(n−1)(τ, ξ)

N (n−1)(ξ)

S(n)(ξ)

N (n)(ξ)

∫ A

0

(i(n−1)(σ, ξ)− i(n)(σ, ξ))dσ.

Since 0 < V (τ) ≤ C, inequality (2.16) gives
|S(n+1)(t)− S(n)(t)|

≤ (α + 2c1s1C)

∫ t

0

|S(n)(ξ)− S(n−1)(ξ)|dξ + 2c1s1C

∫ t

0

∫ A

0

|i(n)(τ, ξ)− i(n−1)(τ, ξ)|dτdξ

= (α + 2c1s1C)

∫ t

0

Fn−1(ξ)dξ + 2c1s1C

∫ t

0

In−1(ξ)dξ. (2.18)

Thus,

Fn(t) ≤ K3

∫ t

0

(Fn−1(ξ) + In−1(ξ))dξ, (2.19)

where K3 depends on the contact rate between susceptible and infectious individuals, shedding
rate of free virus and the bound on the population of free virus. Next, we consider the second
component.
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In(t) =

∫ A

0

|i(n+1)(τ, t)− i(n)(τ, t)|dτ

≤
∫ t

0

∫ A

0

c1s1V (σ)

∣∣∣∣S(n)(t− τ)i(n)(σ, t− τ)

N (n)(t− τ)
− S(n−1)(t− τ)i(n−1)(σ, t− τ)

N (n−1)(t− τ)

∣∣∣∣ dσdτ
≤ K4

∫ t

0

Fn−1(ξ)dξ +K4

∫ t

0

In−1(ξ)dξ, (2.20)

where we have mimicked equations (2.16) and (2.18), and used the substitution ξ = t − τ . Since
Nn(t) = Fn(t) + In(t), combining inequalities (2.19) and (2.20), we see that Nn(t) satisfies the
recurrence relation

Nn(t) ≤ K

∫ t

0

Nn−1(ξ)dξ, with N1(t) ≤ ĈN0,

where K = K3 +K4. Notice that

N2(t) ≤ K

∫ t

0

N1(ξ)dξ ≤ KĈN0t

and

N3(t) ≤ K

∫ t

0

KĈN0ξdξ = ĈN0
K2t2

2
.

Thus, by induction, it follows that

Nn(t) ≤ ĈN0
Kn−1tn−1

(n− 1)!
≤ ĈN0

Kn−1T n−1

(n− 1)!
.

Now, the remainder term of the sequence {S(n)(t)} is such that

|S(n+m)(t)− S(n)(t)| ≤
n+m∑
j=n+1

Nj(t) ≤ ĈN0

∞∑
j=n+1

Kj−1T j−1

(j − 1)!
→ 0, as n→∞.

Also, using the notation in (2.13) and the definition of Nn(t), we have∫ A

0

|i(n+m)(τ, t)− i(n)(τ, t)|dτ ≤
n+m∑
j=n+1

∫ A

0

|i(j)(τ, t)− i(j−1)(τ, t)|dτ

≤
n+m∑
j=n+1

Nj(t)

≤ ĈN0

∞∑
j=n+1

Kj−1T j−1

(j − 1)!
→ 0 as n→∞.

11
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Thus, the sequence {(S(n)(t), i(n)(τ, t))} generated by the iterative process (2.12) is a Cauchy
sequence in X , and is therefore convergent, since X is complete. Thus, there exists (S(t), i(τ, t))
in X which is the limit of the given sequence. From the iterative process (2.12) and definition of
the operator L,

L(S(t), i(τ, t)) = (S(t), i(τ, t));

it follows that the limit (S(t), i(τ, t)) is a fixed point of the operator L. This establishes the exis-
tence of solution to the epidemiological model for all T <∞.

We prove uniqueness by assuming the existence of two solutions (S(t), i(τ, t)) and (S̄(t), ī(τ, t))
for which

(S(t), i(τ, t)) = (L1(S(t), i(τ, t)), L2(S(t), i(τ, t)))

and
(S̄(t), ī(τ, t)) = (L1(S̄(t), ī(τ, t)), L2(S̄(t), ī(τ, t))).

We substitute (S(t), i(τ, t)) and (S̄(t), ī(τ, t)) in place of (S(n)(t), in(τ, t)) and (S(n−1)(t), i(n−1)(τ, t)),
respectively, in the proof of existence of solution above, and set

F̂(t) = |S(t)− S̄(t)|, and Î(t) =

∫ A

0

|i(τ, t)− ī(τ, t)|dτ.

This gives N̂(t) ≤ K
∫ t

0
N̂(ξ)dξ, so that by Gronwall’s inequality in integral form, N̂(t) ≡ 0. Thus,

F̂(t) + Î(t) = 0, ∀t > 0. Since F̂(t) ≥ 0, and Î(t) ≥ 0, with F̂(t) + Î(t) = 0, it follows that
F̂(t) = Î(t) = 0, for all t > 0. Hence, the solution, (S(t), i(τ, t)), to the epidemiological model is
unique.

2.2 Equilibria and Stability Analysis of the Epidemiological Model
In this subsection, we derive an explicit expression for the basic reproduction number of the epi-
demiological model, calculate steady state solutions and study stability of equilibrium points.

2.2.1 Basic Reproduction Number and Equilibria

For age-structured models, we use the notions of survival functions or probabilities in the compu-
tation of the basic reproduction number,R0. Now, letF(τ) be the probability that a newly infected
individual remains infected until time-since-infection τ , and β̂(τ) denote the average number of
newly infected individuals that an infectious individual will produce per unit time when infected
for a total time τ , then the basic reproduction number is given by [29]

R0 =

∫ A

0

β̂(τ)F(τ)dτ.

In order to derive an explicit expression for the basic reproduction number,R0, of the age-structured
epidemiological model, we compute the disease-free equilibrium, linearize the system around the

12
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disease-free equilibrium and determine conditions for its stability. Now, the disease-free equilib-
rium is (S∗, i∗(τ)) = ( Λ

m0
, 0). We consider solutions nearby (S∗, i∗(τ)) by setting

x(t) = S(t)− S∗ and i(τ, t) = z(τ, t).

Substituting the perturbed solutions into equations (2.5)-(2.7), we have the following linearized
system

dx

dt
= −

∫ A

0

c1s1V (τ)z(τ, t)dτ −m0x(t) (2.21)

∂z(τ, t)

∂t
+
∂z(τ, t)

∂τ
= −m(V (τ))z(τ, t) (2.22)

z(0, t) =

∫ A

0

c1s1V (τ)z(τ, t)dτ. (2.23)

We seek a solution to equation (2.22) of the form

z(τ, t) = z̄(τ)eλt,

where λ is either a real or complex number. Substituting this solution into equations (2.22)-(2.23),
we have the following eigenvalue problem

dz̄(τ)

dτ
= −(λ+m(V (τ)))z̄(τ) (2.24)

z̄(0) =

∫ A

0

c1s1V (τ)z̄(τ)dτ. (2.25)

The explicit solution to the differential equation gives

z̄(0) =

∫ A

0

c1s1V (τ)z̄(0)e−λτe−
∫ τ
0 m(V (s))dsdτ (2.26)

Dividing both sides of equation (2.26) by z(0), we obtain the characteristic equation G(λ) = 1,
where

G(λ) =

∫ A

0

c1s1V (τ)e−λτe−
∫ τ
0 m(V (s))dsdτ. (2.27)

This characteristic equation will be used to study stability of the disease-free equilibrium. Now,
we define the basic reproduction number,R0, of the epidemiological model asR0 = G(0) [10, 41,
48, 50], so that

R0 =

∫ A

0

c1s1V (τ)e−
∫ τ
0 m(V (s))dsdτ, (2.28)

where the quantity π(τ) = e−
∫ τ
0 m(V (s))ds is the probability of survival in the infected class from

onset of infection to age-since-infection τ .

13
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Theorem 2.3. The epidemiological model has a unique endemic equilibrium, (S∗, i∗(τ)), ifR0 >
1.

