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Abstract. This article investigates the impact of predation on the coexistence and
competitive exclusion of pathogen strains in the prey. Two types of predator are
considered — a generalist and a specialist. For each type of predator we assume that
the predator can discriminate among susceptible and infected with each strain prey.
The two strains will competitively exclude each other in the absence of predation with
the strain with the larger reproduction number persisting. If a generalist predator
preys discriminantly and the disease is fatal, then, depending on the predation level,
a switch in the dominant pathogen may occur. Thus, for some predation levels the
first strain may persist while for other predation levels the second strain may persist.
Furthermore, a specialist predator preying discriminantly may mediate the coexistence
of the two strains. Although in most cases increasing predation reduces the disease
load in the prey, when predation leads to coexistence, it may also lead to increase in
the the disease load.
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1. Introduction

The current threat of avian influenza has raised our awareness that we, the humans,
are only one part in a complex web of interactions, where many disease-causing microor-
ganisms are major players [23]. In terms of disease transmission the human population
is linked to other, non-human species, through pathogens, such as influenza type A,
that have the ability to cross the species borders and become adapted to new hosts.
Many human diseases have emerged as a result of such adaptation. This suggests that
understanding emerging pathogens in the human population requires the understanding
of the infectious disease ecology in wildlife populations [5].

Diseases of animal and plant species impact their host species in various ways but often
by decreasing their numbers [22], leading to a variety of implications for conservation
[17]. The classical Kermack-McKendrick SIR epidemic model [14], which was developed
for human populations [1], can also be applied to model disease spread in many non-
human vertebrate species.

One assumption in the classical Kermack-McKendrick SIR epidemic model is that
the population is closed, that is, the individuals in the population communicate only
with other individuals in the same population, and the population is not subject to
immigration or emigration. This assumption of complete isolation is rarely true in ani-
mal populations. Wildlife populations participate in ecological interactions with various

Date: September 16, 2008.
∗author for correspondence.

1



2 Maia Martcheva

other populations, occupying the same habitat, thus building an ecological community.
Typically, the species in the community form complex web of trophic interactions called
food web [20]. Because food webs may include hundreds of species, theoretical studies
in community ecology often concentrate on subunits of a web, called “community mod-
ules” [10]. Community modules most frequently focus on two fundamental community
interactions: competition for resources in the common habitat, and predation.

Integration of disease epidemiology with community ecology has recently begun to
attract the attention of the scientists. Complex interdependence exists between the host-
pathogen interactions and community interactions [5]. For instance, rabbit calicivirus
disease (RCD) was introduced in Australia as a biological control agent of the wild
rabbit population [7]. As a result, the rabbit population declined, but that may have
had various consequences for the Australian flora and fauna. Investigation of these
consequences through a mathematical model suggests that the reduction in the rabbit
population may lead to reduction of foxes, a common predator for the rabbits, and an
immediate small increase in the pasture biomass [19]. Conversely, changing community
interactions may impact the disease prevalence in the affected species. Both experimental
[15] and theoretical results [18] show that removal of predators leads to increase in disease
prevalence in the prey.

Since the time of Lotka and Volterra [16] the most studied community module is the
predator-prey relationship. It is hardly surprising that the study of the disease-ecology
interdependence begins by the integration of simple epidemic SI or SIR models with
predator-prey models. There are two main types of predators — generalist and specialist.
Generalist predators feed on many types of species. Consequently, their dynamics is not
coupled to the dynamics of a specific prey population. When a focal prey population
is threatened by extinction, the predator is capable of changing his diet to another
species and may continue to persist. Such a generalist predator acts on a specific prey
population as an external added morality. The impact of such a predator on a prey,
infected by a disease, is modeled through an SI or SIR model with additional mortality
dependent on predator’s density, assumed at equilibrium [18, 13]. Specialist predators
feed almost exclusively one specific species of prey. As a consequence, the predator’s
numbers are strongly dependent on prey numbers, and prey extinction will almost surely
lead to predator extinction. It is this type of predator-prey relationship that is modeled
by the Lotka-Volterra model. Mathematical analysis focuses on the integration of Lotka-
Volterra predator-prey models with SI or SIR disease models [4, 24, 25, 8] where sustained
oscillations are found primarily as a result of presence of nonlinear functional response
of the predator. Differential-delay models with constant delay in the equation of the
predator [26], and eco-epidemiological models with age-structure in the prey have also
been considered [6]. Saenz and Hethcote find that a disease common for two competing
species may be able to change the competitive outcome [21].

It seems that little attention has been paid on the impact of predation on the evolution
of the pathogens. Holt and Dobson [11] mention in a recent article that predation may be
responsible for the coexistence of two competing pathogen strains. It is this scenario that
we investigate in this article. The impact of predation or other community interactions
on the disease evolution may be one of the mechanisms responsible for the emergence of
new pathogen strains capable of crossing the species barriers.
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In this article we investigate the impact of predation on competing pathogen strains
in the prey population. Competitive exclusion is the only possible outcome for the two
microorganisms in the absence of predation. We investigate the potential impact of
both types of predators: generalist and specialist exerting discriminate (preying more
intensely on some prey classes than others) predation. In Section 2 we consider the
impact of a generalist predator. In Subsection 2.1 we examine the effect on the prey total
population size when the predator attacks preferentially infected prey. In Subsection
2.2 we consider the various equilibria of the model. Subsection 2.3 is devoted to the
impact of predation on the strain persistence and extinction. Section 3 is devoted to
the impact of a specialist predator on the competing pathogen strains. In Subsection
3.1 we consider the boundary equilibria. In Subsection 3.2 we consider the coexistence
equilibria. Section 2 and Section 3 focus of the case of a linear functional response of
the predator. Section 4 considers extensions to non-linear functional response. Section
5 summarizes our observations and draws conclusions.

2. Generalist predator and the competition of pathogen variants in

the prey population

We consider the spread of a disease in a non-human population subjected to predation.
We model the disease spread with an SI model, thus effectively assuming that the prey
does not recover from the disease. We assume that the disease is represented by two
strains. Susceptible prey individuals, whose numbers at time t are given by S(t), become
infected with strain i if they get into contact with infected individuals with strain i. The
number of infected individuals with strain i is given by Ii(t). Transmission of strain i
occurs at a rate βi. Susceptible prey individuals die at a natural death rate µ0, while
infected individuals die at a rate µi for strain i. We assume that disease may add
mortality, that is

µ1 ≥ µ0 µ2 ≥ µ0.

The total population size of the prey is N(t) = S(t)+I1(t)+I2(t). The prey is subjected
to predation by a generalist predator. We assume that the predator’s dynamics has sta-
bilized at equilibrial level and the predation on the focal prey acts as additional mortality
for that prey. We assume the additional mortality is proportional to the predator equi-
librial population size P , considered as a parameter. Therefore, the predation-added
mortality to the prey is given by, aP , where a is the attack rate. In general, there are
three different attack rates – an attack rate for susceptible prey, η, attack rate for prey
individuals who are host to strain one, γ1, and attack rate for prey individuals who are
host to strain two, γ2. With these notations the prey model with disease becomes:

(2.1)

dS
dt

= rS

(

1 −
S + I1 + I2

K

)

− β1SI1 − β2SI2 − (µ0 + ηP )S,

dI1

dt
= β1SI1 − (µ1 + γ1P )I1,

dI2

dt
= β2SI2 − (µ2 + γ2P )I2

Here we have denoted the intrinsic growth rate of the prey population by r. In addition
we have assumed that the disease affects reproduction and only the susceptible pop-
ulation reproduces at the intrinsic reproduction rate r. Furthermore, we assume that
the infected individuals do not reproduce. These assumptions appear to be common for
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many predator-prey models with disease in prey. The parameter K denotes the baseline
carrying capacity of the environment in the logistic equation.

It should be noted that we will iterpret the logistic term in the equation for the
susceptible prey r

(

1 − S+I1+I2
K

)

as density-dependent per capita birth rate. To keep the
birth rate non-negative, we will consider the system (2.1) (and later the system (3.1))
on the set

Ω = {(S, I1, I2) : 0 ≤ S + I1 + I2 ≤ K}.

