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Abstract. Strain replacement is the effect of substitution of a strain of higher prevalence
in the population with another. Differential effectiveness of the vaccines is thought to be
the mechanism responsible for the replacement effect. Recent theoretical study shows that
differential effectiveness of the vaccine may not be necessary and other trade-off mechanisms
can lead to it even when the vaccine is “perfect”. We suggest that the mechanism of strain
replacement is the reciprocal effect of vaccination on the fitness of the strains as measured by
their invasion reproduction numbers. This mechanism is responsible for the substitution of
one strain with another to occur both when the vaccine is perfect and when it is imperfect.
We review various well-known trade-off mechanisms and investigate whether they lead to
replacement effect in conjunction with “perfect” vaccination. We find that in contrast to
imperfect vaccination which leads to replacement of a strain with larger intrinsic reproduction
number with a strain with a lower intrinsic reproduction number, “perfect” vaccination seems
to have opposite effect on the intrinsic reproduction numbers.

Keywords: multiple pathogen variants, strain replacement, coinfection, cross-immunity, vac-
cination, coexistence, invasion.

1. Introduction

In response to selective pressures from the host immune system pathogens vary their ge-
netic characteristics to escape recognition. Thus the evolution and replacement of pathogen
types is a continuous process mediated by the host immunity. The rate at which a pathogen
mutant obtains dominance in the individual host is highest at intermediate level of immunity
of the host [12]. Vaccination has direct impact on host immunity and is therefore intimately
connected to the evolution of pathogens on the within-host level. Furthermore, vaccination
changes dynamically the susceptible pool for the pathogen variants on population level and is
a mechanism that favors the population distribution of a certain strain. The process through
which the establishment of a particular pathogen variant on within host level is related to the
establishment of this or other pathogen variant on the population level but this relation is
not well understood. Phylogenies of specific highly mutable pathogens (such as HIV) show
significant differences in the evolution on the within-host and between-host levels [12].

Vaccination plays distinctive role in the evolution of the pathogens on each level [23], but its
role as an evolutionary agent is better understood on population level. Empirical evidence in
terms of clinical trials and surveillance [4, 15] as well as theoretical research [19, 20, 8, 27, 28]
point to the fact that while vaccination leads to elimination of certain strains also facilitates
the emergence at higher prevalence of strains which previously were not widely spread. This
phenomenon is now called the replacement effect [24]. The replacement effect has been drawing
significant attention in the literature because it diminishes the effect of vaccination, particularly
for diseases caused by pathogens of considerable genetic diversity. Clearly, vaccines should be
developed in a way that minimizes the possibility for substitution of the current strains with
others. This, in turn, requires that we understand what causes this effect.
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The primary reason for strain replacement to occur is that vaccines do not equally well
protect against all strains – a property referred to as differential effectiveness. In a recent
article we [16] showed, however, that differential effectiveness may not be necessary for the
replacement to occur. This raises the question of the mechanism of strain replacement – a
mechanism that can explain its occurrence both in the presence and the absence of differential
effectiveness. In this article, namely in the next section, we discuss such a mechanism strictly
in the case of strong replacement effect – that is, replacement effect in which the dominance of
one strain is exchanged with dominance of the other.

Further we observe that what is necessary for replacement to occur is the action of some sort
of trade-off mechanism – a mechanism that allows for coexistence. In section 3 we show that
differentially effective vaccines themselves are a trade-off mechanism while equally effective,
and in particular “perfect” vaccines, that provide complete protection, lead to competitive
exclusion. That observation explains why equally effective vaccines when acting outside of
other trade-off mechanisms cannot cause replacement. However, the results in [16] show that
equally effective vaccines can act synergistically with some other trade-off mechanism (super-
infection in that case) to lead to strain replacement. Can all trade-off mechanisms fill that
role or there is something special about super-infection? We devote the rest of the paper
to answering this question. In section 4 we investigate coinfection coupled with “perfect”
vaccination and we find that strain replacement can also occur. In section 5 we investigate
cross-immunity and we touch on mutation. We find that with these two trade-off mechanisms
strain replacement in its strong form does not occur. Our results are in accord with those in
[13] where cross-immunity has been found to lead to selection for a subdominant strain only
in presence of imperfect vaccine.

Strain replacement signifies pathogen evolution under the influence of vaccination. One of
the questions that arise in that context concerns the direction of this evolution. Is it possible
that through vaccination we may be selecting for a more virulent strain? We do not address this
question here but it has been investigated for incompletely effective vaccines in [11] where it
has been observed that virulence can evolve towards increased virulence or decreased virulence
depending on whether the vaccine blocks pathogen growth or infection. Here we observe that
the direction of evolution of the pathogen’s intrinsic reproduction number (the reproduction
number in the absence of vaccination) depends on whether the vaccine is differentially effective
or not. Imperfect vaccines seem to lead to evolution towards lower intrinsic reproduction
numbers while “perfect” vaccines lead to evolution to higher reproduction numbers. In section
6 we summarize our results and discuss the differences in the the replacement effect for perfect
and imperfect vaccines.

2. The mechanism of strain replacement

Intuitively, replacement on population level of one pathogen strain with another suggests
exchange of prevalence between the two strains. Such exchange of prevalence is a result of
vaccination and can occur under several scenarios which are mathematically distinct.

• Scenario 1: The strains coexist both before and after vaccination but before vaccina-
tion strain one is more prevalent while after vaccination strain two is more prevalent.
We will refer to this replacement as weak replacement.

• Scenario 2: Strain one dominates (persists alone) before vaccination but after vac-
cination the two strains coexist but strain two has higher prevalence. An analogous
scenario occurs if both strains coexist before vaccination with strain one being more
prevalent, while after vaccination strain two dominates.