Proof. The equilibria of the epidemiological model are obtained by setting the time derivatives of
the model to zero:

0 = Λ− S

N

∫ A

0

c1s1V (τ)i(τ)dτ −m0S (2.29)

di(τ)

dτ
= −m(V (τ))i(τ) (2.30)

i(0) =
S

N

∫ A

0

c1s1V (τ)i(τ)dτ. (2.31)

The endemic equilibrium is obtained as follows. First, we solve the differential equation (2.30) to
have

i∗(τ) = i∗(0)e−
∫ τ
0 m(V (s))ds. (2.32)

Next, we substitute the expression for i∗ into equation (2.29):

0 = Λ− S∗

N

∫ A

0

c1s1V (τ)i∗(0)e−
∫ τ
0 m(V (s))dsdτ −m0S

∗. (2.33)

Thus, from equations (2.31), (2.32) and (2.33), we obtain i∗(0) as follows:

i∗(0) =
S∗

N

∫ A

0

c1s1V (τ)i∗(0)e−
∫ τ
0 m(V (s))dsdτ

= Λ−m0S
∗. (2.34)

From equations (2.31) and (2.32), and the total population at equilibrium N∗ = S∗ +
∫ A

0
i∗(τ)dτ ,

we obtain
S∗

N∗
=

1

R0

and
i∗(0)

N∗
=
R0 − 1

ξR0

, (2.35)

where ξ =
∫ A

0
e−

∫ τ
0 m(V (s))dsdτ . Also, from equations (2.34) and (2.35), we obtainN∗ = ΛξR0

R0−1+m0ξ
.

Finally, from equations (2.32) and (2.35), we obtain the endemic equilibrium point (S∗, i∗(τ)),
where

(S∗, i∗(τ)) =

(
Λ
∫ A

0
e−

∫ τ
0 m(V (s))dsdτ

R0 − 1 +m0

∫ A
0
e−

∫ τ
0 m(V (s))dsdτ

,
Λ(R0 − 1)e−

∫ τ
0 m(V1(s))ds

R0 − 1 +m0

∫ A
0
e−

∫ τ
0 m(V (s))dsdτ

)
,

which is biologically feasible ifR0 > 1.

14
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2.2.2 Stability Analysis

To study the local stability of equilibria, we linearize the model around each of the equilibrium
points, and consider an exponential solution to the linearized system.

Theorem 2.4. The disease-free equilibrium is locally asymptotically stable ifR0 < 1 and unstable
ifR0 > 1.

Proof. If λ ∈ <, then from equation (2.27),

G′(λ) = −
∫ A

0

c1s1V (τ)τe−λτe−
∫ τ
0 m(V (s))dsdτ < 0,

since V is nonnegative and bounded. Thus, G is a decreasing function of λ, with limλ→∞G(λ) =
0. Therefore, when R0 = G(0) > 1, there exists a unique positive real solution to the equation
G(λ) = 1. Hence, the disease-free equilibrium is unstable whenR0 > 1 [41, 48, 50].

On the other hand, limλ→−∞G(λ) = +∞. Thus, when R0 = G(0) < 1, there exists a unique
real and negative solution to the equation G(λ) = 1. Next, we assume that λ is complex and let
λ = ξ + iη be an arbitrary complex solution to the characteristic equation G(λ) = 1. Then

1 = |G(ξ + iη)|

≤
∫ A

0

c1s1V (τ)e−ξτ |e−iητ |e−
∫ τ
0 m(V (s))dsdτ

=

∫ A

0

c1s1V (τ)e−ξτe−
∫ τ
0 m(V (s))dsdτ =: G(Re(λ)).

If Re(λ) ≥ 0, then
1 = |G(λ)| ≤ G(Re(λ)) ≤ G(0) = R0 < 1,

which is absurd. Thus, all roots of the equation G(λ) = 1 are either real and negative or complex
with negative real parts whenR0 < 1. Hence the disease-free equilibrium is locally asymptotically
stable whenR0 < 1.

Theorem 2.5. The disease-free equilibrium is globally stable ifR0 < 1.

Proof. The general approach in showing global stability of the disease-free equilibrium is to view
the boundary condition as a function of time, solve the PDE along characteristic lines and substitute
the solution into the expression for the boundary condition to obtain an integral equation. Now, let

g(t) =
S(t)

N(t)
K(t),

where

K(t) =

∫ A

0

c1s1V (τ)i(τ, t)dτ. (2.36)
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We derive an integral equation for K(t) by using the following solution to the partial differential
equation (2.6):

i(τ, t) =


S(t− τ)

N(t− τ)
e−

∫ τ
0 m(V (s))ds

∫ A

0

c1s1V (r)i(r, t− τ)dr, τ < t

i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds, τ > t.

Substituting the expression for i(τ, t) in K(t), we obtain

K(t) =

∫ t

0

c1s1K(t− τ)V (τ)
S(t− τ)

N(t− τ)
e−

∫ τ
0 m(V (s))dsdτ

+

∫ A

t

c1s1V (τ)i0(τ − t)e−
∫ t
0 m(V (τ−t+s))dsdτ

≤
∫ t

0

c1s1K(t− τ)V (τ)e−
∫ τ
0 m(V (s))dsdτ +

∫ A

t

c1s1V (τ)i0(τ − t)dτ. (2.37)

Since for all τ ∈ (0, A), 0 < V (τ) ≤ C, it follows from the definition of (2.36) that

lim
t

supK(t) ≤ c1s1C lim sup
t

∫ A

0

i(τ, t)dτ <∞.

Thus, taking the lim sup of both sides of equation (2.37) as t→∞, we have

lim sup
t→∞

K(t) ≤ R0 lim sup
t→∞

K(t),

which holds only if lim supt→∞K(t) = 0. This gives lim supt→∞ i(τ, t) = 0 for every fixed τ .
The solution to the equation that models susceptible individuals in the population is

S(t) = −
∫ t

0

e−m0(t−s) S(s)

N(s)

∫ A

0

c1s1V (τ)i(τ, s)dτds+ S0e
−m0t

+
Λ

m0

(1− e−m0t)→ Λ

m0

as t→∞.

Hence the disease-free equilibrium is globally stable whenR0 < 1.

Theorem 2.6. The endemic equilibrium (S∗, i∗(τ)) is locally asymptotically stable if R0 > 1 and
the maximal age of infection, A, is sufficiently large.

Proof. We consider solutions near the endemic equilibrium by setting

x(t) = S(t)− S∗, z(τ, t) = i(τ, t)− i∗(τ)

so that the total population isN(t) = N∗+n(t). Substituting the perturbed solutions into equations
(2.5)-(2.7), we have the following linearized system:
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dx

dt
= − x

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ +
S∗

N∗
n

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ

− S
∗

N∗

∫ A

0

c1s1V (τ)z(τ, t)dτ −m0x (2.38)

∂z(τ, t)

∂t
+
∂z(τ, t)

∂t
= −m(V (τ))z(τ, t) (2.39)

z(0, t) =
x

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ − S∗

N∗
n

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ

+
S∗

N∗

∫ A

0

c1s1V (τ)z(τ, t)dτ. (2.40)

We seek for solutions to equations (2.38)-(2.40) of the form

x(t) = x̄eλt and z(τ, t) = z̄(τ)eλt,

where x̄ and z̄(τ) are to be determined. This gives

λx̄ = − x̄

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ +
S∗

N∗
n̄

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ

− S
∗

N∗

∫ A

0

c1s1V (τ)z̄(τ)dτ −m0x̄ (2.41)

dz̄(τ)

dτ
= −(λ+m(V (τ)))z̄(τ) (2.42)

z̄(0) =
x̄

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ − S∗

N∗
n̄

N∗

∫ A

0

c1s1V (τ)i∗(τ)dτ

+
S∗

N∗

∫ A

0

c1s1V (τ)z̄(τ)dτ, (2.43)

where n̄ = x̄+
∫ A

0
z̄(τ)dτ . Solving the differential equation (2.42), we obtain

z̄(τ) = z̄(0)e−λτe−
∫ τ
0 m(V (s))ds.

From equations (2.41) and (2.43),

z̄(0) = −(λ+m0)x̄. (2.44)

Using the definitions of n̄, z̄(τ) and z̄(0), and setting α̃ =
∫ A

0
c1s1V (τ)i∗(τ)dτ in equation (2.41),

we obtain the characteristic equation

1 =
α̃

N∗(λ+m0)

(
S∗

N∗
− 1

)
+
S∗

N∗

∫ A

0

c1s1V (τ)e−λτπ(τ)dτ− α̃

N∗
S∗

N∗

∫ A

0

e−λτπ(τ)dτ. (2.45)
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Using m(V (τ)) = m0 + µ1V (τ) and integration by parts, we obtain∫ A
0
c1s1V (τ)e−λτπ(τ)dτ

=
c1s1

µ1

∫ A

0

µ1V (τ)e−λτe−m0τe−µ1
∫ τ
0 V (s)dsdτ

=
c1s1

µ1

(
1− e−(λ+m0)Ae−µ1

∫A
0 V (s)ds

)
− c1s1

µ1

(λ+m0)

∫ A

0

e−λτπ(τ)dτ.

