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Abstract. This article introduces a predator-prey model with the prey structured by
body size, based on reports in the literature that predation rates are prey-size specific.
The model is built on the foundation of the one-species physiologically structured mod-
els studied earlier. Three types of equilibria are found: extinction, multiple prey-only
equilibria and possibly multiple predator-prey coexistence equilibria. The stabilities of
the equilibria are investigated. Comparison is made with the underlying ODE Lotka-
Volterra model. It turns out that the ODE model can exhibit sustain oscillations
if there is an Allee effect in the net reproduction rate, that is the net reproduction
rate grows for some range of the prey’s population size. In contrast, it is shown that
the structured PDE model can exhibit sustain oscillations even if the net reproduc-
tive rate is strictly declining with prey population size. We find that predation, even
size-nonspecific linear predation can destabilize a stable prey-only equilibrium, if re-
production is size specific and limited to individuals of large enough size. Furthermore,
we show that size-specific predation can also destabilize the predator-prey equilibrium
in the PDE model. We surmise that size-specific predation allows for temporary prey
escape which is responsible for destabilization in the predator-prey dynamics.

Keywords: predator, prey, physiological structure, individual size, oscillations, Lotka-
Volterra model, predator escape mechanism

1. Introduction

Predator-prey interactions have fascinated mathematical biologists for a long time.

Several long-term data sets have been collected for predator and prey interactions in
nature. The most well-known one between the lynx and its prey, the hair, is now

discussed in many mathematical biology textbooks [1]. These data sets have suggested
that the predator-prey interactions in nature often persist in the form of oscillations.

The question what accounts for the periodicity in the predator-prey dynamics has been a
central question in mathematical biology for many years leading to a multitude of articles

discussing oscillations in ordinary differential equation models [11]. In this article we
set forth the hypothesis that predation and prey individuals’ differential body size may be

responsible for the oscillations observed in the predator-prey interactions in nature.
The interactions between the predator and the prey are strongly influenced both by

the size of the predator and the size of the prey [13]. Biological literature abounds with

articles discussing the role of size in predator-prey interactions in a variety of natural
systems [12]. Yet, the role of size, as a continuous variable, in the context of predator-

prey models, has rarely been discussed in the mathematical biology literature. De Roos
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at al investigate the role of food availability on the size of the predator Daphnia and

find that there is coexistence in a stable equilibrium, and stable cycles [10]. In [10] the
authors find that destabilization occurs if the prey population can escape the control,

imposed by the predator. In this article we take the opposite perspective: we look
at the impact of the size of the prey on the predator-prey interaction and we surmise

that the presence of temporary prey escape mechanism may still be responsible for the
destabilization of the dynamics. The main question we address is whether size-specific

predation by the predator can be responsible for the oscillations in the predator-prey
dynamics.

Our size-structured prey-predator partial differential equation model is based on the
non-linear single-population size structured model investigated in [2]. Our investigation

is motivated by reports in the biological literature that predators prefer prey of certain
body size, while the body size of all preys may vary in a large range [3]. It has been

suggested that predators tend to prefer medium-size prey as too large prey may be too

difficult to handle, while too small prey may be too challenging to catch. However, if
adequate refuge is available, then the predation rate declines with the size of the prey

[6]. The question whether prey size may be a destabilizing factor in the predator-prey
interactions seems an open and interesting question that we address here.

Oscillations based on size-structure in prey and predator, investigated through ordi-
nary differential equations, have been found in pelagic ecosystem models [5]. Mathemat-

ically, our results parallel most closely the investigation of a predator-prey model which
accounts for prey age-structure [4]. Li finds, just as we do, three types of equilibria:

an extinction equilibrium, a prey-only equilibrium, and a coexistence equilibrium, and
performs partial analysis of their stabilities. A more general model in which both the

predator and the prey are physiologically structured is introduced by Logan et al. [8]
(see also [7]). However, such a model is rather complex, and the authors consider a

number of more tractable special cases. In contrast with their model, which includes
a Holling II functional response, our only includes a linear size-dependent functional

response. Our reason for accounting only for linear functional response is to eliminate

the possibility that the Holling functional response, well known to destabilize predator-
prey interactions, had destabilized the coexistence equilibrium. With linear functional

response, and monotone decreasing recruitment rate, the underlying ODE model of our
PDE system will not exhibit oscillations.

In this article, we discuss a predator-prey model, where the prey is physiologically
structured by a continuous variable, called size. The model is introduced in section two.

Section two also takes a look at the homogenous predator-prey ODE model, allowing us
later to focus on the effects generated by the presence of size-structure. Section three

investigates the equilibria. The first subsection focuses on the prey-only equilibria, while
the second subsection investigates the coexistence equilibria. Section four performs sta-

bility analysis. Again, the first subsection focuses on the local stability of the extinction
equilibrium, the second subsection investigates the local stability of prey-only equilib-

ria. The last subsection looks at the stability and the presence of Hopf bifurcation of a
coexistence equilibrium. Section five summarizes our results.
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2. A size-structured Lotka-Volterra type predator-prey model

In this section we consider a size-structured population model introduced in the paper
by Calsina and Saldaña [2]. The model is a non-linear first order partial differential

equation, equipped with nonlocal boundary conditions. As we are interested in the size
specific predation effects of a specialist predator we are going to extend that model to

incorporate a predator population. The resulting extended model is a size-structured
version of the well-known Lotka-Volterra predation model.

The model, as introduced in [2], describes the dynamics of the size-structured prey. It
is presented below in notation consistent with our extended size-structured predator-prey

model:

ut + (g(x, N(t))u(x, t))x + µ(x, N(t))u = 0, x ∈ [0,∞)(2.1)

g(0, N(t))u(0, t) =

∫

∞

0

β(x, N)u(x, t)dx, t > 0(2.2)

u(x, 0) = φ(x), x ∈ [0,∞)(2.3)

where the total population size N(t) at time t is given by:

N(t) =

∫

∞

0

u(x, t)dx.

The function u(x, t) represents the density of the prey population of size x and at time

t. In particular that means that
∫ b

a
u(x, t)dx represents the number of prey from size a

to size b where both a and b are positive numbers. Here µ(x, N) represents the natural

per capita size-dependent death rate. Furthermore, β(x, N) gives the per capita size-
dependent birth rate. The model assumes that all births occur to the same initial size

which we have shifted to be zero. Both µ and β are nonnegative, Lipschitz continuous
with respect to x and N functions. Furthermore, the birth and death rates satisfy:

Assumption 2.1. The birth and death rate satisfy

• limN→∞ β(x, N) = 0

• β is a bounded function with respect to both x and N , that is,

sup
x,N

β(x, N) = β̄.

• β(X, N) is positive as a function of x on a set of positive measure.

• µ is bounded from below:

µ(x, N) ≥ µ.

The function g(x, N) is the growth rate. We assume it is a continuously differentiable
function with respect to x. For the remainder of this work we will assume that g(x, N) is,

in fact, independent of N , that is g(x, N) = g(x). Furthermore, g > 0 for all x ∈ [0,∞).
The initial condition φ(x) is a non-negative and integrable function, which is positive

on a set of positive measure.

In the present paper we include the effect of a specialist predator. The inclusion of
a specialist predator introduces an additional variable and also an additional equation
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in the system. We assume the predator feeds on prey of specific size and denote the

size-specific per capita predation rate by γ(x). The predation rate γ(x) is a bounded,
Lipschitz continuous function. We assume that γ(x) > 0 on a set of positive measure.

Denote by

γ = sup
x

γ(x).

We incorporate the effect of predation as predator-introduced additional mortality on

the prey which is size-dependent. The resulting model is given as follows.

ut + (g(x)u(x, t))x = −µ(x, N)u − γ(x)Pu,

g(0)u(0, t) =

∫

∞

0

β(x, N)u(x, t)dx,(2.4)

u(x, 0) = φ(x), P (0) = P0,

P
′

= P

∫

∞

0

α(x)γ(x)u(x, t)dx − dP.

The time-dependent function P (t) represents the total number of predators at time t.

The parameter α(x) is the prey-size dependent predators’ metabolic efficiency by which
the biomass of consumed prey is transformed into predator’s biomass. Finally, d is the

death rate of predators. The total number of predators P is a nonnegative function.
Predators’ death rate d and metabolic efficiency α(x) are also nonnegative. The number

of predators at time t = 0 is given by the nonnegative number P0. The assumptions
on the parameters above will be valid throughout the article and should guarantee well-

posedness of the main model (2.4).
If we assume all rates independent of the prey size x, that is we assume β(x, N) =

β(N), µ(x, N) = µ(N), γ(x) = γ, α(x) = α, then the size-structured model (2.4)
collapses to the following ordinary differential equation Lotka-Volterra model:

N ′ = (β(N) − µ(N))N − γPN,

P ′ = αγPN − dP,(2.5)

N(0) = N0, P (0) = P0.