The set Ω is forward invariant for the system (2.1). Thus, solutions that start from that
set, remain in the set for all time. In addition the set Ω contains the dynamics we are
interested in.

Adding the three equations we obtain the differential equation of the total prey pop-
ulation

(2.2)
dN

dt
= rS

(

1 −
N

K

)

− (µ0 + ηP )S − (µ1 + γ1P )I1 − (µ2 + γ2P )I2.

One observation that can be made from the equation for the total prey population size
is that if r < µ0, then the total prey population goes to extinction, independent of the
level of predation or disease. To see this, we recall that µ1 ≥ µ0 and µ2 ≥ µ0. These
inequalities imply that N ′(t) ≤ rN−µ0N . Therefore, if r < µ0, the total prey population
N(t) → 0 as t → ∞. We summarize this observation in the following proposition.

Proposition 2.1. Assume r < µ0. Then the total prey population declines to zero as
time goes to infinity independently of the level of predation:

N(t) → 0 t → ∞.

In view of Proposition 2.1, unless otherwise noted, we will assume in the rest of the
paper that

r > µ0.

2.1. The total prey population when γ1 ≥ η and γ2 ≥ η. In the case of more
intense predation on infected individuals γ1 ≥ η and γ2 ≥ η, or indiscriminate predation
γ1 = γ2 = η the equation of the total population size (2.2) can be rewritten as the
following inequality

(2.3)
dN

dt
≤ rN

(

1 −
N

K

)

− (µ0 + ηP )N

The solution of this inequality is dominated by the solution of the corresponding equality.
The corresponding equality is the logistic equation with predation (harvesting). We
observe that we can further simplify inequality (2.3) to obtain N ′ ≤ rN − (µ0 +ηP )N =
(r − µ0 − ηP )N . This implies that if the predation level is such that r < µ0 + ηP , then
the prey population goes to extinction N(t) → 0 as t → ∞. We summarize this result
in the following proposition

Proposition 2.2. Assume γ1 ≥ η and γ2 ≥ η. Assume also r < µ0 + ηP . Then the
total prey population declines to zero as time goes to infinity:

N(t) → 0 t → ∞.
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Assuming that r > µ0 + ηP , we denote by

rP = r − µ0 − ηP

the predator-dependent intrinsic growth rate, and by

KP =
KrP

r

the predator-dependent carrying capacity. We note that both the predator-dependent
intrinsic growth rate and the predator-dependent carrying capacity are linear decreasing
functions of the predation level P . With this notation, we have that the solution of
inequality (2.3) is dominated by the corresponding solution of the logistic equation

(2.4)
dN

dt
= rP N

(

1 −
N

KP

)

and therefore satisfies [3]:

(2.5) N(t) ≤
N0KP

(KP − N0)e−rP t + N0

.

The solutions of the logistic equation approach the carrying capacity KP . This implies
that if r < µ0 + ηP the limit of the total prey population size is zero, and if r > µ0 + ηP
the limit may be zero, or may be non-zero but is smaller than KP . Because of its
threshold property, the inequality r < µ0 + ηP can be rewritten in the form R < 1,
where

R =
r

µ0 + ηP

can be interpreted as the prey reproduction number. The prey reproduction number is a
decreasing function of predation. Its largest value is the predation-free prey reproduction
number, given by r/µ0. Since r > µ0, there exists threshold predation level, given by

(2.6) P ∗ =
r − µ0

η
.

The threshold predation level is proportional to the growth rate of the prey population
outside predation and inversely proportional to the attack rate. The threshold predation
level is such that for P > P ∗, the prey reproduction number R < 1 and the prey
population dies out.

2.2. Equilibria. If the reproduction number of the prey population is above one, R > 1,
the system (2.1) has a disease-free equilibrium E0 = (S0, 0, 0), where S0 satisfies the
same equation as (2.4). Consequently, S0 = KP . There are two dominance equilibria
corresponding to each strain. Strain one dominance equilibrium E1 = (S∗

1 , I
∗

1 , 0) satisfies
the following system:

(2.7)
0 = rS

(

1 −
S + I1

K

)

− β1SI1 − (µ0 + ηP )S,

0 = β1SI1 − (µ1 + γ1P )I1.

After canceling I1 in the second expression we obtain

S∗

1 =
µ1 + γ1P

β1

.
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Again, the number of susceptible prey at equilibrium is an increasing function of the
predation level with slope equal to the ratio of the attack rate for individuals infected
with strain one, γ1, and the transmission coefficient, β1. This means that when the
attack rate is differential, and it is higher for individuals infected with strain one than
for the susceptible individuals, γ1 > η, there will be more susceptible individuals in the
prey population compared to the case when the attack rate for all prey is indiscriminate
and equal to the baseline attack rate for susceptible individuals. Canceling S in the first
equation of the system (2.7), and replacing S with its value at equilibrium, we obtain
the following expression for the disease load of strain one at equilibrium

I∗

1 =

(

KP − µ1+γ1P

β1

)

1 + β1K

r

.

We define the reproduction number of strain one for a generalist predator

R1 =
KP β1

µ1 + γ1P
.

We have a positive disease load of strain one if the reproduction number of strain one for
discriminate predation is larger than one, that is, R1 > 1. The reproduction number of
strain one for discriminate predation is a decreasing and concave up function of predation
level, P . If strain one reproduction number in the absence of predation (P = 0) is larger
than one, R0,1 > 1, then there is a threshold predation level

P1 =
µ1(R0,1 − 1)

β1
K
r
η + γ1

such that for P < P1 the reproduction number of strain one for discriminate predation
R1 > 1 while for P > P1 the reproduction number of strain one for discriminate preda-
tion R1 < 1. We call P1 strain one threshold predation level for a generalist predator.
The reproduction number of strain one gives the number of secondary cases one infected
with strain one prey individual can produce in an entirely susceptible prey during its
lifetime as infected. Indeed, KP gives the number of susceptible prey in the disease-
free prey population. The product β1KP gives the number of secondary infections one
infected individual will produce in an entirely susceptible prey population per unit of
time. One infected individual spends 1/(µ1 + γ1P ) time units as infectious until that
individual dies from natural causes or predation.

Symmetry gives a unique dominance equilibrium of strain two E2 = (S∗

2 , 0, I
∗

2 ), where
S∗

2 and I∗

2 are given as follows:

S∗

2 =
µ2 + γ2P

β2

I∗

2 =

(

KP − µ2+γ2P

β2

)

1 + β2K

r

.

The reproduction number of strain two and the strain two threshold predation level for
a generalist predator are similarly given as:

R2 =
KP β2

µ2 + γ2P
P2 =

µ2(R0,2 − 1)

β2
K
r
η + γ2

The existence of boundary equilibria can be summarized in the following proposition
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Proposition 2.3. Assume R > 1. Then, there always exists a disease-free equilibrium
E0 = (KP , 0, 0). In addition, if the reproduction number of strain one is larger than
one, R1 > 1, there exists a unique dominance equilibrium corresponding to strain one,
E1 = (S∗

1 , I
∗

1 , 0). Similarly, if the reproduction number of strain two is larger than one,
R2 > 1, there exists a unique dominance equilibrium corresponding to strain two, E2 =
(S∗

2 , 0, I
∗

2 ).

Coexistence equilibria, if such exist, must satisfy the following two equations:

(2.8)
0 = β1SI1 − (µ1 + γ1P )I1,
0 = β2SI2 − (µ2 + γ2P )I2

From these two equations, after canceling I1 and I2, we obtain that

S∗ =
µ1 + γ1P

β1

, S∗ =
µ2 + γ2P

β2

.

These two expressions for S∗ will be equal if the predation level P satisfies the following
equality

µ1 + γ1P

β1

=
µ2 + γ2P

β2

The predation level that satisfies this equality is given by

Pc =
β2µ1 − β1µ2

β1γ2 − β2γ1

provided the expression on the right-hand side is positive. We illustrate the area in
the (β1, β2) plane where Pc > 0 in Figure 1. We summarize the result in the following
proposition.