• Scenario 3: Strain one dominates (persists alone) before vaccination while after vac-
cination strain two dominates. We will call this strain replacement strong replacement.
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Replacement in all those three scenarios may or may not be epidemiologically significant.
Replacement will be epidemiologically significant if the prevalence of the second strain after
vaccination is about or higher than the prevalence of the first strain before vaccination, or, in
other words, the prevalence of the replacing strain is sufficiently high.

Mathematically scenario 3 is easier to investigate than scenarios one and two because we
have strict rigorous conditions which allow the prediction of which strain will dominate. On
the other hand to investigate the other two scenarios we need to know which strain will have
higher prevalence if the two coexist – something that is not that well understood.

The conditions that govern the dominance of one strain or another are based on the inva-
sion reproduction numbers – the number of cases strain i will generate when strain j is at
equilibrium. We denote the invasion reproduction number of strain i by R̂i. Thus, strain
one dominates if strain one can invade the equilibrium of strain two, R̂1 > 1 while strain
two cannot invade the equilibrium of strain one, R̂2 < 1. Analogous condition determine the
dominance of strain two. The two invasion reproduction numbers depend on the vaccination
level ψ: R̂i(ψ). Suppose that strain one dominates in the absence of vaccination, that is,

R̂1(0) > 1 while R̂2(0) < 1. In order for strain two to dominate at a certain vaccination

level ψ̂ we need that strain one cannot invade the equilibrium of strain two, R̂1(ψ̂) < 1, and

that strain two can invade the equilibrium of strain one, R̂2(ψ̂) > 1. If such a vaccination

level ψ̂ exists, strong replacement will occur. In other words we need vaccination to reduce
the invasion capabilities of the first strain and to increase invasion capabilities. Without such
reciprocal effect of vaccination, strong replacement cannot occur.

Fitness is defined as the expected number of offspring contributed to the next generation
and is typically computed as the product of survival and average number of offspring. For
that reason fitness of pathogens is often identified as their reproduction number. However, the
reproduction numbers are a measure of the reproductive success of the pathogen in an entirely
susceptible population, and, in a presence of a competitor, higher reproduction number may
not even lead to persistence [25, 21].

The invasion reproduction numbers, on the other hand, measure reproductive success when
the competitor is established, and guarantee persistence (at the very least). Thus, they reflect
better the fitness of the pathogens. If we take the invasion reproduction numbers for a measure
of the fitness, then the mechanism for strain replacement says that vaccination must have a
reciprocal (differential in direction) effect on the fitness of the pathogens for strong replacement
to occur. Strong replacement cannot occur without such differential in direction effect on the
fitness of the pathogens.

3. Differential effectiveness of the vaccine and strain replacement

In this section we show two things. First, that equally effective vaccines cannot cause
coexistence, that is, if competitive exclusion is the norm in the absence of vaccination, it is
also the only outcome in the presence of vaccination with equally effective vaccine. In contrast,
differentially effective vaccines can cause coexistence, even if in the absence of vaccination
competitive exclusion is the only outcome, that is differential effectiveness of the vaccine is a
trade-off mechanism in its own right. Second, we show that differential effectiveness of the
vaccine alone leads to reciprocal impact of vaccination on the invasion reproduction numbers
of the pathogens and therefore, to strain replacement. Consequently, differential effectiveness
of the vaccine is one manifestation of the main mechanism causing strain replacement.

We consider a host population of total size at time t given by N(t) that is being recruited
at a rate Λ and dies at a natural death rate µ. The number of healthy individuals who are
susceptible to the disease at time t is denoted by S(t). Healthy individuals can get infected by
strain one at a transmission rate β1 and enter the class of individuals infected and infectious
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with strain one. This class is of total size I(t). Independently, healthy individuals can get
infected by strain two at a transmission rate β2 and enter the class of individuals infected and
infectious with strain two whose total size is given by J(t). Infected individuals with strain one
recover at a recovery rate γ1 while infected individuals with strain two recover at a recovery
rate γ2. Recovered individuals comprise the class R(t). Finally, susceptible individuals are
vaccinated at a vaccination rate ψ and enter the class of vaccinated individuals, V (t). We
assume that vaccinated individuals can get infected by strain one at a rate β1δ1 where δ1 is
the coefficient of reduction of transmission of strain one provided by the vaccine. Similarly,
vaccinated individuals can get infected by strain two at a rate β2δ2 where δ2 is the coefficient
of reduction of transmission of strain two provided by the vaccine. We will consider two cases
mainly.

(1) The vaccine is equally effective with respect to both strains, that is, δ1 = δ2 = δ which
may or may not be zero.

(2) The vaccine has differential effectiveness. In particular, we will assume that the vaccine
is nearly perfect with respect to one of the strains, say strain two. That means that
δ2 = 0. In contrast, the vaccine is only partially effective with respect to strain one,
that is, δ1 6= 0. We denote δ1 = δ.

We consider the following two-strain model with vaccination [14].

