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Abstract. This article introduces a two-strain spatially explicit SIS epidemic model with
space-dependent transmission parameters. We define reproduction numbers of the two strains,
and show that the disease-free equilibrium will be globally stable if both reproduction numbers
are below one. We also introduce the invasion numbers of the two strains which determine
the ability of each strain to invade the single-strain equilibrium of the other strain. The main
question that we address is whether the presence of spatial structure would allow the two
strains to coexist, as the corresponding spatially homogeneous model leads to competitive
exclusion. We show analytically that if both invasion numbers are larger than one, then there
is a coexistence equilibrium. We devise a finite element numerical method to numerically con-
firm the stability of the coexistence equilibrium and investigate various competition scenarios
between the strains. Finally, we show that the numerical scheme preserves the positive cone
and converges of first order in the time variable and second order in the space variables.
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1. Introduction

Most communicable diseases exhibit variation in epidemiological characteristics throughout

space. For instance, different countries have different incidence of a given infectious disease.

Key epidemiological parameters, such as transmission and often recovery are intrinsically spa-

tially dependent. Disease transmission through direct contact is always local, and its intensity

can be linked to the spatial location. This suggests that when the classical epidemic models

are recast to include diffusion and incorporate spatial heterogeneity explicitly, the transmission

coefficients should be functions of the spatial location where the contact occurs. It is surprising

to see that most classical epidemiological spatially heterogenous models have a reaction part

where rates are constant with respect to location. Notable exceptions exist. The spatial effects

have been widely studied through patch models (e.g. [19]) or by adding diffusion to an ODE

model [25]. The authors in [19] studied how banning travel of symptomatic or infected indi-

viduals from high to low prevalence patch will effect the spread of the disease by considering

a multi-patch model where transmission and recovery are patch-dependent.

In three papers Fitzgibbon et al. study a number of directly, environmentally and vector-

transmitted diseases where the transmission rate is spatially heterogenous [15, 16, 17]. The

authors derive analytical results on well-posedness of the systems as well as various limit-

ing properties of the solutions. Epidemiologically relevant threshold conditions, however, are

derived in the case of constant coefficients [17].

Studying the classical epidemiological models with spatially heterogeneous coefficients presents

significant difficulties. The first article that derives a reproduction number for a simple SIS

models with spatially heterogenous transmission and recovery appears to be the one by Allen et
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al [2]. The reproduction number defined there is not explicit in the sense that if the parameters

were known the value may still be not easy to compute. Furthermore, this reproduction num-

ber does not seem to follow the next generation approach [12] but possesses the usual threshold

property. The authors also derive useful epidemiological characteristics such as dependence of

the reproduction number on the diffusion coefficients.

In this paper we consider a two-strain extension of the model presented in [2]. The two

strain model does not incorporate any explicit trade-off mechanisms, such as co-infection or

super-infection [23] that may lead to coexistence of the strains even in the model’s ODE coun-

terpart. The main question that we address is whether space alone could allow for coexistence.

We expect and obtain a positive answer to our question. The continuous scenario that we

investigate is analogous to a discrete multi-patch model where the disease cannot persist on

any of the individual patches, but can persist in the system. The ability of the diseases to

persist in a system of sink habitats, that is patches with basic reproduction number smaller

than one, has been observed before in various multi-patch epidemiological models (e.g. [11]).

We approach the problem both analytically and numerically. Analytical studies of multi-

strain epidemic models with diffusion are scarce. Kim et al. [21] discuss a spatial version of

an avian influenza multi-strain model with non-local transmission in humans but the strains

there do not compete as each one is established in a different species. Competition has more

thoroughly been addressed in ecology in the context of Lotka-Volterra competition models ([7],

p. 224). In ecological context, the effect of diffusion on coexistence in competing populations

has been studied in multiple scenarios. For instance, Pacala and Roughgarden [25] consider a

pair of coupled Lotka-Volterra competition equations with diffusion on one dimensional spatial

habitat. The only spatially-heterogeneous parameter is the carrying capacity which is defined

as a step function. Furthermore, the effects of spatial heterogeneity on the persistence of two

competing species has been investigated in [8] where the authors studied the dynamics of the

two interacting populations by considering a coupled reaction diffusion system having spatially

dependent reaction terms. The impact of space on competing species in ecological context has

much in common with the question we study in this paper.

Here, addressing our main question, we show analytically that a coexistence equilibrium

exists. This is the case if the invasion numbers of the two strains, defined analogously to the

reproduction numbers, are larger than one. To show stability of the coexistence equilibrium we

develop a fully discrete finite element method. Finite element methods are a natural approach

to diffusion problems including in epidemiology [22]. The main challenge is to develop a finite

element method that preserves the positivity of the solution. We use the finite element method

to demonstrate through simulations the convergence to a coexistence equilibrium as well as to

investigate other outcomes of the competition of the strains based on the reproduction numbers

and invasion numbers. Since the reproduction numbers and invasion numbers for our examples

cannot be computed exactly, even when the parameters of the model are known, we develop a

novel numerical method that estimates the relation of these numbers to one.

This paper is structured in the following way: In section 2 we introduce the two-strain

model and the reproduction numbers of the strains. In section 3 we investigate the local

stability of the disease-free and the semi-trivial equilibria. We also introduce the invasion

numbers and their relation to the corresponding principal eigenvalue. In section 4, we use

the monotonicity of the equilibrial system to show the existence of coexistence equilibrium

in the case when both invasion numbers are larger than one. In section 5 we introduce our

finite element method. Furthermore, we establish its order of convergence and we show that
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it preserves the positivity of the solutions. Section 6 is devoted to the numerical computation

of the reproduction numbers and invasion numbers. Section 7 shows numerical evidence of the

convergence of our finite element method. Furthermore, we investigate through simulations

various outcomes of the competition of the strains governed by the reproduction and invasion

numbers. Section 8 contains a summary of our results.

2. A two-strain SIS model with diffusion

In this section we introduce a two-strain SIS epidemic model with diffusion. The total

population size is divided into non-intersecting classes of susceptibles, infected with strain one

and strain two. Let S(x, t) be the density of the susceptible individuals at position x at time

t > 0. Let I1(x, t) and I2(x, t) represent the densities of infected individuals with respect to

strain one and two respectively. We consider the following reaction diffusion system,

∂S

∂t
= ds∆S − β1(x)

SI1

S + I1 + I2
− β2(x)

SI2

S + I1 + I2
+ γ1(x)I1 + γ2(x)I2,

∂I1

∂t
= d1∆I1 + β1(x)

SI1

S + I1 + I2
− γ1(x)I1, x ∈ Ω, t > 0(2.1)

∂I2

∂t
= d2∆I2 + β2(x)

SI2

S + I1 + I2
− γ2(x)I2,

∂S

∂n
=

∂I1

∂n
=
∂I2

∂n
= 0;

where Ω is a bounded domain in Rn (with n ≥ 1) with smooth boundary ∂Ω. The vector

n is the unit outward normal to the boundary ∂Ω. We assume no flux boundary conditions.

Thus the population remains confined to Ω for all time. System (2.1) is equipped with positive

initial conditions. We assume that there is initially a positive number of infected individuals,

i.e.,∫
Ω

(I1(x, 0) + I2(x, 0))dx > 0, with S(x, 0) > 0, I1(x, 0) > 0, and I2(x, 0) > 0 for x ∈ Ω.

This model is a two-strain extension of the model in [2]. It is clear from the standard theory of

semilinear parabolic systems that a unique classical solution (S, I1, I2) of (2.1) exists for all time

[18]. In this model, we assume the diffusion coefficients ds, d1, and d2 for the susceptible and

infected populations to be positive coefficients. Reaction terms, β1(x) SI1
S+I1+I2

and β2(x) SI2
S+I1+I2

give the incidence of the disease, that is, the number of newly infected susceptible individuals

per unit of time who have contracted the disease and have become infected at a given position

x ∈ Ω. Here, β1(x), β2(x) are the space-dependent rates of disease transmission by infectives

with strain one and strain two, respectively at position x ∈ Ω. Infected individuals with strain

one and strain two recover and become susceptible with space-dependent rates of recovery γ1(x)

and γ2(x) for position x ∈ Ω. We assume that β1(x), β2(x), γ1(x), and γ2(x) are positive

Hölder continuous functions on Ω̄ . Assume also that

βi(x) ≤ β̄i γi(x) ≤ γ̄i for all x ∈ Ω and i = 1, 2.

Let

V (t) =

∫
Ω

(S(x, t) + I1(x, t) + I2(x, t)) dx

be the total population size in Ω at time t. Note that ∂V
∂t = 0, since
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∂

∂t

∫
Ω

(S + I1 + I2) dx =

∫
Ω

∆ (dsS + d1I1 + d2I2) dx

=

∫
∂Ω

∂

∂n
(dsS + d1I1 + d2I2) dx = 0, for t > 0.

We conclude that the population size, V , is constant, and equal to the total population size at

time zero. Therefore, we have,∫
Ω

(S(x, t) + I1(x, t) + I2(x, t)) dx = V, t ≥ 0.

Setting S̄ = S
V , Ī1 = I1

V , Ī2 = I2
V , and substituting into (2.1), we get similar equations. Drop-

ping the bar on (S̄, Ī1, Ī1), we get the same system of equations (2.1) with the following

conditions

∫
Ω

(S(x, t) + I1(x, t) + I2(x, t))dx = 1, t ≥ 0 and

∫
Ω

(S(x, 0) + I1(x, 0) + I2(x, 0))dx = 1.

In the rest of this article we consider system (2.1) subject to the above constraint.

We denote by R0 the basic reproduction number which gives the number of secondary in-

fections that one infected individual will produce in an entirely susceptible population. The

basic reproduction number determines whether there is an epidemic or not. The reproduction

number of strain i is given by

Ri = sup
ψ∈H1(Ω), ψ 6=0


∫

Ω
βiψ

2∫
Ω
di|∇ψ|2 + γiψ

2

 , for i = 1, 2.

We note that the reproduction number of strain i depends explicitly on space. However, its

computation if the coefficients of the system are known, is not straight-forward.

Then the basic reproduction number R0 is defined as R0 = max {R1,R2}. We show in the

next section that if R0 < 1, then both strains die out. It is expected that if R0 > 1, then at

least one of the strains persists.

3. Local stability of the disease-free and semi-trivial equilibria

We are interested in the equilibrium solutions of (2.1), i.e., the time independent solutions

of the following system;

0 = ds∆S̃ − β1(x)
S̃Ĩ1

S̃ + Ĩ1 + Ĩ2

− β2(x)
S̃Ĩ2

S̃ + Ĩ1 + Ĩ2

+ γ1(x)Ĩ1 + γ2(x)Ĩ2, x ∈ Ω,

0 = d1∆Ĩ1 + β1(x)
S̃Ĩ1

S̃ + Ĩ1 + Ĩ2

− γ1(x)Ĩ1, x ∈ Ω,(3.1)

0 = d2∆Ĩ2 + β2(x)
S̃Ĩ2

S̃ + Ĩ1 + Ĩ2

− γ2(x)Ĩ2, x ∈ Ω.