Proposition 2.4. The predation level Pc for which coexistence may occur is positive if
and only if

min

{

µ2

µ1

,
γ2

γ1

}

≤
β2

β1

≤ max

{

µ2

µ1

,
γ2

γ1

}

.

If Pc > 0 then both equations in (2.8) are simultaneously satisfied, and there are
infinitely many coexistence equilibria as long as the following equation is also satisfied:

0 = r

(

1 −
S + I1 + I2

K

)

− β1I1 − β2I2 − (µ0 + ηP ).

In fact, the coexistence that occurs in this case is the coexistence that occurs in the
degenerate case R1 = R2. It is not hard to see that for P = Pc we have exactly
R1 = R2. We conclude that if the disease that affects the prey has differential mortality
for the two strains and/or if the attack rate for prey individuals infected with the two
strains is differential, then there is a unique predation level P = Pc for which coexistence
may occur. Thus coexistence may occur but it is rare. In general, coexistence does not
occur in any other way, and the global dynamics of the system is given again by the
following proposition

Proposition 2.5. If R1 < 1 and R2 < 1 then the disease-free equilibrium is globally
asymptotically stable. If R1 > 1 and/or R2 > 1, then the strain with the larger reproduc-
tion number persists and the other strain dies out. Coexistence does not occur outside
of the degenerate case R1 = R2.
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Figure 1. This figure shows the area in the (β1, β2) plane for which
there is coexistence, that is, for which Pc > 0. This area in the figure is
shaded in light grey. The lower boundary line of the shaded area is given

by the line β2 = min
{

µ2

µ1

, γ2

γ1

}

β1. In the case of the figure above this line is

given by the equation β2 = 0.5β1. The upper boundary line of the shaded

area is given by the line β2 = max
{

µ2

µ1

, γ2

γ1

}

β1. In the case of the figure

above this line is given by the equation β2 = 3β1. In the remaining part
of the positive quadrant Pc < 0 and coexistence does not occur.

2.3. Impact of predation on strain persistence. However, it is important to note
that the presence of a generalist predator can impact the outcome of the competition
of strains in the prey. Predation level may determine which strain dominates. For
instance, assume without loss of generality, that in the absence of predation P = 0
both reproduction numbers are above one, and also the reproduction number of the first
strain is larger than the reproduction number of the second strain, R0,1 > R0,2. In this
case, according to Proposition 2.5, strain one will competitively exclude strain two and
will dominate in the prey population. As predation level P is increased, there are two
possibilities:

1. Strain one threshold predation level is smaller than the coexistence predation
level: P1 < Pc. In this case, as predation level P increases from zero, it first
exceeds P1. As soon as P > P1, the reproduction number of strain one be-
comes smaller than one. The reproduction number of strain strain two is already
smaller than one, as it is smaller than the reproduction number of strain one.
Consequently, according to Proposition 2.5, the disease disappears from the prey
population. Predation has eliminated the disease.

2. Strain one and strain two threshold predation levels are larger than the coex-
istence predation level: P1 > Pc and P2 > Pc. In this case, as the predation
level increases from zero it first becomes equal to the coexistence predation level,
P = Pc. When P < Pc strain one eliminates strain two and dominates in the
prey population because we have R1 > R2 (see Proposition 2.5). When P = Pc,
coexistence occurs. At this point the reproduction numbers of the two strains are
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Figure 2. This figure shows a graph of the reproduction numbers R1

and R2 as functions of the predation level P . The predation level for
which the two reproduction numbers are equal is Pc = 0.06. For P < Pc,
the reproduction number R1 is larger and is the one graphed in grey.
This means that strain one will dominate for those predation levels. For
P = Pc there is coexistence denoted with a large dot. For P2 > P > Pc

the reproduction number R2 is larger and is graphed in black. This means
that strain two will dominate for those predation levels. The remaining
parameters of the figure are: β1 = 5, β2 = 8, µ0 = 0.1, µ1 = 0.2, µ2= 0.5,
γ1 = 5, γ2 = 5, η = 2, K = 1, r = 2.

equal. As predation becomes slightly larger than the coexistence predation level,
P > Pc, the reproduction number of the second strain becomes larger than the
reproduction number of the first strain but they are both still larger than one,
1 < R1 < R2. Proposition 2.5 implies that in this case strain two will eliminate
strain one, and persist in the population. Further increase in predation level will
lead to the predation level increasing through P1, when the reproduction number
of strain one becomes smaller than one but there is no change in the dynamical
outcome of the competition. If the predation level continues to increase, it will
become larger than the strain two threshold predation level, P > P2. At this
point the reproduction number of strain two will also become smaller than one.
Proposition 2.5 implies that both strains will be eliminated and the prey popu-
lation will become disease-free. Predation has eliminated the disease, provided,
it has not eliminated the entire prey population first. We illustrate this situation
in Figure 2.

We conclude that for a fatal disease with differential disease-induced mortalities for the
two strains and/or discriminate predation on individuals infected with the two strains,
changing predation levels may lead to coexistence in a rare case but, more importantly,
it may induce a switch in the dominant pathogen variant.
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3. Specialist predator and the competition of pathogen variants in the

prey population

In this section we consider again the spread of a disease in a prey population. We
model the spread of the disease in the prey population the same way as with a gener-
alist predator (see model (2.1)). However, we assume that the predator is a specialist
predator, that is, it feeds exclusively on the focal prey population. The dynamics of a
specialist predator is strongly coupled with the dynamics of the prey population. Thus,
the number of predators is described as a dynamical variable P (t) whose dynamics is
given by differential equation. To the model (2.1) we add an equation for the dynamics
of the predator. Its size increases in time by the biomass of the prey, that the predator
has consumed, and decreases by the natural death rate of the predator. We denote by
d the per capita death rate of the predator. The predator-prey model with disease in
prey becomes:

(3.1)

dS
dt

= rS

(

1 −
S + I1 + I2

K

)

− β1SI1 − β2SI2 − (µ0 + ηP )S,

dI1

dt
= β1SI1 − (µ1 + γ1P )I1,

dI2

dt
= β2SI2 − (µ2 + γ2P )I2

dP
dt

= ǫ(ηS + γ1I1 + γ2I2)P − dP,

where ǫ denotes predator’s metabolic efficiency by which the biomass of consumed prey
is converted to predator’s biomass. The parameter ǫ is called predator’s conversion
efficiency. We assume in this section again that µ1 ≥ µ0 and µ2 ≥ µ0 as well as r > µ0.
As before, we consider the full model (3.1) under the assumption that only susceptible
prey give birth. We notice first that in the absence of disease the system above becomes

(3.2)
dS
dt

= rS

(

1 −
S

K

)

− (µ0 + ηP )S,

dP
dt

= ǫηSP − dP.

This is the classical Lotka-Volterra predator-prey model. This model has been exten-
sively studied. We introduce here some notation and results to be used later. If we
denote by K◦

P = K
r
(r − µ0), we can call K◦

P prey carrying capacity in the absence of
predation. We introduce also the predator reproduction number:

(3.3) Rp =
ǫηK◦

P

d
.

The predator reproduction number gives the number of predators that will be produced
in a population where the prey is at carrying capacity K◦

P . To see this, notice that in
a predator-free population, the prey is at carrying capacity K◦

P . Consequently, ηK◦

P

gives the number of prey killed and eaten by one predator per unit of time, ǫηK◦

P gives
the number of prey killed and eaten by one predator, and converted into new predator
biomass, per unit of time. Finally, 1/d is the lifespan of a predator. The predator-prey

coexistence equilibrium Ê = (Ŝ, P̂ ) is given by

(3.4) Ŝ =
K◦

P

Rp

P̂ =
r − µ0

η

(

1 −
1

Rp

)

.
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We note that, as expected, the predator equilibrium size increases with the predator
reproduction number Rp while the prey equilibrium size decreases with the predator
reproduction number. Furthermore, both the predator equilibrium size and the prey
equilibrium size increase with the prey intrinsic growth rate r − µ0. The increase of
predator equilibrium size with the predator reproduction number Rp is saturating, where
the saturation limit is directly proportional to the prey’s growth rate and inversely
proportional to predator’s attack rate.