S′ = Λ − β1
SI

N
− β2

SJ

N
− (µ + ψ)S

I ′ = β1
SI

N
+ β1δ1

IV

N
− (µ + γ1)I

J ′ = β2
SJ

N
+ β2δ2

JV

N
− (µ + γ2)J(3.1)

R′ = γ1I + γ2J − µR

V ′ = ψS − β1δ1
IV

N
− β2δ2

JV

N
− µV

Since vaccines are generally assumed to reduce transmission we must have 0 ≤ δ1, δ2 ≤ 1. The
reproduction numbers of the two strains are given by

(3.2) R1(ψ) =
β1µ + β1δ1ψ

(µ + ψ)(µ + γ1)
R2(ψ) =

β2µ + β2δ2ψ

(µ + ψ)(µ + γ2)

We note that both reproduction numbers are decreasing functions of the vaccination rate ψ.
We denote the value of the reproduction numbers in the absence of vaccination, Ri(0) at ψ = 0,
with Ri and we call those intrinsic reproductive numbers. Furthermore, the value at maximal
vaccination levels, ψ → ∞, is Ri(0)δi, and may or may not be under one. This reflects the fact
that imperfect vaccines may not be able to reduce the reproduction number below one, and
may not lead to eradication. The system above always has a disease-free equilibrium (each
equilibrium is given in terms of the proportions of susceptible, infectives with each strain,
recovered and vaccinated individuals – E = (s, i, j, r, v)):

E0 =

(

µ

µ + ψ
, 0, 0, 0,

ψ

µ + ψ

)

,

and a unique dominance equilibrium corresponding to each strain. The dominance equilibrium
of the first strain is

E1 =

(

µ

β1i + µ + ψ
, i, 0,

γ1i

µ
,

ψµ

(β1δ1i + µ)(β1i + µ + ψ)

)
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and it exists when R1(ψ) > 1. The proportion of infected with strain one i in E1 is given by
the unique solution of the following equation:

(3.3)
R1µ

β1i + µ + ψ

[

1 +
δ1ψ

β1δ1i + µ

]

= 1.

The dominance equilibrium of the second strain, correspondingly, is

E2 =

(

µ

β2j + µ + ψ
, 0, j,

γ2j

µ
,

ψµ

(β2δ2j + µ)(β2j + µ + ψ)

)

and it exists when R2(ψ) > 1. The system (3.1) may or may not have coexistence equilibria.
Our first result testifies to the fact that competitive exclusion is the only outcome in the

absence of vaccination.

Proposition 3.1. Assume ψ = 0. Then, if max{R1,R2} > 1, a competitive exclusion princi-
ple holds, that is, the strain with the larger reproduction number persists, while the other one
is eliminated.

This results follows from the observation that ψ = 0 implies that V (t) → 0 as t → ∞.
The rest of the system is similar to the one studied in [3] and the result follows from there.
Our next result shows that an equally effective vaccine δ1 = δ2 = δ also leads to competitive
exclusion, namely,

Proposition 3.2. Assume that the vaccine is equally effective with respect to both strains, that
is, δ1 = δ2 = δ. Then, if max{R1(ψ),R2(ψ)} > 1, a competitive exclusion principle holds, that
is, the strain with the larger reproduction number persists, while the other one is eliminated.

Proof. Assume without loss of generality that R1(ψ) > R2(ψ). As a result of the assumption
that δ1 = δ2 = δ this inequality is equivalent to the inequality β1(µ+γ2) > β2(µ+γ1). Consider
the function ξ(t) = Iβ2(t)/Jβ1(t). Differentiating ξ with respect to t we see that it satisfies the
following differential equation ξ′(t) = αξ(t) where the constant α is given by

α = [β1(µ + γ2) − β2(µ + γ1)] =
µ + ψ

µ + δψ
[R1(ψ) −R2(ψ)] > 0

Consequently, ξ(t) → ∞ as t → ∞, and since I(t) is bounded, we must have J(t) → 0
and t → ∞. That implies persistence of I(t) (at least in a weak sense) because if we assume
I(t) → 0, then the solutions of the system (3.1) approach the disease-free equilibrium, which on
the other hand can be shown to be unstable because at least one of the reproduction numbers
is above one. Therefore, the assumption that I(t) → 0 is not correct. ¤

Now we turn to the scenario (2): differential effectiveness of the vaccine. We work under
the conditions δ2 = 0 and δ1 = δ. The model (3.1) takes the form:

S′ = Λ − β1
SI

N
− β2

SJ

N
− (µ + ψ)S

I ′ = β1
SI

N
+ β1δ

IV

N
− (µ + γ1)I

J ′ = β2
SJ

N
− (µ + γ2)J(3.4)

R′ = γ1I + γ2J − µR

V ′ = ψS − β1δ
IV

N
− µV

In this case equation (3.3) for j simplifies and gives the following solution:

j =
(µ + ψ)(R2(ψ) − 1)

β2
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and dominance equilibrium E2 takes the form

E2 =

(

1

R2
, 0,

(µ + ψ)(R2(ψ) − 1)

β2
,
γ2

µ

(µ + ψ)(R2(ψ) − 1)

β2
,

ψ

R2µ

)

.

To investigate the possible presence of a coexistence equilibrium, we introduce the invasion
reproduction numbers. The invasion reproduction number of the first strain at the equilibrium
of the second strain R̂1(ψ) is the number of secondary infections one individual infected with
the first strain can produce when the second strain is at equilibrium in the population. This
number under scenario (2) takes the form

(3.5) R̂1(ψ) =
R1(µ + δψ)

R2µ
=

R1(ψ)

R2(ψ)

where Ri = Ri(0) for i = 1, 2. Similarly, the invasion reproduction number of the second

strain at the equilibrium of the first strain R̂2(ψ) is the number of secondary infections one
individual infected with the second strain can produce when the second strain is at equilibrium
in the population. The invasion reproduction number of the second strain under scenario (2)
takes the form

(3.6) R̂2(ψ) =
R2µ

β1i + µ + ψ

where i is the solution of (3.3). First we show that under scenario (2) competitive exclusion
is not necessarily the outcome, and coexistence is possible. In other words unequally effective
vaccines represent a trade-off mechanism which allows for coexistence. The following result
testifies to the presence of a nontrivial region of the parameter space where coexistence may
occur.