This system is augmented with no flux boundary conditions,

(3.2)
∂S̃

∂n
=
∂Ĩ1

∂n
=
∂Ĩ2

∂n
= 0.
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In (3.1) quantities S̃(x), Ĩ1(x), Ĩ2(x) denote the densities at equilibrium of susceptible and

infected individuals at location x ∈ Ω. The equilibrium values also satisfy∫
Ω

(
S̃(x) + Ĩ1(x) + Ĩ2(x)

)
dx = 1.

A disease-free equilibrium (DFE) is a solution of (3.1) in which both strains Ĩ1(x) and Ĩ2(x)

vanish at every x ∈ Ω at equilibrium, i.e., Ĩ1(x) = Ĩ2(x) = 0. A strain-one equilibrium, I1-

equilibrium, is a solution of (3.1) in which only strain two, Ĩ2 vanishes at every x ∈ Ω at

equilibrium. Similarly, a strain-two equilibrium, I2-equilibrium, is a solution of (3.1) in which

only Ĩ1 vanishes at every x ∈ Ω at equilibrium. An endemic equilibrium (EE) is a solution in

which both stains coexist, i.e., Ĩ1 > 0 and Ĩ2 > 0 for some x ∈ Ω. To distinguish between these

4 types of equilibria, we use different notation for each. Throughout the paper, we denote DFE

by (S̄, 0, 0), I1-equilibrium by (S∗, I∗1 , 0), I2-equilibrium by (Ŝ, 0, Î2), and EE by (S̃, Ĩ1, Ĩ2) .

Theorem 3.1. There exists a unique DFE and it is given by (S̄, 0, 0) = ( 1
|Ω| , 0, 0).

Proof: Since in DFE both Ĩ1(x) = Ĩ2(x) = 0, by (3.1) we have ds∆S̄ = 0. With boundary

condition ∂S̄
∂n = 0, ds∆S̄ = 0 implies that S̄ is a constant in Ω. Clearly any constant is a

solution, but note that since 1 =

∫
Ω

(S̃ + Ĩ1 + Ĩ2)dx and Ĩ1 = Ĩ2 = 0 and S̄ is a constant,

S̄ = 1
|Ω| , where |Ω| is the measure of the domain Ω. �

Theorem 3.2. If R0 < 1 then DFE is locally stable, if R0 > 1 then it is unstable.

Proof: To study the stability of the equilibrium, let

S(x, t) = S̄(x, t) + η(x, t),

I1(x, t) = ξ1(x, t),

I2(x, t) = ξ2(x, t).

We linearize (3.1) around DFE and obtain the following system of perturbation equations

∂η

∂t
= ds∆η + (γ1 − β1)ξ1 + (γ2 − β2)ξ2,

∂ξ1

∂t
= d1∆ξ1 + (β1 − γ1)ξ1, x ∈ Ω, t > 0,(3.3)

∂ξ2

∂t
= d2∆ξ2 + (β2 − γ2)ξ2,

with boundary conditions; ∂η
∂n = ∂ξ1

∂n = ∂ξ2
∂n = 0 on ∂Ω . We search for solutions of system (3.3)

in the form η(x, t) = e−λtφ(x), ξ1(x, t) = e−λtψ1(x), ξ2(x, t) = e−λtψ2(x). Substituting in

system (3.3) we obtain the following eigenvalue problem:

ds∆φ(x) + (γ1 − β1)ψ1(x) + (γ2 − β2)ψ2(x) + λφ(x) = 0, x ∈ Ω,(3.4)

d1∆ψ1(x) + (β1 − γ1)ψ1(x) + λψ1(x) = 0, x ∈ Ω,(3.5)

d2∆ψ2(x) + (β2 − γ2)ψ2(x) + λψ2(x) = 0, x ∈ Ω.(3.6)

with boundary conditions: ∂φ
∂n = ∂ψ1

∂n = ∂ψ2

∂n = 0 on ∂Ω .

Since the total population size is constant, we have

0 =

∫
Ω

(η(x, t) + ξ1(x, t) + ξ2(x, t)) dx = e−λt
∫

Ω
(φ(x) + ψ1(x) + ψ2(x)) dx.
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Therefore,

(3.7)

∫
Ω

(φ(x) + ψ1(x) + ψ2(x)) dx = 0.

It is easy to see that the vector (c, 0, 0) where c is a non-zero constant satisfies system (3.4)-

(3.6) with the boundary conditions. However, this solution does not satisfy the constraint in

(3.7), and hence, λ = 0 is not an eigenvalue of the system (3.4)-(3.6) subject to the constraint

(3.7). Observe that (3.5) and (3.6) decoupled. If (λ1, ψ1) and (λ2, ψ2) are eigenpairs of (3.5)

and (3.6) respectively, then λi, 1 = 1, 2 are real since, the operators on the left side of these

equation are self-adjoint. Note that both (3.5) and (3.6) have infinite sequence of eigenvalues:

λ1
1 < λ2

1 ≤ · · · ≤ λn1 ≤ · · · and λ1
2 < λ2

2 ≤ · · · ≤ λn2 ≤ · · ·

which are bounded from below. Let λ∗i , i = 1, 2 denote the first eigenvalues, and ψ∗1, ψ∗2 denote

the corresponding eigenfunctions of (3.5) and (3.6) respectively. Since the first eigenvalues,

λ∗i , i = 1, 2 are simple, both ψ∗1 and ψ∗2 are positive in Ω [13, 29]. It is well known that λ∗1 is

given by the following variational characterization.

λ∗1 = inf
ψ∈H1(Ω)

{∫
Ω
d1|∇ψ|2 + (γ1 − β1)ψ2,

∫
Ω
ψ2 = 1.

}
Similarly, λ∗2 satisfies the following variational formulation;

λ∗2 = inf
ψ∈H1(Ω)

{∫
Ω
d2|∇ψ|2 + (γ2 − β2)ψ2,

∫
Ω
ψ2 = 1.

}
Note that eigenpairs of the scalar equations (3.5) and (3.6) are also the solutions of the system

(3.4)-(3.6), if we consider the solutions of the form (λ1, φ, ψ1, 0) or (λ2, φ, 0, ψ2). Clearly, λ∗1 > 0

and λ∗2 > 0, whenever R1 < 1, and R2 < 1; λ∗1 = 0 and λ∗2 = 0,whenever R1 = 1, and R2 = 1;

and λ∗1 < 0 and λ∗2 < 0,whenever R1 > 1, and R2 > 1. The perturbation system (3.3) is stable,

iff R1 < 1, and R2 < 1, that is, iff R0 < 1.

�

Theorem 3.3. If R0 < 1 then DFE is globally stable, if R0 > 1 then it is unstable.

The proof follows from the proof of Lemma 2.5 from [2]. �
Next, we consider the two semi-trivial equilibria. The I1-equilibrium satisfies the following

system

0 = ds∆S
∗ − β1(x)

S∗I∗1
N∗

+ γ1(x)I∗1 x ∈ Ω,

0 = d1∆I∗1 + β1(x)
S∗I∗1
N∗

− γ1(x)I∗1 x ∈ Ω,(3.8)

0 =
∂S∗

∂n
=
∂I∗1
∂n

x ∈ ∂Ω.

where N∗ = S∗ + I∗1 . The I2-equilibrium satisfies the same system with the subscript 1

and 2 interchanged, and with N̂ = Ŝ + Î2. This is the exact same system for the endemic

equilibrium (EE) discussed in [2]. We conclude that there exists a unique (S∗, I∗1 , 0) equilibrium

and a unique (Ŝ, 0, Î2) equilibrium. Since existence results for I1 and I2 equilibria are direct

consequences of results in section 3.2 in [2], they will not be derived here.

To investigate local stability of semi-trivial equilibria, let S(x, t) = S∗(x, t)+φ(x, t) , I1(x, t) =

I∗1 (x, t) + ψ1(x, t), and I2(x, t) = ψ2(x, t) and then linearizing (2.1) around (S∗, I∗1 , 0) we get;
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∂φ

∂t
= ds∆φ− β1

(
I∗1
N∗

)2

φ−

(
β1

(
S∗

N∗

)2

− γ1

)
ψ1 +

(
β1

S∗I∗1
(N∗)2

− β2
S∗

N∗
+ γ2

)
ψ2(3.9)

∂ψ1

∂t
= d1∆ψ1 + β1

(
I∗1
N∗

)2

φ+

(
β1

(
S∗

N∗

)2

− γ1

)
ψ1 − β1

S∗I∗1
(N∗)2

ψ2(3.10)

∂ψ2

∂t
= d2∆ψ2 +

(
β2
S∗

N∗
− γ2

)
ψ2(3.11)

Since (3.11) decouples, we consider the following eigenvalue problem,

(3.12) d2∆ψ2(x) +

(
β2
S∗

N∗
− γ2

)
ψ2(x) + λψ2(x) = 0.

Let λ∗ denote the principal eigenvalue of (3.12), which is given by the following variational

formulation

(3.13) λ∗ = inf
ψ∈H1(Ω)

{∫
Ω
d2|∇ψ|2 −

(
β2
S∗

N∗
− γ2

)
ψ2,

∫
Ω
ψ2 = 1.

}
The system (3.8) is the exact system for EE of the single strain model studied in [2]. The

eigenvalue problem associated with the linearization of the single strain model at the EE is

given as follows:

ds∆φ− β1

(
I∗1
N∗

)2

φ−

(
β1

(
S∗

N∗

)2

− γ1

)
ψ + λφ = 0(3.14)

d1∆ψ + β1

(
I∗1
N∗

)2

φ+

(
β1

(
S∗

N∗

)2

− γ1

)
ψ + λψ = 0.(3.15)

Theorem 3.4. Let λ∗ < 0 and suppose that λ∗ is not an eigenvalue of (3.14)-(3.15), then the

I1 equilibrium (S∗, I∗1 , 0) is unstable.

Proof: We use the principle of linearized stability theorem which states that the stability of

the equilibrium (S∗, I∗1 , 0) is determined by the spectrum of the linearization at the equilibrium

[27, 24]. So, we consider the following eigenvalue problem;

ds∆φ− β1

(
I∗1
N∗

)2

φ−

(
β1

(
S∗

N∗

)2

− γ1

)
ψ1 +

(
β1

S∗I∗1
(N∗)2

− β2
S∗

N∗
+ γ2

)
ψ2 + λφ = 0

d1∆ψ1 + β1

(
I∗1
N∗

)2

φ+

(
β1

(
S∗

N∗

)2

− γ1

)
ψ1 − β1

S∗I∗1
(N∗)2

ψ2 + λψ1 = 0(3.16)

d2∆ψ2 +

(
β2
S∗

N∗
− γ2

)
ψ2 + λψ2 = 0

For λ∗ < 0, we need to show that (λ∗, φ, ψ1, ψ
∗) is a solution of (3.16), where λ∗ is the principal

eigenvalue and ψ∗ is the corresponding positive eigenfunction of the eigenvalue problem (3.12).
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For given (λ∗, ψ∗) we need to solve the following non-homogenous problem;

ds∆φ+

(
λ∗ − β1

(
I∗1
N∗

)2
)
φ−

(
β1

(
S∗

N∗

)2

− γ1

)
ψ1 =

(
β2
S∗

N∗
− β1

S∗I∗1
(N∗)2

− γ2

)
ψ∗

d1∆ψ1 + β1

(
I∗1
N∗

)2

φ+

(
β1

(
S∗

N∗

)2

− γ1 + λ∗

)
ψ1 = β1

S∗I∗1
(N∗)2

ψ∗

Since λ∗ is not an eigenvalue of (3.14)-(3.15), the operator on the left hand side is invertible. �
Similar analysis is true for the I2-equilibrium (Ŝ, 0, Î2) . For the I2-equilibrium we consider

the following eigenvalue problem

(3.17) d1∆ψ1(x) +

(
β1
Ŝ

N̂
− γ1

)
ψ1(x) + λψ1(x) = 0

We denote the principal eigenvalue of (3.17) by λ̂, and its variational formulation is given as

follows;

(3.18) λ̂ = inf
ψ∈H1(Ω)

{∫
Ω
d1|∇ψ|2 −

(
β1
Ŝ

N̂
− γ1

)
ψ2,

∫
Ω
ψ2 = 1.