This system has an extinction equilibrium E0 = (0, 0) in which both the predator and the
prey populations go extinct. The extinction equilibrium is locally stable if β(0) < µ(0),

and unstable otherwise. For the remainder of this section we will assume that β(0) >

µ(0) so that at least the prey population is viable. In the absence of the predator, the
prey-only equilibria are obtained as solutions to the equation

(2.6) β(N) = µ(N).

Assumptions (2.1) and the fact that β(0) > µ(0) imply that this equation has at least one

positive solution N∗. However, equation (2.6) may have solutions even if β(0) < µ(0).

Assume the equation has k solutions N∗

1 , . . . N∗

k , all of which are simple solutions and
ordered in increasing order (see Figure 1).
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Figure 1. A graph of the functions β(N) and µ(N). Each point of
intersection of the two curves gives one solution to the equation β(N) =
µ(N), and one prey-only equilibrium.

Each of these solutions gives a prey-only equilibrium Ej = (N∗

j , 0). Each of these
equilibria is locally stable if

(2.7) β ′(N∗

j ) < µ′(N∗

j ) and αγN∗

j − d < 0

and unstable otherwise. The second inequality says that the predator cannot invade the

Ej’th equilibrium of the prey. Define the threshold quantity

(2.8) N̂ =
d

αγ
.

Clearly all prey-only equilibria Ej satisfying N∗

j > N̂ are unstable. In other words, if the

prey-only population is large enough, it will support the predator to exist. We call the
quantity N̂ minimum threshold prey population size for existence of the predator. Since

equilibria are all simple, the inequality between the derivatives of β and µ changes with
each equilibrium. For instance, on Figure 1, there are five solutions: N∗

1 , . . . , N∗

5 . We

have β(N∗

1 ) < µ(N∗

1 ), β(N∗

2 ) > µ(N∗

2 ), etc. If the minimum threshold prey population

size for existence of predator is large enough, then prey-only equilibria N∗

1 , N∗

3 , N∗

5 in
Figure 1 will be locally stable.

System (2.5) has a unique coexistence equilibrium of the predator and the prey E∗ =

(N̂, P̂ ) where N̂ is given in (2.8), and P̂ = (β(N̂)−µ(N̂))/γ. The coexistence equilibrium

is locally stable if and only if

(2.9) β ′(N̂) < µ′(N̂).

If (2.9) fails, the coexistence equilibrium may become destabilized and sustained oscil-

lations are possible (see Figure 2). Hence, the simple predator-prey model in (2.5) is
capable of complex behavior.
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Figure 2. A graph of the functions N(t) and P (t). The graph shows
oscillations in the numbers of the predator and the prey.

3. Equilibria of the size-structured predator-prey model

With the assumptions made in Section 2, existence and uniqueness of solutions to

model (2.4) can be proved similarly as in [2]. In this section we are interested in time-

independent solutions (equilibria) of the model (2.4). The system for the equilibria
is

(g(x)u(x))x = −µ(x, N)u − γ(x)Pu,(3.1)

g(0)u(0) =

∫

∞

0

β(x, N)u(x)dx,(3.2)

0 = P

∫

∞

0

α(x)γ(x)u(x)dx − dP,(3.3)

where P is the total predator size at the equilibrium. The constant N represents the

total prey size at the equilibrium and is given by:

N =

∫

∞

0

u(x)dx.

Assuming that N and P are given constants, the differential equation for u (3.1) can
be integrated

u(x) = u(0)
g(0)

g(x)
e−

R x

0
(µ(x,N)

g(s)
+ γ(s)

g(s)
P )ds(3.4)

= u(0)g(0)π(x, P, N)

where for a fixed P and N we have introduced the following notation

π(x, P, N) =
1

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

γ(s)
g(s)

Pds.

The function π can be interpreted as the probability of the prey to survive till size

x. To find u(0), P and N we place the formula for u(x) into the renewal equation,
the equation for the predator, and the equation of the total prey size. We obtain the
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following nonlinear system of three equations in the unknowns u(0), P and N .

g(0)u(0) = u(0)g(0)

∫

∞

0

β(x, N)π(x, P, N)dx,

0 = Pu(0)g(0)

∫

∞

0

α(x)γ(x)π(x, P, N)dx − dP,(3.5)

N = u(0)g(0)

∫

∞

0

π(x, P, N)dx.

An equilibrium solution of the system (2.4) is given by the triple (u(0), P ∗, N∗), where

u(0), P ∗, and N∗ are a solution of the system (3.5). System (3.5) always has the trivial
solution where u(0) = 0, P ∗ = 0, N∗ = 0. The triple E0 = (0, 0, 0) gives the extinction

equilibrium. Besides the extinction equilibrium, there are two types of other equilibria.

The first type are predator-free equilibria, where the predator goes extinct but the prey
population size persists. The second type of equilibria are coexistence equilibria where

both predator and prey are present. We consider the following two cases.

3.1. Prey-only equilibria. In this case we have P ∗ = 0. Hence the equilibria here
would be of the form (u(0), 0, N∗). We have to find the values of u(0) and N∗. With

P ∗ = 0 system (3.5) takes the form

1 =

∫

∞

0

β(x, N)

g(x)
e−

R x

0
µ(x,N)

g(s)
dsdx,(3.6)

N =

∫

∞

0

u(0)
g(0)

g(x)
e−

R x
0

µ(x,N)
g(s)

dsdx,

where

(3.7) u∗(x) = u(0)
g(0)

g(x)
e−

R x
0

µ(x,N)
g(s)

ds.

The first equation in the system (3.6) is independent of the second equation and depends
on N but not on u(0). We can solve the first equation in system (3.6) for N . Then we

obtain u(0) from the second equation in system (3.6). Hence, given that we know N∗,
we get

u(0) =
N∗

∫

∞

0
g(0)
g(x)

e
−

R x

0
µ(x,N∗)

g(s)
ds

dx
.

Therefore, system (3.6) is essentially a decoupled non-linear system. We note that since
g(0) > 0 the denominator in the formula for u(0) is nonzero. We now focus on the

number of solutions of the first equation in (3.6).
We define the net reproduction rate as a function of the prey population size:

(3.8) R(N) =

∫

∞

0

β(x, N)

g(x)
e−

R x

0
µ(x,N)

g(s)
dsdx.

The behavior of this function of N determines the mechanisms of growth of the prey

population. To understand better the solutions of the equation R(N) = 1 we assume

some typical types of birth and death rate functions and then try to explore the existence
of equilibria.
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Assumption 3.1. Assume the birth and death rates have the following properties:

(1) β(x, N) = R0β0(N)Φ(x), where Φ(x) is a given function of x giving the re-
productivity of different sizes of prey. In later examples Φ is taken to be the

characteristic function of the sizes of prey, responsible for reproduction.
(2) µ(x, N) = µ0(N)+m(N)Ψ(x), Ψ(x) is a given function of x, giving the mortality

of prey, based on size.

(3) [β0(0)]−1 =
∫

∞

0
Φ(x)
g(x)

e
−

R x

0
µ(s,0)
g(s)

ds
dx.

(4) All functions and constants are nonnegative (positive).

If Assumptions 3.1 hold, the equation for the total population size R(N) = 1 takes

the form

(3.9) 1 =

∫

∞

0

R0β0(N)Φ(x)

g(x)
e
−

R x

0
µ0(N)+m(N)Ψ(x)

g(s) dx

We have to prove that there exists an N that satisfies equation (3.9). For N = 0 we

have by the Assumptions 3.1 above

R(0) = R0

We call R0 intrinsic reproduction number of the prey population. In what follows we

consider specific examples.

1 2 3 4
N

0.5

1.0

1.5

2.0

2.5

3.0

RHNL

Figure 3. Allee effect in the case when R0 > 1. The equation R(N) = 1
has a unique solution.

Case 1: Suppose µ(x, N) does not depend on N and we assume specific values for

µ0 and m. In particular, let µ0(N) = 0, m(N) = 1. Then, by Assumption 3.1 the net
reproduction rate of the prey population takes the form

R(N) = R0
β0(N)

β0(0)
(3.10)

We will assume a particular form of the function β0(N), or more precisely, a particular
form of the net reproduction rate, and then we will show that there exists N∗ such that

R(N∗) = 1. We consider the following specific form of the net reproduction rate:

(3.11) R(N) = R0
e−(N−a)2

e−a2 = R0e
a2

−(N−a)2
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Figure 4. Allee effect in the case R0 < 1. Equation R(N) = 1 can have
two solutions (illustrated in the left figure) or no solutions (illustrated in
the right figure).

where a is a positive parameter. The example of a net reproduction rate in (3.11) is one

of the simplest functions that can exhibit Allee effect. As Figure 3 shows the function
increases for small values of the prey population size, that is when N < a, suggesting

that the increase in prey population size benefits mating. The net reproductive rate
decreases for large prey population sizes, suggesting that competition for resources takes

precedence and hampers reproduction. Since R′(N) = R0e
a2

−(N−a)2(−2(N − a)), the
derivative R′(N) = 0 at N = a only. Also we observe that N = a is a local maximum

for the graph and R(N) → 0 as N → ∞. We consider two cases

(1) If R0 > 1. In this case there exists only one N∗ such that R(N∗) = 1. Figure 3
illustrates this scenario.