Thus,

µ1

∫ A

0

V (τ)e−λτπ(τ)dτ + (λ+m0)

∫ A

0

e−λτπ(τ)dτ = 1− e−(λ+m0)Ae−µ1
∫A
0 V (s)ds. (2.46)

From equation (2.46), the characteristic equation (2.45) becomes
1 + α̃

N∗(λ+m0)

=
1

R0

(
α̃

N∗(λ+m0)

µ1

c1s1

+ 1

)∫ A

0

c1s1V (τ)e−λτπ(τ)dτ +
1

R0

α̃

N∗(λ+m0)
e−λAπ(A),

so that

L(λ) =
λ+m0 + α̃

N∗

λ+m0 + α̃
N∗

µ1
c1s1

, (2.47)

where

L(λ) =
1

R0

∫ A

0

c1s1V (τ)e−λτπ(τ)dτ +

1
R0

α̃
N∗(λ+m0)

α̃
N∗(λ+m0)

µ1
c1s1

+ 1
e−λAπ(A).

When λ = 0 in equation (2.46), we obtain

µ1

∫ A

0

V (τ)π(τ)dτ = 1− π(A)−m0

∫ A

0

π(τ)dτ,

so that µ1

∫ A
0
V (τ)π(τ)dτ < 1. Since R0 > 1, it follows that c1s1

µ1
> 1. Now, let λ = a + ib be an

arbitrary complex solution (if it exists) of the characteristic equation (2.47). If <(λ) ≥ 0, then∣∣∣∣∣ λ+m0 + α̃
N∗

λ+m0 + α̃
N∗

µ1
c1s1

∣∣∣∣∣ > 1

and |L(λ)| < 1 if, and only if, A is sufficiently large. Thus, all solutions of the characteristic
equation (2.47) have negative real parts. Hence, the endemic equilibrium, (S∗, i∗(τ)), is locally
asymptotically stable whenR0 > 1.
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3 Optimal Control Problem
Optimal control theory can be used to design intervention strategies for the control of infectious
diseases and has been applied in decoupled immunological and epidemiological models of HIV
[9, 19, 33, 34, 35]. In this section, we apply optimal control theory in a coupled within-host and
between-host model of HIV with age (age-since-infection) structure.

The theory of age-structured models abound in the literature [3, 52]. In 1974, Gurtin and Mac-
Camy [26] introduced the first model of nonlinear continuous age-dependent population dynamics.

Optimal control of first-order PDEs coming from age-structured models requires more analysis
for justification than optimal control of parabolic PDE or differential equations. There has been
only a small amount of work on specific applications of optimal control to age-structure equa-
tions. Brokate [8] developed maximum principles for an optimal harvesting problem and a prob-
lem of optimal birth control. Barbu and Iannelli [6, 7] considered and optimal control problem
for a Gurtin-MacCamy [52] type system, describing the evolution of an age-structured population.
Anita [3, 4] investigated an optimal control problem for a nonlinear age-dependent population
dynamics. Murphy and Smith [45] studied the optimal harvesting of an age-structured popula-
tion, where the McKendrick model of population dynamics was used. These authors considered
age-structured population models for a single population. Fister and Lenhart [21], on the other
hand, considered optimal harvesting control for a competitive age-structured model, comprising
two first-order partial differential equations. Also, Fister and Lenhart [20] investigated an optimal
harvesting control in a predator-prey model in which the prey population is represented by a first-
order partial differential equation with age-structure and the predator is represented by an ordinary
differential equation in time. A key tool for the existence and uniqueness of optimal solution is
Ekeland’s variational principle [14].

In our coupled model, we incorporate two controls which aim at curtailing the transmission
rate and virion production. Thus, our within-host model with control is:

dx

dτ
= r − β1(1− u1(τ))V (τ)x(τ)− µx(τ) (3.1)

dy

dτ
= β1(1− u1(τ))V (τ)x(τ)− d1y(τ) (3.2)

dV

dτ
= ν1(1− u2(τ))d1y(τ)− (δ1 + s1)V (τ)− β̂1(1− u1(τ))V (τ)x(τ), (3.3)

where the parameters are as defined in Table 1. The control functions u1 and u2 are bounded
Lebesgue integrable functions and represent the transmission and viral production suppressing
drugs, respectively. The coefficient, 1− u1(t), represents the drug effect that reduces transmission
of healthy cells to infected cells as a result of interaction with the virus, while the coefficient
1−u2(t) gives the effect of another drug that reduces the production of virions. The upper bounds
on the controls give the efficacy of the transmission and virion production suppressing drugs. If
u1 = 0 and u2 = 0 there is no inhibition of transmission and virion production.
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3.1 Sensitivity and Adjoint Systems
Below, we formulate an objective functional for our coupled system, with the goal of minimizing
free virus and infected individuals:

J(u1, u2) =

∫ T

0

∫ A

0

A1i(τ, t)V (τ)dτdt

+

∫ T

0

∫ A

0

i(τ, t)(A2u1(τ) + A3u2(τ))dτdt+

∫ A

0

B(u1(τ)2 + u2(τ)2)dτ, (3.4)

where A1, A2, A3 and B are positive constants that balance the relative importance for the terms in
J . In our objective functional, the first term with A1 represents the total of the infected individuals
over time and the other two terms represents costs of implementing the controls. The optimal
control formulation with equations (3.1)-(3.3), (2.4) and (2.5)-(2.8) is

min
(u1,u2)∈U

J(u1, u2),

where the control set U is

U = {(u1, u2) ∈ (L∞(0, A))2|u1 : (0, A)→ [0, ũ1], u2 : (0, A)→ [0, ũ2]}.

Below, we state without proof, the Ekeland’s Variational Principle.

Theorem 3.1. (Ekeland’s Variational Principle [14]) Let (X, d) be a complete metric space and
f : X → (−∞,∞] be a lower semicontinuous function, bounded from below and not identically
+∞. Let ε > 0 and u ∈ X be such that f(u) ≤ inf{f(x)|x ∈ X}+ ε. Then for any λ > 0, there
exists uε ∈ X such that
(i) f(uε) ≤ f(u)
(ii) d(u, uε) ≤ λ
(iii) f(uε) < f(x) + ελ−1d(uε, x), ∀x ∈ X\{uε}.

In addition, if X is a Banach space and f : X → (−∞,∞] is Gâteaux differentiable, then
Ekeland’s variational principle guarantees the existence of a minimizing sequence for function f .

We formulate a Lipschitz property for state variables in our model in terms of the control
functions u1 and u2. This property will be used to prove the existence of sensitivities and optimal
control, and the uniqueness of optimal control.

Theorem 3.2. The map (u1, u2) → (x, y, V, S, i) = (x, y, V, S, i)(u1, u2) is Lipschitz in the fol-
lowing ways:

(i)

∫ A

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)dτ +

∫ T

0

|S − S̄|dt+

∫
Q

|i− ī|dτdt

≤ CA,T

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)dτ

(ii) ||x− x̄||L∞(Ω) + ||y − ȳ||L∞(Ω) + ||V − V̄ ||L∞(Ω) + ||S − S̄||L∞(0,T )

+||i− ī||L∞(0,T ;L1(0,A)) ≤ ĈA,T (||u1 − ū1||L∞(Ω) + ||u2 − ū2||L∞(Ω)),

where Ω = (0, A) and Q = Ω× (0, T ).
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Proof. (i) First, considering equation (3.1), we have

d

dτ
(x− x̄) = −β1(ū1 − u1)V x− β1(1− ū1)(x(V − V̄ ) + V̄ (x− x̄))− µ(x− x̄).

Integrating from 0 to τ , noting that x and x̄ agree at τ = 0, we have

|x− x̄|(τ) ≤ C1

∫ A

0

|u1 − ū1|ds+ C2

∫ τ

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)ds, (3.5)

since x and V are bounded (See Theorem 2.1). Secondly, considering equations (3.2) and (3.3),
we have

|y − ȳ|(τ) ≤ C1

∫ A

0

|u1 − ū1|ds+ C3

∫ τ

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)ds (3.6)

|V − V̄ |(τ) ≤ C4

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds+ C5

∫ τ

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)ds.

(3.7)

Combining equations (3.5), (3.6) and (3.7), we have

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)(τ) ≤ C6

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds

+C7

∫ τ

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)(s)ds.

By Gronwall’s inequality in integral form, we have

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)(τ) ≤ C6(1 + C7τe
C7τ )

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds

≤ C6(1 + C7Ae
C7A)

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds,

so that integrating both sides of the inequality above from τ = 0 to τ = A, we obtain∫ A

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)dτ ≤ C6A(1 +C7Ae
C7A)

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds. (3.8)

Now, using an equivalent expression for S, and mimicking equation (2.17), we obtain

|S(t)− S̄(t)| =

∣∣∣∣c1s1

∫ t

0

e−m0(t−ξ)
∫ A

0

(
S(ξ)V (τ)i(τ, ξ)

N(ξ)
− S̄(ξ)V̄ (τ )̄i(τ, ξ)

N̄(ξ)

)
dτdξ

∣∣∣∣
≤ 2C8

∫ t

0

(
|S − S̄|(ξ)ds+

∫ A

0

|i− ī|(τ, ξ)dτ
)
dξ + C9T

∫ A

0

|V (τ)− V̄ (τ)|dτ.