}
We denote by ψ̂ the positive eigenfunction corresponding to the principal eigenvalue λ̂ of (3.17).

Theorem 3.5. Let λ̂ < 0 and suppose that λ̂ is not an eigenvalue of the following eigenvalue

problem,

ds∆φ− β2

(
Î2

N̂

)2

φ−

β2

(
Ŝ

N̂

)2

− γ2

ψ + λφ = 0

d2∆ψ + β2

(
Î2

N̂

)2

φ+

β2

(
Ŝ

N̂

)2

− γ2

ψ + λψ = 0.

then the I2-equilibrium (Ŝ, 0, Î2) is unstable.

Proof: Similar to the proof of Theorem 3.4.

We denote the invasion numbers of strain one and strain two by R̂1, and R̂2 respectively.

The two invasion numbers are defined as follows:

R̂1 = sup
ψ∈H1(Ω), ψ 6=0


∫

Ω
β1
Ŝ

N̂
ψ2∫

Ω
d1|∇ψ|2 + γ1ψ

2

 ,(3.19)

R̂2 = sup
ψ∈H1(Ω), ψ 6=0


∫

Ω
β2
S∗

N∗
ψ2∫

Ω
d2|∇ψ|2 + γ2ψ

2

 .(3.20)

Invasion number R̂1 gives the ability of strain one to invade the I2-equilibrium (Ŝ, 0, Î2)

measured as the number of secondary infections one strain one-infected individual can produce

in a population where strain two is at equilibrium. Similarly, invasion number R̂2 gives the

ability of strain two to invade the I1-equilibrium (S∗, I∗1 , 0).
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Lemma 3.1. The following statements are true for the invasion numbers R̂1, R̂2 of strains

one and two respectively.

(i) R̂i is a positive and monotone decreasing function of di > 0 ;

(ii) R̂1 > 1 when λ̂ < 0, R̂1 = 1 when λ̂ = 0, and R̂1 < 1 when λ̂ > 0 ;

(iii) R̂2 > 1 when λ∗ < 0, R̂2 = 1 when λ∗ = 0, and R̂2 < 1 when λ∗ > 0 .

Proof:

(i) The functions β1, β2, γ1 and γ2 are nonnegative on the domain Ω. Positivity of the inva-

sion numbers R̂1, R̂2 are satisfied by the existence of the positive single strain equilibriums

(S∗, I∗1 , 0) and (Ŝ, 0, Î2). It is straight-forward to show that the invasion numbers R̂1, R̂2 are

decreasing functions of d1 and d2 respectively.

(ii) Let φ(x) be nonzero function in H1(Ω) for which the sup is achieved in (3.19). Thus,

R̂1 =

∫
Ω
β1
Ŝ

N̂
φ2dx∫

Ω
(d1|∇φ|2 + γ1φ

2)dx

.

We assume that φ is nonnegative, since if not, φ can be replaced with |φ|. Let v(x) be nonzero

function in H1(Ω) and consider the following function

(3.21) f(ε) =

∫
Ω
β1
Ŝ

N̂
(φ+ εv)2dx∫

Ω
(d1|∇(φ+ εv)|2 + γ1(φ+ εv)2)dx

.

Since φ is the element for which the sup is achieved, we have f ′(0) = 0. Expanding the squares

in (3.21), we get:

f(ε) =

∫
Ω
β1
Ŝ

N̂
(φ2 + 2εφv + ε2v2)dx∫

Ω
d1

(
|∇φ|2 + 2ε∇φ · ∇v + ε2|∇v|2

)
+ γ1(φ2 + 2εφv + ε2v2)dx

.

Taking derivative w.r.t. ε and setting ε = 0 we get:

0 = f ′(0) =

∫
Ω
β1
Ŝ

N̂
φvdx(

∫
Ω
d1|∇φ|2 + γ1φ

2dx)−
∫

Ω
β1
Ŝ

N̂
φ2dx(

∫
Ω
d1∇φ · ∇v + γ1φv)dx

(

∫
Ω
d1|∇φ|2 + γ1φ

2dx)2

So, we get

∫
Ω
β1
Ŝ

N̂
φvdx =

∫
Ω
β1
Ŝ

N̂
φ2dx∫

Ω
d1|∇φ|2 + γ1φ

2dx

∫
Ω
d1∇φ · ∇v + γ1φvdx

∫
Ω
β1
Ŝ

N̂
φvdx = R̂1

∫
Ω
d1∇φ · ∇v + γ1φvdx∫

Ω
d1∇φ · ∇v + (γ1 −

1

R̂1

β1
Ŝ

N̂
)φvdx = 0.
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The last equality is satisfied for any trial function v. Then by Green’s identity we get;

(3.22) −d1∆φ+ (γ1 −
1

R̂1

β1
Ŝ

N̂
)φ = 0,

∂φ

∂n
= 0

By rewriting (3.22) and considering the eigenvalue problem (3.17) we get

−d1∆φ+ (γ1 −
1

R̂1

β1
Ŝ

N̂
)φ = 0(3.23)

d1∆ψ̂ +

(
β1
Ŝ

N̂
− γ1

)
ψ̂ + λ̂ψ̂ = 0(3.24)

Recall that the pair (λ̂, ψ̂) denotes the principal eigenvalue and corresponding positive eigen-

function of (3.17). Multiplying (3.23) by ψ̂ and multiplying (3.24) by φ, integrating both

equations over the domain Ω, and then adding the resulting equations we get

(1− 1

R̂1

)

∫
Ω
β1
Ŝ

N̂
φψ̂dx+ λ̂

∫
Ω
φψ̂dx = 0

Since Ŝ
N̂
, φ and ψ̂ are all positive on Ω, λ̂ and (1− 1

R̂1
) have opposite signs.

(iii) Proving this statement is similar to the analysis in (ii). �

4. Coexistence equilibrium

Coexistence equilibrium, (S̃, Ĩ1, Ĩ2), satisfies the system (3.1) with Neuman boundary condi-

tions (3.2). Since 0 = ∆
(
dSS̃ + d1Ĩ1 + d2Ĩ2

)
and ∂

∂n

(
dSS̃ + d1Ĩ1 + d2Ĩ2

)
= 0, it follows that

for some positive constant κ

dSS̃ + d1Ĩ1 + d2Ĩ2 = κ .

We normalize by κ. Set,

S̃k =
S̃

κ
, Ĩk1 =

Ĩ1

κ
, Ĩk2 =

Ĩ2

κ
.

Hence,

dSS̃
k + d1Ĩ

k
1 + d2Ĩ

k
2 = 1 .

To guarantee that
∫

Ω S̃dx+
∫

Ω Ĩ1dx+
∫

Ω Ĩ2dx = 1 we define

κ :=
1[∫

Ω S̃
kdx+

∫
Ω Ĩ

k
1 dx+

∫
Ω Ĩ

k
2 dx

] .
Taking into account that S̃k = 1

ds
[1− d1Ĩ

k
1 − d2Ĩ

k
2 ] the original system (3.1) reduces to:

0 = d1∆Ĩk1 + Ĩk1

(
β1(x)

1− d1Ĩ
k
1 − d2Ĩ

k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ1(x)

)
(4.1)

0 = d2∆Ĩk2 + Ĩk2

(
β2(x)

1− d1Ĩ1 − d2Ĩ
k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ2(x)

)
(4.2)

0 =
∂Ĩk1
∂n

=
∂Ik2
∂n

, on ∂Ω.(4.3)
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Let

g1(Ĩk1 , Ĩ
k
2 ) = Ĩk1

(
β1(x)

1− d1Ĩ
k
1 − d2Ĩ

k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ1(x)

)
(4.4)

g2(Ĩk1 , Ĩ
k
2 ) = Ĩk2

(
β2(x)

1− d1Ĩ
k
1 − d2Ĩ

k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ2(x)

)
(4.5)

Lemma 4.1. We have

∂gi/∂Ĩ
k
j (v) ≤ 0 for i 6= j, i, j = 1, 2

when Ĩk1 , Ĩ
k
2 ≥ 0.

Proof is immediate and it is omitted. Lemma 4.1 implies that the operator G = (g1, g2) is

quasi-monotone nondecreasing.

From the work of Nevai et al we know that there are unique single strain solutions (I∗1 , 0)

and (0, Î2) with I∗1 > 0 and Î2 > 0. We assume that Theorem 3.4 and Theorem 3.5 hold and

therefore both of the semi-trivial equilibria are linearly unstable.

For vectors x, y ∈ R2, we say that x ≤K y if and only if x1 ≤ y1 and x2 ≥ y2. We say that

Ī = (Ī1, Ī2) is a super-solution for (4.1)− (4.3) if(
d1∆Ī1 + g1(Ī1, Ī2)
d2∆Ī2 + g2(Ī1, Ī2)

)
≤K

(
0
0

)
in Ω , with

∂Ī1

∂n
=
∂Ī2

∂n
= 0, on ∂Ω .(4.6)

We say that I = (I1, I2) is a sub-solution for (4.1)− (4.3) if ≤K is replaced by ≥K in (4.6).

We have the following result [27, 26].

Lemma 4.2. Let I = (I1, I2) be a sub-solution and Ī = (Ī1, Ī2) be a super-solution for (4.1)−
(4.3). If I ≤K Ī in Ω, then (4.1)− (4.3) has a solution Ĩ with I ≤K Ĩ ≤K Ī.

Lemma 4.3. System (4.1)− (4.3) has a positive sub-solution I and super-solution Ī.

Proof. We claim that for all sufficiently small ε > 0, the following choices work:

I = (εψ̂, Î2) and Ī = (I∗1 , εψ
∗).