(2) If R0 < 1. In this case the graph either does not cross the line y = 1 or crosses
twice. Thus, there exist either 0 or two N∗ such that R(N∗) = 1. The graph in

Figure 4 shows that.

In the case R0 < 1 the critical value of the parameter a such that the equation

R(N) = 1 transitions from having two solutions to having no solutions is denoted

by acr. This critical value occurs when, through manipulations on a, the graph of
R(N) = R0e

a2
−(N−a)2 touches the line y = 1. In this case we have that R′(N) = 0

at N = a. Hence the critical value of a = acr is given by the solution of the following
equation

(3.12) R(N∗

cr, acr) = 1.

Thus, the critical value of the parameter a is

(3.13) acr =

√

ln
1

R0
.

The corresponding value of N∗ obtained when a = acr is N∗

cr and it is a double root of
the equation R(N) = 1. All other roots of the equation R(N) = 1, when a 6= acr are

simple roots. We note that R0 < 1, we have 1
R0

> 1 and the square root is well defined

and positive. The equilibria that are obtained in the case R0 < 1 are called subthreshold
equilibria.
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The above example can be extended to allow for more than two equilibria. For in-

stance, assume a < b are two distinct parameters. Consider the following specific func-
tion

R(N) = R0e
−(N−a)2(N−b)2+a2b2 .

We have again that R(0) = R0. It can be seen that R′(N) = 0 at N = a, b, a+b
2

.

Therefore, the curve has only 3 horizontal tangent lines and hence it bends three times.
Also as N → ∞ we have R(N) → 0. Consequently, if R(0) > 1 there exists either one

or three N∗ such that R(N∗) = 1. If R(0) < 1, the equation R(N) = 1 may have no
solutions, two solutions or four solutions, if all solutions are simple. We illustrate this

last case in Figure 5. We conclude that even in the case when the mortality rate does
not depend on N , we may have multiple super and subthreshold equilibria.

1 2 3 4
N

0.5

1.0

1.5

2.0

RHNL

Figure 5. Multiple subthreshold equilibria. We have R(0) < 1.

Case 2: In this case we, in fact, consider the general case where both the birth rate
and the death rate may depend on N . We recall that the general net reproduction rate

defined as a function of the total prey size is given by (3.8). Equilibria of the total prey
population size are solutions of the equation R(N) = 1. We define in analogy with the

example above, the intrinsic reproduction number of the prey population as

(3.14) R0 = R(0) =

∫

∞

0

β(x, 0)

g(x)
e−

R x
0

µ(x,0)
g(s)

dsdx.

The assumptions on the birth rate and death rate as functions of N (Assumptions 2.1)

guarantee that

lim
N→∞

R(N) = 0

which states that the net reproduction rate of the prey population approaches zero as the
prey population size grows to infinity. Thus, in the case when R0 > 1, that is R(0) > 1

the equation R(N) = 1 has at least one positive solution N∗. In the case R0 < 1, as the
examples above suggest, the equation R(N) = 1 may or may not have solutions. We

summarize the findings in the following Theorem.

Theorem 3.1. We consider the following two cases:
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(1) Let R0 > 1. Then, there is at least one positive prey-only equilibrium E1 =

(u1(0), 0, N∗

1 ). If there are multiple solutions to the equation R(N) = 1 and
they are all simple, then there is an odd number of them N∗

1 . . . N∗

k where k is

odd. Each of these solutions gives a prey-only equilibrium Ej = (uj(0), 0, N∗

j ) for
j = 1, . . . , k.

(2) Let R0 < 1. Then, there may be no positive prey-only equilibrium. If there are
multiple solutions to the equation R(N) = 1 and they are all simple, then there

is an even number of them N∗

1 . . . N∗

k where k is even. Each of these solutions
gives a prey-only equilibrium Ej = (uj(0), 0, N∗

j ) for j = 1, . . . , k.

We note that the requirement that all equilibria are simple is very important. The
general case when some equilibria can have higher multiplicities is much more complex.

However, this condition can fail, and some solutions of R(N) = 1 can have higher mul-
tiplicity. In this case the parameters of the model have to satisfy additional constrains.

Consequently, for very few choices of the parameters, equilibria of higher multiplicity
are possible. In the example in Case 1, the parameter value for which the root N∗ has

a higher multiplicity, is only acr.

3.2. Predator-prey coexistence equilibria. In this case we are looking for equilibria
(u(0), P ∗, N∗) where P ∗ 6= 0.

Assumption 3.2. Assume

(1) The reproduction number of the prey population in the absence of the predator
satisfies: R0 > 1.

(2) The equation R(N) = 1 has k solutions N∗

1 , . . .N∗

k , where k is odd. We assume
that all solutions are simple.

We define the predator reproduction number at the Nj prey-only equilibrium

(3.15) Rp,j =

N∗

j

∫

∞

0

α(x)γ(x)π(x, 0, N∗

j )

d

∫

∞

0

π(x, 0, N∗

j )dx

.

The predator’s reproduction number gives the ability of the predator to invade the N∗

j

equilibrium of the prey. In particular, if Rp,j > 1, then the predator can invade the jth
prey-only equilibrium.

Assumption 3.3. Assume that there exists N∗

j > 0 such that:

(1) The predator’s reproduction number at the previous prey-only equilibrium Rp,j−1 <
1, that is the predator cannot invade the N∗

j−1th prey-only equilibrium;

(2) The predator’s reproduction number Rp,j > 1, that is, we assume that the predator
can invade the jth prey-only equilibrium.

(3) Assume also, j is odd.

We note that if Rp,1 > 1, then the above assumption would be trivially satisfied.
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In the case of predator-prey coexistence equilibria, the non-linear system for the equi-

libria (3.5) does not decouple. From the second equation we may express u(0) and
eliminate it from the system. We have:

(3.16) u(0)g(0) =
d

∫

∞

0
α(x)γ(x)

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

Pγ(s)
g(s)

dsdx
.

Replacing u(0)g(0) in the equation for the total prey population size we obtain the

following equation in P and N :

N =

∫

∞

0
d

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

Pγ(s)
g(s)

dsdx
∫

∞

0
α(x)γ(x)

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

Pγ(s)
g(s)

dsdx
.

This equation coupled with the renewal equation leads to the following non-linear system
for the variables N and P .

(3.17)

∫

∞

0

β(x, N)π(x, P, N)dx = 1,

N =

∫

∞

0

dπ(x, P, N)dx
∫

∞

0

α(x)γ(x)π(x, P, N)dx
.

This is a non-linear system in N , P . It does not decouple. We are looking for conditions

that give a non-zero positive solution of that system. Each positive solution of the
system (3.17) gives one coexistence equilibrium E∗ = (u∗(0), P ∗, N∗). The first equation

in system (3.17) prompts us to define the net reproduction rate of the prey in the
presence of the predator. Denote the net reproduction rate of the prey in the presence

of the predator by

(3.18) R(N, P ) =

∫

∞

0

β(x, N)π(x, P, N)dx.

The first equation in system (3.17) gives R(N, P ) = 1. We use the implicit function

theorem to solve for P as a function of N . For each arbitrary but fixed N , the equation

R(N, P ) = 1

as an equation of P only has a unique solution, which, however, may be positive or

negative. This defines P = f(N) as a continuous function for all N ≥ 0. Moreover,

∂R(N, f(N))

∂P
= −

∫

∞

0

β(x, N)

(
∫ x

0

γ(s)

g(s)
ds

)

π(x, f(N), N)dx < 0

since γ(x) > 0 on a set of positive measure. The function P = f(N) has the following
properties:

• f(N∗

j ) = 0, that is the predator equilibrium size at the prey-only equilibria is
zero.
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• Since all prey-only equilibria are simple, f(N) has an alternating sign in the

consecutive intervals. Since, R0 > 1 the signs are the following

(3.19)



















f(N)> 0 on (0, N∗

1 )

f(N)< 0 on (N∗

1 , N∗

2 )

. . .

f(N)> 0 on (N∗

k−1, N
∗

k )

Now we replace P = f(N) in the second equation of (3.17). After replacing P the
second equation in (3.17), we obtain an equation in N only. We can rearrange the terms

in that equation to get the following form.