Proposition 3.3. If R2 > R1, and each strain can invade the equilibrium of the other, that is

R̂1(ψ) > 1 R̂2(ψ) > 1

then there exists a unique coexistence equilibrium E∗ = (s∗, i∗, j∗, r∗, v∗).

Proof. The values of the coexistence equilibrium can be computed as follows

(3.7)

s∗ =
1

R2

i∗ =
R2µ(R̂1(ψ) − 1)

(R2 −R1)β1δ

j∗ =
1

β2
[R2µ − (β1i

∗ + µ + ψ)]

r∗ =
γ1i

∗

µ
+

γ2j
∗

µ

v∗ =
R2 −R1

δR1R2

which gives the uniqueness. The existence will follow if all values above are positive. This is
straight forward to see under the assumptions of the this proposition for all values except j∗.
To see that j∗ > 0 consider the left-hand side of equation (3.3) as follows:

f(x, y) =
R1µ

β1x + µ + ψ

[

1 +
δψ

β1δy + µ

]

.

The fact that i - the proportion of infectives with strain one in E1 - means that i satisfies
equation (3.3), that is f(i, i) = 1. On the other hand if i∗ is the proportion of infectives in the
coexistence equilibrium E∗, then we have

β1δi
∗ + µ =

δψR1

R2 −R1
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and consequently, f(i, i∗) = R̂2(ψ) > 1. Therefore, f(i, i) < f(i, i∗). But f(x, y) is a decreasing
function of y which gives i∗ < i. Then,

j∗ =
β1i

∗ + µ + ψ

β2

[

R2µ

β1i∗ + µ + ψ
− 1

]

>
β1i

∗ + µ + ψ

β2

[

R̂2(ψ) − 1
]

> 0.

The persistence of both strains in this case can be observed in simulations. ¤

Several remarks are in order. First, we note that R̂1(ψ) > 1 is equivalent to R1(ψ) > R2(ψ).
This, in particular means that in the absence of vaccination, ψ = 0, the conditions of this
proposition are inconsistent and coexistence does not occur. If we have R2 > R1 we need the
vaccination level ψ > ψ∗, where the threshold vaccination level ψ∗ is given by

ψ∗ =
(R2 −R1)µ

R1δ

so that R1(ψ) > R2(ψ). Second, R̂2(ψ) > 1 implies that R2(ψ) > 1. Thus, the condi-
tions of the proposition imply that both reproduction numbers are above one. Consequently
subthreshold coexistence does not occur.

Next, we turn our attention to strain replacement. First, we note that vaccination has a
reciprocal effect on the two invasion reproduction numbers. In particular, R̂1(ψ) is a linearly

increasing function of the vaccination rate ψ such that R̂1(0) = R1

R2
. That is, under one of the

assumptions for coexistence, R2 > R1, the invasion reproduction number of the first strain
in the absence of vaccination is smaller than one. It is somewhat complicated to express
the invasion reproduction number of the second strain as a function of the vaccination rate.
Instead, we will use an upper and a lower bound of that number as follows:

(3.8)
R2µ

β1 + µ + ψ
≤ R̂2(ψ) ≤

R2µ

µ + ψ

From these inequalities, it can be seen that R̂2(ψ) → 0 as ψ → ∞ although it may not do
so monotonically. This, in particular, implies that vaccination has a reciprocal effect on the
invasion capabilities of the two strains – it increases the invasion capabilities of the first strain,
and decreases the invasion capabilities of the second strain. We illustrate in Figure 1 the graph
of the invasion reproduction number of the first strain and we plot the upper bound and the
lower bound from (3.8) to limit the region that contains the invasion reproduction number of
the second strain.

In the case of absence of vaccination, ψ = 0, the proportion infectives i can be easily
computed from (3.3) and it can be seen that R̂2(0) = R2

R1
. That is, under one of the assumptions

for coexistence, R2 > R1, the invasion reproduction number of the second strain in the absence
of vaccination is greater than one. Consequently, in the absence of vaccination we have the
second strain dominating in the population. As the vaccination levels increase, the invasion
capabilities of the first strain grow while the invasion capabilities of the second decline until, at
some vaccination level ψ̂ we have R̂1(ψ̂) > 1 and R̂2(ψ̂) < 1, that is the first strain dominates

in the population. Looking at Figure 1 we can choose ψ̂ to be any value greater than seven.
A replacement effect has occurred.

4. Coinfection, perfect vaccination and strain replacement

In an earlier article [16] we have reported that super-infection as a trade-off mechanism can
lead to strain replacement, even when the vaccine is assumed perfect with respect to both
strains, that is, it protects all vaccinated individuals completely from infection with either
strain. In super-infection one of the strains (say, strain one) wins instantaneously the within-
host competition and displaces the other strain (say, strain two) in infected individuals thus
turning individuals infected with the second strain into individuals infected with the first strain
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Figure 1. The figure illustrates the graph of the invasion reproduction num-
ber R̂1(ψ) and Upper R̂2(ψ) give the upper bound while Lower R̂2(ψ) gives the
lower bound in (3.8). The parameters are chosen as follows: β1 = 5, β2 = 15,
γ1 = 0.5, γ2 = 0.5, δ = 1, µ = 0.5 which give R1 = 5 and R2 = 15.