Recall that, ψ∗, ψ̂ > 0 are principal eigenvectors of the linearization of (4.1) − (4.3) at (I∗1 , 0)

and (0, Î2) respectively. In particular,

−λ̂ψ̂ = d1∆ψ̂ +
∂g1

∂Ĩk1
(0, Î2)ψ̂(4.7)

∂ψ̂

∂n
= 0(4.8)

and

−λ∗ψ∗ = d2∆ψ∗ +
∂g2

∂Ĩk2
(I∗1 , 0)ψ∗(4.9)

∂ψ∗

∂n
= 0(4.10)

By our assumption that (I∗1 , 0)) and (0, Î2) are linearly unstable it follows that

λ̂ < 0 and λ∗ < 0.
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Let us verify that Ī = (I∗1 , εψ
∗) is a super-solution for all sufficiently small ε > 0. We need to

show that(
d1∆I∗1 + g1(I∗1 , εψ

∗)
d2∆(εψ∗) + g2(I∗1 , εψ

∗)

)
≤K

(
0
0

)
in Ω , and

∂I∗1
∂n

=
∂(εψ∗)

∂n
= 0, on ∂Ω .(4.11)

Clearly, the boundary condition holds. We also have that

d1∆I∗1 + g1(I∗1 , εψ
∗) = d1∆I∗1 + g1(I∗1 , 0) + (g1(I∗1 , εψ

∗)− g1(I∗1 , 0))

= 0 + (g1(I∗1 , εψ
∗)− g1(I∗1 , 0))

≤ 0

where we used the fact that (I∗1 , 0) solves (4.1), and that g1 is non-increasing in its second

argument. Moreover,

d2∆(εψ∗) + g2(I∗1 , εψ
∗) = d2∆(εψ∗) +

∂g2

∂Ĩk2
(I∗1 , 0)(εψ) +

(
g2(I∗1 , εψ

∗)− ∂g2

∂Ĩk2
(I∗1 , 0)(εψ∗)

)

= −λ∗(εψ∗) +

(
g2(I∗1 , 0) +

∂g2

∂Ĩk2
(I∗1 , 0)(εψ∗) +O((εψ∗)2)− ∂g2

∂Ĩk2
(I∗1 , 0)(εψ∗)

)
= −λ∗(εψ∗) +

(
0 +O((εψ∗)2)

)
≥ 0

for all sufficiently small ε > 0. Here we used the fact that (εψ∗) solves (4.9), that −λ∗ψ∗ > 0,

and that g2(I∗1 , 0) = 0. Thus we have established that (4.11) holds, and hence that Ī = (Ĩ1, εψ)

is indeed a super-solution of (4.1)− (4.3) for all sufficiently small ε > 0.

Similar arguments show that I = (εψ̂, Î2) is a sub-solution of (4.1)− (4.3) for all sufficiently

small ε > 0. �

Lemma 4.4. Let (I∗1 , 0) and (0, Î2) be linearly unstable single strain solutions of (4.1)− (4.3).

Then (4.1)− (4.3) has a positive solution Ĩk. Moreover, if we set

(4.12) S̃k =
1

ds
[1− d1Ĩ

k
1 − d2Ĩ

k
2 ]

then, S̃k ≥ 0.

Proof. Let u = 1− d1Ĩ
k
1 − d2Ĩ

k
2 . Then,

∆u = −d1∆Ĩk1 − d2∆Ĩk2 =

= Ĩk1

(
β1(x)

1− d1Ĩ
k
1 − d2Ĩ

k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ1(x)

)

+ Ĩk2

(
β2(x)

1− d1Ĩ1 − d2Ĩ
k
2

1 + (ds − d1)Ĩk1 + (ds − d2)Ĩk2
− γ2(x)

)
(4.13)

Thus, u satisfies the following equation

∆u− Ĩk1

(
β1(x)

u

u+ dsĨk1 + dsĨk2
− γ1(x)

)
− Ĩk2

(
β2(x)

u

u+ dsĨk1 + dsĨk2
− γ2(x)

)
= 0

where Ĩk1 and Ĩk2 are the given solution of (4.1)-(4.3) and are assumed to be given functions

in the above equation. First we notice that u = 1 − d1Ĩ
k
1 − d2Ĩ

k
2 is a solution to the above
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equation for u. Second, denoting the left-hand side of the above equation by G(u), we see that

G(0) = γ1(x)Ĩk1 + γ2(x)Ĩk2 > 0. Hence, zero is a sub-solution. Therefore,

0 ≤ 1− d1Ĩ
k
1 − d2Ĩ

k
2 .

This concludes the proof. �

5. Numerical Method

In this section we approximate the solution of the model problem (2.1). We derive the

approximate solution of (2.1) in two steps. In the first step we approximate the solution by

means of functions which for each fixed time belong to a finite dimensional space. These

functions will be the solution of h-dependent finite system of ordinary differential equations

in time and referred to as spatially discrete solutions. In the second step, we discretize this

system in the time variable to obtain a fully discrete approximation of (2.1) by a finite difference

method. For the notational convenience, we rewrite (2.1) in the vector form:

(5.1) u̇ = D∆u+ F (u), with
∂u

∂n
= 0, and u(x, 0) = u0 ≥ 0

where u = (S(x, t), I1(x, t), I2(x, t))T , u̇ is the time derivative, D =

 ds 0 0
0 d1 0
0 0 d2

 is the

diffusion matrix, and F (u) is the right hand side vector of the form;

F (S, I1, I2) =

 −β1(x) SI1
S+I1+I2

− β2(x) SI2
S+I1+I2

+ γ1(x)I1 + γ2(x)I2

β1(x) SI1
S+I1+I2

− γ1(x)I1

β2(x) SI2
S+I1+I2

− γ2(x)I2

 =

 f1(S, I1, I2)
f2(S, I1, I2)
f3(S, I1, I2)

 .

We adopt the standard notation for the Hilbert Spaces [1, 6, 20];

L2(Ω) = {v is defined on Ω such that

∫
Ω
|v|2 <∞}

H1(Ω) = {v ∈ L2(Ω) such that ∇v ∈ L2(Ω)}.

In general, we denote by Hm(Ω) the Hilbert space of all L2 functions with m derivatives

(m ≥ 0) in L2(Ω). These Hilbert spaces are endowed with the norms;

‖v‖ = ‖v‖L2(Ω) =

(∫
Ω
|v|2
)1/2

,

and

‖v‖m = ‖v‖Hm(Ω) =

 ∑
|α|≤m

‖Dαv‖2
1/2

,

and semi-norm,

|v|m = |v|Hm(Ω) =

 ∑
|α|=m

‖Dαv‖2
1/2

,

where Dα denotes an arbitrary derivative of order |α|, with α = (α1, α2, . . . , αd), and |α| =
d∑
j=1

αj . The usual L2 inner product over the domain Ω is denoted by (·, ·) .

A variational formulation of (5.1) is derived by first multiplying both sides of (5.1) by

functions v in H1(Ω). We, then get the weak formulation of (5.1) by Green’s formula. We
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look for a function u(x, t) ∈ H1(Ω) × H1(Ω) × H1(Ω) (that is, for every t > 0 the function

t→ u(x, t) is in H1(Ω)×H1(Ω)×H1(Ω)), such that

(5.2) (u̇, v)+a(u, v) = (F (u), v) for all v ∈ H1(Ω)×H1(Ω)×H1(Ω) , t > 0 , and u(0) = u0.

We have used the following notation (u̇, v) =

(∫
Ω

∂S

∂t
v,

∫
Ω

∂I1

∂t
v,

∫
Ω

∂I2

∂t
v

)T
, (F (u), v) =

∫
Ω
f1(S, I1, I2)v∫

Ω f2(S, I1, I2)v∫
Ω f3(S, I1, I2)v

 , and a(u, v) is a bilinear form given by,

a(u, v) =

(∫
Ω
ds∇S∇v,

∫
Ω
d1∇I1∇v,

∫
Ω
d2∇I2∇v

)T
.

We introduce the semi-norm |u|a =
√
ds|S|21 + d1|I1|21 + d2|I2|21 which is equivalent to the H1

semi- norm:
√
c1|u|1 ≤ |u|a ≤

√
c2|u|1 where c1 = min{ds, d1, d2} , c2 = max{ds, d1, d2} .

We first pose the spatially semi-discrete problem based on the weak formulation (5.2). The

Galerkin approximation of (5.2) is simply constructing the discrete variational problem in a

finite dimensional subspace of H1(Ω). Let χh be a family of finite dimensional subspaces of

H1(Ω), then the discrete weak formulation of (5.2) is:

Find uh(x, t) ∈ χh × χh × χh (that is, for every t > 0 the function t → uh(x, t) is in χh),

such that

(5.3) (u̇h, vh) +a(uh, vh) = (F (uh), vh) for all vh ∈ χh×χh×χh t > 0 with uh(0) = u0h ,

where u0h is the approximation of u0 in χh×χh×χh . Note that in (5.3), uh is a vector function

of the form uh = (us, u1, u2), where us(x, t), u1(x, t), u2(x, t) are semidiscrete approximations

of S(x, t), I1(x, t) , and I2(x, t) respectively. Thus, (5.3) is:

Find us, u1, u2 ∈ χh s.t.

(u̇s, vh) + ds(∇us,∇vh) = (−β1
usu1

us + u1 + u2
− β2

usu2

us + u1 + u2
+ γ1u1 + γ2u2, vh)

(u̇1, vh) + d1(∇u1,∇vh) = (β1
usu1

us + u1 + u2
− γ1u1, vh)(5.4)

(u̇2, vh) + d2(∇u2,∇vh) = (β2
usu2

us + u1 + u2
− γ2u2, vh)

∀vh ∈ χh , t > 0 , and uh(0) = u0h

We define χh first by partitioning the domain Ω into triangles. Let Th denote the partition

of Ω into triangles τ , such that no vertex of any triangle lies on the interior of a side of another

triangle. Let h denote the mesh size, which is the maximal length of sides of the triangles in

triangulation Th. The parameter h is a measure of how refined the mesh is, the smaller the h is

the finer the mesh. We assume that Th is a quasi-uniform mesh in the sense that the triangles

in Th are essentially the same size. We also assume that all the angles in the triangulation Th
are acute, which means that all the angles are less than π/2. We denote the union of triangles

in Th by Ωh which is a convex polygonal domain. Clearly, Ωh is an approximation of bounded

domain Ω with smooth boundary, and the error in approximating the domain Ω−Ωh does not

change the rate of convergence [9]. We thus assume Ωh = Ω.
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We define χh to be the space of continuous functions on Ω which are linear polynomials in

each triangle of Th.

χh = {v : v is piecewise linear polynomial }.
Let {ηi}Nhi=1 be the nodes of the triangulation Th, and let {ϕi}Nhi=1 be the basis for χh, then

us(x, t) ∈ χh is uniquely determined by:

(5.5) us(x, t) =

Nh∑
i=1

αs,i(t)ϕi(x), where αs,i(t) = us(ηi, t), t > 0.

Similar expansions are true for u1(x, t), and u2(x, t).

We now, discretize (5.4) with respect to the time variable to obtain fully discrete approxi-

mation of (2.1). Let T denote the maximum time, k denote the time step, and J be a fixed

nonnegative integer, then

k = T/J , and tn = nk , n = 1, 2, . . . J.

We approximate the time derivative in (5.4) by backward Euler difference quotient. Thus,

let uns = us(x, tn), un1 = u1(x, tn), un2 = u2(x, tn) ∈ χh represent the approximation of Sn =

S(x, tn) , In1 = I1(x, tn) , In2 = I2(x, tn) , respectively, then we denote by D the following finite

difference operator

Duns =
uns − un−1

s

k
n = 1, 2, . . . , J.

Now, (5.4) becomes

Find us, u1, u2 ∈ χh s.t.