3.1. Boundary equilibria. We investigate the equilibria of the system (3.1). The
system has the extinction equilibrium E0 = (0, 0, 0, 0) which is globally stable if r <
µ0. Assuming that r > µ0 gives unstable extinction equilibrium and the system (3.1)
has several disease-related equilibria. In the remainder of this section we will consider
the case when r > µ0. The system has disease-free and predator-free equilibrium in
which the prey population size is at carrying capacity in the absence of a predator:
E0

p = (K◦

P , 0, 0, 0). Furthermore, the system has a disease-free, predator and susceptible

prey equilibrium Ê0 = (Ŝ, 0, 0, P̂ ), where Ŝ and P̂ are as given in equations (3.4). The
predator reproduction number is given by expression (3.3). This predator reproduction
number is the predator reproduction number when the entire prey population consists
of susceptible individuals. There are two dominance equilibria that correspond to strain
one — one in the absence of predation, and another in the presence of predation. The
strain one dominance equilibrium in the absence of predation P = 0 is given by EP,1 =
(

µ1

β1

, r
β1K+r

(

K◦

P − µ1

β1

)

, 0, 0
)

. The strain one dominance equilibrium in the absence of

predation exists if the reproduction number of strain one in the absence of predation R◦

1

is larger than one: R◦

1 > 1. The reproduction number of strain one in the absence of
predation is given by the following expression

R◦

1 =
K◦

P β1

µ1

.

The strain one dominance equilibrium in the presence of predation Ê1 = (S∗

1 , I
∗

1 , 0, P
∗

1 )
satisfies the following system, obtained after canceling S in the first equation, I1 in the
second equation, and P in the third equation:

(3.5)
0 = r

(

1 −
S + I1

K

)

− β1I1 − (µ0 + ηP ),

0 = β1S − (µ1 + γ1P ),
0 = ǫ(ηS + γ1I1) − d.

From the second equation we can express S as a function of P , and from the first
equation of system (3.5) we can express I1 as a function if P :

S∗

1 =
µ1 + γ1P

β1

I∗

1 =
r

β1K + r

(

K◦

P −
µ1

β1

−

(

Kη

r
+

γ1

β1

)

P

)

.

Substituting these in the last equation we obtain an equation for P only. Solving that
we obtain:

P ∗

1 =
dβ1

ǫγ1(γ1 − η)

(

K

r
β1 + 1

)

(Rp,1 − 1)
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where

Rp,1 =
ǫη

d

µ1

β1

+
ǫγ1

d

r

β1K + r

(

K◦

P −
µ1

β1

)

We can interpret Rp,1 as predator’s reproduction number when the prey population
consists of susceptible and infected with strain one individuals. The predator repro-
duction number gives the number of predators that will be produced in a population

where there are µ1

β1

susceptible prey and r
β1K+r

(

K◦

P − µ1

β1

)

infected with strain one prey.

Consequently, η µ1

β1

gives the number of susceptible prey killed and eaten by one preda-

tor per unit of time. In addition γ1
r

β1K+r

(

K◦

P − µ1

β1

)

gives the number of infected

with strain one prey killed and eaten by one predator per unit of time. Furthermore,

ǫ
(

η µ1

β1

+ γ1
r

β1K+r

(

K◦

P − µ1

β1

))

gives the number of prey killed and eaten by one predator,

and converted into new predator biomass, per unit of time. Finally, 1/d is the lifespan
of the predator.

The predator numbers P ∗

1 in the dominance equilibrium of strain one Ê1 is positive in
the following cases:

• If the predator predates more intensively on individuals infected with strain one
as compared to susceptible individuals, that is, if γ1 > η, then the reproduction
number of the predator in infected with strain one prey population must be larger
than one: Rp,1 > 1.

• If the predator predates more intensively on susceptible individuals as compared
to those infected with strain one, that is, if γ1 < η, then the reproduction number
of the predator in infected with strain one prey population must be smaller than
one: Rp,1 < 1.

The number of infected with strain one individuals is positive (I∗

1 > 0) if the reproduction
number of strain one is larger than one: R1 > 1, where the reproduction number of strain
one is defined as follows:

R1 =
K◦

P β1

µ1 +
(

Kβ1

r
η + γ1

)

P ∗

1

.

By symmetry, there are two dominance equilibria that correspond to strain two
— one in the absence of predation, and another in the presence of predation. The
strain two dominance equilibrium in the absence of predation, P = 0, is given by

EP,2 =
(

µ2

β2

, 0, r
β2K+r

(

K◦

P − µ2

β2

)

, 0
)

. This equilibrium exists if the reproduction number

of strain two in the absence of predation, given by

R◦

2 =
K◦

P β2

µ2

,

is larger than one: R◦

2 > 1. The strain two dominance equilibrium in the presence of

predation is given by Ê2 = (S∗

2 , 0, I
∗

2 , P
∗

2 ) where

S∗

2 =
µ2 + γ2P

∗

2

β2

I∗

2 =
r

β2K + r

(

K◦

P −
µ2

β2

−

(

Kη

r
+

γ2

β2

)

P ∗

2

)

.

The value of P ∗

2 is given by

P ∗

2 =
dβ2

ǫγ2(γ2 − η)

(

K

r
β2 + 1

)

(Rp,2 − 1)
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where

Rp,2 =
ǫη

d

µ2

β2

+
ǫγ2

d

r

β2K + r

(

K◦

P −
µ2

β2

)

As before, we can interpret Rp,2 as predator’s reproduction number when the prey
population consists of susceptible and infected with strain two individuals.

The number of infected with strain two individuals is positive (I∗

2 > 0) if the reproduc-
tion number of strain two is larger than one: R2 > 1, where the reproduction number
of strain two is defined as follows:

R2 =
K◦

P β2

µ2 +
(

Kβ2

r
η + γ2

)

P ∗

2

.

3.2. Coexistence equilibria. In this subsection, we investigate the coexistence equilib-
ria. Those must satisfy the system which we obtain from (3.1) by setting the derivatives
equal to zero and canceling S in the first equation, I1 in the second equation, I2 in the
third equation, and P in the fourth equation:

(3.6)

0 = r

(

1 −
S + I1 + I2

K

)

− β1I1 − β2I2 − (µ0 + ηP ),

0 = β1S − (µ1 + γ1P )
0 = β2S − (µ2 + γ2P )
0 = ǫ(ηS + γ1I1 + γ2I2) − d

We note that the last equation with η = 0 implies that infected with strain one and
infected with strain two prey individuals are in apparent competition mediated by the
predator. Apparent competition means that if the equilibrial numbers of one of the
two infected prey classes increases, then necessarily, the equilibrial numbers of the other
infected prey class decrease. The term apparent competition was introduced by Holt
[9]. The community context of the entire model (with η 6= 0) is equivalent to intra-guild
predation [12]. Intra-guild predation (IGP) occurs when the top predator which predates
on a prey species (in our case infected individuals) can also exploit the resource of its
prey (in our case the resource of the infected individuals are susceptible individuals, and
the predator predates on both infected and susceptible individuals).

We can solve the second and third equation for S and P :

(3.7) P̂ =
β2µ1 − β1µ2

β1γ2 − β2γ1

Ŝ =
µ1 + γ1P̂

β1

=
µ1γ2 − µ2γ1

β1γ2 − β2γ1

Proposition 2.4 gives the parameter values which determine the positivity of the coexis-
tence value of the predator P̂ > 0. The corresponding value of the susceptibles is always
positive, Ŝ > 0, as long as P̂ is positive. Solving the first and the last equation in the
system (3.6) gives the values of the infected individuals with strain one and strain two.