(3.9)
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Finally, we consider the equation for i given in (2.9). Now, for t < τ < A,∫ A

t

|i− ī|dτ =

∫ A

t

∣∣∣i0(τ − t)e−
∫ t
0 m(V (τ−t+s))ds − i0(τ − t)e−

∫ t
0 m(V̄ (τ−t+s))ds

∣∣∣ dτ
≤ K1

∫ A

0

∣∣i0(τ̂ − t)
∣∣ ∫ A

0

∣∣V (r̂)− V̄ (r̂)
∣∣ dr̂dτ̂

≤ K1M

∫ A

0

|V − V̄ |dτ̂ , (3.10)

where r̂ = τ − t + s, τ̂ = τ , ŝ = s and K1 is a Lipschitz constant for the function m. Lastly, for
τ < t < T , we have∫ t

0
|i1 − ī1|dτdt

=

∫ t

0

c1s1

∣∣∣∣ S(t− τ)

N(t− τ)
π(V1)(τ)K(i1, V1)(t− τ)− S̄(t− τ)

N̄(t− τ)
π(V̄1)(τ)K (̄i1, V̄1)(t− τ)

∣∣∣∣ dτ
≤

∫ t

0

c1s1

∣∣∣∣π(τ)K(t− τ)

N(t− τ)
(S(t− τ)− S̄(t− τ)) +

S̄(t− τ)π̄(τ)

N̄(t− τ)
(K(t− τ)− K̄(t− τ))

∣∣∣∣ dτ
+

∫ t

0

c1s1

∣∣∣∣S̄(t− τ)
K(t− τ)

N(t− τ)
(π(τ)− π̄(τ))

∣∣∣∣ dτ
+

∫ t

0

c1s1

∣∣∣∣ S̄(t− τ)

N̄(t− τ)

K(t− τ)

N(t− τ)
π̄(τ)[S̄(t− τ)− S(t− τ) +

∫ A

0

(̄i(h, t− τ)− i(h, t− τ))dh]

∣∣∣∣ dτ,
where

π(τ) = e−
∫ τ
0 m(V (s))ds and K(t− τ) =

∫ A

0

V (r)i(r, t− τ)dr.

Since 0 < V (τ) ≤ C for all τ > 0 (see Theorem 2.1) and
∫ A

0
i(τ, t)dτ ≤ N(t) a.e. t, we obtain∫ t

0
|i− ī|(τ, t)dτ

≤ 2C8

∫ t

0

(
|S − S̄|(ξ) +

∫ A

0

|i− ī|(r̂, ξ)dr̂
)
dξ + C10T

∫ A

0

|V − V̄ |(r̂)dr̂, (3.11)

where ξ = t− τ and r̂ = r. Combining inequalities (3.10) and (3.11), we have∫ A

0

|i− ī|(τ, t)dτ =

∫ t

0

|i− ī|(τ, t)dτ +

∫ A

t

|i− ī|(τ, t)dτ

≤ (K1M + C10T )

∫ A

0

|V − V̄ |(r̂)dr̂

+2C8

∫ t

0

(
|S − S̄|(ξ) +

∫ A

0

|i− ī|(r̂, ξ)dr̂
)
dξ. (3.12)

Next, we combine inequalities (3.9) and (3.12). This gives
|S − S̄|(t) +

∫ A
0
|i− ī|(τ, t)dτ

≤ C(A, T )

∫ A

0

(|u1 − ū1|+ |u2 − ū2|) (ξ)dξ + 4C8

∫ t

0

(
|S − S̄|(ξ) +

∫ A

0

|i− ī|(r̂, ξ)dr̂
)
dξ.
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Thus, by Gronwall’s inequality in integral form, we obtain
|S − S̄|(t) +

∫ A
0
|i− ī|(τ, t)dτ

≤ C(A, T )(1 + 4C8Te
4C8T )

∫ A

0

(|u1 − ū1|+ |u2 − ū2|) dτ. (3.13)

Integrating both sides of inequality (3.13) from t = 0 to t = T gives∫ T
0
|S − S̄|(t)dt+

∫ T
0

∫ A
0
|i− ī|(τ, t)dτdt

≤ C(A, T )(1 + 4C8Te
4C8T )T

∫ A

0

(|u1 − ū1|+ |u2 − ū2|) dτ. (3.14)

Finally, we combine equations (3.8) and (3.14), to have∫ A
0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)(τ)dτ +
∫ T

0
|S − S̄|(t)dt+

∫
Q
|i− ī|(τ, t)dτdt

≤ CA,T

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)(τ)dτ.

where CA,T = C6(1 + C7Ae
C7A)A+ C(A, T )(1 + 4C8Te

4C8T )T .
(ii) We find L∞ estimates of the state solutions by considering absolute values of x − x̄, y − ȳ,
V − V̄ and S − S̄, and L1 estimate of |i− ī|. From equations (3.5), (3.6), (3.7) and (3.8), we have

|x− x̄|(τ) ≤ C1

∫ A

0

|u1 − ū1|ds+ C2

∫ A

0

(|x− x̄|+ |y − ȳ|+ |V − V̄ |)ds

≤ C1

∫ A

0

|u1 − ū1|ds+ C2C6A(1 + C7Ae
C7A)

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds

|y − ȳ|(τ) ≤ C1

∫ A

0

|u1 − ū1|ds+ C3C6A(1 + C7Ae
C7A)

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds

|V − V̄ |(τ) ≤ (C4 + C5C6A(1 + C7Ae
C7A))

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)ds,

Taking the essential supremum over all τ ∈ [0, A], we have

||x− x̄||L∞(0,A) + ||y − ȳ||L∞(0,A) + ||V − V̄ ||L∞(0,A) ≤ CA(||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)),(3.15)

Considering inequality (3.9), we have

|S − S̄|(t) ≤ C8

∫ T

0

(
|S − S̄|(ξ) +

∫ A

0

|i− ī|(τ, ξ)dτ
)
dξ + C9(T )

∫ A

0

|V (τ)− V̄ (τ)|dτ

≤ C1(A, T )

∫ A

0

(|u1 − ū1|+ |u2 − ū2|)dτ, (3.16)
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by inequalities (3.8) and (3.14). We take the essential supremum of both sides of Inequality (3.16)
over all t ∈ [0, T ]. This gives

||S − S̄||L∞(0,T ) ≤ AC1(A, T )(||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)). (3.17)

Lastly, to find L∞ estimate of |i− ī|, we start with the L1 estimate of |i− ī| over τ ∈ [0, A]. Now,
from equations (3.10) and (3.11), we have∫ A

0

|i− ī|dτ ≤ 2C8

∫ t

0

(
|S − S̄|(ξ) +

∫ A

0

|i− ī|(r̂, ξ)dr̂
)
dξ + (K1M + C10T )

∫ A

0

|V − V̄ |(r̂)dr̂

≤ C3(A, T )(||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)), (3.18)

by inequalities (3.8) and (3.14). Taking the essential supremum over all t ∈ [0, T ] , we obtain

‖i‖L∞(0,T ;L1(0,A)) ≤ C3(A, T )(||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)). (3.19)

Finally, combining inequalities (3.15), (3.17) and (3.19), we obtain the desired result.

In order to characterize the optimal control pair, we differentiate the objective functional with
respect to the controls. Since the objective functional is defined in terms of the state functions,
we first differentiate the control-to-state map, (u1, u2) → (x, y, V, S, i). The derivative of the
control-to-state map is called sensitivity.