[25]. If the second strain has better reproduction rate and would be the dominant strain in
the absence of vaccination and super-infection, super-infection as a trade-off mechanism might
be strengthening the first strain to coexist with the second strain, or even replace it as a
dominant strain. When vaccination is applied against the first strain, it weakens the first
strain and the second strain can again take over, that is, dominate. One question we want to
address in this section is whether coinfection, as another trade-off mechanism [?] can lead to
strain replacement even when the vaccine is perfect. In coinfection the strains are seemingly
symmetrical – they can both infect individuals infected with the other strain and then they
coexist in the host and the host can transmit both. As a trade-off mechanism coinfection can
also allow the weaker strain – the one that will be eliminated in the absence of coinfection – to
persist either jointly with the stronger strain or even alone, eliminating the stronger strain from
the population [21]. When vaccination is applied, even vaccination equally effective against
both strains, it weakens the trade-off mechanism and restores the dominance of the strain with
the larger reproduction number in absence of vaccination. Thus the same effect is observed
when the trade-off mechanism is coinfection and leads to strain replacement as we show below.

We consider again a host population of total size at time t given by N(t) in which individuals
are recruited at a total recruitment rate Λ and die at a natural death rate µ. The number of
healthy individuals who are susceptible to the disease at time t is denoted by S(t). Healthy
individuals can get infected by strain one at a transmission rate β1 and enter the class of indi-
viduals infected and infectious with strain one. This class is of total size I1(t). Independently,
healthy individuals can get infected by strain two at a transmission rate β2 and enter the
class of individuals infected and infectious with strain two whose total size is given by I2(t).
Individuals, infected with strain one can get infected with strain two from those infected with
strain two only at a rate δ1 while individuals infected with strain two can get infected with
strain one from those infected with strain one only at a rate δ2 – those individuals become
jointly infected with both strains and enter the class J(t). Jointly infected individuals infect
susceptibles with strain one at a rate γ1 and those in the I1 class with strain two – at a rate η1.
Similarly, jointly infected individuals infect susceptibles with strain two at a rate γ2 and those
in the I2 class with strain one – at a rate η2. Infected with strain one recover at a rate α1,
those infected with strain two – at a rate α2 and those jointly infected recover approximately
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at the same time from both strains at a rate ν. All recovered individuals make up the class
R(t). Finally, susceptible individuals are vaccinated at a vaccination rate ψ and enter the class
of vaccinated individuals, V (t). We note that all vaccinated individuals are fully protected
against all strains in the system, that is, we assume “perfect” vaccination. The model takes
the form:

S′ = Λ − β1
SI1

N
− β2

SI2

N
− (γ1 + γ2)

SJ

N
− (µ + ψ)S

I ′1 = β1
SI1

N
+ γ1

SJ

N
− (µ + α1)I1 − δ1

I1I2

N
− η1

I1J

N

I ′2 = β2
SI2

N
+ γ2

SJ

N
− (µ + α2)I2 − δ2

I1I2

N
− η2

I2J

N
(4.1)

J ′ = δ1
I1I2

N
+ η1

I1J

N
+ δ2

I1I2

N
+ η2

I2J

N
− (µ + ν)J

R′ = α1I1 + α2I2 + νJ − µR

V ′ = ψS − µV

The existence of equilibria depends on the reproduction numbers of the two strains which are
symmetrical:

(4.2) R1(ψ) =
β1µ

(µ + ψ)(µ + α1)
R2(ψ) =

β2µ

(µ + ψ)(µ + α2)

We note again that both reproduction numbers are decreasing functions of the vaccination
rate ψ. In this case both can be decreased to zero by vaccination. The system (4.1) has the
disease-free equilibrium

E0 =

(

µ

µ + ψ
, 0, 0, 0, 0,

ψ

µ + ψ

)

,

where each equilibrium consists of the proportion of susceptible, proportion of infected with
the first strain, proportion infected with the second strain, proportion of jointly infected,
proportion recovered, and proportion vaccinated individuals: E = (s, i1, i2, j, r, v). The system
has two dominance equilibria - one for each strain. The dominance equilibrium of strain one
exists if and only if R1(ψ) > 1 and is given by:

E1 =

(

1

R1
,

µ

µ + α1

(

1 −
1

R1(ψ)

)

, 0, 0,
α1

µ + α1

(

1 −
1

R1(ψ)

)

,
ψ

µR1

)

Similarly, dominance equilibrium of strain two exists if and only if R2(ψ) > 1 and is given by:

E2 =

(

1

R2
,

µ

µ + α2

(

1 −
1

R2(ψ)

)

, 0, 0,
α2

µ + α2

(

1 −
1

R2(ψ)

)

,
ψ

µR2

)

Denote by qi = ηi

µ+ν
and ri = γi

µ+ν
for i = 1, 2. The invasion reproduction number of the first

strain at the equilibrium of the second is given by

(4.3) R̂1(ψ) =
β1s + r1s(δ1 + δ2)i2 + q2(µ + α1 + δ1i2)i2

µ + α1 + δ1i2 + q2i2β1s

where s and i2 have the corresponding values from E2. Analogously, the reproduction number
of the second strain at the equilibrium of the first is given by

(4.4) R̂2(ψ) =
β2s + r2s(δ1 + δ2)i1 + q1(µ + α2 + δ2i1)i1

µ + α2 + δ2i1 + q1i1β2s

where s and i1 have the corresponding values from E1. Both invasion reproduction numbers
depend on ψ only through i1 and i2. Both i1 and i2 are decreasing functions of ψ but the
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dependence of the invasion reproduction numbers on i1 and i2 may be non-monotone. In par-
ticular, the dependence of the invasion reproduction numbers on i1 and i2 may be monotonely
decreasing, monotonely increasing or first monotonely decreasing and then monotonely increas-
ing. That translates to exactly opposite dependence of the invasion numbers on ψ. First, we
will assume without loss of generality that

R1 < R2.