(3.8)

Î1 =

(

r
K

+ β2

) (

1 − ǫηS

d

)

− ǫγ2

d

[

r
(

1 − S
K

)

− (µ0 + ηP )
]

ǫγ1

d

(

r
K

+ β2

)

− ǫγ2

d

(

r
K

+ β1

)

Î2 =
ǫγ1

d

[

r
(

1 − S
K

)

− (µ0 + ηP )
]

−
(

r
K

+ β1

) (

1 − ǫηS

d

)

ǫγ1

d

(

r
K

+ β2

)

− ǫγ2

d

(

r
K

+ β1

)

To investigate the positivity of the coexistence equilibrium, we introduce the invasion
reproduction numbers of the two strains. The invasion reproduction number of strain
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one when strain two is at equilibrium is defined as the number of secondary cases one
strain-one infected individual can produce in a population where strain two is at equi-
librium during its lifetime as infectious. The invasion reproduction number of strain one
measures the invasion capabilities of strain one. This number is defined as follows:

R̂1 =
β1S

∗

2

µ1 + γ1P ∗

2

=
β1(µ2 + γ2P

∗

2 )

β2(µ1 + γ1P ∗

2 )
.

The inequality R̂1 > 1 says that strain one can invade the equilibrium of strain two, while
the opposite inequality says that strain one cannot invade the equilibrium of strain two.
It is easy to see from this expression that if γ2/γ1 > β2/β1 then the inequality R̂1 > 1 is

equivalent to the inequality P ∗

2 > P̂ while if γ2/γ1 < β2/β1 then the inequality R̂1 > 1

is equivalent to the inequality P ∗

2 < P̂ (see equation (3.7)). In words, if the ratio of the
predation rate of strain two-infected prey to strain one-infected prey is larger than the
ratio of the transmission rates of strain two and strain one, then strain one can invade
the equilibrium of strain two if and only if the predation level in the absence of strain
one is higher than the predation level in presence of infectious individuals with both
strains. If the relationship between the ratios is reversed then strain one can invade the
equilibrium of strain two if and only if the predation level in the absence of strain one
is lower than the predation level in presence of infectious individuals with both strains.
The invasion capabilities of strain one increase with the predation level in an exclusive
strain two equilibrium (P ∗

2 ) if and only if γ2/γ1 > µ2/µ1. Similarly, we can define an
invasion reproduction number of strain two:

R̂2 =
β2S

∗

1

µ2 + γ2P ∗

1

=
β2(µ1 + γ1P

∗

1 )

β1(µ2 + γ2P ∗

1 )
.

As before, if β2/β1 > γ2/γ1, then the inequality R̂2 > 1 is equivalent to the inequality

P ∗

1 > P̂ and if β2/β1 < γ2/γ1, then the inequality R̂2 > 1 is equivalent to the inequality

P ∗

1 < P̂ . The invasion capabilities of strain two increase with the predation level in an
exclusive strain one equilibrium (P ∗

1 ) if and only if γ2/γ1 < µ2/µ1. We conclude that all
other things fixed predation levels act in opposing ways on the invasion capabilities of
the two strains.

For a coexistence equilibrium to exist, we need that Î1 > 0 and Î2 > 0. There are two
symmetric cases.

Case 1: Assume that the denominator of the expressions in (3.8) is positive:

(3.9) β2 >
r

K

(

γ2

γ1

− 1

)

+
γ2

γ1

β1

Case 2: Assume that the denominator of the expressions in (3.8) is negative:

(3.10) β2 <
r

K

(

γ2

γ1

− 1

)

+
γ2

γ1

β1

We consider more thoroughly Case 1. Case 2 is analogous. If the denominator of Î1

and Î2 is positive, then Î1 and Î2 will be both positive if their numerators are positive.
Consider the numerator of Î1. We express Ŝ as (µ2 + γ2P̂ )/β2 and replace it in the

numerator of Î1. Separating the terms containing P̂ from those that do not contain P̂ ,
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Figure 3. The left figure illustrates that the number infected prey with
strain one I1(t) and the number infected prey with strain two I2(t) may
tend toward a coexistence equilibrium. The right figure illustrates that
the predator numbers of a specialist predator stabilize toward nonzero
equilibrium. The parameter values for both figures are: β1 = 7, β2 = 3,
η = 2, γ1 = 9, γ2 = 1, µ0 = 0.1, µ1 = 0.5, µ2 = 1, d = 1, r = 9,
K = 100, ǫ = 0.1. The predator’s reproduction numbers for strain one and
strain two are correspondingly Rp,1 = 1.143 and Rp,2 = 0.3537. The two
invasion reproduction numbers of strain one and strain two are respectively
R̂1 = 0.2596, R̂2 = 3.588. Since β2/β1 = 0.429, while γ2/γ1 = 1/9 and is

smaller, then R̂1 < 1 is equivalent to P̂ < P ∗

2 , and R̂2 > 1 is equivalent

to P̂ < P ∗

1 . We are in case (1) second scenario of Proposition 3.1.

we obtain the following expression for the numerator of Î1:

r + β2K

K

[

1 −Rp,2 +
r

r + β2K

ǫγ2

dβ2

(γ2 − η)P̂

]

.

Thus, if γ2 > η, the inequality Î1 > 0 is equivalent to the inequality P̂ > P ∗

2 . It also

follows that, if γ2 < η, the inequality Î1 > 0 is equivalent to the inequality P̂ < P ∗

2 .

Because the numerator of Î2 is the same but multiplied by negative one, we will get that
if γ1 > η, the inequality Î2 > 0 is equivalent to the inequality P̂ < P ∗

1 . We will also

get that, if γ1 < η, the inequality Î2 > 0 is equivalent to the inequality P̂ > P ∗

1 . We
summarize the coexistence result in the following proposition.

Proposition 3.1. Assume r > µ0 and that the inequality in Proposition 2.4 is satisfied.
Consider the following two cases:

(1) Assume

β2 >
r

K

(

γ2

γ1

− 1

)

+
γ2

γ1

β1.

Then we have the following scenarios:
• γ1 > η and γ2 > η. A unique coexistence equilibrium exists if and only if
Rp,1 > 1, Rp,2 > 1 and P̂ < P ∗

1 and P̂ > P ∗

2 .
• γ1 > η and γ2 < η. A unique coexistence equilibrium exists if and only if
Rp,1 > 1, Rp,2 < 1 and P̂ < P ∗

1 and P̂ < P ∗

2 .
• γ1 < η and γ2 > η. A unique coexistence equilibrium exists if and only if
Rp,1 < 1, Rp,2 > 1 and P̂ > P ∗

1 and P̂ > P ∗

2 .
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• γ1 < η and γ2 < η. A unique coexistence equilibrium exists if and only if
Rp,1 < 1, Rp,2 < 1 and P̂ > P ∗

1 and P̂ < P ∗

2 .
(2) Assume

β2 <
r

K

(

γ2

γ1

− 1

)

+
γ2

γ1

β1.

Then we have the following scenarios:
• γ1 > η and γ2 > η. A unique coexistence equilibrium exists if and only if
Rp,1 > 1, Rp,2 > 1 and P̂ > P ∗

1 and P̂ < P ∗

2 .
• γ1 > η and γ2 < η. A unique coexistence equilibrium exists if and only if
Rp,1 > 1, Rp,2 < 1 and P̂ > P ∗

1 and P̂ > P ∗

2 .
• γ1 < η and γ2 > η. A unique coexistence equilibrium exists if and only if
Rp,1 < 1, Rp,2 > 1 and P̂ < P ∗

1 and P̂ < P ∗

2 .
• γ1 < η and γ2 < η. A unique coexistence equilibrium exists if and only if
Rp,1 < 1, Rp,2 < 1 and P̂ < P ∗

1 and P̂ > P ∗

2 .

