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Abstract. The number of cases of avian influenza in birds and humans exhibits sea-
sonality which peaks during the winter months. What causes the seasonality in H5N1
cases is still being investigated. This article addresses the question of modeling the
periodicity in cumulative number of human cases of H5N1. Three potential drivers
of influenza seasonality are investigated: (1) seasonality in bird-to-bird transmission;
(2) seasonality caused by wild bird migration or seasonal fluctuation of avian influenza
in wild birds; (3) seasonality caused by environmental transmission. A framework of
seven models is composed. The seven models involve these three mechanisms and
combinations of the mechanisms. Each of the models in the framework is fitted to
the cumulative number of humans cases of H5N1. The corrected Akaike Information
Criterion (AICc) is used to compare the models and it is found that the model with
periodic bird-to-bird transmission rate best explains the data. The best fitted model
with the best fitted parameters gives a reproduction number of highly pathogenic avian
influenza R0 = 1.06. The best fitted model is a simple SI epidemic model with periodic
transmission rate and disease-induced mortality, however, this model is capable of very
complex dynamical behavior such as period doubling and chaos.
Keywords: mathematical models, non-autonomous differential equations, reproduc-
tion number, seasonality, H5N1, avian influenza, model selection.

AMS Subject Classification: 92D30, 92D40

1. Introduction

Fifteen years after its appearance leading to the death of a boy in Hong Kong, in
1997, the highly pathogenic avian influenza (HPAI) of subtype H5N1 continues to infect
humans and cause nearly 60% death rate among the affected individuals [23]. Despite
the low count of infected humans, 637 as of October 2013, the HPAI H5N1 is considered
one of the most dangerous diseases that humanity faces today[52]. The fear stems from
the possibility that the now zoonotic microorganism may emerge at some point as an
efficiently human-to-human transmissible pathogen, capable of killing millions of people
in a short period of time [14].
The virus circulates primarily in poultry and has proven a formidable opponent to the

control measures. Millions of chickens have been destroyed in an attempt to eliminate
the pathogen. Early reports in many countries in Asia proclaimed the virus “stamped
out”, only for the culprit to return a few months later during the cooler time of the year
[32].
Now it is well known that the dynamics of H5N1 infections in both domestic birds

and humans follows seasonal pattern with peaks during December-April, and lows during
June-September periods, much like human influenza in the temperate climates in the
Northern Hemisphere (see Figure 1, [11], and [31]). The pattern can be seen across all
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Figure 1. A bar chart of monthly poultry outbreaks in the period 2008-
2011. Red portion of the bar represents poultry outbreaks in Indonesia,
and white portion – poultry outbreaks in the rest of the world. The main
contributor in the remainder of the world is Egypt.

affected countries, most of which are in fact tropical countries with warmer weather.
To show the seasonality in the poultry outbreaks, we produced the Figure 1, from the
monthly FAO reports [11]. The tallest bar in the bar chart (see Figure 1) occurs on
February 2010. In February 2010, total of 7 countries (including Indonesia) reported
FAO a total of 356 poultry outbreaks of which 212 occurred in Indonesia and the rest
in countries such as Egypt and Viet Nam (see Figure 1 in the February 2010 report
in [11]). In Figure 1, we plotted the Indonesia outbreaks in red, and the rest of the
world in white. This is the way other bars are produced in the bar chart. Table 1 gives
the number of outbreaks for the period 2008 to 2011 used to produce the bar chart. A
poultry outbreak means the detection of one H5N1 infected domestic bird in a farm.
For instance, two outbreaks in a village means there are two farms in that village where
H5N1 is observed, but the number of birds effected by the virus is not known.
The question of what drives the seasonality in avian influenza is just beginning to be

addressed [27] but it has been widely studied for human influenza. Human influenza A
also exhibits pronounced seasonality which in temperate zones peaks during the colder
winter months. Reasons for the influenza’s distinct seasonality in moderate climates are
not completely understood. Lofgren et al. [22] reviews a number of mechanisms that
could be responsible for the observed dynamics. Low humidity and cold temperatures
are most often pointed to be reasons for the spike of influenza activity in winter months
[34]. Those conditions favor the aerosol-borne influenza virus, which survives longer
even on surfaces under colder temperature. Similar correlation between environmental
survival of the pathogen and temperature/humidity has been also established for HPAI
H5N1 [46]. For human influenza, it is furthermore suspected that low winter tempera-
tures promote crowding among the human population which facilitates transmission. In
addition, seasonal variations in the host immune system may play a role. For instance,
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Table 1. Poultry Outbreaks From 2008-2011

Date Indonesia Rest of the
World

Date Indonesia Rest of the
World

07/08 34 10 11/09 42 14
08/08 91 15 12/09 105 25
09/08 90 10 01/10 169 85
10/08 32 5 02/10 212 144
11/08 36 11 03/10 98 98
12/08 54 29 04/10 89 40
01/09 102 27 05/10 49 32
02/09 168 83 06/10 31 23
03/09 202 40 07/10 39 22
04/09 108 28 08/10 44 15
05/09 126 25 09/10 52 18
06/09 187 19 10/10 59 26
07/09 139 9 11/10 46 23
08/09 100 9 12/10 87 42
09/09 87 10 01/11 172 177
10/09 11 9 02/11 211 115