This, in particular means that in the absence of the trade-off mechanism (coinfection in this
case) strain two will dominate in the population both in absence and in presence of vaccination
of any level. Second, since the intrinsic reproduction number of the second strain is larger, to
break the symmetry of the strains we make the following assumptions that strengthen strain
one and weaken strain two:

Assumption 4.1. (1) Suppose that strain one can coinfect individuals infected with strain
two but strain two cannot coinfect individuals infected with strain one. That, in partic-
ular, means that we are assuming:

δ1 = 0, η1 = 0 (q1 = 0).

(2) Suppose that jointly infected individuals, that is those in class J cannot infect with
strain two, that is,

γ2 = 0 (r2 = 0).

Under these assumptions the invasion reproduction numbers become:

(4.5) R̂1(ψ) =
β1s + r1sδ2i2 + q2(µ + α1)i2

µ + α1 + q2i2β1s

The reproduction number of the second strain at the equilibrium of the first becomes:

(4.6) R̂2(ψ) =
β2s

µ + α2 + δ2i1

The invasion reproduction number of the second strain R̂2(ψ) is now a decreasing function of

i1, and consequently, an increasing function of ψ. On the other hand, the derivative of R̂1(ψ)
with respect to i2 is

∂R̂1(ψ)

∂i2
=

r1δ2(µ + α1)s + q2(µ + α1)
2

[

1 −
(

R1

R2

)2
]

(µ + α1 + q2i2β1s)2
> 0

Consequently, R̂1(ψ) is an increasing function of i2 and therefore a decreasing function of ψ.
This implies that vaccination has reciprocal effect of the invasion reproduction numbers. In
particular, it decreases the invasion capabilities of the first strain and increases the invasion
capabilities of the second strain. Thus, if coinfection allows the first strain to dominate in the
population when no vaccination is present, that is, R̂1(0) > 1 while R̂2(0) < 1, increasing

vaccination levels may lead to the fact that at some vaccination level ψ̂ we have R̂1(ψ̂) < 1

and R̂2(ψ̂) > 1, that is strain two dominates in the population. Replacement of strain one
with strain two has occurred. We illustrate that in Figure 2. We note that in Figure 2 we have
the case when R2 > R1, and consequently, in the absence of coinfection strain two will be
dominating (with or without vaccination). In the absence of vaccination ψ = 0, the trade-off
mechanism is strong enough to allow for the strain with the lower reproduction number to
persist while the one with the larger reproduction number is eliminated. That is a result of
the fact that the first strain can invade the equilibrium of the second R̂1(0) = 1.44 while the

second cannot invade the equilibrium of the first R̂2(0) = 0.9091. This outcome is a result
of our Assumptions 4.1 that strengthen the first strain in its interaction with the second.
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Figure 2. The figure shows that strain replacement occurs in the model with
coinfection (4.1). The left figure shows that strain one dominates while strain
two is eliminated when there is no vaccination ψ = 0. The right figure shows
that strain two dominates while strain one is eliminated when vaccination is at
level ψ = 1.5. The remaining parameters in this figure are chosen as follows:
β1 = 6, β2 = 5, µ = 0.5, γ1 = 8, γ2 = 0, δ1 = 0, δ2 = 1.5, α1 = 1, α2 = 0.5,
ν = 0.5, η1 = 0, η2 = 0, Λ = 10. These give R1 = 4 and R2 = 5.

Furthermore, vaccination decreases the impact of the trade-off mechanism and restores the
strain with the larger intrinsic reproduction number to dominate in the population.

This example raises several questions: Is it absolutely necessary that the trade-off mecha-
nism is strong enough to allow the strain with the lower reproduction number to dominate in
the population. Super-infection [25] and coinfection [21] are two such mechanism which are
known to generate this effect but not all trade-off mechanisms can be readily associated with
it. In particular, we have previously observed that cross-immunity as a trade-off mechanism
always leads to dominance of the strain with the largest reproduction number [26]. Before we
address the question whether cross-immunity may trigger strain replacement, we will investi-
gate whether strain replacement may be exhibited under a different scenario. In particular,
assume it is possible that the trade-off mechanism is weak and does not lead to dominance
of the strain with the smaller intrinsic reproduction number. Is it possible that a “perfect”
vaccination works in such a way that it strengthens this weak trade-off mechanism so that at
some higher vaccination levels this mechanism allows for the strain with the lower intrinsic
reproduction number to dominate? In the case of coinfection we could answer this question
negatively only for a special case.

Proposition 4.2. Assume that jointly infected individuals cannot coinfect already infected
individuals, that is η1 = η2 = 0. Assume that in the absence of vaccination (ψ = 0) the
strain with the larger reproduction number persists while the other is eliminated. Then strain
replacement cannot occur in model (4.1).

Proof. Assume without loss of generality that R1 > R2, and that R̂1(0) > 1 while R̂2(0) < 1.
The invasion reproduction number of the first strain at the equilibrium of the second in this
case becomes

(4.7) R̂1(ψ) =
β1s + r1s(δ1 + δ2)i2

µ + α1 + δ1i2

where we recall that s and i2 have the corresponding values from E2. Analogously, the invasion
reproduction number of the second strain at the equilibrium of the first is given by

(4.8) R̂2(ψ) =
β2s + r2s(δ1 + δ2)i1

µ + α2 + δ2i1
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where we recall s and i1 have the corresponding values from E1. The derivatives of the two
invasion reproduction numbers with respect to i2 and i1 respectively, are given by

∂R̂1(ψ)

∂i2
=

r1s(δ1 + δ2)(µ + α1) − δ1β1s

(µ + α1 + δ1i2)2
=

s(µ + α1)[r1(δ1 + δ2) − δ1R1]

(µ + α1 + δ1i2)2

Analogously,

∂R̂2(ψ)

∂i1
=

r2s(δ1 + δ2)(µ + α2) − δ2β2s

(µ + α2 + δ2i1)2
=

s(µ + α2)[r2(δ1 + δ2) − δ2R2]