Not all scenarios in Proposition 3.1 lead to stable coexistence. However, stable co-
existence of the two strains and the predator occurs and we illustrate that in Figure 3.
Consequently, in contrast to a generalist predator, specialist predators can lead to sus-
tained coexistence of the two strains in the prey. This coexistence is robust under minor
modifications of the parameters, and does not require special trivial values of the repro-
duction numbers. Both generalist and specialist predators impact the two competing
pathogen strains in the prey population. Generalist predators, in particular, can change
the amount of disease in the prey population, and even change the competitive advantage
of the two competing strains. However, the generalist predator itself is not influenced by
the prey and by the distribution of the disease strains in the prey. Consequently, there is
no feedback mechanism to impact the predator. The case of a specialist predator is quite
different. Specialist predator’s numbers are strongly influenced by the prey’s numbers
and dynamically adapt to those. The distribution of the disease, and the strains in the
prey, have full impact on the predator. Therefore, even though only one of the strains
dominates in the absence of predation because it has a larger reproduction number, in
the presence of a specialist predator, which prefers the prey individuals infected with
that dominant strain, the reproductive capabilities of that dominant strain are reduced
and a balance between the strain which has the competitive advantage and the strain
that doesn’t is created. This leads to stable coexistence.

A particularly interesting aspect is that, in the case when the predator brings about
the coexistence of the two pathogens, the predator’s equilibrial levels are completely
independent of its intrinsic characteristics, such as predator’s mortality d or conversion
efficiency ǫ. In addition, the predator’s equilibrial levels at the coexistence of the two
pathogens do not explicitly depend on the predation rate of susceptible individuals η.
This means that, if all parameters pertaining to the prey and the disease are fixed,
predator’s equilibrial levels can be changed only if the predator’s predation rates on
prey individuals infected with strain one (γ1) or strain two (γ2) change appropriately.
We saw that increasing levels of a generalist predator decrease the equilibrial disease
load of strain one or strain two, and thus the overall disease load. In the case of a
specialist predator, we also see that increasing the predator’s equilibrial levels decreases
the number of infected prey with strain one (or strain two) when strain one (or strain
two) is dominant. Simulations suggest that when the two strains coexist, increasing
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Figure 4. The left column of figures illustrates that the equilibrial
total number of infected prey I(t) = I1(t) + I2(t). The right column of
figures illustrates the equilibrial predator numbers of a specialist predator.
The upper row of figures gives the equilibrial total number of infected prey
I(t) = I1(t)+ I2(t) and the equilibrial predator numbers for γ2 = 0.1. The
lower row of figures gives the equilibrial total number of infected prey
I(t) = I1(t) + I2(t) and the equilibrial predator numbers for γ2 = 1.98.
One can see that increasing γ2 increases the equilibrial predator level from
0.21 to 0.41 and also increases the equilibrial total number of infected prey
I(t) = I1(t) + I2(t) from 1.4 to about 1.53. The remaining parameters of
the figure are β1 = 7, β2 = 3, η = 2, γ1 = 9, µ0 = 0.1, µ1 = 0.5, µ2 = 1,
d = 1, r = 9, K = 100, ǫ = 0.1.

predation level typically decreases the equilibrial disease load of one of the strains but
increases the equilibrial disease load of the other strain. This reciprocal impact is not
completely compensatory. Consequently, the impact of increasing specialist predator’s
levels on the total number of infected prey I1 + I2 may be negative as before leading
to decrease in the total disease load, or positive, leading to increase in the total disease
load. We illustrate this latter situation in Figure 4.

There is a simple but naive explanation of the increase in the total number of infected
prey with increase of predation levels. Assume the equilibrial total prey number N is
constant and does not depend of predation rate γ2. Observe that the equilibrial number
of susceptible prey, just like the predator equilibrial numbers, does not depend on the
intrinsic parameters of the susceptible class, such as natural mortality of the prey µ0

and predation rate on susceptible prey η. The equilibrial number of susceptible prey
Ŝ, however, depends on the predation rates of infected prey with strain one, γ1, and
strain two, γ2. The total equilibrial number of infected prey Î1 + Î2 = N − Ŝ. If the
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equilibrial number of susceptible prey Ŝ decreases with γ2 (while P̂ increases), then the
total equilibrial number of infected prey will increase. This happens if µ2/µ1 > β2/β1

and it is exactly the scenario illustrated in Figure 4. This explanation is naive because
the total prey size N is not constant but possibly depends on γ2 in a complex way.

4. Non-linear functional response

In Section 2 and Section 3 we assume that the predator’s functional response is linear,
that is we assume functional response of type I. A natural question to be addressed
is: Would the results hold if the predator’s functional response is of type II or type
III? With this question in mind we consider the following generalization of model (2.1)
modeling the predation of a generalist predator:

(4.1)

dS
dt

= rS

(

1 −
S + I1 + I2

K

)

− β1SI1 − β2SI2 − µ0S −
ηPSα

aSα + 1
,

dI1

dt
= β1SI1 − µ1I1 −

γ1PIα
1

ξ1Iα
1 + 1

,

dI2

dt
= β2SI2 − µ2I2 −

γ2PIα
2

ξ2Iα
2 + 1

where a, ξ1, and ξ2 are parameters associated with the functional response. The param-
eter α ≥ 1 determines the type of the predator’s functional response. If α = 1, and
ξ1 6= 0, ξ2 6= 0 then the functional response is Holling’s type II. If α = 1, and ξ1 = 0,
ξ2 = 0 then the functional response is Holling’s type I. We obtain model (2.1) in this
case. If α > 1, then the functional response is Holling’s type III, and has sigmoidal
shape.

We established that in contrast to model (2.1), model (4.1) has coexistence equilib-
ria for nontrivial values of the reproduction numbers, that is even if the reproduction
numbers of the two strains are different. The analysis of the general case is somewhat
technical. To support our claim, we will consider a simpler, although perhaps not very
realistic, version of the model above. We assume a = 0 and, say, ξ1 = 0. In addition, we
consider the case α = 1. This simplified version allows for explicit computation of the
coexistence equilibrium. In this case the model (4.1) has the same disease-free equilib-
rium as model (2.1), namely E0 = (S0, 0, 0) with S0 = KP . The reproduction numbers
of the two strains, as before, are given by

Ri =
KP βi

µi + γiP
i = 1, 2.

Strain one equilibrium is E1 = (S∗

1 , I
∗

1 , 0) where the components are given explicitly
by the same expressions as in model (2.1). Strain two equilibrium, however, is different.
It is given by the ordered triple E2 = (S∗

2 , 0, I
∗

2 ) where the components S∗

2 and I∗

2 are
solutions of the following system:

(4.2)
0 = r

(

1 −
S + I2

K

)

− β2I2 − µ0S − ηP,

0 = β2S − µ2 −
γ2P

ξ2I2 + 1
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From this system I2 is given by the following expression that depends on S:

I2 =
γ2P + µ2 − β2S

ξ2(β2S − µ2)
.

Replacing I2 in the first equation in (4.2) we obtain that S∗

2 is a solution of the equation:

r

(

1 −
S

K

)

− µ0S − ηP =
(

β2 +
r

K

) γ2P + µ2 − β2S

ξ2(β2S − µ2)
.

Let f(S) denote the left-hand side of the above equation, considered as a function of S,
while g(S) denote the right-hand side. Both functions are decreasing when positive. We
have that f(S) is linear decreasing with f(S0) = 0. On the other hand g(S) → ∞ as
S → µ2

β2

−, and f((γ2P + µ2)/β2) = 0. Thus, if R2 > 1, the equation above has at least

one solution, which gives S∗

2 .
Coexistence equilibria, if they exist, satisfy the system:

(4.3)

0 = r

(

1 −
S + I2

K

)

− β2I2 − µ0S − ηP,

0 = β1S − µ1 − γ1P

0 = β2S − µ2 −
γ2P

ξ2I2 + 1

The presence or absence of coexistence equilibria depends on the invasion reproduc-
tion numbers. As in Section 3, these measure the ability of each strain to invade the
equilibrium of the other strain. The invasion reproduction number of strain one at the
equilibrium of strain two depends on the predation level, P , and is given by:

R̂1 =
β1S

∗

2

γ1P + µ1

.

The invasion reproduction number of strain two at the equilibrium of strain one also
depends on the predation level, P , and is given by:

R̂2 =
β2S

∗

1

γ2P + µ2

=
β2(γ1P + µ1)

(γ2P + µ2)β1

.