(Duns , vh) + ds(∇uns ,∇vh) = (−β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

+ γ1u
n
1 + γ2u

n
2 , vh)

(Dun1 , vh) + d1(∇un1 ,∇vh) = (β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− γ1u
n
1 , vh)

(Dun2 , vh) + d2(∇un2 ,∇vh) = (β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

− γ2u
n
2 , vh)

(5.6)

∀vh ∈ χh , and uh(0) = u0h, n = 1, 2, . . . , J.

We linearize the system by using discretization
uns u

n−1
1

un−1
s +un−1

1 +un−1
2

,
uns u

n−1
2

un−1
s +un−1

1 +un−1
2

for the

approximation of nonlinear terms SI1
S+I1+I2

, SI2
S+I1+I2

, respectively. At each time step, we solve

3 linear systems of algebraic equations simultaneously.

We use the vertex quadrature rule to approximate the L2 inner product in χh. Let {ητ,i}3i=1

be the vertices of the triangle τ , then the vertex quadrature rule, qτ,h(f), is defined as follows

[30]:

qτ,h(f) =
1

3
area(τ)

3∑
i=1

f(ητ,i) ≈
∫
τ
f

We then define the following discrete inner product in χh. Let u, v ∈ χh then,

[u, v] :=
∑
τ∈Th

1

3
area(τ)

3∑
i=1

uv(ητ,i) .
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Clearly [ϕi, ϕj ] = 0 if i 6= j since ϕi(x)ϕj(x) vanishes at all nodes of the triangulation Th if

i 6= j .

The system (5.6) can be rewritten as:

[Duns , vh] + ds(∇uns ,∇vh) = [−β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

+ γ1u
n
1 + γ2u

n
2 , vh]

[Dun1 , vh] + d1(∇un1 ,∇vh) = [β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− γ1u
n
1 , vh]

[Dun2 , vh] + d2(∇un2 ,∇vh) = [β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

− γ2u
n
2 , vh]

(5.7)

5.1. Error Analysis. We assume that the family of finite dimensional sub-spaces, χh, of

H1(Ω) posses the following approximation property [30]: Let u ∈ H2(Ω) and v ∈ χh, then

(5.8) inf
v∈χh
{‖u− v‖+ h‖∇(u− v)‖} ≤ Ch2‖u‖ .

Since the family of finite dimensional subspaces, χh, of H1(Ω) are based on shape regular

triangulation of Th and χh consists of piecewise linear polynomials, we have the following

inverse inequality [30]:

‖∇v‖ ≤ Ch−1‖v‖ ∀v ∈ χh .
Let πh : H1(Ω) → χh be the so-called elliptic projection, πh, onto χh, which we define as the

orthogonal projection with respect to L2 inner product. For u ∈ H1(Ω),

(∇πhu,∇v) = (∇u,∇v) , ∀v ∈ χh .
In our error analysis, we adopt the following notation (where (us, u1, u2) is the solution of

(5.6)):

ens = es(tn) = us(x, tn)− S(x, tn) , n = 1, 2, . . . , J

eni = ei(tn) = ui(x, tn)− Ii(x, tn) , i = 1, 2 , n = 1, 2, . . . , J

θns = θs(tn) = us(x, tn)− πhS(x, tn) , n = 1, 2, . . . , J

θni = θi(tn) = ui(x, tn)− πhIi(x, tn) , i = 1, 2 , n = 1, 2, . . . , J

ρns = ρs(tn) = πhS(x, tn)− S(x, tn) , n = 1, 2, . . . , J

ρni = ρi(tn) = πhIi(x, tn)− Ii(x, tn) , i = 1, 2 , n = 1, 2, . . . , J .

Clearly, ens = θns + ρns ; eni = θni + ρni ; i = 1, 2. Since χh possesses the approximation property

(5.8), one can easily obtain the following;

‖ρs(t)‖ ≤ Ch2‖S‖ ; ‖ρi(t)‖ ≤ Ch2‖Ii‖ , i = 1, 2 .

We note here that since we have the desired bounds for ‖ρs(t)‖ and ‖ρi(t)‖, for i = 1, 2, we

concentrate on bounds for ‖θns ‖ and ‖θni ‖ ; i = 1, 2.

Before considering the error estimates for the fully-discrete approximation, we prove the

following lemma.

Lemma 5.1. Let u = (S, I1, I2) be the solution of (5.1), and let uh = (us, u1, u2) > 0 be the

solution of (5.3), then

(i) |f1(u)− f1(uh)| ≤ 2(β̄1 + β̄2)|S−us|+ (2β̄1 + γ̄1 + β̄2)|I1−u1|+ (2β̄2 + γ̄2 + β̄1)|I2−u2|
(ii) |f2(u)− f2(uh)| ≤ 2β̄1|S − us|+ (2β̄1 + γ̄1)|I1 − u1|+ β̄1|I2 − u2|
(iii) |f3(u)− f3(uh)| ≤ 2β̄2|S − us|+ (2β̄2 + γ̄2)|I2 − u2|+ β̄2|I1 − u1|
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where β̄i = max
x∈Ω

βi(x) , and γ̄i = max
x∈Ω

γi(x) .

Proof: Here we demonstrate the proof of (ii), since the proof of (i) and (iii) are similar.

Adding and subtracting terms β1
Su1

us+u1+u2
and β1

Su1
S+I1+I2

we get

|f2(u)− f2(uh)| = |β1(x)

(
SI1

S + I1 + I2
− usu1

us + u1 + u2

)
− γ1(x)(I1 − u1)|

≤ β̄1
u1

us + u1 + u2
|S − us|+ β̄1

S

S + I1 + I2
|I1 − u1|

+β̄1Su1

∣∣∣∣(us + u2 + u2)− (S + I1 + I2)

(S + I1 + I2)(us + u1 + u2)

∣∣∣∣+ γ̄1|I1 − u1|

≤ β̄1|S − us|+ β̄1|I1 − u1|+ β̄1 (|S − us|+ |I1 − u1|+ |I2 − u2|) + γ̄1|I1 − u1|
= 2β̄1|S − us|+ (2β̄1 + γ̄1)|I1 − u1|+ β̄1|I2 − u2| .

�

We now perform error analysis for fully discrete scheme.

Theorem 5.1. Let u = (S, I1, I2) and uh = (us, u1, u2) be the solution of (5.1) and (5.6),

respectively, then

‖ens ‖+ ‖en1‖+ ‖en2‖ ≤ C(h2 + k) .

Proof: Setting Dθns = Duns − πhDSn, in which we use the fact that the elliptic projection

commutes with the finite difference operator, we get

(Dθns , vh) + ds(∇θns ,∇vh)

= (Duns , vh) + ds(∇uns ,∇vh)− (πhDS
n, vh)− ds(∇πhSn,∇vh)

using the definition of elliptic projection, and (5.6) we get

= (−β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

+ γ1u
n
1 + γ2u

n
2 , vh)

− ds(∇Sn,∇vh)− (πhDS
n, vh)

= (−β1
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− β2
unsu

n−1
2

un−1
s + un−1

1 + un−1
2

+ γ1u
n
1 + γ2u

n
2 , vh)

− ds(∇Sn,∇vh)− (πhDS
n, vh) + (Ṡ(tn), vh)− (Ṡ(tn), vh)

Applying similar procedure for Dθni =
θni −θ

n−1
i
k , i = 1, 2, in (5.6) we get;

(Dθns , vh) + ds(∇θns ,∇vh) = (Rns , vh)(5.9)

(Dθni , vh) + di(∇θni ,∇vh) = (Rni , vh) , i = 1, 2(5.10)
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where the residuals Rns , R
n
i , i = 1, 2 are defined as follows;

Rns = Ṡ(tn)− πhDSn

+ β1(x)

(
SnIn1

Sn + In1 + In2
− unsu

n−1
1

un−1
s + un−1

1 + un−1
2

)
+ β2(x)

(
SnIn2

Sn + In1 + In2
− unsu

n−1
2

un−1
s + un−1

1 + un−1
2

)
+γ1(x)(un1 − In1 ) + γ2(un2 − In2 ),

Rni = İi(tn)− πhDIni

+ βi(x)

(
unsu

n−1
i

un−1
s + un−1

1 + un−1
2

− SnIni
Sn + In1 + In2

)
+ γi(x)(Ini − uni ) , i = 1, 2.

Let’s denote the nonlinear terms in the residuals by Rns,a and Rni,a. That is

Rns,a = β1(x)

(
SnIn1

Sn + In1 + In2
− unsu

n−1
1

un−1
s + un−1

1 + un−1
2

)
+ β2(x)

(
SnIn2

Sn + In1 + In2
− unsu

n−1
2

un−1
s + un−1

1 + un−1
2

)
+γ1(x)(un1 − In1 ) + γ2(un2 − In2 ),

Rni,a = βi(x)

(
unsu

n−1
i

un−1
s + un−1

1 + un−1
2

− SnIni
Sn + In1 + In2

)
+ γi(x)(Ini − uni ) , i = 1, 2.

In (5.9), taking vh = θs, noting that ds(∇θns ,∇θns ) ≥ 0 is nonnegative, and using Cauchy-

Schwartz inequality we get

(Dθns , θ
n
s ) ≤ ‖Rns ‖‖θns ‖ ,

Substituting, Dθns = θns−θ
n−1
s

k we get,

‖θns ‖ ≤ ‖θn−1
s ‖+ k‖Rns ‖ ≤ ‖θ0

s‖+ k

n∑
l=1

‖Rls‖

Applying the same procedure to (5.11) we get;

‖θni ‖ ≤ ‖θ0
i ‖+ k

n∑
l=1

‖Rli‖ i = 1, 2.

Thus;

‖θns ‖+ ‖θn1 ‖+ ‖θn2 ‖ ≤
(
‖θ0
s‖+ ‖θ0

1‖+ ‖θ0
2‖
)

+ k
n∑
l=1

(
‖Rls‖+ ‖Rl1‖+ ‖Rl2‖

)
Next, we estimate the residual terms. Estimation of the first terms in the residuals,

Rns , R
n
1 , R

n
2 are standard, and it is described in ([30], Theorem 1.5).
n∑
l=1

(
‖Ṡ(tl)− πhDSl‖+ ‖İ1(tl)− πhDI l1‖+ ‖İ2(tl)− πhDI l2‖

)
≤ C(h2 + k)
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where the constant C depends on the initial conditions, first and second time derivatives of

(S, I1, I2). We focus on the analysis of the nonlinear terms in the residuals Rns , R
n
1 , R

n
2 .