(µ + α2 + δ2i1)2

Assume that replacement occurs. That implies that there exists a vaccination level ψ∗ such
that R̂1(ψ

∗) = 1 becoming from larger than one to smaller than one. This equality can be
rewritten to give

(µ + α1)

[

R1

R2
− 1

]

= i2[δ1 − r1s(δ1 + δ2)]

From our assumption that R1 > R2 it follows that the left-hand side of this equality is positive.
Since i2 > 0, that means that we must have

δ1 > r1s(δ1 + δ2)

which implies that
δ1R2 > r1(δ1 + δ2)

or that ∂R̂1(ψ)
∂i2

< 0 leading to the fact that R̂1(ψ) is an increasing function of ψ starting from a
value above one and cannot be equal to one for any ψ. That is a contradiction. Consequently,
strain replacement does not occur. ¤

5. Cross-immunity and strain replacement

Cross-immunity is the phenomenon where an infection with one strain gives partial pro-
tection to infection with other strains. Cross-immunity has been primarily investigated in
connection with influenza [1, 5, 6] and dengue [7, 17, 10]. It is well known that it can cause
coexistence of the strains. Imperfect vaccination can lead to strain replacement in conjunction
with cross-immunity only if the strains provide sufficient level of protection against each other,
that is, when the competition among them is high [8, 13]. Here we investigate the possibility
that cross-immunity as a trade-off mechanism may cause replacement in the context of “per-
fect” vaccination. From the analysis in [26] we know that the boundaries of the coexistence
region do not cross the bisector R1 = R2. That, in particular, implies that only the strain with
the higher reproduction number dominates. Here, we use a cross-immunity model similar to
the one in [5, 6] and somewhat simpler than the one in [26]. We use that model to show that
“perfect” vaccination combined with cross-immunity in its simplest form cannot lead to strain
replacement. This suggests that not all trade-off mechanisms necessarily induce replacement
effect.

We consider again a host population of total size at time t given by N(t) with recruitment
Λ and natural death rate µ. The class of susceptible to the disease individuals at time t is
denoted by S(t). Healthy individuals who previously were never infected by any of the strains
can get infected by strain one at a rate β1 and enter the class of individuals infected and
infectious with strain one I1(t). Those recover at a rate γ1 and enter the recovered class R1(t).
Recovered individuals in class R1(t) cannot get infected with strain one any more but they
can get infected by strain two at a somewhat reduced rate β2σ, where σ is the cross-immunity
coefficient, and move to the class of individuals currently infected and infectious with strain two
who were previously infected with train one J2(t). Individuals who recover from J2(t) enter the
class of fully immune individuals W (t) at a rate γ2. This same process can be symmetrically
undergone through a first infection with strain two giving rise to the analogous classes I2(t),
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R2(t), and J1(t). Finally, susceptible individuals are vaccinated at a vaccination rate ψ and
enter the class of vaccinated individuals, V (t). We note that all vaccinated individuals are fully
protected against all strains in the system, that is, we again assume “perfect” vaccination. We
obtain the following model:

S′ = Λ − β1
S(I1 + J1)

N
− β2

S(I2 + J2)

N
− (µ + ψ)S

I ′1 = β1
S(I1 + J1)

N
− (µ + γ1)I1

R′

1 = γ1I1 − β2σR1
(I2 + J2)

N
− µR1

J ′

1 = β1σR2
(I1 + J1)

N
− (µ + γ1)J1

I ′2 = β2
S(I2 + J2)

N
− (µ + γ2)I2(5.1)

R′

2 = γ2I2 − β1σR2
(I1 + J1)

N
− µR2

J ′

2 = β2σR1
(I2 + J2)

N
− (µ + γ2)J2

W ′ = γ1J1 + γ2J2 − µW

V ′ = ψS − µV

The reproduction numbers of the two strains are the same as in the coinfection case and are
symmetrical:

(5.2) R1(ψ) =
β1µ

(µ + ψ)(µ + α1)
R2(ψ) =

β2µ

(µ + ψ)(µ + α2)

The system (5.1) has the disease-free equilibrium

E0 =

(

µ

µ + ψ
, 0, 0, 0, 0, 0, 0, 0,

ψ

µ + ψ

)

,

where each equilibrium consists of the following proportions: E = (s, i1, r1, j1, i2, r2, j2, w, v)).
The system has two dominance equilibria - one for each strain. The dominance equilibrium of
strain one exists if and only if R1(ψ) > 1 and is given by:

E1 =

(

1

R1
,

µ

µ + γ1

(

1 −
1

R1(ψ)

)

,
γ1

µ + α1

(

1 −
1

R1(ψ)

)

, 0, 0, 0, 0, 0,
ψ

µR1

)

Similarly, the dominance equilibrium of strain two exists if and only if R2(ψ) > 1 and is given
by:

E2 =

(

1

R2
, 0, 0, 0,

µ

µ + γ2

(

1 −
1

R2(ψ)

)

,
γ2

µ + γ2

(

1 −
1

R2(ψ)

)

, 0, 0,
ψ

µR2

)

The invasion reproduction number of the first strain at the equilibrium of the second strain is
given by

(5.3) R̂1(ψ) =
R1

R2
+

R1σγ2

µ + γ2

(

1 −
1

R2(ψ)

)

The invasion reproduction number of the second strain at the equilibrium of the first strain is
given by

(5.4) R̂2(ψ) =
R2

R1
+

R2σγ1

µ + γ1

(

1 −
1

R1(ψ)

)
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Clearly both invasion reproduction numbers are decreasing functions of the vaccination rate
and thus vaccination does not have a reciprocal effect on the invasion capabilities of the strains.
In fact, it decreases both. Consequently, strain replacement in the strong form that we are
considering in this article – the dominance of one strain is replaced by dominance of the other
– does not occur. It is possible that weak replacement in the form of Scenario 1 or Scenario 2
may occur. For instance, it is possible that one of the strains has a much higher prevalence
but the other has a much lower prevalence while the two strains coexist and with increased
vaccination levels the strain with the higher prevalence gets eliminated first and the other
strain dominates.