Solving the system (4.3) we obtain a unique coexistence equilibrium E∗ = (S∗∗, I∗∗

1 , I∗∗

2 )
whose components are given by:

(4.4)

S∗∗ =
γ1P + µ1

β1

I∗∗

2 =
(γ2P + µ2)(1 − R̂2)

ξ2(β2S∗∗ − µ2)

I∗∗

1 =
r
(

1 − S∗∗

K

)

− µ0 − ηP −
(

β2 + r
K

)

I∗∗

2
(

β1 + r
K

)

The expression for I∗∗

2 is positive if and only if R̂2 < 1. It is easy to see that if ξ2 is
taken large enough, the expression for I∗∗

1 is also positive. Thus, the region in parameter
space where the coexistence equilibrium exists is nontrivial.

We established rigorously that in the general case, as in the case above, coexistence
equilibrium exists if and only if at least one of the invasion reproduction numbers is
smaller than one. From simulations it seems that both invasion reproduction numbers
are smaller than one when a viable coexistence equilibrium exists. Simulations also



20 Maia Martcheva

1000 2000 3000 4000 5000 6000
t

0.25

0.5

0.75

1

1.25

1.5

1.75

2

I1HtL

I2HtL

1000 2000 3000 4000 5000 6000
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PHtL

Figure 5. The left figure illustrates that the number infected prey with
strain one I1(t) and the number infected prey with strain two I2(t) may
tend toward a coexistence equilibrium. The right figure illustrates that
the predator numbers of a specialist predator stabilize toward nonzero
equilibrium. The parameter values for both figures are: β1 = 7, β2 = 3,
η = 2, γ1 = 9, γ2 = 1, µ0 = 0.1, µ1 = 0.5, µ2 = 1, d = 1, r = 9,
K = 100, ǫ = 0.1. In addition, the parameters for the functional response
are a = 0.09, ξ1 = 0.005, and ξ2 = 0.01, α = 1.

suggest that the resulting coexistence equilibrium in this case is not stable. Thus,
dynamical outcome of the competition is competitive exclusion. Further investigations
on this model should focus on the question whether a coexistence equilibrium exists
when one of the invasion reproduction numbers is greater than one, and whether this
equilibrium is stable. Extensive simulations so far, however, seem to suggest that stable
coexistence is at best difficult to attain.

Generalizing the model (3.1) to include nonlinear functional response, we obtain the
system:

(4.5)

dS
dt

= rS

(

1 −
S + I1 + I2

K

)

− β1SI1 − β2SI2 − µ0S +
ηPSα

aSα + 1
dI1

dt
= β1SI1 − µ1I1 +

γ1PIα
1

ξ1Iα
1 + 1

,

dI2

dt
= β2SI2 − µ2I2 +

γ2PIα
2

ξ2Iα
2 + 1

,

dP
dt

= ǫ

(

ηSα

aSα + 1
+

γ1I
α
1

ξ1Iα
1 + 1

+
γ2I

α
2

ξ2Iα
2 + 1

)

P − dP,

Simulations confirm that this model, just as its counterpart with linear response (3.1),
supports coexistence of the two strains. Results from the simulations are presented
in Figure 5. We want to note that simulations with this model also suggested that
coexistence of the two strains in the form of sustained oscillations, as well as chaos, are
some of the complex behaviors that this model seems to exhibit. Further investigations
of the model is necessary to understand more completely its complexity, but it is beyond
the scope of this article.
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5. Summary of results

This paper considers two types of models — one with a generalist predator predating
discriminantly, and one with a specialist predator, also predating discriminantly. The
population numbers of a generalist predator, which feeds on many types of prey, are
not strongly affected by the dynamics of one specific type of prey. We model this type
of predation on a focal prey species as a parameter, which potentially increases the
mortality of the prey. The functional response of the predator for the baseline model is
linear. We are interested how predation of a generalist predator impacts the competition
of two strains in the prey population infected with a microparasite. To study this effect,
we compute the relevant equilibria and reproduction numbers of the strains. We made
the following observations:

(1) Increasing levels of predation decrease the total prey population size. More
interestingly, increasing predation levels decrease the reproduction number of
the disease and overall disease load, thus facilitating eradication of the disease
without necessarily leading to extinction of the prey.

(2) Competitive exclusion of the two strains is the predominant outcome. Selection
again favors the strain with the higher reproduction number. However, predation
levels impact the reproduction numbers of the two strains differently and can
switch the competitive advantage between the two strains. In particular, if at low
predation levels the first strain has a higher reproduction number and will exclude
the second strain, it is possible that at higher predation level the second strain
has higher reproduction number and will dominate in the prey population. Thus
which strain is prevalent depends on the amount of predation pressure exerted by
the predator on the prey. Why is this important and why it can occur in nature?
Many generalist predators have preferred prey as a food source but feed on a
number of other types of prey. If our focal species is one of the side food sources
for the predator, it does not affect the dynamics of the predator. However,
the preferred food source for the predator may impact predators numbers by
increasing or decreasing them. As we show this increase or decrease can cause
a switch in the pathogen causing the disease in our focal species. In this case,
coexistence of the two strains is possible only in the non-generic case of equality
of the reproduction numbers of the two strains.

In contrast a specialist predator feeds exclusively on a particular species of prey. The
population dynamics of the prey impacts tremendously the population dynamics of the
predator. It is this type of predation that is traditionally modeled with Lotka-Volterra
type predator-prey models. We model the impact of a specialist predator on the compe-
tition of disease strains in the prey by structuring the total prey population in a Lotka-
Volterra predator-prey model with linear functional response into susceptible, infected
with strain one and infected with strain two individuals. We computed the relevant
equilibria. Equilibria depend on a number of threshold parameters: the reproduction
numbers of the two strains, the reproduction number of the predator, the reproduction
number of the predator at the equilibrium of strain one or at the equilibrium of strain
two, as well as the invasion reproduction numbers of strain one and strain two. We made
the following observations:
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(1) If the disease imparts differential virulence on the prey population, and the spe-
cialist predator predates discriminantly on the various prey classes generated by
the disease, a variety of dynamical outcomes are possible. If one of the strains
dominates in the population in the presence of the predator (a scenario that
occurs when both the reproduction number of the strain and the reproduction
number of the predator in the presence of the strain are above one), then in-
creasing predation levels decrease the reproduction number of the corresponding
strain as well as the disease load.

(2) In contrast of a generalist predator, however, specialist predator may lead to
coexistence of the two strains which occurs in non-generic cases (that is, even
when the reproduction numbers of the two strains are not the same). This
happens because the prey’s numbers, and particularly the number of susceptible
prey, exert a feedback control on predator’s equilibrial numbers, adapting those
to appropriate level that mediates the coexistence of the strains. This result
applies both for linear and non-linear response of the predator.

(3) Discriminate predation mediates coexistence of pathogen strains in a prey popu-
lation because appropriate attack rates and predation levels may counteract the
intrinsic vital differences in the strains. In particular, in the example of stable
coexistence in this paper, we see that strain one has higher transmission rate,
and lower virulence but also much higher attack rate than strain two.

(4) Conventional wisdom in models suggests that stable coexistence of strains occurs
when both invasion numbers are larger than one (that is, each strain has a pos-
itive growth rate when the other strain is at equilibrium). Surprisingly enough,
that is not necessarily the case with stable coexistence mediated by predation.
In the example presented in this article stable coexistence occurs when the in-
vasion reproduction number of strain one is smaller than one while the invasion
reproduction number of strain two is larger than one. This, perhaps, happens
because predation also impacts the invasion reproduction numbers of the strains.

(5) Another surprising observation is that the attack rates for both types of infected
prey are the only predation-related characteristics that impact the equilibrial
level of the predator (predator’s mortality rate and conversion efficiency, for
instance, do not impact the equilibrial level of the predator) in the case of coex-
istence of the pathogen strains.