(3.20)

∫

∞

0

(Nα(x)γ(x) − d)
1

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

f(N)γ(s)
g(s)

dsdx = 0

We recall that we assume that there exists a prey-only equilibrium, N∗

j such that the

predator can invade this equilibrium, that is Rp,j > 1. We introduce the following
notation. Let the left hand side of the equation (3.20) be denoted by F (N):

(3.21) F (N) :=

∫

∞

0

(Nα(x)γ(x) − d)
1

g(x)
e−

R x
0

µ(x,N)
g(s)

ds−
R x
0

f(N)γ(s)
g(s)

dsdx.

Clearly we can see that F (0) < 0. Thus, if Rp,1 > 1, we have F (N∗

1 ) > 0. Therefore,

there exists N̂ ∈ (0, N∗

1 ) such that F (N̂) = 0. Then, the corresponding value of the

predator population size is given by P̂ = f(N̂), and since R0 > 1, this value of the

predator size is positive.
In the general case since Rp,j−1 < 1, that implies that F (N∗

j−1) < 0. On the other

hand, since, Rp,j > 1, we have F (N∗

j ) > 0. Therefore, there exist an N̂ ∈ (N∗

j−1, N
∗

j )

such that F (N̂) = 0. At the same time we have that P̂ = F (N̂) and P̂ > 0. One can
express the corresponding û(0) from equation (3.16). We summarize the findings in the

following theorem.

Theorem 3.2. Let Assumption 3.2 and Assumption 3.3 hold. Then there is at least one
coexistence equilibrium of the predator and the prey E∗ = (û(0), P̂ , N̂).

Several remarks are in order.

• Conditions in Assumption 3.2 and Assumption 3.3 are sufficient conditions for a
coexistence equilibrium to exist. A coexistence equilibrium may exist if one or

more conditions fail. For instance, even if prey’s intrinsic reproduction number

R0 < 1, coexistence may still occur.
• In the size-structured case, unlike ODE case, the coexistence equilibrium may

not be unique. Intuitively, that may be the case since size-specific predation
may affect some (say more abundant) sizes of a prey-only equilibrium, and lead

to coexistence. Since more than one prey-only equilibrium exists, each of them
can be potentially perturbed this way to a coexistence equilibrium, leading to

multiple coexistence equilibria.
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4. Stability Analysis

In this section we consider the local stability of the solutions of the model (2.4)
around an equilibrium point. We linearize the model around a general equilibrium E =

(u(0), P ∗, N∗) where u(0) corresponds to u∗(x) = u(0)g(0)π(x, P ∗, N∗). We introduce
the following perturbations

u(x, t) = u∗(x) + ξ(x, t),

P (t) = P ∗ + η(t),(4.1)

N(t) = N∗ + n(t).

The last equality holds since

N(t) =

∫

∞

0

u(x, t)dx =

∫

∞

0

(u∗(x) + ξ(x, t))dx = N∗ + n(t).

It is clear from the above computations that

(4.2) n(t) =

∫

∞

0

ξ(x, t)dx

Since the birth rate β(x, N) and the death rate µ(x, N) are non-linear functions of the

total population size, we expand them around the equilibrium point as

β(x, N) = β(x, N∗ + n(t))

= β(x, N∗) + n(t)β ′(x, N∗) + h.o.t

µ(x, N) = µ(x, N∗ + n(t))

= µ(x, N∗) + n(t)µ′(x, N∗) + h.o.t

where, ’h.o.t’ in the equation above represents the higher order terms i.e the terms

that involve products of perturbations. Since we consider the local stability around the
equilibrium point we neglect the higher order terms. Hence the linearized equations of

the model (2.4) reduce to the following system:

(4.3)
ξt + (g(x)ξ(x, t))x = −µ(x, N∗)ξ − µ′(x, N∗)u∗(x)n(t) − γ(x)P ∗ξ − γ(x)u∗(x)η,

g(0)ξ(0, t) =

∫

∞

0

β(x, N∗)ξ(x, t)dx + n(t)

∫

∞

0

β ′(x, N∗)u∗(x)dx,

η
′

= P ∗

∫

∞

0

α(x)γ(x)ξ(x, t)dx + η

∫

∞

0

α(x)γ(x)u∗(x)dx − dη,

where n(t) is given by (4.2). We use the linearizations above to investigate the stability
of each type of equilibria: extinction, prey-only, and coexistence equilibria.

4.1. Extinction equilibrium (u = 0, P = 0). Here we consider the equilibrium where

there is no predator or prey in the model. We disturb the extinction equilibrium with a

small value and then observe the behavior in the long run. The system for the pertur-
bations above takes the form
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(4.4)

ξt + (g(x)ξ(x, t))x = −µ0(x)ξ(x, t),

g(0)ξ(0, t) =

∫

∞

0

β0(x)ξ(x, t)dx,

η
′

= −dη,

where we have used the following notation: β0(x) = β(x, 0) and µ0(x) = µ(x, 0).

To find the stability of the equilibrium point we investigate the eigenvalues of the
linearized operator by setting ξ(x, t) = eλtξ(x) and η(t) = eλtη. Hence we have the

following eigenvalue problem for the stability of the extinction equilibrium:

(4.5)

λξ(x) + (g(x)ξ(x))x = −µ0(x)ξ(x),

g(0)ξ(0) =

∫

∞

0

β0(x)ξ(x)dx,

λη = −dη.

Clearly, λ = −d is one of the eigenvalues which is negative. Further, we assume λ 6= −d
so that η = 0. To find the remaining eigenvalues we look for nonzero solution of the first

two equations. In particular, we solve the first equation:

(4.6) ξ(x) =
g(0)ξ(0)

g(x)
e−

R x
0

µ0(σ)+λ

g(σ)
dσ

and replace it in the second equation, obtaining the following characteristics equation

(4.7)

∫

∞

0

β0(x)

g(x)
e−

R x

0
µ0(σ)+λ

g(σ)
dσdx = 1.

We denote by

G(λ) =

∫

∞

0

β0(x)

g(x)
e
−

R x

0
µ0(σ)+λ

g(σ)
dσ

.

Hence, the characteristic equation becomes G(λ) = 1. For λ real, G(λ) is decreas-
ing. Furthermore, it is clear from the definition of G(λ) that as λ → ∞, G(λ) → 0.

Furthermore,

G(0) = R0.

We have the following two cases:

(1) If R0 > 1: In this case G(0) > 1. Therefore, then there exists positive real

solution λ∗ > 0 to the equation G(λ) = 1. Hence, the extinction equilibrium is
unstable.

(2) If R0 < 1: In this case G(0) < 1, then because of the monotonicity of G(λ),
the equation G(λ) = 1 has a unique real solution λ∗ < 0. We now show that all

other solutions to the characteristic equation G(λ) = 1, which are complex, have
negative real part. Indeed, for λ complex with ℜλ ≥ 0 we have

|G(λ)| ≤ G(ℜλ) ≤ R0 < 1.

Hence, there do not exist any non-negative real solutions, or solutions with non-

negative real part of λ for the characteristic equation G(λ) = 1. We may conclude
that the extinction equilibrium is locally asymptotically stable.
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We summarize these findings in the following Theorem.

Theorem 4.1. If the intrinsic reproduction number of the prey population R0 < 1, then
the extinction equilibrium E0 = (0, 0, 0) is locally asymptotically stable. If the intrinsic

reproduction number of the prey R0 > 1, then the extinction equilibrium is unstable.

We note that we cannot establish global stability of the extinction equilibrium in the
case R0 < 1 because of the presence of subthreshold equilibria (see Figure 4).

4.2. Prey-only equilibria. The equilibria in this case are given by Ej = (u∗

j(x), 0, N∗

j )

where N∗

j =
∫

∞

0
u∗

j(x)dx. For arbitrary prey-only equilibrium E = (u∗(x), 0, N∗) the
linearization of the original size-structured model (2.4) is obtained from the linearized

system (4.3).

(4.8)

ξt + (g(x)ξ(x, t))x = −µ(x, N∗)ξ(x, t) − µ′(x, N∗)u∗n(t),

g(0)ξ(x, t) =

∫

∞

0

(β(x, N∗)ξ(x, t) + β ′(x, N∗)u∗n(t))dx,

η′(t) = η(t)

∫

∞

0

α(x)γ(x)u∗dx − dη,

where u∗(x) if given by (3.7). We can integrate the last equation in this system to obtain

(4.9) η(t) = η0e
(Ap−d)t

where Ap =
∫

∞

0
α(x)γ(x)u∗(x)dx. We recall that for the jth prey-only equilibrium the

predator invasion number is given by

Rp,j =

N∗

j

∫

∞

0

α(x)γ(x)π(x, 0, N∗

j )dx

d

∫

∞

0

π(x, 0, N∗

j )dx

.

We note that the definition for Ap and formula for u(0) given by (3.16) imply that

Rp,j = Ap/d. Therefore, if the predator can invade the prey-only equilibrium Rp,j > 1,
then Ap > d, and the jth prey-only equilibrium is unstable. We summarize that in

following theorem.