Theorem 3.3. The map (u1, u2) → (x, y, V, S, i) = (x, y, V, S, i)(u1, u2) is differentiable in the
following sense:

(x, y, V, S, i)(u1 + εl1, u2 + εl2)− (x, y, V, S, i)(u1, u2)

ε
→ (ψ, ϕ, φ, θ, ω)

in (L∞(Ω))3×L∞(0, T )×L∞(0, T ;L1(Ω)), as ε→ 0 with (u1 + εl1, u2 + εl2), (u1, u2) ∈ U and
l1, l2 ∈ L∞(Ω). Furthermore, the sensitivity functions satisfy

dψ

dτ
= −β1(1− u1)V ψ − β1(1− u1)xφ− µψ + β1l1V x (3.20)

dϕ

dτ
= β1(1− u1)V ψ − d1ϕ+ β1(1− u1)xφ− β1l1V x (3.21)

dφ

dτ
= −β̂1(1− u1)V ψ + ν1(1− u2)d1ϕ− (δ1 + s1 + β̂1(1− u1)x)φ

+β̂1l1V x− ν1d1l2y (3.22)
dθ

dt
= −m0θ(t)−

c1s1

N(t)

(
1− S(t)

N(t)

)
θ(t)

∫
Ω

i(τ, t)V (τ)dτ

−c1s1S(t)

N(t)

∫
Ω

V (τ)ω(τ, t)dτ − c1s1S(t)

N(t)

∫
Ω

i(τ, t)φ(τ)dτ (3.23)

+
c1s1S(t)

N(t)2

∫
Ω

i(τ, t)V (τ)

∫
Ω

ω(h, t)dhdτ in (0, T )

∂ω

∂t
+

∂ω

∂τ
= −m(V1)ω −m′(V1)φi in Ω× (0, T ), (3.24)
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with initial and boundary conditions

ψ(0) = 0, ϕ(0) = 0, φ(0) = 0, θ(0) = 0, ω(τ, 0) = 0, ∀τ ∈ Ω = (0, A) (3.25)

and

ω(0, t) =
c1s1

N(t)

(
1− S(t)

N(t)

)
θ(t)

∫
Ω

i(τ, t)V (τ)dτ +
c1s1S(t)

N(t)

∫
Ω

V (τ)ω(τ, t)dτ

+
c1s1S(t)

N(t)

∫
Ω

i(τ, t)φ(τ)dτ − c1s1S(t)

N(t)2

∫
Ω

i(τ, t)V (τ)

∫
Ω

ω(h, t)dhdτ. (3.26)

Proof. Since the map (u1, u2) → (x, y, V, S, i) is Lipschitz in L∞, we have the existence of the
Gâteaux derivatives (or sensitivities) ψ, ϕ, φ, θ and ω by Barbu [7, p. 17] and Fister et al. [20, 21].
Passing to the limit in the representation of the quotients, gives that ψ, ϕ, φ, θ and ω satisfy system
(3.20)−(3.26).

We divide the sensitivity equations in Theorem 3.3 into three operators, depending on the inde-
pendent variables on five components. These operators will be used in deriving a characterization
for the controls u1 and u2. The three sensitivity operators, L1, L2 and L3, and the corresponding
sensitivity equations are:

L1

 ψ
ϕ
φ

 =

 β1l1V x
−β1l1V x

β̂1l1V x− ν1d1l2y

 , L
[
θ
ω

]
≡
[
L2θ
L3ω

]
=

[
0
0

]
, (3.27)

where

L1

 ψ
ϕ
φ

 =

 L1ψ
L1ϕ
L1φ

+M

 ψ
ϕ
φ

 ,
 L1ψ
L1ϕ
L1φ

 =

 dψ
dτ
dϕ
dτ
dφ
dτ

 ,
L
[
θ
ω

]
=

[
L2θ
L3ω

]
+N

[
θ
ω

]
,

[
L2θ
L3ω

]
=

[
dθ
dt

∂ω
∂t

+ ∂ω
∂τ

]
,

M =

β1(1− u1)V + µ 0 β1(1− u1)x
−β1(1− u1)V d1 −β1(1− u1)x

β̂1(1− u1)V −d1ν1(1− u2) δ1 + s1 + β̂1(1− u1)x

 ,

N

[
θ
ω

]
=

(
B(φ, θ, ω) + C(ω) +m0θ

m′(V )φ+m(V1)ω

)
,

B(φ, θ, ω) =
c1s1

N(t)

(
1− S(t)

N(t)

)
θ(t)

∫
Ω

i(τ, t)V (τ)dτ +
c1s1S(t)

N(t)

∫
Ω

V (τ)ω(τ, t)dτ

+
c1s1S(t)

N(t)

∫
Ω

i(τ, t)φ(τ)dτ,

C(ω) = −c1s1S(t)

N(t)2

∫
Ω

i(τ, t)V (τ)

∫
Ω

ω(h, t)dhdτ.
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We derive the adjoint system from the sensitivity equations. Thus, if λ, ξ, η, p, and q are adjoint
variables, then we find adjoint operators L∗j , for j = 1, 2, 3 such that∫

Ω
(λ, ξ, η)L1(ψ, ϕ, φ)dτ +

∫ T
0
pL2θdt+

∫
Q
q1L3ωdτdt

=

∫
Ω

(ψ, ϕ, φ)L∗1(λ, ξ, η)dτ +

∫ T

0

θL∗2pdt+

∫
Q

ωL∗3qdτdt (3.28)

with adjoint equations (in the weak sense defined below)

L∗1

 λ
ξ
η

 =

 0
0∫ T

0
A1i(τ, t)dt

 , L∗
[
p
q

]
=

[
0

A1V + γ1(A2u1 + A3u2)

]
, (3.29)

and

L∗
[
p
q

]
≡
[
L∗2p
L∗3q

]
.

The right-hand side of the adjoint equations (3.29) are obtained by differentiating the integrand
of the objective functional (3.4) with respect to each state variable. The transversality conditions
associated with the adjoint variables are:

λ(A) = 0, ξ(A) = 0, η(A) = 0, p(T ) = 0 (3.30)
q(τ, T ) = 0, for τ ∈ Ω (3.31)
q(A, t) = 0, for t ∈ (0, T ). (3.32)

From the sensitivity system in Theorem 3.3 and the relationship between the sensitivity and adjoint
operators given by equation (3.28), we use integration by parts to throw the derivatives on the
differential operators in the sensitivity functions ψ, ϕ, φ, η, θ, and ω onto the derivatives of the
differential operators in the adjoint functions λ, ξ, η, p and q. Applying the initial and boundary
conditions in equations (3.25)−(3.26), and the final time conditions in (3.30)−(3.32), we have the
following adjoint system corresponding to controls (u1, u2) and states
(x, y, V, S, i) = (x, y, V, S, i)(u1, u2):

−dλ
dτ

= −(β1(1− u1)V + µ)λ+ β1(1− u1)V ξ − β̂1(1− u1)V η (3.33)

−dξ
dτ

= −d1ξ + ν1(1− u2)d1η (3.34)

−dη
dτ

= −β1(1− u1)xλ+ β1(1− u1)ξ − (δ1 + s1 + β̂1(1− u1)x)η

−c1s1

∫ T

0

S(t)i(τ, t)

N(t)
(p(t)− q(0, t))dt−m′(V )

∫ T

0

i(τ, t)q(τ, t)dt

+

∫ T

0

A1i(τ, t)dt (3.35)
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−dp
dt

= −m0p−
c1s1

N
(p− q(0, t))

(
1− S

N

)∫ A

0

V (τ)i(τ, t)dτ (3.36)

−∂q
∂t
− ∂q

∂τ
= −m(V )q +

c1s1S

N2
(p− q(0, t))

∫ A

0

V (τ)i(τ, t)dτ

−c1s1(p− q(0, t))SV
N

+ A1V + γ1(A2u1 + A3u2), (3.37)

with final time conditions (3.30)−(3.32). Given the sensitivity and adjoint equations, we state a
theorem that characterizes the weak solution to our problem.

Theorem 3.4. (Weak Solution) The weak solution of the adjoint system satisfies∫
Ω

(λα1 + ξα2 + ηα3 − g
∫ T

0

A1i(τ, t)dt)dτ −
∫ T

0

∫ A

0

(A1V + γ1(A2u1 + A3u2))ndτdt = 0,

where α1, α2, α3 are L∞(0, A) functions obtained from test functions z, f and g, and r and n
satisfy equations (3.36) and (3.37) such that

dz

dτ
+ β1(1− u1)V z + β1(1− u1)xg + µz = α1 (3.38)

df

dτ
− β1(1− u1)V z − β1(1− u1)xg + d1f = α2 (3.39)

dg

dτ
+ β̂1(1− u1)V z − ν1(1− u2)d1f + (δ1 + s1 + β̂1(1− u1)x)g = α3 (3.40)

dr

dt
+m0r +

c1s1

N

(
1− S

N

)
r

∫ A

0

i(τ, t)V (τ)dτ +
c1s1S

N

∫ A

0

V (τ)n(τ, t)dτ

+
c1s1S

N

∫ A

0

g(τ)i(τ, t)dτ − c1s1S

N2

∫ A

0

i(τ, t)V (τ)

∫ A

0

n(h, t)dhdτ = 0 (3.41)

∂n(τ, t)

∂t
+
∂n(τ, t)

∂τ
+m(V )n+m′(V )gi = 0 in Q (3.42)

with initial and boundary conditions

z(0) = 0, f(0) = 0, g(0) = 0, r(0) = 0, n(τ, 0) = 0 for τ ∈ (0, A) (3.43)

and

n(0, t) =
c1s1

N

(
1− S

N

)
r

∫ A

0

i(τ, t)V (τ)dτ +
c1s1S

N

∫ A

0

V (τ)n(τ, t)dτ (3.44)

+
c1s1S

N

∫ A

0

g(τ)i(τ, t)dτ − c1s1S

N2

∫ A

0

i(τ, t)V (τ)

∫ A

0

n(h, t)dhdτ.