Using Lemma 4.1 for the remaining terms in Rn1 we get;

|Rn1,a| = |β1(x)

(
unsu

n−1
1

un−1
s + un−1

1 + un−1
2

− SnIn1
Sn + In1 + In2

)
+ γ1(x)(In1 − un1 )|

≤ β̄1|uns − Sn|+ 2β̄1|un−1
1 − In1 |+ β̄1|un−1

s − Sn|+ β̄1|un−1
2 − In2 |+ γ̄2|un1 − In1 |

= β̄1|uns − πSn + πSn − Sn|+ 2β̄1|un−1
1 − πIn−1

1 + πIn−1
1 − In1 |

+β̄1|un−1
s − πSn−1 + πSn−1 − Sn|+ β̄1|un−1

2 − πIn−1
2 + πIn−1

2 − In2 |
+γ̄2|un1 − πIn1 + πIn1 − In1 |

≤ β̄1

(
|θns |+ |θn−1

s |+ 2|θn−1
1 |+ |θn−1

2 |
)

+ γ̄1|θn1 |+ β̄1|ρns |+ γ̄1|ρn1 |
+β̄1

(
2|πIn−1

1 − In1 |+ |πSn−1 − Sn|+ |πIn−1
2 − In2 |

)
Since |πIn−1

1 − In1 | = |πI
n−1
1 − In−1

1 + In−1
1 − In1 | ≤ |ρ

n−1
1 |+

∫ tn

tn−1
İ1 we arrive at the estimates;

k
n∑
l=1

‖Rl1,a‖ ≤ k2β̄1

n∑
l=1

(
‖θls‖+ ‖θl1‖+ ‖θl2‖

)
+ kγ̄1

n∑
l=1

‖θl1‖+ C(S, I1, I2, β̄1, γ̄1T )k(h2 + k)

≤ C(β̄1, γ̄1)k
n∑
l=1

(
‖θls‖+ ‖θl1‖+ ‖θl2‖

)
+ Ck(h2 + k)

Using similar arguments for Rns,a and Rn2,a, we get

‖θns ‖+ ‖θn1 ‖+ ‖θn2 ‖ ≤ Ck
n∑
l=0

(
‖θls‖+ ‖θl1‖+ ‖θl2‖

)
+ Ck(h2 + k)

Thus, applying discrete Gronwall’s inequality we finally obtain,

‖θns ‖+ ‖θn1 ‖+ ‖θn2 ‖ ≤ C(h2 + k)

�

5.2. Positivity of solutions. In this section we study the positivity of the solution to the

problem (5.7). We want to know whether any positive initial condition will lead to a positive

solution of the system (5.7). Let α(t) =

 αs(t)
α1(t)
α2(t)

 denote the time dependent coefficients of

the approximate solution (us(x, t), u1(x, t), u2(x, t)) determined by the basis functions {ϕi}Nhi=1.

Using, αn = α(tn), in matrix notation (5.7) becomes:

(5.11) M

(
αn − αn−1

k

)
+Aαn = F (αn−1)αn , with α(0) = α0

where M =

 m 0 0
0 m 0
0 0 m

 is a block diagonal matrix, whose blocks are the diagonal mass

matrix m ∈ RNh×Nh with components mij = [ϕi, ϕj ]. The matrix A =

 dsa 0 0
0 d1a 0
0 0 d2a

 is

a block diagonal matrix where a ∈ RNh×Nh is the stiffness matrix with aij = (∇ϕi,∇ϕj). The

matrix,
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F (αn−1) =

 −β1 − β2 γ1 γ2

β1 −γ1 0
β2 0 −γ2


is 3×3 block matrix where the block matrices β1, β2, γ1, γ2 ∈ RNh×Nh are diagonal matrices with

components; (β1)i,j = [β1(x)
un−1
1

un−1
s +un−1

1 +un−1
2

ϕi, ϕj ] , (β2)i,j = [β2(x)
un−1
2

un−1
s +un−1

1 +un−1
2

ϕi, ϕj ],

(γ1)i,j = [γ1(x)ϕi, ϕj ] , (γ2)i,j = [γ2(x)ϕi, ϕj ] .

The initial condition α0 is the components of given initial approximation of u0h. Note that

α0 > 0, since by (5.5) αs,j(t0) = us(ηj , t0) > 0.

The above system of equations may be written

M

(
αn − αn−1

k

)
+Aαn = F (αn−1)αn ,

Mαn + kAαn − kF (αn−1)αn = Mαn−1 ,[
M + kA− kF (αn−1)

]
αn = Mαn−1 ,

αn =
[
M + kA− kF (αn−1)

]−1
Mαn−1 .

Introducing the notation, X = M + kA− kF (αn−1), (5.11) can be rewritten as

(5.12) αn = X−1Mαn−1 .

With this notation, the positivity of the solutions reads as follows : For any positive initial

vector α0 the relation αn > 0 holds for each n. The mass matrix M is a diagonal matrix with

positive diagonal entries due to the vertex quadrature rule. Thus for given αn−1 > 0 we have

Mαn−1 > 0. Clearly the method (5.12) preserves the positivity of the solutions if and only if

X−1 > 0 . To study that the method (5.12) generates positive solutions, we recall some facts

from the widely studied theory of M-matrices. We first give the following definitions.

Definition 5.1. [5] A real n× n matrix A = ai,j is said to have a Zn sign pattern if ai,j ≤ 0

for all i 6= j .

We are interested in special subclass of matrices with Zn sign pattern, called M -matrices.

Definition 5.2. ([31],page 91) Let A have a Zn sign pattern, then it is an M matrix, if A is

nonsingular and A−1 ≥ 0.

Note that if a matrix A has Zn sign pattern, then it can be expresses as A = sI −B, where

B ≥ 0. The matrix A is an M -matrix, if s ≥ ρ(B), the spectral radius of B.

Note that in 1 dimension, the stiffness matrix a is an M -matrix. In 2 dimensions, if all the

angles in the triangulation Th are not greater than π/2, which is called acute type triangulation,

then the matrix is a is an M -matrix [32, 10]. If all the angles of the triangulation Th are acute

and a vertex quadrature rule is used in the computation of the mass matrix m, then there

exists a discrete-maximum principle. Clearly this is not the case for the standard Galerkin

method [30] .

Lemma 5.2. We have the following properties for the matrices M and A.

(i) The matrix M is an M -matrix.

(ii) The matrix A is an M -matrix.

Definition 5.3. [5, 14] The directed graph, G(A), of an n×n matrix A consists of n vertices,

P1, P2, . . . , Pn where an edge leads from Pi to Pj if and only if aij 6= 0 . The directed graph is

called strongly connected if there is a path from each vertex to every other vertex.
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Theorem 5.2. [5, 14] A matrix A is irreducible if and only if G(A) is strongly connected.

Proof: See ([14], Theorem 3.6) or ([5],Theorem 2.7) . �

Lemma 5.3. We have the following properties for the matrix X .

(i) X has Zn sign pattern.

(ii) X is irreducible.

Proof:

(i) The matrix M is a diagonal matrix with positive diagonal entries. The matrices A and

−F (αn−1) have Zn sign patterns. So, X has a Zn sign pattern.

(ii) By Theorem 5.2, X is irreducible if and only if G(X) is strongly connected. Clearly,

Xi,i = Mi,i + kAi,i − kFi,i 6= 0, and Xi,i−1 = kAi,i−1 6= 0, also Xi,i+1 = kAi,i+1 6=
0, for i = 1, . . . , 3Nh . Note that the elements of each component matrix a given by

ai,j = (∇ϕj ,∇ϕi) 6= 0 if and only if i and j are the neighboring nodes. Hence, the

matrix a is a symmetric matrix. Also, note that if Xi,j 6= 0, then Xj,i 6= 0 as well. So,

G(X) is strongly connected.

�
There are many equivalent conditions for M -matrices, among them we mention the following.

Theorem 5.3. Let A be an n×n irreducible matrix with a Zn sign pattern, then the following

statements are equivalent:

(i) There exist a vector x > 0 such that Ax > 0 .

(ii) A−1 > 0 .

(iii) A is an M-matrix.

Proof: See ([14], Theorem 5.12) . �

Theorem 5.4. Let α0 > 0, then αn > 0 for n = 1, 2, . . . , J .

Proof: To show that X is an M -matrix, we apply Theorem 5.3. Take a vector y =

(1, . . . , 1)1×3Nh with all components equal to 1. Then, yX = (1, . . . , 1)(M + kA − kF ) =

M̃ + kÃ + 0̃ > 0 for k small enough, where M̃ = yM and Ã = yA, and 0̃ = (0, . . . , 0)1×3Nh .

Hence yX > 0, therefore XT yT > 0. By Theorem 5.3, XT is an M-matrix, and (XT )−1 > 0.

Hence, X−1 > 0 and X is an M-matrix. �

6. Numerical estimation of the reproduction numbers

6.1. Numerical computation of basic reproduction numbers. In this section we develop

a numerical method that will allow us to estimate whether the reproduction numbersRi i = 1, 2

and the invasion numbers R̂i i = 1, 2 are each larger or smaller than one. We first focus on

estimation of this threshold property for the reproduction numbers, since similar analysis is

true for the invasion numbers. Recall that the expression for the reproduction number for each

strain is implicit. Even if all the parameters are known, the computation of an approximate

value is not an easy task. On the other hand we only need to estimate if Ri > 1 or Ri < 1

for i = 1, 2 to decide what type of dynamical outcome we can expect for each combination of

parameters.

We demonstrate the numerical computation of reproduction number for R1, since the com-

putation of reproduction number R2 is analogous to R1.
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It is discussed in [2] that the reproduction numberR1 for strain I1 is a positive and monotone

decreasing function of d1 > 0. The relationship between R1 and the principal eigenvalue of

the following eigenvalue problem can be proved by following a similar argument as in [2].

(6.1) d1∆ψ(x) + (β1 − γ1)ψ1(x) + λψ(x) = 0, x ∈ Ω, with
∂ψ

∂n
= 0 x ∈ ∂Ω.

Let λ1 be the principal eigenvalues of (6.1), then R1 > 1 when λ1 < 0, R1 = 1 when λ1 = 0,

and R1 < 1 when λ1 > 0 .

The weak formulation of (6.1) is, find λ ∈ R, and ψ ∈ H1(Ω), ψ 6= 0 such that

(6.2) a(ψ, v) = λ(ψ, v) ∀ v ∈ H1(Ω) .

Here a(·, ·) : H1(Ω) × H1(Ω) → R and (·, ·) : H1(Ω) × H1(Ω) → R are bilinear, continuous

forms given by

a(ψ, v) =

∫
Ω
d1∇ψ · ∇v + (γ1 − β1)ψvdx and (ψ, v) =

∫
Ω
ψvdx .

The weak formulation (6.2) has a sequence of eigenvalues which we denote by

λ1 < λ2 ≤ . . . ≤ λn ≤ . . . ,

and we denote the corresponding eigenfunctions by ψ1, ψ2, . . . . We approximate the eigenvalues

of (6.2) by a finite element method. Let χ be a finite dimensional subspace χh ⊂ H1(Ω)

constructed as in section 4. Consider the following discrete eigenvalue problem, find λh ∈ R
and ψh ∈ χ, ψh 6= 0 such that

(6.3) a(ψh, vh) = λh(ψh, vh) ∀ vh ∈ χh .

Problem (6.3) has a sequence of eigenvalues,

λh1 < λh2 ≤ . . . ≤ λhn n = dim χh

and corresponding eigenvectors, ψh1 , ψ
h
2 , . . . , ψ

h
n . The eigenpairs (λhk , ψ

h
k ) of (6.3) are the ap-

proximations to the eigenpairs (λk, ψk) of (6.2) k = 1, 2, . . . , n. The eigenvalues λk and their

approximates λhk satisfy the following well-known minmax principles

λk = min
Uk⊂H1(Ω)

max
ψ∈Uk

a(ψ,ψ)

(ψ,ψ)
and λhk = min

Mk⊂χh
max
ψh∈Mk

a(ψh, ψh)

(ψh, ψh)
,

where the minimum is taken over all k-dimensional subspaces Uk and Mk, of H1(Ω) and

χ, respectively. It follows immediately from the minmax principles that every eigenvalue is

approximated from above see [28].