Theorem 4.2. The jth prey-only equilibrium Ej = (uj(0), 0, N∗

j ) is unstable if Rp,j > 1.

Proof. If Rp,j > 1 then that implies Ap > d and as a result from the solution η(t) given in
equation (4.9) we have that η(t) → ∞ as t → ∞. Hence the equilibrium is unstable. �

In the remainder of this section we consider prey-only equilibria Ej that cannot be
invaded by the predator, that is Rp,j < 1. We will again drop the subscript j. To obtain

the eigenvalue problem for the linearized operator, we are looking for a solution of (4.8)
that has the form ξ(x, t) = eλtz(x) and η(t) = ηeλt. From the definition of n(t) we can

get that

n(t) =

∫

∞

0

ξ(x, t)dx = eλt

∫

∞

0

z(x)dx = n0e
λt.
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If we substitute the above quantities in the equations (4.8) then we can obtain the

following eigenvalue problem:

(4.10)

λz(x) + (g(x)z(x))x = −µ(x, N∗)z(x) − µ′(x, N∗)n0u
∗(x) − γ(x)ηu∗(x),

g(0)z(0) =

∫

∞

0

β(x, N∗)z(x)dx + n0

∫

∞

0

β ′(x, N∗)u∗dx,

ηλ = ηAp − ηd.

In the above system we are looking for a non-trivial solution (z(x), η).

Option 1: Let λ = Ap − d. Then λ < 0. Furthermore, the last equation is satisfied for
every η where η 6= 0. We may choose as a non zero solution of equations (4.10) (z(x), η),

where z(x) is the solution of the first two equations with the given, chosen η. Such a
solution z(x) exists if λ = Ap − d is not an eigenvalue of the first two equations of the

system (4.10) with η = 0.

Option 2: λ 6= Ap − d. We need to have η = 0. Then λη = (Ap − d)η. We may have a
non-zero eigenvector, if the remaining two equations have a non-zero solution z(x). The

remaining eigenvalues are solutions of the following system.

λz(x) + (g(x)z(x))x = −µ(x, N∗)z(x) − µ′(x, N∗)u∗n0,(4.11)

g(0)z(0) =

∫

∞

0

β(x, N∗)z(x)dx + n0

∫

∞

0

β ′(x, N∗)u∗dx.(4.12)

Here z(x) can be positive or negative. We call ω(x) = µ′(x, N∗)u∗n0.

Subcase 1: Here we assume µ(x, N) = µ(x) that is µ does not depend on N so that we
have µ′(x, N∗) = 0 and as a result ω(x) = 0. This reduces the system to the following

set of equations.

λz(x) + (g(x)z(x))x = −µ(x)z(x),(4.13)

g(0)z(0) =

∫

∞

0

β(x, N∗)z(x)dx + n0

∫

∞

0

β ′(x, N∗)u∗dx,(4.14)

which can be easily solved to obtain g(x)z(x) = g(0)z(0)e
−

R

∞

0
λ+µ(s)

g(s)
ds

. Substituting this
in the second equation above we have the following characteristic equation

1 =

∫

∞

0

β(x, N∗)

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx +

∫

∞

0

β ′(x, N∗)u∗dx

∫

∞

0

1

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx.(4.15)

We define

(4.16) G(λ) =

∫

∞

0

β(x, N∗)

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx + F

∫

∞

0

1

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx

where the constant F is given by

F =

∫

∞

0

β ′(x, N∗)u∗dx.

Furthermore, we denote by

(4.17)
K(λ) =

∫

∞

0

β(x, N∗)

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx,

L(λ) =

∫

∞

0

1

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx.
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Hence, the function G(λ) takes the form G(λ) = K(λ) + FL(λ). Clearly for λ = 0 we

have

G(0) = K(0) + FL(0) = R(N∗) + FL(0) = 1 + FL(0)(4.18)

since N∗ is an equilibrium total population and is a solution to the equation R(N) = 1.

It is clear from the form of G(λ) that for λ real, as λ → ∞, G(λ) → 0. Hence the
characteristic equation G(λ) = 1 has a positive real solution if G(0) > 1. A positive

real solution to the characteristics equation implies that the prey-only equilibrium Ej is
unstable. Since G(0) > 1 if and only if F > 0, then F > 0 is a condition that implies

instability of the system, even if λ = Ap − d < 0. We summarize this result in the
following lemma.

Lemma 4.1. Assume µ(x, N) = µ(x). If F > 0, then the jth prey-only equilibrium Ej

is unstable.

Concerning stability of the prey-only equilibria we have the following lemma.

Lemma 4.2. Assume F < 0, the birth rate β(x, N) = β(N). Furthermore, assume that

for the prey-only equilibrium with total population size N∗ the following inequality holds:

−F < 2β(N∗).

Then the characteristic equation G(λ) = 1 has only roots with negative real part.

Proof. We consider the characteristic equation G(λ) = 1, where G(λ) is given by (4.16).

The assumption that F < 0 implies that G(0) < 1. Assume there exists a root λ = a+ib
of G(λ) = 1 where a ≥ 0. That implies |(G(λ)| = 1. We have

G(λ) =

∫

∞

0

β(N∗)

g(x)
e
−

R x
0

λ+µ(s)
g(s)

ds
dx + F

∫

∞

0

1

g(x)
e
−

R x
0

λ+µ(s)
g(s)

ds
dx

= (β(N∗) + F )

∫

∞

0

1

g(x)
e−

R x
0

λ+µ(s)
g(s)

dsdx.

Taking absolute values and using the fact that G(λ) = 1, we have

1 = |G(λ)| = |(β(N∗) + F )

∫

∞

0

1

g(x)
e
−

R x

0
λ+µ(s)

g(s)
ds

dx|

≤ |(β(N∗) + F )|
∫

∞

0

1

g(x)
e−

R x
0

ℜ(λ)+µ(s)
g(s)

dsdx

<

∫

∞

0

1

g(x)
β(N∗)e

−

R x

0
µ(s)
g(s)

ds
dx = 1.

We note that our assumption on −F < 2β(N∗) implies that we have |β(N∗) + F | <
|β(N∗)| = β(N∗). The last sequence of inequalities leads to 1 < 1 which is a contradic-

tion.
Thus there cannot exists a root λ which has a non-negative real part when G(0) < 1.

Thus, our claim is proved. �

A couple of remarks are in order.
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• The condition on the sign of F is related to the net reproduction rate R(N). In

particular, in the case when µ is not a function of N , the rate of change of the
prey population net reproduction rate at the equilibrial total prey population

size N∗ is given by

R′(N∗) =

∫

∞

0

β ′(x, N∗)

g(x)
e−

R x
0

µ(s)
g(s)

dsdx.

Hence, F = u(0)g(0)R′(N∗), that is F has the sign of the rate of change of the

net reproductive rate at the prey-only equilibrium. So we established that if the
net reproduction rate is increasing at the equilibrium, the equilibrium is unstable.

If the net reproduction rate is decreasing, the equilibrium may be stable subject
to additional assumptions.

• As we show below, if µ is constant, and F < 0, equilibrium is locally asymptoti-
cally stable with a general birth rate β(x, N).

• In the case when F < 0, if the birth and the death rate depend on x, then

oscillations may be possible.

Subcase 2: Now we assume µ(x, N) = µ(N), that is, µ depends on N only. Further,
assume that µ′(N) ≥ 0. System (4.11)-(4.12) takes the form

(4.19)
λz(x) + (g(x)z(x))x = −µ(N∗)z(x) − µ′(N∗)u∗n0,

g(0)z(0) =

∫

∞

0

β(x, N∗)z(x)dx + n0

∫

∞

0

β ′(x, N∗)u∗dx.

We recall that u∗(x) = u(0)g(0)
g(x)

e−
R x
0

µ(N∗)
g(s)

ds. We solve the differential equation for z(x)

treating n0 as given to obtain

z(x) =
g(0)z(0)

g(x)
e−

R x

0
µ(N∗)+λ

g(s)
ds − µ′(N∗)u(0)g(0)n0

λ





e−
R x
0

µ(N∗)
g(s)

ds

g(x)
− e−

R x
0

µ(N∗)+λ

g(s)
ds

g(x)



 .