Proof. Follows from the sensitivity equations and adjoint system, with α1 = β1l1V x,
α2 = −β1l1V x and α3 = β̂1l1V x− ν1d1l2y.
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We establish the existence of solution to the adjoint system via the existence of solution
(z, f, g, r, n) to system (3.38)−(3.44) (see Barbu [7], Fister and Lenhart [20, 21]). The solution of
the adjoint system satisfies a Lipschitz property analogous to Theorem 3.2. This property will be
used in proving uniqueness of an optimal control pair.

Theorem 3.5. For (u1, u2) ∈ U , the adjoint system (3.33)−(3.37) has a weak solution (λ, ξ, η, p, q)
in (L∞(0, A))3 × L∞(0, T )× L∞(0, T, L1(0, A)) such that

||λ− λ̄||L∞(Ω) + ||ξ − ξ̄||L∞(Ω) + ||η − η̄||L∞(Ω) + ||p− p̄||L∞(0,T ) + ||q − q̄||L∞(Q)

≤ ĈA,T (||u1 − ū1||L∞(Ω) + ||u2 − ū2||L∞(Ω)).

Proof. Follows like in Theorem 3.2, part (ii).

3.2 Characterization of Optimal Control
We use the Ekeland’s Principle [3, 14] to characterize optimal control of first-order PDEs. To do
this, we embed the objective functional J in the space L1(Ω)× L1(Q) by defining [6, 20, 21]

J (u1, u2) =

{
J(u1, u2) if (u1, u2) ∈ U
+∞ if (u1, u2) /∈ U . (3.45)

In order to characterize the optimal control pair, we differentiate the objective functional with
respect to the controls. However, since the objective functional is a function of the state functions,
we must differentiate the state functions with respect to the controls.

Theorem 3.6. If (u∗1, u
∗
2) ∈ U is an optimal control pair minimizing (3.45), and

(x∗, y∗, V ∗, S∗, i∗) and (λ, ξ, η, p, q) are the corresponding state and adjoint solutions, then

u∗1(τ) = F1

(
β1V

∗x∗(ξ − λ)− β̂1V
∗x∗η − A2γ1

∫ T
0
i∗(τ, t)dt

2B

)
a.e. in L1(Ω) (3.46)

u∗2(τ) = F2

(
ν1d1ηy

∗ − A3γ1

∫ T
0
i∗(τ, t)dt

2B

)
a.e. in L1(Ω), (3.47)

where

Fj(x) =


0, x < 0
x, 0 ≤ x ≤ ũj
ũj, x > ũj

for j = 1, 2.

Proof. Since (u∗1, u
∗
2) is an optimal control pair and we seek to minimize our functional, we have

0 ≤ lim
ε→0+

J (u∗1 + εl1, u
∗
2 + εl2)− J (u∗1, u

∗
2)

ε
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= lim
ε→0+

∫ T

0

∫ A

0

(
A1V

ε

(
iε − i∗

ε

)
+ A1i

∗
(
V ε − V ∗

ε

)
+
A2γ1 (iεuε1 − i∗u∗1)

ε

)
dτdt

+ lim
ε→0+

∫ T

0

∫ A

0

(
A3γ1 (iεuε2 − i∗u∗2)

ε

)
+ lim

ε→0+

∫ A

0

B

(
(uε1)2 − (u∗1)2

ε
+

(uε2)2 − (u∗2)2

ε

)
dτ

=

∫ A

0

(ψ, ϕ, φ)

 0
0∫ T

0
A1i

∗(τ, t)dt

 dτ +

∫ T

0

θ.0dt+ 2B

∫ A

0

(l1u
∗
1 + l2u

∗
2)dτ

+

∫ T

0

∫ A

0

ω(A1V
∗ + γ1(A2u

∗
1 + A3u

∗
2) + l1A2γ1i

∗ + l2A3γ1i
∗)dτdt

=

∫
Ω

(λ, ξ, η)L1

 ψ
ϕ
φ

 dτ +

∫ T

0

pL2θdt+ 2B

∫ A

0

(l1u
∗
1 + l2u

∗
2)dτ

+

∫ T

0

∫ A

0

(qL3ω + l1A2γ1i
∗ + l2A3γ1i

∗)dτdt,

in an appropriate weak sense. Using the sensitivity operators, we have

0 ≤
∫ A

0

((λ, ξ, η)

 β1l1V
∗x∗

−β1l1V
∗x∗

β̂1l1V
∗x∗ − ν1d1l2y

∗

+ 2B(l1u
∗
1 + l2u

∗
2))dτ

+

∫ T

0

∫ A

0

(A2γ1l1i
∗(τ, t) + A3γ1l2i

∗(τ, t))dτdt

=

∫ A

0

l1(β1V
∗x∗(λ− ξ) + β̂1V

∗x∗η + 2Bu∗1 + A2γ1

∫ T

0

i∗(τ, t)dt)dτ

+

∫ A

0

l2(2Bu∗2 − ν1d1y
∗η + A3γ1

∫ T

0

i∗(τ, t)dt)dτ. (3.48)

By standard arguments, varying l1 and l2, we obtain the characterization given in equations (3.46)
and (3.47).

3.3 Existence of Optimal Control Pair
The lower semicontinuity of the functional, J , defined in equation (3.45) with respect to L1

convergence is needed to prove the existence of optimal control pair. Since solutions of first-
order partial differential equations are known for nonsmoothness, the objective functional is not
weakly lower semicontinuous with respect to L1. Thus, existence results for an optimal control
are not guaranteed [14]. Therefore, we circumvent this by applying the following Ekeland’s Vari-
ational Principle, which guarantees the existence of a minimizing sequence: For ε > 0, there exist
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(uε1, u
ε
2) ∈ L1(0, A)× L1(0, A) such that

(i) J (uε1, u
ε
2) ≤ inf

(u1,u2)∈U
J (u1, u2) + ε

(ii) J (uε1, u
ε
2) = min

(u1,u2)∈U
Jε(u1, u2),

where Jε(u1, u2) = J (u1, u2) +
√
ε(||uε1 − u1||L1(0,A) + ||uε2 − u2||L1(0,A)).

We shall show that the minimizer, (uε1, u
ε
2), of the approximate functional converges to the optimal

controls (u∗1, u
∗
2) in L∞(0, A) × L∞(0, A). We start by proving the lower semicontinuity of the

functional J .

Theorem 3.7. (Lower semicontinuity)
The functional J : L1(Ω)× L1(Ω)→ (−∞,+∞] is lower semicontinuous

Proof. Let (un1 , u
n
2 ) → (u1, u2) in L1(0, A) × L1(0, A), and assume that (x, y, V, S, i) is the

state solution corresponding to (u1, u2) and (xn, yn, V n, Sn, in) is the state solution corresponding
to (un1 , u

n
2 ), then by Theorem 3.2, part (i), we have

xn → x, yn → y, V n → V in L1(0, A)

Sn → S in L1(0, T ), and in → i in L1((0, A)× (0, T )).

Thus, on a subsequence, denoted by itself, we have

un1 → u1, un2 → u2, xn → x, yn → y, V n → V a.e. in (0, A)

Sn → S a.e. in (0, T ), and in → i a.e. in (0, A)× (0, T ),

by Theorem 5, p. 21 [16]. Hence, on a subsequence, we have

(un1 )2 → (u1)2 and (un2 )2 → (u2)2 a.e. in (0, A),

and

A1i
nV n + γ1i

n(A2u
n
1 + A3u

n
2 )→ A1iV + γ1i(A2u1 + A3u2) in (0, A)× (0, T ),

by Lemma 3.4.3, p. 100 [3]. Using Fatou’s Lemma [16], we have that on a subsequence,∫ T
0

∫ A
0

(A1i(τ, t)V (τ) + γ1i(τ, t)(A2u1 + A3u2))dτdt

=

∫ T

0

∫ A

0

lim inf
n→∞

(A1i
nV n + γ1i

n(A2u
n
1 + A3u

n
2 ))dτdt

≤ lim inf
n→∞

∫ T

0

∫ A

0

(A1i
nV n + γ1i

n(A2u
n
1 + A3u

n
2 ))dτdt, (3.49)

and ∫ A

0

B((u1)2 + (u2)2)dτ = B

∫ A

0

lim inf
n→∞

((un1 )2 + (un2 )2)dτ

≤ lim inf
n→∞

∫ A

0

B((un1 )2 + (un2 )2)dτ. (3.50)
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Combining equations (3.49) and (3.50), we have

J (u1, u2) =

∫ T

0

∫ A

0

(A1iV + γ1i(A2u1 + A3u2))dτdt+B

∫ A

0

((u1)2 + (u2)2)dτ

≤ lim
n→∞

inf J (un1 , u
n
2 ).