It is also well known that,

|λhk − λk| ≤ c sup
ψ∈M(λk)

inf
vh∈χh

‖ψ − vh‖2a,

where ‖ · ‖a denotes the energy norm and M(λ1
k) is the space of eigenfunctions corresponding

to eigenvalue λk, see [3, 4]. Note that λh1 satisfy the following minmax principle.

λh1 = min
M1⊂χh

max
ψh∈M1

a(ψh, ψh)

(ψh, ψh)
.

With ψh =
n∑
i=1

ciϕi and vh = ϕi for i = 1, . . . , n, we get the following generalized matrix

eigenvalue problem

Bx = λhMx ,
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where Bij =

∫
Ω
d1∇ϕj ·∇ϕi+(γ1−β1)ϕjϕidx, Mij =

∫
Ω
ϕjϕidx, and xi = ci. The eigenvalues

of this generalized, algebraic eigenproblem can be approximated in Matlab. Then the sign of

the minimum eigenvalue, λh1 , determines if R1 > 1 or R1 < 1. Thus, if λh1 < 0, then R1 > 1,

if λh1 = 0, then R1 = 1, and if λh1 > 0, then R1 < 1.

6.2. Numerical computation of invasion numbers. We demonstrate the numerical com-

putation of invasion number of strain one, since similar computation is true for R̂2 . In Lemma

3.1, the relationship between R̂1 and the principal eigenvalue of the following problem is proved.

(6.4) d1∆ψ(x) +

(
β1
Ŝ

N̂
− γ1

)
ψ(x) + λψ(x) = 0 with

∂ψ

∂n
= 0

where N̂ = Ŝ + Î2 and (Ŝ, 0, Î2) is the equilibrium solution of the following problem;

∂Ŝ

∂t
= ds∆Ŝ − β2(x)

ŜÎ2

N̂
+ γ2(x)Î2(6.5)

∂Î2

∂t
= d2∆Î2 + β2(x)

ŜÎ2

N̂
− γ2(x)Î2(6.6)

First, the system (6.5)-(6.5) is solved by the numerical method developed in section 4. We

use again a finite element discretization for the space variable, and backward difference for the

time discretization. We compute the solution until time large enough so that the solution has

numerically stabilized in time. This gives the values of the steady state equilibrium used in

problem (6.4).

The discrete weak formulation of (6.4) with in the finite dimensional space χh is as follows:

Find ψh ∈ χh such that

a(ψh, vh) = λh(ψh, vh) ∀ vh ∈ χh ,

where a(ψh, vh) =

∫
Ω
d1∇ψh∇vh+(γ1−β1

Ŝ

N̂
)ψhvhdx and (ψh, vh) =

∫
Ω ψ

hvhdx . Let dim(χh) =

n, taking ψh =
n∑
i=1

ciϕi and vh = ϕi for i = 1, . . . , n, we get the following generalized matrix

eigenvalue problem

Bx = λhMx ,

where Bij =

∫
Ω
d1∇ϕj · ∇ϕi + (γ1 − β1

Ŝ

N̂
)ϕjϕidx, Mij =

∫
Ω
ϕjϕidx, and xi = ci. The

eigenvalues of this generalized, algebraic eigenproblem can be approximated in Matlab. The

sign of the minimum eigenvalue determines if the invasion number R̂1 > 1 or R̂1 < 1.

7. Numerical experiments

7.1. Verifying finite element method convergence rate. In this first example, we verify

the convergence rates proved in Theorem 5.1.

Example 1. For the numerical computations, we choose ds = 0.5 , d1 = 1 , and d2 = 1.5 ,

use a uniform mesh on the unit square Ω = [0, 1] × [0, 1], set the final time to T = 250 and

solve the system (2.1) with the following choices of transmission and recovery rates for strains

one and two; β1 = 5 − 5x , γ1 = 1 , β2 = 5x , γ2 = 1 . Thus as it will be shown in example 6,

these choices of transmission and recovery rates will give coexistence equilibrium. In the error

computations in Table 1, exact solution is taken to be the approximate solution at refinement
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step j = 8, that is the approximate solution is computed with n = 131072 elements, and

m = 66049 nodes. The time step is fixed in all refinements; it is set to k = 1. Error is

measured with `2(0, T ;L2(Ω)) norm. Thus,

(7.1) ‖es‖`2(0,T ;L2(Ω)) = ‖S(x, t)− us(x, t)‖`2(0,T ;L2(Ω)) =

√√√√ J∑
n=1

‖S(x, tn)− us(x, tn)‖2

j h n m ‖es‖`2(0,T ;L2(Ω)) ‖e1‖`2(0,T ;L2(Ω)) ‖e2‖`2(0,T ;L2(Ω))

1 h0 8 9 1.75922909516429 1.11674591720160 1.10261347576481

2 h0
2 32 25 0.45065854583694 0.27681838124441 0.26859338773873

3 h0
22

128 81 0.11359187391040 0.06890292747305 0.06650989349128

4 h0
23

512 289 0.02840019069468 0.01715510756730 0.01652957697302

5 h0
24

2048 1089 0.00702348061909 0.00423712620012 0.00408005466671

6 h0
25

8192 4225 0.00167301388341 0.00100896077326 9.71368531625e-04

7 h0
26

32768 16641 3.3485e-004 2.0196e-004 1.9443e-004
Table 1. Observed convergence rates, j denotes the refinement step, h denotes
mesh size, n denotes the number of elements, m denotes the number of nodes.

Looking at Table 1, we see that for each of the columns 5, 6, and 7, the error drops at least 4

times, as the mesh size h drops 2 times, confirming our theoretical result that the convergence

rate is of order h2.

In Table 2, we verify the convergence rate for the time step k. In error computations in

Table 2, the exact solution is taken to be the approximate solution at refinement step j = 8.

The approximate solution is computed for J = 6400 time steps. Mesh size is kept fixed, and

all computations are done with n = 25 elements. In Table 2, we observe that the order of

convergence for the time step k is approximately 1 as j increases.

j k n m ‖es‖`2(0,T ;L2(Ω))
ejs
ej+1
s

‖e1‖`2(0,T ;L2(Ω))
ej1
ej+1
1

‖e2‖`2(0,T ;L2(Ω))
ej2
ej+1
2

1 k0 25 50 0.6279 - 0.5780 - 0.4902 -

2 k0
2 25 100 0.5305 1.18 0.4671 1.23 0.4006 1.22

3 k0
22

25 200 0.4161 1.27 0.3556 1.31 0.3058 1.31

4 k0
23

25 400 0.3078 1.35 0.2638 1.34 0.2294 1.33

5 k0
24

25 800 0.2123 1.45 0.1857 1.42 0.1687 1.35

6 k0
25

25 1600 0.1319 1.61 0.1169 1.59 0.1103 1.53

7 k0
26

25 3200 0.0630 2.09 0.0563 2.07 0.0543 2.03
Table 2. Observed convergence rates, j denotes the refinement step, k denotes
the time step, n denotes the number of elements, m denotes the number of time

steps, ejs is the error computed at the refinement step j, and ejs
ej+1
s

gives the ratio

of the error computed at two consecutive refinement steps.

7.2. Verifying numerically some asymptotic properties of system (2.1). The repro-

duction numbers and invasion numbers often (but not always) control the outcome from the

competition of the strains. We summarize the expected outcomes based on the values of the

reproduction numbers and invasion numbers in Table 3.



A two-strain SIS model with diffusion 25

Case Strain 1 Strain two Expected outcome Comment

1 R1 < 1 R2 < 1 I1 → 0, I2 → 0 Theorem 3.3
2 R1 < 1 R2 > 1 I1 → 0, I2 persists Prop. 7.1, Example 2
3 R1 > 1 R2 < 1 I1 persists, I2 → 0 Prop. 7.1, Example 3

4 R1 > 1, R̂1 < 1 R2 > 1, R̂2 > 1 I1 → 0, I2 persists see Example 4

5 R1 > 1, R̂1 > 1 R2 > 1, R̂2 < 1 I1 persists, I2 → 0 see Example 5

6 R1 > 1, R̂1 < 1 R2 > 1, R̂2 < 1 init. cond. dep. outcome –

7 R1 > 1, R̂1 > 1 R2 > 1, R̂2 > 1 coexistence; I1, I2 persist see Example 6
Table 3. List of conditions on reproduction numbers and invasion numbers and
potential dynamical outcomes of the competition of the strains. Last column
gives the example where the case is numerically illustrated. Case 6 could not
be numerically illustrated, possibly because it does not occur in system (2.1).

Before presenting the numerical examples of some asymptotic properties of the system (2.1),

we first prove the following Proposition, which partially established properties 2 and 3 of (2.1).

Proposition 7.1. The following statements are true.

(i) If R̂1 < R1 < 1 , then I1 → 0 .

(ii) If R̂2 < R2 < 1 , then I2 → 0 .

Proof: (i) Multiplying the system (2.1) by (S(x, t), I1(x, t), I2(x, t)) and integrating over Ω,

we get ∫
Ω
İ1I1 = −

∫
Ω
d1|∇I1|2 +

∫
Ω
β1

SI1

S + I1 + I2
I1 −

∫
Ω
γ1I

2
1 .

Clearly,
∫

Ω β1
SI1

S+I1+I2
I1 <

∫
Ω β1I

2
1 , and 1

2
d
dt‖I1‖2 =

∫
Ω İ1I1, so

1

2

d

dt
‖I1‖2 = −

∫
Ω
d1|∇I1|2 +

∫
Ω
β1I

2
1 −

∫
Ω
γ1I

2
1 .

Since R1 < 1, d
dt‖I1‖2 < 0.

(ii) Proof can be obtained by a similar analysis as in (i). �

(a) S(x, y, 0) (b) I1(x, y, 0) (c) I2(x, y, 0)

Figure 1. Initial values

Proving rigorously all properties in Table 3 may not be possible but we check numerically

whether they hold at least for arbitrary chosen parameter values in the examples presented

below. For all examples below we choose ds = 0.5, d1 = 1, d2 = 1.5, the domain to be unit
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square Ω = [0, 1]× [0, 1], and the initial conditions to be as follows

S(x, y, 0) = 2 + cos(πx) cos(πy)

I1(x, y, 0) = 4 + cos(πx) cos(πy)

I2(x, y, 0) = 3 + cos(πx) cos(πy) .

Initial values are graphed in the Figure 1.

(a) Example 2. Example 2 illustrates Case 2 in Table 3. In this example, we simulate

the results of Proposition 7.1 (i). Transmission and recovery rate of each strain is chosen as

follows:

β1(x, y) = 3 + sin(πx) sin(πy),

β2(x, y) = 2 + sin(πx) sin(πy),

γ1(x, y) = 50 + sin(πx) sin(πy),

γ2(x, y) = 1.

We then estimate the basic reproduction numbers. We estimate that R1 < 1, and R2 > 1.

Note that the invasion number of a strain is always less than the reproduction number of the

same strain. We estimate the invasion numbers to be R̂1 < 1, and R̂2 > 1. If R̂1 < R1 < 1,

Figure 2. Total densities of susceptible individuals, infected individuals with
strain one and two at time t.

and R2 > 1, then I2 persists and I1 → 0. This result is shown in Figure 2. Our numerical

experiment agrees with Proposition 7.1 (i).