In this context, strain replacement in the stronger sense considered here does not occur in
the presence of another trade-off mechanism – mutation – defined as one strain changing its
genetic characteristic to become another (and the host infected with it becomes a host host
infected with the new strain) [2]. It is well known that mutation leads to coexistence, but the
newly obtained mutant strain cannot exist by itself, that is, it cannot be a dominant strain
[9]. Therefore, in the case of mutation strain replacement in the strong sense considered here
does not occur.

6. Discussion

In this article we investigate the role of vaccination in strain replacement. We understand
the replacement effect in a strong sense: we assume that one of the strains dominates in the
absence of vaccination, while in the presence of vaccination – the other strain dominates. We
call this vaccine induced replacement effect since vaccination is necessary to bring about the
other strain.

The replacement effect has been thoroughly investigated in the literature – there are both
plenty of empirical evidence and theoretical studies. Mathematical models have been used to
investigate how and why it occurs. It has been suggested that the replacement effect is a result
of the differential effectiveness of the vaccine.

In this article we add to an already existing theoretical evidence that differential effectiveness
of the vaccine may not be necessary for a vaccine induced replacement effect to occur. We
suggest a new mechanism that may explain why strain replacement under vaccination may
occur. In particular, we suggest that vaccination leads to exchange in the dominance of strains
because it has a reciprocal effect on the fitness of the strains, that is because it decreases the
fitness of the strain dominating in the absence of vaccination, and it increases the fitness of
the strain dominating in the presence of vaccination. We define the fitness of the strain as its
capability to invade the equilibrium of the other strain, that is, its reproduction number when
the other strain is at equilibrium, given by the invasion reproduction number.

Furthermore, exchange of dominance of the strains through vaccination appears to be pos-
sible only if the strains have the ability to coexist. Therefore, exchange of dominance is
strongly connected to the action of some trade-off mechanism. In fact, in all known theoretical
cases that detect the phenomenon, stable coexistence of the strains is also possible as well as
competitive exclusion. To support that claim we establish that differential effectiveness is a
trade-off mechanism itself by showing that in the absence of other known trade-off mechanisms
equally effective vaccines lead to competitive exclusion of the strain with the lower reproduction
number. On the other hand, differential effectiveness of the vaccine leads to (locally stable)
coexistence. From this perspective it is hardly surprising that some other trade-off mechanisms
in combination with equally effective, and even “perfect”, vaccines can also lead to strain re-
placement. We observed it an epidemic model with perfect vaccination and super-infection
as a trade-off mechanism. We show that confection as a trade-off mechanism combined with
“perfect” vaccination can also lead to strain replacement in the strong sense we consider here.
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On the other hand strain replacement in the strong sense does not occur with perfect vac-
cination in the presence of several well-known trade-off mechanisms, such as cross-immunity
and mutation. Perhaps, it may occur in some weakened sense where the strains coexist but
exchange their position as the most prevalent strain. We did not explore that further because
such exploration requires knowledge of the mechanism that governs higher prevalence during
coexistence.

So which trade-off mechanisms can lead to strain replacement in the presence of equally
effective vaccines and which cannot? We surmise that the trade-off mechanism should be strong
enough to be capable to allow a strain with a lower intrinsic reproduction number to dominate
in the population. Both super-infection and coinfection are known to lead to extinction of the
strain with the maximal reproduction number even in the absence of vaccination. On the other
hand, there is no evidence that cross-immunity may cause such effect.

“Perfect” vaccination coupled with either super-infection or coinfection seems to lead to
strain replacement through exactly the same sequence of steps: The strain with the largest
intrinsic reproduction number will dominate in the absence of vaccination and the trade-
off mechanism. However, in the presence of the trade-off mechanism but in the absence of
vaccination – the strain with the lower intrinsic reproduction number dominates and the strain
with the larger reproduction is eliminated. Vaccination weakens the effect of the trade-off
mechanism and at some vaccination level the dominance of the strain with the larger intrinsic
reproduction number is restored. Thus we see replacement of the dominance of the strain with
the lower intrinsic reproduction number with the strain with the larger intrinsic reproduction
number. We have not been able to show that “perfect” vaccination can lead to replacement
of the strain with the larger intrinsic reproduction number by a strain with a lower intrinsic
reproduction number. We have been able to rule out this possibility for a special case of
coinfection, however, ruling it out for the more general cases remains an open problem.

This is where the replacement effect that occurs with differential effectiveness of the vac-
cine differs significantly compared to the one that occurs with “perfect” vaccines. Aside the
fact that most vaccines are indeed unequally effective against different strains – differential
effectiveness leads to the replacement of the strain with the higher reproduction number which
dominates in the absence of vaccination (when competitive exclusion is the only outcome)
with the strain with a lower reproduction number (when unequally effective vaccine acts as a
trade-off mechanism). Another marked difference is that even if “perfect” vaccines can cause
replacement, that can only happen for a certain range of vaccination levels. If the vaccination
level is sufficiently high – both strains will be eliminated from the population. That may not
be the case with differentially effective vaccines. If the reproduction number of the strain,
not primarily targeted by the vaccine, cannot be reduced below one, no matter how high the
vaccination levels, that strain will persist, even if we successfully vaccinate all individuals in
the population.
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