Hence, the functional J is lower semicontinuous.

Theorem 3.8. If (uε1, u
ε
2) is an optimal control pair minimizing the approximate functional, Jε,

then
(uε1, u

ε
1)

= F

(
β1V

εxε(ξε − λε)− β̂1V
εxεηε − A2K

ε(τ)−
√
εκε1

2B
,
ν1d1ηy

ε − A3K
ε(τ)−

√
εκε2

2B

)
,

where Kε(τ) = γ1

∫ T
0
iε(τ, t)dt, and the functions κ1, κ2 ∈ L∞(0, A), with |κ1(τ)| = 1 and

|κ2(τ)| = 1, for all τ ∈ (0, A).

Proof. Since (uε1, u
ε
2) is an optimal control pair minimizing the approximate functional Jε,

0 ≤ lim
α→0+

Jε(uε1 + αlε1, u
ε
2 + αlε2)− Jε(uε1, uε2)

α

= lim
α→0+

J (uε1 + αlε1, u
ε
2 + αlε2)− J (uε1, u

ε
2)

α
+
√
ε(||lε1||L1(0,A) + ||lε2||L1(0,A))

=

∫ A

0

lε1

(
β1V

εxε(λε − ξε) + β̂1V
εxεηε + 2Buε1 + A2γ1

∫ T

0

iε(τ, t)dt+
√
εκε1

)
dτ

+

∫ A

0

lε2

(
2Buε2 − ν1d1y

εηε + A3γ1

∫ T

0

iε(τ, t)dt+
√
εκε2

)
dτ,

where κεj =
|lεj |
lεj
∈ L∞(0, A) for j = 1, 2, with |κεj| = 1, and using equation (3.48) in

Theorem 3.6. By standard optimal control arguments (see Theorem 3.6), we have the desired
result.

3.4 Uniqueness of Optimal Control Pair
In this subsection, we establish uniqueness of optimal control pair, by using the Lipschitz proper-
ties of the state and adjoint solutions given in Theorems 3.2 and 3.5, respectively, as well as the
minimizing sequence obtained from the Ekeland’s Variational Principle. Finally, we shall show
that the minimizer, (uε1, u

ε
2), of the approximate functional, Jε, converges to the optimal control,

(u∗1, u
∗
2).
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Theorem 3.9. (Uniqueness) If A
2B

is sufficiently small, then there exists a unique optimal control
pair (u∗1, u

∗
2) ∈ U minimizing the objective functional J .

Proof. Let F(x, y) = (F1(x),F2(y)) and define L : U → U , such that

L(u1, u2) = F

(
β1V x(ξ − λ)− β̂1V xη − A2K(τ)

2B
,
ν1d1ηy − A3K(τ)

2B

)
,

where K(τ) = γ1

∫ T
0
i(τ, t)dt, and (x, y, V, S, i) and (λ, ξ, η, p, q) are the state and adjoint solu-

tions corresponding to the control pair (u1, u2). Using the Lipschitz properties of the state and
adjoint systems in Theorems 3.2 and 3.5, respectively, we have

||L(u1, u2)− L(ū1, ū2)|| ≡ ||F1(u1)−F1(ū1)||L∞(0,A) + ||F2(u2)−F2(ū2)||L∞(0,A)

≤

∣∣∣∣∣
∣∣∣∣∣β1V x(ξ − λ)− β̂1V xη − A2K(τ)

2B
− β1V̄ x̄(ξ̄ − λ̄)− β̂1V̄ x̄η̄ − A2K̄(τ)

2B

∣∣∣∣∣
∣∣∣∣∣
L∞(0,A)

+

∣∣∣∣∣
∣∣∣∣∣ν1d1ηy − A3γ1

∫ T
0
i(τ, t)dt

2B
−
ν1d1η̄ȳ − A3γ1

∫ T
0
ī(τ, t)dt

2B

∣∣∣∣∣
∣∣∣∣∣
L∞(0,A)

≤ CA

2B

(
||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)

)
.

Thus,

||L(u1, u2)− L(ū1, ū2)|| ≤ CA

2B
(||u1 − ū1||L∞(0,A) + ||u2 − ū2||L∞(0,A)). (3.51)

If CA
2B

< 1, then the map L admits a unique fixed point (u∗1, u
∗
2), by the Banach Contraction

Theorem. Next, we show that this fixed point is an optimal control pair, by using the minimizers,
(uε1, u

ε
2), from Ekeland’s Principle. To do this, we use the states (xε, yε, V ε, Sε, iε) and adjoints

(λε, ξε, ηε, pε, qε) corresponding to the minimizer (uε1, u
ε
2). Now, for

Kε(τ) = γ1

∫ T
0
iε(τ, t)dt, aε(τ) = β1V

ε(τ)xε(τ)(ξε(τ)−λε(τ))−β̂1V
ε(τ)xε(τ)ηε(τ) and bε(τ) =

ν1d1η
ε(τ)yε(τ), we have

‖L(uε1, u
ε
2)−F

(
aε − A2K

ε −
√
εκε1

2B
,
bε − A3K

ε −
√
εκε2

2B

)
‖(L∞(0,A))2

=

∥∥∥∥F (aε − A2K
ε

2B
,
bε − A3K

ε

2B

)
−F

(
aε − A2K

ε −
√
εκε1

2B
,
bε − A3K

ε −
√
εκε2

2B

)∥∥∥∥
(L∞(0,A))2

≤
∥∥∥∥√εκε12B

‖L∞(0,A) + ‖
√
εκε2

2B

∥∥∥∥
L∞(0,A)

=

√
ε

B
. (3.52)
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Now, we show that

(uε1, u
ε
2)→ (u∗1, u

∗
2) in L∞(0, A)× L∞(0, A).

For K∗(τ) = γ1

∫ T
0
i∗(τ, t)dt and Kε(τ) = γ1

∫ T
0
iε(τ, t)dt, we have

‖(u∗1, u∗2)− (uε1, u
ε
2)‖(L∞(0,A))2

= ‖u∗1 − uε1‖L∞(0,A) + ||u∗2 − uε2‖L∞(0,A)

=

∥∥∥∥F1

(
β1V

∗x∗(ξ − λ)− β1V
∗x∗η − A2K

∗

2B

)
−F1

(
aε − A2K

ε −
√
εκ∗1

2B

)∥∥∥∥
L∞(0,A)

+

∥∥∥∥F2

(
ν1d1y

∗η − A3K
∗

2B

)
−F2

(
ν1d1y

εηε − A3K
ε −
√
εκε2

2B

)∥∥∥∥
L∞(0,A)

≤ ‖L(u∗1, u
∗
2)− L(uε1, u

ε
2)‖L∞(0,A)

+

∥∥∥∥L(uε1, u
ε
2)−F

(
aε − A2K

ε −
√
εκε1

2B
,
ν1d1η

εyε − A3K
ε −
√
εκε2

2B

)∥∥∥∥
L∞(0,A)

≤ CA

2B
(||u∗1 − uε1‖L∞(0,A) + ‖u∗2 − uε2‖L∞(0,A)) +

√
ε

B
,

from equations (3.51) and (3.52). Thus,

‖u∗1 − uε1‖L∞(0,A) + ‖u∗2 − uε2‖L∞(0,A) ≤
CA

2B
(‖u∗1 − uε1‖L∞(0,A) + ‖u∗2 − uε2||L∞(0,A)) +

√
ε

B
.

Whence,

‖u∗1 − uε1‖L∞(0,A) + ||u∗2 − uε2‖L∞(0,A) ≤
ε/B

1− CA
2B

,

for A/2B sufficiently small. Equivalently,

‖(u∗1, u∗2)− (uε1, u
ε
2)‖L∞(0,A)×L∞(0,A) ≤

ε/B

1− CA
2B

→ 0 as ε→ 0+.

Thus,
(uε1, u

ε
2)→ (u∗1, u

∗
2) in L∞(0, A)× L∞(0, A).