(4.20)

From definition of n0 =
∫

∞

0
z(x)dx and using the formula for z(x) we can express n0 in

terms of g(0)z(0):

n0 =
g(0)z(0)

λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

.(4.21)

We substitute z(x) and n0 back in the second equation of (4.19). We obtain the following
characteristic equation:

1 =

∫

∞

0

β(x, N∗)

g(x)
e−

R x

0
µ(N∗)+λ

g(s)
dsdx

[

1 +
µ′(N∗)u(0)g(0)

λ(λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

)

]

(4.22)

− µ′(N∗)u(0)g(0)

λ(λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

)
+

F

λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

(4.23)

where F =
∫

∞

0
β ′(x, N∗)u∗(x)dx. Denoting by G(λ) the expression on the right hand

side of the above equation, we can write the characteristic equation as G(λ) = 1. The
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eigenvalues of the system (4.19) are the real and complex solutions of that equation. As

before, it can be seen that for λ real G(λ) → 0 as λ → ∞. G(0) is defined as the limit
of the function G(λ) as λ → 0. Hence,

G(0) = 1 +
F

µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

− µ′(N∗)u(0)g(0)

(µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

)

∫

∞

0

β(x, N∗)

g(x)

(
∫ x

0

1

g(s)
ds

)

e
−

R x

0
µ(N∗)
g(s)

ds
dx.

The relationship of G(0) with one is determined by the sign of the expression F −
µ′(N∗)g(0)u(0)

∫

∞

0
β(x, N∗)e

−

R x

0
µ(N∗)
g(s)

ds
(
∫ x

0
ds

g(s)
)dx. We have that G(0) > 1 if and only if

(4.24) F − µ′(N∗)g(0)u(0)

∫

∞

0

β(x, N∗)e−
R x
0

µ(N∗)
g(s)

ds

(
∫ x

0

ds

g(s)

)

dx > 0.

In this case by a similar argument as before we can say that the equilibrium is unstable.
We now show that the sign of the expression above is determined by the rate of change of

the net reproduction rate at the equilibrium total prey population size N∗. In particular,
we have

R′(N∗) =

∫

∞

0

β ′(x, N∗)e−µ(N∗)
R x
0

1
g(s)ds dx

− µ′(N∗)

∫

∞

0

β(x, N∗)

g(x)

(
∫ x

0

1

g(s)
ds

)

e−µ(N∗)
R x
0

1
g(s)ds dx.

Thus, we find again that if the net reproduction rate of the prey population is increasing

through the equilibrium, the prey-only equilibrium is unstable. We summarize that in

the following lemma:

Lemma 4.3. Assume µ(x, N) = µ(N) and µ′(N) ≥ 0. If R′(N∗

j ) > 0, then the prey-
only equilibrium Ej is unstable.

Stability of an equilibrium in this case is given by the following lemma.

Lemma 4.4. Assume µ(x, N) = µ(N) and µ′(N) ≥ 0. If F < 0 there cannot exist any
root λ of the characteristic equation G(λ) = 1 with ℜ(λ) ≥ 0.

Proof. Assume ℜ(λ) ≥ 0. We rewrite the characteristics equation G(λ) = 1 in the

following form.
[

1 +
µ′(N∗)u(0)g(0)

λ(λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

)

]

=

=

∫

∞

0

β(x, N∗)

g(x)
e
−

R x

0
µ(N∗)+λ

g(s)
ds

dx

[

1 +
µ′(N∗)u(0)g(0)

λ(λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

)

]

(4.25)

+
F

λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

.
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Simplifying the expression we have

∫

∞

0

β(x, N∗)

g(x)
e−

R x
0

µ(N∗)+λ

g(s)
dsdx = 1 − Fλ

λ(λ + µ(N∗) + µ′(N∗)g(0)u(0)
µ(N∗)

) + µ′(N)g(0)u(0)
.

(4.26)

The absolute value of left side of the previous equation is less or equal to one. We
can show that the absolute value of right side of the equation is greater than one. We

can treat the right side of the equation as 1 + kλ
λ2+rλ+s

. It can be shown that the real
part of this expression is strictly greater than one. Hence absolute value is greater than

one, which leads to a contradiction. This shows that there do not exist any roots with
non-negative real part for the characteristic equation G(λ) = 1 when F is negative. �

4.3. Stability of a coexistence equilibrium. The equilibrium in this case is rep-

resented by (u∗(x), P ∗, N∗), where N∗ =
∫

∞

0
u∗(x)dx. We will investigate the local

stability of the coexistence equilibrium starting from the linearized system (4.3). First

we notice that from the equation for the equilibrium we have
∫

∞

0

α(x)γ(x)u∗(x)dx = d.

That simplifies the third equation in (4.3). We are looking for a solution of the form

ξ(x, t) = eλtξ(x), η(t) = ηeλt, n(t) = neλt. We substitute this form of solution into
equations (4.3) to get,

(g(x)ξ(x))x = −λξ(x) − µξ(x) − µ′u∗(x)n − γ(x)P ∗ξ(x) − γ(x)u∗η,

g(0)ξ(0) =

∫

∞

0

β(x, N∗)ξ(x)dx + n

∫

∞

0

β ′(x, N∗)u∗dx,(4.27)

λη = P ∗

∫

∞

0

α(x)γ(x)ξ(x)dx,

where

n =

∫

∞

0

ξ(x)dx.

In what follows in this subsection we consider two cases: constant predation and size-
specific predation.

Case 1: Constant predation: We make the following simplifying assumptions

Assumption 4.1. Assume

(1) µ is a function of N∗ only, that is, µ(x, N∗) = µ(N∗);

(2) γ(x) is constant: γ(x) = γ;
(3) α(x) is constant: α(x) = α.

In the previous section we showed that with the above assumption on µ, and any

function β, the prey-only equilibrium is locally asymptotically stable. In this section

we will see that, even if predation is constant with respect to size, it has the ability to
destabilize the predator-prey coexistence equilibrium.
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With the above assumptions, from equations (4.27) we have:

(g(x)ξ(x))x +

(

λ + µ + γP ∗

g(x)

)

g(x)ξ(x) = −(µ′(N)n + γη)u∗(x),

g(0)ξ(0) =

∫

∞

0

β(x, N∗)ξ(x)dx + Fn,(4.28)

λ =
P ∗αγn

η
.

Integrating the first equation in the system above we obtain the following formula:

g(x)ξ(x) = g(0)ξ(0)e−
R x
0

λ+µ+γP∗

g(s)
ds − u(0)g(0)(µ′n + γη)e−

R x
0

λ+µ+γP∗

g(s)
ds

∫ x

0

e
R s

0
λ

g(σ)
dσ

g(s)
ds.

(4.29)

Which leads to the following form of the equations

ξ(x) = g(0)ξ(0)
e−

R x
0

λ+µ+γP∗

g(s)
ds

g(x)
− u(0)g(0)(µ′n + γη)

g(x)
e
−

R x

0
λ+µ+γP∗

g(s)
ds [e

R x
0

λ
g(s)

ds − 1]

λ

= g(0)ξ(0)
e−

R x

0
λ+µ+γP∗

g(s)
ds

g(x)
− u(0)g(0)(µ′n + γη)

λ
[
e−

R x

0
µ+γP∗

g(s)
ds

g(x)
− e−

R x

0
λ+µ+γP∗

g(s)
ds

g(x)
]

We know that n =
∫

∞

0
ξ(x)dx. Integrating ξ(x) we have

n =
g(0)ξ(0)

λ + µ + γP ∗
− u(0)g(0)(µ′n + γη)

(µ + γP ∗)(λ + µ + γP ∗)
.(4.30)

Solving for n from (4.30) we have

n =
g(0)ξ(0)λ

λ2 + Lλ + K
, η =

g(0)ξ(0)P ∗αγ

λ2 + Lλ + K
,

where we have introduced the following notation:

K =
u(0)g(0)γ2P ∗α

µ + γP ∗
, L = µ + γP ∗ +

u(0)g(0)µ′

µ + γP ∗
.

Substituting the value of η and n we have the following form of ξ(x).

ξ(x) = g(0)ξ(0)
e−

R x
0

λ+µ+γP∗

g(s)
ds

g(x)

− u(0)g(0)g(0)ξ(0)

(λ2 + λL + K)
[µ′ +

γP ∗αγ

λ
][
e−

R x
0

µ+γP∗

g(s)
ds

g(x)
− e−

R x
0

λ+µ+γP∗

g(s)
ds

g(x)
](4.31)

Substituting this expression in the second equation of (4.28) we obtain the characteristic

equation

G(λ) = 1
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where we have the following form of G(λ):

G(λ) =

∫

∞

0

β(x, N∗)

g(x)
e−

R x
0

λ+µ+γP∗

g(s)
dsdx

[

1 +
u(0)g(0)

λ2 + Lλ + K
(µ′ +

γ2P ∗α

λ
)

]

−(4.32)

u(0)g(0)

λ2 + Lλ + K
(µ′ +

γ2P ∗α

λ
) +

Fλ

λ2 + Lλ + K
.