(b) Example 3. Example 3 illustrates Case 3 in Table 3. In this example, we also illustrate

Proposition 7.1 (ii). Transmission and recovery rate of each strain is chosen as follows

β1(x, y) = 3 + sin(πx) sin(πy),

β2(x, y) = 2 + sin(πx) sin(πy),

γ1(x, y) = 1,

γ2(x, y) = 50 + sin(πx) sin(πy).
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We then estimate the basic reproduction numbers and invasion numbers. We estimate that

R1 > 1, R2 < 1, R̂1 > 1, and R̂2 < 1. If R1 > 1, R2 > 1, R̂1 < 1, and R̂2 > 1, then I1

Figure 3. Total densities of susceptible individuals, infected individuals with
strain one and two at time t.

persists and I2 → 0. This result is shown in Figure 3. Our numerical experiment agrees with

Proposition 7.1 (ii).

(c) Example 4. If both reproduction numbers are larger than one, as in the remaining

examples, none of the strains is automatically eliminated, because it is unfit to the environment.

The outcome of the competition between the strains is decided by the invasion numbers.

Example 4 illustrates Case 4 in Table 3.

Figure 4. Total densities of susceptible individuals, infected individuals with
strain one and two at time t.
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For this example, we chose the transmission and recovery rate of each strain as follows:

β1(x, y) = 20 + sin(πx) sin(πy),

β2(x, y) = 30 + sin(πx) sin(πy),

γ1(x, y) = 2 + sin(πx) sin(πy),

γ2(x, y) = 3 + sin(πx) sin(πy).

With these choices of recovery and transmission rates, we estimate that R1 > 1, R2 > 1,

R̂1 < 1 and R̂2 > 1. As stated in Case 4, I2 persists and I1 → 0. We observe this result in

Figure 4.

(d) Example 5. Example 5 illustrates Case 5 in Table 3, and it is the symmetrical case

to Case 4. If R1 > 1, R2 > 1, R̂1 > 1, and R̂2 < 1, then I1 persists and I2 → 0 as shown in

Figure 5.

β1(x, y) = 30 + sin(πx) sin(πy),

β2(x, y) = 20 + sin(πx) sin(πy),

γ1(x, y) = 3 + sin(πx) sin(πy),

γ2(x, y) = 2 + sin(πx) sin(πy).

Figure 5. Total densities of susceptible individuals, infected individuals with
strain one and two at time t.

(e) Example 6. Example 6 illustrates Case 7 in Table 3. This is the case that both

reproduction numbers are above one, and both invasion numbers are above one. The two

strains coexist. We show theoretically that coexistence occurs in Lemma 4.3. It this section

we demonstrate that the theoretical possibility of coexistence, actually occurs for some specific

values of the parameters. We note that the transmission rate of strain one is quite different

than the transmission rate of strain two, giving non-trivial different reproduction numbers.
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Figure 6. Total densities of susceptible individuals, infected individuals with
strain one and two at time t.

In this simulation, with the following choices of recovery and transmission rates, we estimate

that R1 > 1, R2 > 1, R̂1 > 1, and R̂2 > 1, and we observe that coexistence occurs.

β1 = 5− 5x,

β2 = 5x,

γ1 = 1,

γ2 = 1.

In Figure 7, we plot the infected individuals with strain one and two at the final time of

interest.

Figure 7. Coexistence equilibrium.

8. Discussion

In this article we introduce a spatially heterogenous deterministic epidemic model of SIS

type where the pathogen is represented by two strains. We allow for spatially heterogeneous
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transmission and recovery rates, in contrast with most spatial epidemic models where rates

are assumed constant. The model is built on the single strain model considered in [2].

Fundamentally, our model is very simple – its spatially homogeneous ODE version has dy-

namics that leads to competitive exclusion. In other words, if any of the reproduction numbers

is above one, the strain with the larger reproduction number persists, while the other one dies

out (see Appendix). The introduction of space leads to larger variety of outcomes. Intuitively,

it seems clear, that when space is taken into account, multiple pathogens could simultaneously

persist by partitioning the region into subregions and each occupying separate subdomain.

This scenario is known in ecology as “niche partitioning”. Here, we hypothesize that space

alone may lead to coexistence of the pathogens, and we test this hypothesis both analytically

and numerically. In particular, we define spatial reproduction numbers and invasion numbers

for both pathogens. We find three types of equilibria: disease-free equilibrium, two dominance

equilibria, one corresponding to strain one and the other one corresponding to strain two, and

coexistence equilibria. We establish that if the reproduction numbers of both strains are below

one, the disease-free equilibrium is globally asymptotically stable. Using the monotonicity of

the time-independent problem, we show analytically, that if both invasion numbers are above

one, coexistence equilibrium exists.

To check the persistence of both strains in this case, we develop a fully discrete finite element

method to simulate the system of partial differential equations in time. The spatial domain

is divided into triangles with acute angles. We approximate the the integrals with the vertex

quadrature rule. Time is discretized with backward Euler method. Although most finite

element methods may not preserve the positivity of the solution, our discretization allows us

to show rigorously that the discrete solution is non-negative, just as the continuous solution it

approximates. We also establish both analytically and numerically that the discrete solution

converges to the exact solution with an error of order two in space and order one in time.

Finally, we simulate a number of dynamical outcomes of the competition of the strains

controlled by different values of the reproduction numbers and invasion numbers. In particular,

numerically we show that if one of the reproduction number is above one, and the other is below

one, then the strain with the larger than one reproduction number persists, while the strain

with the smaller than one reproduction number dies out. If both strains have reproduction

number above one, then the outcome of the competition depends on the invasion numbers. If

exactly one strain has a reproduction number above one, that strain persist while the other is

eliminated. If both strains have invasion numbers above one, then they both persist.
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Appendix A. The ODE model

The ODE version of the model (2.1) is

dS

dt
= −β1

SI1

S + I1 + I2
− β2

SI2

S + I1 + I2
+ γ1I1 + γ2I2,

dI1

dt
= β1

SI1

S + I1 + I2
− γ1I1,(A.1)

dI2

dt
= β2

SI2

S + I1 + I2
− γ2I2,

with positive initial conditions S(0), I1(0), I2(0) ≥ 0 and positive recovery and transmission

rates β1, β2, γ1, γ2 > 0 which are all constants. Let

N = S(0) + I1(0) + I2(0) ,

since d
dt(S + I1 + I2) = 0, we have S(t) + I1(t) + I2(t) = N ∀t > 0 . Since the total population

is constant all times, substituting S = N − (I1 + I2) into (2.1), we get the following reduced

system of equations;

dI1

dt
= I1

(
−β1

N
(I1 + I2) + β1 − γ1

)
= f (I1, I2) ,(A.2)

dI2

dt
= I2

(
−β2

N
(I1 + I2) + β2 − γ2

)
= g (I1, I2) .

The steady state solutions (I∗1 , I
∗
2 ) of (A.2) are given by

f (I∗1 , I
∗
2 ) = g (I∗1 , I

∗
2 ) = 0

of which only the positive solutions are of interest. Equilibria satisfy the system:

I1 + I2 = N

(
1− γ1

β1

)
I1 + I2 = N

(
1− γ2

β2

)
.

Clearly, the steady states are DFE, (0, 0), I∗1 -equilibrium,
(
N
(

1− γ1
β1

)
, 0
)

, and I∗2 -equilibrium,(
0, N

(
1− γ2

β2

))
. In getting these steady states, we make the assumption γ1

β1
6= γ2

β2
. If I∗1 6= 0

and I∗2 6= 0 the system above is inconsistent. Small perturbations around the steady state,

(I1 − I∗1 , I2 − I∗2 ), satisfy the following linearized system:

(A.3)

 d(I1−I∗1 )
dt

d(I2−I∗2 )
dt

 = A (I∗1 , I
∗
2 )

(
I1 − I∗1
I2 − I∗2

)
where A is the Jacobian matrix given as

(A.4)

A (I1, I2) =

(
∂f
∂I1

∂f
∂I2

∂g
∂I1

∂g
∂I2

)
=

( −β1
N (I1 + I2) + β1 − γ1 − β1

N I1 −β1
N I1

−β2
N I2

−β2
N (I1 + I2) + β2 − γ2 − β2

N I2

)
.

The linear stability of (I∗1 , I
∗
2 ) is determined by the eigenvalues λ of the stability matrix A.

For the DFE, we get

A(0, 0) =

(
β1 − γ1 0

0 β2 − γ2

)
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Clearly DFE is stable if β1−γ1 < 0 and β2−γ2 < 0, and unstable if β1−γ1 > 0 or β2−γ2 > 0.

Since dIi
dt = (βi − γi)Ii, for i = 1, 2 we set the reproduction numbers of each strain to be

Ri = βi
γ1
, i = 1, 2.

Let β1 − γ1 > 0 and β2 − γ2 > 0, so that I∗1 -equilibrium and I∗2 -equilibrium exist, then the

stability matrices for these equilibria are;

A

(
N

(
1− γ1

β1

)
, 0

)
=

(
−(β1 − γ1) −(β1 − γ1)

0 β2

(
γ1
β1
− γ2

β2

) )

A

(
0, N

(
1− γ2

β2

))
=

(
β1

(
γ2
β2
− γ1

β1

)
0

−(β2 − γ2) −(β2 − γ2)

)
I∗1 -equilibrium is stable if β1−γ1 > 0 and γ1

β1
− γ2
β2
< 0 and unstable if if β1−γ1 < 0 or γ1

β1
− γ2
β2
>

0. On the other hand, I∗2 -equilibrium is stable if β2−γ2 > 0 and γ1
β1
− γ2

β2
> 0 and unstable if if

β1 − γ1 < 0 or γ1
β1
− γ2

β2
< 0. So, when I∗1 -equilibrium is stable, I∗2 -equilibrium is unstable and

when I∗2 -equilibrium is stable, I∗1 -equilibrium is unstable. Thus we have competitive exclusion.

To study the global stability of the coexistence equilibrium, set u(t) =
I
β2
1 (t)

I
β1
2 (t)

, then

du

dt
=
β2I

β2−1
1 Iβ12 I

′
1 − β1I

β1−1
2 Iβ21 I

′
2

I2β1
2

=
β2I

β2−1
1 Iβ12

(
β1

SI1
S+I1+I2

− γ1I1

)
− β1I

β1−1
2 Iβ21

(
β2

SI2
S+I1+I2

− γ2I2

)
I2β1

2

=
Iβ21 Iβ12

(
β2β1

S
S+I1+I2

− β2γ1 − β1β2
S

S+I1+I2
+ β1γ2

)
I2β1

2

=
Iβ21 (t)

Iβ12 (t)
γ1γ2 (R1 −R2)

= u(t)λ

where λ = γ1γ2 (R1 −R2). Sign of λ will be determined by the sign of R1−R2. Let R1 and

R2 be both greater 1, and if R1 > R2, then

lim
t→∞

u(t) =∞ which implies that I2 → 0 and I1 persists as t→∞.

If R2 > R1, then

lim
t→∞

u(t) = 0 which implies that I1 → 0 and I2 persists as t→∞.
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