Finally, we show that (u∗1, u
∗
2) is the minimizer of the functional, J . Now, as the functional, J ,

is lower semicontinuous, using Ekeland’s Principle, we have
J (uε1, u

ε
2) ≤ inf(u1,u2)∈U J (u1, u2) + ε. Since (uε1, u

ε
2) → (u∗1, u

∗
2) as ε → 0+, it follows that

J (u∗1, u
∗
2) ≤ inf(u1,u2)∈U J (u1, u2).

4 Numerical Simulations
We present a numerical scheme for the within-host model (2.1)-(2.4) and between-host model
(2.5)-(2.7) based on semi-implicit finite-difference schemes for ordinary differential equations [25,
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27] and partial differential equations [2, p. 166]. Let ∆τ = h > 0 be the discretization step for
the interval [0, A], with h = A

M
, where M is the total number of subintervals in age (age-since-

infection), and ∆t = k > 0 be the discretization step for the interval [0, T ], with k = T
N

, where N
is the total number of subintervals in time. We discretize the intervals [0, A] and [0, T ] at the points
τj = j∆τ (j = 0, 1, ...,M) and tn = n∆t (n = 0, 1, ..., N), respectively. Next, we define the state
and adjoint functions x, y, V , S, ω ( where ω ≡ i), λ, ξ, η, p, q, and controls u1 and u2 in terms
of nodal points xj , yj , V j , Sn, wnj , λj , ξj , ηj , pn, qnj , uj1 and uj2. Since ωnj is an approximation to
the solution of the equation that models infectious individuals at time level tn and grid point τj , we
approximate the directional derivatives ∂ω(τ,t)

∂t
and ∂ω(τ,t)

∂τ
by

∂ω(τj, tn)

∂t
≈
ωnj − ωn−1

j

∆t
and

∂ω(τj, tn)

∂τ
≈
ωn−1
j − ωn−1

j−1

∆τ
.

Age of individuals changes at the same speed as chronological time, and therefore we assume that
∆t = ∆τ , so that

∂ω(τj, tn)

∂t
+
∂ω(τj, tn)

∂τ
≈
ωnj − ωn−1

j−1

∆t
.

Since initial conditions are given for the state system, we use the forward finite-difference approxi-
mation to obtain a semi-implicit scheme for the state system. Similarly, since final time conditions
of the adjoint system are given, we approximate the time-since-start of infection, chronological
time and age-since-infection derivatives of the adjoint functions by their first-order semi-implicit
backward finite-difference approximations. To fully implement our numerical scheme for the cou-
pled model, we use the parameter values of the within-host and epidemiological model of HIV
given in Table 3, and the forward-backward sweep method, whereby solutions to the state system
are obtained using a finite difference forward sweep method and solutions to the adjoint system
are obtained using a finite difference backward sweep method [40]. We now illustrate numerical
simulations of the optimal control and corresponding states for one sample set of parameters. For

Table 3: Within-Host Model Parameter Values

Parameter Value Source
r 10 cells mm−3day−1 [9, 19, 27, 39, 47, 53]
µ 0.02 day−1 [9, 27, 47, 53]
β1 2.4 ×10−5mm3day−1 [9, 27, 19, 39, 47, 53]
β̂1 2.4 ×10−5mm3day−1 [9, 27, 19, 39, 47, 53]
d1 0.5 day−1 [9, 27, 19, 39, 47]
ν1 1200 virions cell−1 [19]
δ1 3 day−1 [9, 19, 47]
s1 1.4 day−1 assumed
c1 4× 10−5 mm3virion−1year−1 assumed
µ1 2× 10−7 virion−1year−1 assumed
m0 0.012 mm3 year−1 assumed
Λ 2750 humans assumed
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this set of parameters without control, we haveR0 = 4.3.
In Figure 1, we have trajectories representing healthy CD4+ T cells, infected CD4+ T cells and

free virus in the absence/presence of transmission and virion production suppressing drugs for a
total of 100 days. In the absence of drugs and starting with 600 healthy CD4+ T cells per mm3 of
blood, the number of heathy cells decreases greatly within the first 20 days of infection. Between
20 – 100 days, the count of CD4+ healthy cells lies below 200. With no infected CD4+ T cells in
the population at the beginning of the infection, the number of infected cells increases significantly
between 10 – 30 days, with a maximum count of about 190 infected cells, and decreases thereof.
Starting with 0.005 virions per mm3 of blood, an acute phase is observed between 10 – 30 days
since start-of-infection with a maximum count of about 2.5 × 104 virions, followed by a latent
period.

Figure 1: Healthy CD4+ T Cells, Infected CD4+ T Cells, Free Virus with and without Control
when x0 = 600 cells mm−3, y0 = 0 cell mm−3, V 0 = 0.005 virions mm−3, A1 = 1, A2 = 0.7,
A3 = 0.7, A=100 days and B = 5× 106.

In the presence of transmission and virion production suppressing drugs, trajectories indicate
an increase in the number of healthy CD4+ T cells, and a decrease in infected CD4+ T cells and
free virus. Also, the acute phase observed in the virus population within 10 – 30 days occurs
with lower severity, and the viral relapse phase in the absence of control occurs sooner than in the
presence of control. Similarly, the acute phase observed in the population of infected CD4+
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Figure 2: Susceptible and Infectious Individuals with and without Control, and Initial Age Distri-
bution i(τ, 0) = 100sin(πτ

25
) when Λ = 2750, x0 = 600 cells per mm3, y0 = 0 cell per mm3 and

V 0 = 0.005 virions per mm3.

T-cells within 10 – 30 days occurs with lower severity. The control program suggests full treatment
between 10 – 80 days since start-of-infection.

Figure 2 represents the between-host dynamics in the absence/presence of transmission and
virion production transmission suppressing drugs. In the absence of drugs, trajectories for sus-
ceptible individuals suggest a steady decrease in the population of susceptible individuals at the
epidemiological level as the result of the proliferation of free virus at the within-host level. Also,
with the assumption that at time t = 0, the initial age distribution of infectious individuals is
modeled by i(τ, 0) = 100sin(πτ

25
), we observe an oscillatory increase in the number of infectious

individuals in the population as time evolves. In the presence of transmission and virion production
suppressing drugs, there are more susceptibles with a lower prevalence rate.

Our numerical results suggest that at the within-host level, the acute phase of infection observed
within 2 – 4 weeks occurs with lower severity, followed by a latent phase between 4 – 10 weeks.
During week 11, the virus proliferates, with a less severe effect relative to the population of free
virus in the absence of control. Moreover, when transmission and virion production suppressing
drugs are administered, the susceptible population experiences an increase while the infectious
population experiences a significant decrease in prevalence.
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5 Conclusion
We formulated, in a careful way, a within-host model linked with an epidemiological model
through a structural variable and coefficients. Existence and uniqueness results of the epidemi-
ological model are established. Then we derived an explicit expression for the basic reproduction
number of the epidemiological model, using the next generation method and examined conditions
for existence of an endemic equilibrium. We showed that the disease-free equilibrium is locally
asymptotically when R0 < 1 and unstable if R0 > 1. Also, when R0 < 1, the disease-free equi-
librium is globally stable. IfR0 > 1, we showed that there exists an endemic equilibrium which is
locally asymptotically stable when the maximal age of infection, A, is large enough.

We formulated an optimal control problem which aims at minimizing infectious individuals,
free virus and toxicity cost. In order to curtail the proliferation of the virus at the within-host level,
we incorporated transmission and virion production suppressing drugs into the the within-host
model. We establish a Lipschitz property for the within-host and between-host state solutions in
terms of functions representing transmission and virion production suppressing drugs. We derived
sensitivity equations for the coupled model which were used in deriving an adjoint system. We
obtained an optimal control characterization for the control pair and established the existence of
optimal control using Ekeland’s Principle. Using a minimizing sequence obtained via Ekeland’s
Principle, we established uniqueness results.

Using a forward-backward finite difference approximation, we solved the optimality system
numerically for illustration. In the absence of control in the population, numerical simulations
indicate a decrease in the number of healthy CD4+ cells, and an increase in the number of infected
cells and free virus within the first few days of infection at the within-host level. At the between-
host level, there is a sustained decrease in the number of susceptible individuals and an oscillatory
increase in the number of infectious cases. In the presence of transmission and virion production
suppressing drugs, more healthy cells were observed with fewer infected cells and free virus at
the within-host level. Also, fewer infectious cases were observed with a significant increase in the
population of susceptible humans in the presence of transmission and virion production suppress-
ing drugs. Investigation of numerical results when varying other parameters should be considered
in the future.

We developed novel optimal control results for our linked system. Our analysis and control
techniques give a new tool for investigating immuno-epidemiological models for other diseases.
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