We observe here that G(0) has the following form:

G(0) = 1 − u(0)g(0)γ2P ∗α

K

∫

∞

0

β(x, N∗)

g(x)
e−

R x

0
µ+γP∗

g(s)
ds

∫ x

0

ds

g(s)
dx.(4.33)

This shows that we always have: G(0) < 1. We can rewrite the characteristic equation
in the following form:

1 − Fλ2

λ3 + Lλ2 + (K + u(0)g(0)µ′)λ + γ2P ∗αu(0)g(0)
=

∫

∞

0

β(x, N∗)

g(x)
e
−

R x

0
λ+µ+γP∗

g(s)
ds

dx.

(4.34)

Stability of the coexistence equilibrium can be established in the following special case:

Lemma 4.5. Let Assumptions 4.1 hold. Assume F < 0, and the size-specific birth rate
has the form

β(x, N∗) = β(N∗)e−
R x

0
ρ

g(s)
ds

where ρ is a given non-negative parameter. Then the predator-prey coexistence equilib-
rium is locally asymptotically stable.

Proof. The denominator of the left-hand side in the characteristic equation can be rewrit-
ten in the form:

(4.35) λ3 + Lλ2 + (K + u(0)g(0)µ′)λ + γ2P ∗αu(0)g(0) = (λ + µ + γP ∗)[λ2 + Qλ + R]

where

Q =
u(0)g(0)µ′

µ + γP ∗
, R =

u(0)g(0)γ2P ∗α

µ + γP ∗
.

We rewrite the characteristic equation in the form

Fλ2

λ3 + Lλ2 + (K + u(0)g(0)µ′)λ + γ2P ∗αu(0)g(0)
= 1 − β(N∗)

λ + ρ + µ + γP ∗
.

The equations for the equilibrium imply

ρ + µ + γP ∗ = β(N∗).

Hence, the characteristic equation simplifies to

Fλ

λ3 + Lλ2 + (K + u(0)g(0)µ′)λ + γ2P ∗αu(0)g(0)
=

1

λ + ρ + µ + γP ∗

which rewritten as a cubic equation becomes

λ3 + Âλ2 + B̂λ + Ĉ = 0
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where the coefficients are given by

Â = Q + (µ + γP ∗) − F(4.36)

B̂ = (µ + γP ∗)Q + R − F (ρ + µ + γP ∗)(4.37)

Ĉ = (µ + γP ∗)R(4.38)

Since, F < 0, it follows that Â > 0, B̂ > 0, and Ĉ > 0. Furthermore, it is not hard to

see that ÂB̂ > Ĉ. Thus, Routh-Hurwitz criteria imply that the roots are negative or
have negative real parts. Oscillations in this case do not occur. �

In the following theorem, we consider a special case where we show that oscillations
may occur.

Theorem 4.3. Assume F < 0, µ is a constant that does not depend on N∗, and the

size-specific birth rate has the following form

β(x, N∗) = β(N∗)χ[A,∞)(x)

where χ[A,∞) is the characteristic function of the interval [A,∞), that is χ(x) = 1, if

x > A and zero elsewhere. Assume further that the following inequality holds:

(4.39)
u(0)g(0)γ2P ∗α

µ + γP ∗
< 2(µ + γP ∗)(−F ).

Then, Hopf bifurcation occurs for some value of A, and the system exhibits sustained

oscillations.

The proof is provided in the appendix. We note that inequality (4.39) can be rewritten
in the form

1

2

γ2P ∗α

µ + γP ∗
e(µ+γP ∗)A < −β ′(N∗)

which can be obtained from writing F in terms of the parameters. This inequality implies

that the oscillations occur if the predator size P ∗ at equilibrium and predator predation
rate γP ∗ are sufficiently small relative to the growth rate of the prey at the equilibrium

−β ′(N∗). In other words, for an equilibrium for which prey’s net reproductive rate is

decreasing (β ′(N∗) < 0), predator’s abundance should be low for oscillations to occur.

Case 2: Size-specific predation: We make the following simplifying assumptions

Assumption 4.2. Assume

(1) µ(x, N∗) = µ is a constant;

(2) γ(x) is given by

γ(x) =

{

0 0 ≤ x < A

γ x > A

(3) α(x) is constant: α(x) = α.

As before we take prey birth rate as a separable function β(x, N∗) = β(N∗)β0(x)

with β0(x) = χ[A,∞). This assumptions model a predator which feeds selectively only
on larger reproductive prey sizes. In what follows we show that in this case oscillations
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also occur. To see that, we take g(x) = 1 and µ′(N∗) = 0. We start again from system

(4.27). Solving the differential equation we obtain

(4.40) ξ(x) = ξ(0)π(λ; x, P ∗) − ηu(0)π(λ; x, P ∗)γ(x)
1

λ
[eλx − eλA].

Computing the integral of ξ we have

∫

∞

A

ξ(x)dx = ξ(0)e−(λ+µ)A 1

λ + µ + γP ∗
− ηu(0)γ

λ
e−µA

[

1

µ + γP ∗
− 1

λ + mu + γP ∗

]

(4.41)

= ξ(0)e−(λ+µ)A 1

λ + µ + γP ∗
−− ηd

α(λ + µ + γP ∗)

where we have used the equilibrium equation αγu(0)e−µA = d(µ + γP ∗). Substituting
in the equation for η in (4.27) we obtain the following formula for η:

(4.42) η =
ξ(0)αγP ∗e−(λ+µ)A

λ2 + Lλ + K

where L = µ + γP ∗ and K = γP ∗d. The integrals of ξ are given by:

(4.43)

∫

∞

A

ξ(x)dx = ξ(0)
λe−(λ+µ)A

λ2 + Lλ + K

∫

∞

0

ξ(x)dx =
ξ(0)

λ + µ

(

1 − e−(λ+µ)A
)

Substituting in the equation for ξ(0), and canceling ξ(0) we obtain the following char-
acteristic equation:

(4.44) 1 = β(N∗)
λe−(λ+µ)A

λ2 + Lλ + K
+ F

[

1

λ + µ

(

1 − e−(λ+µ)A
)

+
λe−(λ+µ)A

λ2 + Lλ + K

]

.

The above characteristic equation simplifies to

(λ + µ − F )(λ2 + Lλ + K) = [β(N∗)λ(λ + µ) − FγP ∗(λ + d)]e−(λ+µ)A.

Using the corresponding equation for the equilibria:

(4.45) e−µAβ(N∗) = µ + γP ∗

the characteristic equation takes the form:

(4.46) (λ + µ − F )(λ2 + Lλ + K) = L[λ(λ + µ) − V γP ∗)(λ + d)]e−λA

where V = F/β(N∗). Furthermore, the characteristic equation can be rewritten as:

(4.47) λ3 + a1λ
2 + a2λ + a3 = [T1λ

2 + T2λ + T3]e
−λA

where

a1 = µ − F + L T1 = L

a2 = L(µ − F ) + K T2 = L(µ − V γP ∗)(4.48)

a3 = (µ − F )K T3 = LV K

Techniques similar to the ones used in the appendix to establish oscillations in Theorem

4.3 can be used in the case of characteristic equation (4.47) to yield with some additional
assumptions the following result:
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Result: Assume Assumptions 4.2. Additional assumption corresponding to (4.39)

may apply. Then the roots of the characteristic equation (4.47) undergo Hopf bifurca-
tion and the system (2.4) exhibits sustained oscillations with the predator and the prey

coexisting.

A finite difference method can be used to simulate model (2.4). To find parameters

that would produce oscillations, we let λ = ξ + wi and separate the real and imaginary
part in (4.46). We let ξ = 0.001. We further assign values to some of the parameters.

Thus, we assign µ = 0.1, −F = 1, and A = 1. We also take β(x, N∗) = β̄χ[A,∞)e
−cN∗

.
For a given w the system for the real and the imaginary part becomes a linear system

in γP ∗, and dγP ∗. We solve that linear system using Mathematica, and we obtain

γP ∗ = f1(w) and dγP ∗ = f2(w) as functions of w. The parametric plot of these two
functions in the (γP ∗,dγP ∗) plane is given in Figure 6. For w = 3.96055 we obtain the

0.1 0.2 0.3 0.4
ΓP*0

5

10

15

20

25

30
dΓP*

Figure 6. Parametric plot in the (γP ∗,dγP ∗).

following positive values for γP ∗ = 0.35 and dγP ∗ = 16.3689. That gives a value for
d = 46.7682857. Using the equations for the equilibria, we determine that β̄ = 9.62023,

c = 1, and α = 23.2591. The parameter γ is determined so that predator’s reproduction
number is larger than one. In particular, we took, γ = 1. The resulting oscillations of

the predator and the prey are presented in Figure 7.

5. Discussion

In this article we introduce a non-linear predator-prey model where the prey is struc-
tured by size. The main question that we address is whether predation on a size-

structured prey can be responsible for the sustained oscillations observed in the predator-
prey dynamics in nature. We consider two main aspects:

(1) We show that the presence of a predator which predates on a size-structured prey

can destabilize an otherwise stable equilibrium of the prey, even if the predation
of the predator is size non-specific.
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Figure 7. The left figure shows the cycle in the (N , P ) plane with time
as a parameter. The right figure shows the oscillations in the total number
of prey and the predator as functions of time when those oscillations have
stabilized.