(6) In general predation reduces disease load and prevalence. This is the impact we
observe with generalist predator or in any case when one of the strains eliminates
the other. A specialist predator that differentiates among the various disease-
related classes and mediates coexistence of the two pathogens can also lead to
increase of the total disease load (that is the number of cases generated by both
strains). Although predation impacts differently the two strains (increases the
number of cases with one of the strains, and decreases the number of cases with
the other) when they coexist, the combined effect may be increase in the total
disease load. Predation leading to increase in the disease has only recently been
found in an SIR model with predation where presumably the predator predates
exclusively on the recovered class (and the total population size is constant).
Preferential predation of the predator on the recovered individuals leads to in-
crease in the number of susceptible individuals, which in turn, increases the
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disease incidence and prevalence [13]. In the models we discuss here there is no
recovered class and the pathways leading to increase in disease load appear to
be more subtle.

It is important to note that the two types of predation – generalist and specialist –
can be modeled with one model which contains the two very disparate models (2.1) and
(3.1) as special cases. The idea of such model is to model a predator who has a choice of
a number of species to feed on. We assume the total weighted population size of all prey
remains constant. The predator may feed on all species of prey without discriminating
among them. In this case we will consider such predator to be a complete generalist.
However, the predator may feed on several, or even just one, species of prey. We will
introduce a parameter that measures the amount of specialization of the predator. If
the predator feeds on only one species of prey, then the predator is a complete specialist.

To introduce the general model, consider a predator of size P (t) who potentially may
feed on (n + 1) species. The population size of susceptible, and infected with each
strain individuals in the ith species is given respectively by Si(t), I i

1(t) and I i
2(t). The

parameters have the same meanings as in model (3.1) but are specific for the ith species.
The model takes the form:

(5.1)

dS
dt

= riSi

(

1 −
Si + I i

1 + I i
2

Ki

)

− βi
1S

iI i
1 − βi

2S
iI i

2 − (µi
0 + ηiP )Si,

dI i
1

dt
= βi

1S
iI i

1 − (µi
1 + γi

1P )I i
1,

dI i
2

dt
= βi

2S
iI i

2 − (µi
2 + γi

2P )I i
2, i = 0, . . . , n

dP
dt

= ǫP
∑n

i=0
(ηiSi + γi

1I
i
1 + γi

2I
i
2) − dP.

Let:

(5.2)
η = max{η0, . . . , ηn}
γ1 = max{γ0

1 , . . . , γ
n
1 }

γ2 = max{γ0
2 , . . . , γ

n
2 }

We assume that the maximum in the attack rates for susceptibles, and infected individ-
uals with each strain is attained for the same species. That means that the predator
prefers certain species, whether they are healthy or sick, as opposed to preferring healthy
individuals from one species but sick individuals from another species. We may assume
without loss of generality that this maximum is attained for the species numbered as zero
(that is, η = η0, γ1 = γ0

1 , γ2 = γ0
2). Thus, the predator prefers best species zero. The

predator may prefer to equal or lesser degree the remaining species, which determines
its specialization level. To measure this, let ∆i be predator’s specialization constant for
species i. The predator’s specialization constant for species i measures the reduction of
the predator’s attack rates to species i compared to the attack rates of species zero:

ηi = η(1 − ∆i) γi
1 = γ1(1 − ∆i) γi

2 = γ2(1 − ∆i) i = 1, . . . , n

where it is assumed that 0 ≤ ∆i ≤ 1. The amount of predator specialization is measured
by the predator specialization constant ∆ defined as follows:

∆ =
1

n

n
∑

i=1

∆i.
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Since the number of species is large, we assume that the total weighted population
size of all species of prey remains constant:

W (t) = η
n

∑

i=0

Si + γ1

n
∑

i=0

I i
1 + γ2

n
∑

i=0

I i
2 = W = const.

Moreover, we assume that ǫW = d. These assumptions imply that if ∆ = 0, the predator
feeds on all species with the same attack rates, and its total population size is constant,
say P . Then each of the systems for the (n + 1) species is the same, and it is equivalent
to system (2.1). If, on the other hand, ∆ = 1, the predator feeds only on species zero,
and the presence of the other species has no impact on the dynamics of the predator.
Thus, the model for species zero in this case is equivalent to model (3.1).

The main observation in this article is that predation may increase genetic diversity
of pathogens circulating in a prey population. Differential predation by a specialist
predator (∆ ≈ 1) causes coexistence between two strains infecting the prey which in
the absence of predation would exclude each other. On the other hand, as amount of
specialization of the predator ∆ → 0, the region in parameter space of coexistence of
the strains shrinks to the trivial case when the two reproduction numbers are equal.
One question remains open: Would a specialist predator cause the coexistence of more
than two pathogens? We surmise that will not be possible unless some other trade-off
mechanism is in place.

Predation also has evolutionary consequences on the pathogens in prey populations
as it exercises selection on their hosts, based on the phenotypic (behavioral) differences
that the pathogen creates in the different classes of hosts. If in the absence of predation,
a pathogen of higher transmissibility and lower virulence persists in the prey population
and excludes all other strains, predation may lead to the persistence of a pathogen of
lower transmissibility and higher virulence, provided that the predator attack rate of
prey infected with a strain of higher virulence is lower. Further studies are needed to
elucidate the impact of predation on the evolution of virulence.
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[6] M. Delgado, M. Molina-Becerra, A. Suárez, Analysis of an age-structured predator-prey
model with disease in prey, Nonlinear Anal.: Real World Appl. 7 (2006), 853-871.

[7] Department of Environment and Heritage, Australian Goverment,
http://wwww.ddeh.gov.au/biodiversity/invasive/ferals.

[8] L. Han, Z. Ma, H. W. Hethcote, Four predator prey models with infectious diseases, Math.

Comput. Modelling 34 (2001), 849-858.
[9] R. D. Holt, Predation, apparent competition, and the structure of prey communities, Theor.

Pop. Biol. 12 (1977), 197-229.
[10] R. D. Holt, Community modules, in Multitrophic Interactions in Terrestrial Ecosystems (A.C.

Gange and V. K. Brown, eds.), Blackwell, Oxford, 1997, p. 333-349.
[11] R. D. Holt, A. P. Dobson, Extending the principles of community ecology to address the

epidemiology of host-pathogen systems, in Disease ecology: Community Structure and Pathogen
Dynamics ( S. K. Collinge, C. Ray, eds.), Oxford University Press, Oxford, 2006, p. 6-27.

[12] R. D. Holt, G. A. Polis, A theoretical framework for intraguold predation, Am. Nat. 149
(1997), 745-764.

[13] R. D. Holt, M. Roy, Predation can increase the prevalence of an infectios disease, Am. Nat.

169 (5) (2007), 690-699.
[14] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epi-

demics, Proc. Roy. Soc. A 115 (1927), 700-721.
[15] K. D. Lafferty, Fishing for lobsters imdirectly increases epidemics in sea urchins, Ecolog.

Appl. 14(5) (2004), 1566-1573.
[16] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
[17] R. M. May, Conservation and disease, Conserv. Biol. 2(1) (1988), 28-30.
[18] C. Packer, R. D. Holt, P. J. Hudson, K. D. Lafferty, A. P. Dobson, Keeping herds

healthy and alert: implications of predator control for infectious disease, Ecol. Let. 6 (2003),
797-802.

[19] R. P. Pech, G. M. Hood, Foxes, rabbits, alternative prey and rabbit calicivirus disease:
consequences of a new biological control agent for an outbreaking species in Australia, em J.
Appl.Ecol. 35 (1998), 434-453.

[20] S. L. Pimm, Food Webs, The University of Chicago Press, Chicago, 2002.
[21] R. A. Saenz, H. W. Hethcote, Competing species models with an infection disease, Math.

Biosci. Eng. 3 (2006), 219-235.
[22] M. E. Scott, The impact of infection and disease on animal populations: Implications for

conservation biology, Conserv. Biol. 2(1) (1988), 40-56.
[23] D. J. Smith, Predictability and preparedness in influenza control, Science 312 (2006), 392-394.
[24] Y. Xiao, L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl.

258 (2001), 733-754.
[25] Y. Xiao, L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl.

Math. Comput. 131 (2002), 397-414.
[26] Y. Xiao, L. Chen, Modeling and analysis of a predator-prey model with disease in the prey,

Math. Biosci. 171 (2001), 59–82

Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105,

Gainesville, FL 32611–8105

E-mail address: maia@math.ufl.edu