(2) We show that size-specific predation is capable of producing oscillations in the

predator-prey dynamics. We find that can be the case by examining a scenario
when the predator predates on the reproductive sizes of the prey only.

To address the main question we first examine the dynamics of the corresponding ODE
model, where the prey is homogeneous with respect to size. We find that the ODE model

has an extinction equilibrium, can potentially have multiple prey-only equilibria, and

a unique predator-prey coexistence equilibrium. The coexistence equilibrium is locally
asymptotically stable if the prey’s growth rate decreases with the increase of the prey

population. If, however, prey growth rate exhibits Allee effect, then the predator-prey
coexistence equilibrium can become destabilized and oscillations are possible. To rule

out that this scenario is responsible for the oscillations in the size-structured model, we
assume in most cases that the prey birth rate declines with the population size.

The size-structured model also has an extinction equilibrium and multiple prey-only
equilibria. We could not rule out the possibility that multiple coexistence equilibria ex-

ist. To interpret conditions for existence of equilibria we define net reproduction rate of
the prey population as a function of the prey population size R(N), and intrinsic repro-

duction number of the prey population R0, defined as the value of the net reproduction
rate when the prey population size is zero. We find that if R0 > 1 there is always at

least one prey-only equilibrium. If R0 < 1 then there may be no prey-only equilibria,
or there may be an even number of prey-only equilibria, if they are all simple. Further-

more, we define predator reproduction at the N∗

j prey-only equilibrium. Conditions on

the predator reproduction number guarantee existence of a predator-prey coexistence
equilibrium.
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We find that the extinction equilibrium is locally stable if R0 < 1 and unstable oth-

erwise. The extinction equilibrium cannot be globally stable because of the presence of
subthreshold equilibria. Furthermore, we find that the jth prey-only equilibrium Ej is

unstable if the reproduction number of the predator at the jth only equilibrium Rp,j > 1.
Of the prey-only equilibria for which Rp,j < 1 holds, the ones for which the net reproduc-

tion rate of the prey satisfies R′(N∗

j ) > 0 are also unstable. The key result on stability
of prey-only equilibria says that if the death rate is size independent and increasing with

prey population size, while the birth rate is decreasing with population but may depend
on individuals’ size in an arbitrary fashion, then the prey-only equilibrium is stable.

We investigated the stability of the coexistence equilibria in two cases. In the first case
all rates are constant with respect to individuals’ size, except the birth rate which may

be arbitrary. For exponential in size birth rate we show that the coexistence equilibrium
is locally asymptotically stable. However, if the predator predates uniformly on all sizes,

but only mature individuals reproduce, then even if the prey’s birth rate is decreasing

with the prey’s total population size, then the coexistence equilibrium may become
unstable, and Hopf bifurcation occurs. We note that in these conditions, if all sizes

of the prey reproduced uniformly, then oscillations would not have occurred. In the
second case, all rates are constant with exception of the predation rate and prey birth

rate. In this case we allow the predator to predate on individuals of reproductive size.
We conclude that the predator-prey equilibrium can become unstable and oscillations

are possible. Thus, the answer to our main question whether size-specific predation
can destabilize the predator-prey dynamics is “yes”. The idea of size-specific predation

destabilizing the dynamics is somewhat paradoxal as size may permit size refuges for
the prey from predation which may seem stabilizing. However, evolution of the prey to

more advantageous sizes, not preyed on by the predator, happens on evolutionary scale
which may be much slower than the time the predator needs to adapt to preying on

different sizes. In a recent article Mougi and Iwasa [9] find that if the predator’s trait
evolves faster than the prey’s, oscillations are possible and likely. In other words, size is

only a temporary escape mechanism for the prey and as such may be responsible for the

oscillatory dynamics [10].
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Appendix

Proof of Theorem 4.3. Throughout this proof we will consider the special case when

g(x) = 1. With this form of the birth rate, we can integrate the integral in the right-
hand size of the characteristic equation (4.34). With the assumption that µ′ = 0, and

the denominator in the form (4.35), the characteristic equation becomes:

(5.1) 1 − Fλ2

(λ + µ + γP ∗)(λ2 + R)
=

β(N∗)

λ + µ + γP ∗
e−(λ+µ+γP ∗)A
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We note that the equation for the equilibria implies that

µ + γP ∗ = β(N∗)e−(µ+γP ∗)A

Hence, the characteristic equation simplifies to

(5.2) λ + η − Fλ2

λ2 + R
= ηe−λA

where η = µ + γP ∗. Lemma 4.5 implies that for A = 0 (with ρ = 0) the above equation

has only roots with negative real parts and the coexistence equilibrium is locally stable.

As a first step to establishing Hopf bifurcation for some A0 > 0, we look for purely
imaginary solutions of the simplified characteristic equation (5.2). Set λ = iω. The

equation (5.2) becomes

iω + η +
Fω2

R − ω2
= ηe−iωA

Separating the real and imaginary part in the above equation, we obtain that ω should
satisfy the following system:

η +
Fω2

R − ω2
= η cos(ωA)

ω = −η sin(ωA)

We eliminate the trigonometric functions by squaring both sides of the each equation

above, and adding the equations. Thus, ω should satisfy the following equation

(5.3)

(

η +
Fω2

R − ω2

)2

+ ω2 = η2.

We set ω2 = z to obtain

(5.4)

(

η +
Fz

R − z

)2

+ z = η2.

Rewriting the above equation as a polynomial equation in z we obtain

z[z2 − (2ηF − F 2 + 2R)z + (R2 + 2ηRF )] = 0

Assumption (4.39) guarantees that the above equation has three real roots: a negative
one, zero, and a positive one. Let z0 = ω2

0 be the positive root. Then ω0 =
√

z0.

To complete the bifurcation analysis, we choose the maturation size A as a bifurcation
parameter. We view the solutions of the characteristic equation (5.2) as functions of the

parameter A, namely λ(A) = ρ(A) + iω(A). For some value A0 we have ρ(A0) = 0, and
ω(A0) = ω0. We need to show that the roots cross the imaginary axis with non-zero

speed, that is we need to show that

dℜλ(A)

dA
|A=A0 > 0.

To see this last inequality, we differentiate the characteristic equation (5.2) with respect
to the bifurcation parameter A to obtain:

[

1 + ηAe−λA − 2FRλ

(λ2 + R)2

]

dλ

dA
= −ηλe−λA.
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To simplify the computation, we look at the inverse of dλ(A)
dA

:

(

dλ

dA

)

−1

=
1 − 2FRλ

(λ2+R)2

−ηλe−λA
− A

λ
(5.5)

=
1 − 2FRλ

(λ2+R)2

−λ
(

λ + η − Fλ2

λ2+R

) − A

λ
(5.6)

We set λ = iω0 and rationalize the denominator:
(

dλ

dA

)

−1

|λ=iω0 =
1 − 2FRiω0

(−ω2
0+R)2

−iω0

(

iω0 + η +
Fω2

0

−ω2
0+R

) − A

iω0
(5.7)

=

[

1 − 2FRiω0

(−ω2
0+R)2

](

−iω0 + η +
Fω2

0

−ω2
0+R

)

−iω0

(

ω2
0 +

(

η +
Fω2

0

−ω2
0+R

)2
) +

Ai

ω0

We take the real part of the expression in the right-hand side and using (5.3) we obtain:

(5.8) ℜ
(

dλ

dA

)

−1

=
1

η2

[

2FR

(R − ω2
0)

2

(

η +
Fω2

0

R − ω2
0

)

+ 1

]

The expression on the right hand side is not automatically positive since F < 0. To see
its positivity, we recall that ω2

0 = z0, and z0 is the rightmost solution of the equation

h(z) = η2 where

h(z) =

(

η +
Fz

R − z

)2

+ z.

We observe that, since z0 is the positive root of the equation,

z0 = R +
2ηF − F 2 +

√

(2ηF − F 2)2 − 4RF 2

2
< R.

Hence this z0 is on left of R. In addition h(z) has only one asymptote at z = R. Hence
the function is continuous between 0 and R. Furthermore, the first derivative of this

function is given by

(5.9) h′(z) =
2FR

(R − z)2

(

η +
Fz

R − z

)

+ 1

Note that

h′(0) =
R2 + 2ηRF

R2
< 0

by assumption and clearly h(z) → +∞ as z → R−. Since h(z) cannot have more than

one positive root other than z0, we have that h′(z0) > 0, that is

(5.10)
2FR

(R − z0)2

(

η +
Fz0

R − z0

)

+ 1 > 0.

The last inequality implies that
(

dℜλ

dA

)

−1

|A=A0 > 0.
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This completes the proof.
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