vitamin D levels affect immunity by supporting CD4 T-cell and mucosal antibody re-
sponses but vitamin D levels are related to solar or artificial UV radiation and fluctuate
seasonally. It is possible that several mechanisms work synchronously to produce the
seasonal variations in influenza dynamics.
In contrast, in tropical climates human influenza exhibits fluctuation but the pattern

is harder to recognize and appears to be region-specific. Some regions observe outbreaks
that follow rainfall season while others see several peaks but no particular association
with rainfall [15].
The mechanisms that drive the seasonality of HP H5N1 influenza may be similar to

those that drive seasonality in human influenza, or may be specific to the birds who are
the main host of avian influenza. Seasonality is typical not only for HP H5N1 influenza
in birds but also occurs for low pathogenic strains (LPAI) that infect wild birds [47].
However, the pattern of seasonality in LPAI may be different. Most species of wild birds
are infected only some seasons. For instance, shorebirds are infected during spring and
fall, while marine birds are frequently infected during summer and rarely infected during
spring. The only group of wild birds that carries avian influenza viruses year-round is
waterfowl. Avian influenza exhibits distinct seasonality in waterfowl with a peak in late
summer when the numbers of highly susceptible juveniles is high. The prevalence of
avian influenza decreases in the fall and winter, and it is lowest in the spring when the
prevalence reaches a low of 0.25% ([47], Chapter 22).
In this article we address the question of modeling the seasonality of H5N1. Season-

ality in avian influenza transmission has been rarely modeled. Most models of HPAI
H5N1 created up to date are autonomous and average out the seasonality (but see [23]).
Breban et al. [4] model seasonality and environmental transmission of low pathogenic
avian influenza (LPAI) viruses in wild birds with the basic premise that seasonality is
introduced by the migratory patterns and seasonal breeding. The various possible dri-
vers of H5N1 seasonality have not been explored. We do that here and we search for
the modeling approach that best accounts for the number of cumulative human cases of
H5N1 as given by the World Health Organization [52]. In the next section we discuss
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the possible role of climatic factors in the seasonality of avian influenza H5N1 in birds
and humans. In section 3, we introduce the basic assumed drivers of seasonality and
incorporate them in the simplest way into the H5N1 models. In section 4 we introduce
the modeling framework which consists of seven models and we pre-estimate some of
the parameters. In section 5 we describe our fitting procedure, and the results of the
fitting. Fitting is used to compare each of the seven models to the data. In section 6 we
discuss some of the mathematical properties of the best fitted model. Section 7 contains
the discussion of the results.

2. Avian influenza seasonality and climate

Can climatic variables such as temperature, rainfall, or relative humidity be associ-
ated with H5N1 outbreaks and serve as predictors of seasonality? Association between
temperature and poultry outbreaks has been previously found in China [21] where out-
breaks occur when temperature is low. Furthermore, Fang et al. [8] found that each
100 mm increase in total annual precipitation is correlated to a 0.9-fold reduction in
odds of H5N1 poultry outbreaks in China. However, concluding that outbreaks are cor-
related with climate on global scale will be premature. A recent article focuses on the
seasonality of HP H5N1 in Egypt and Indonesia – two of the most affected countries
by poultry outbreaks and human cases [27]. The authors find that human incidence in
Egypt is correlated with meteorological factors while this association in Indonesia does
not exist. Furthermore, Figure 2 suggests that association between low temperatures
and outbreaks high intensity also holds for Egypt but does not hold for Indonesia where
temperature remains constant throughout the year. Association between the outbreaks
and the rainfall is also hard to establish on a global scale. In Indonesia and Egypt peak
of outbreaks coincides with the rainy season, while in Vietnam peak of outbreaks coin-
cides with the dry season and the rainfall season is in the summer months when there
are fewer outbreaks (see Figure 2). Thus, climatic factors cannot be easily implicated
in the seasonality of H5N1, particularly on a global scale.
We found even less correlation between average humidity and poultry outbreaks (re-

sults not shown). This diversity of the climatic characteristics across countries prevents
the inclusion of seasonally forced climatic factor (such as temperature or rainfall) as
driver of seasonality in H5N1 models. The relationship, if one exists, between climate
and H5N1 seasonality is more subtle and may be best accounted for indirectly.

3. Modeling H5N1 seasonality: basic mechanisms

In the absence of a clear understanding of what drives the seasonality in H5N1 in-
fluenza, in this section we propose three hypothetical mechanisms that may be respon-
sible for the seasonality of H5N1 influenza in poultry. We propose a simple SI non-
autonomous epidemic model to incorporate each scenario. These mechanisms are: (1)
seasonality in the transmissibility of H5N1, possibly due to climatic reasons; (2) season-
ality introduced by the migration of wild birds or by seasonality in H5N1 cases in wild
birds; (3) seasonality in the environmental transmission of the pathogen.

3.1. Seasonality in the direct transmissibility of H5N1 among poultry. The
only climatic variable that seems to be associated with outbreaks in all three countries
that we investigated (Egypt, Indonesia and Vietnam) is the average number of hours
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Figure 2. A bar chart of monthly poultry outbreaks in the period
2008-2010, rainfall and temperature for Indonesia, Egypt and Vietnam.
Poultry outbreaks exhibit seasonality with peak in winter months in all
three countries. At the same time temperature is nearly constant in In-
donesia. Rainfall is synchronized with the outbreaks in Indonesia where
peak rainfall coincides with peak of outbreaks but in Vietnam peak out-
breaks coincide with the dry season. Red bars give the outbreaks, blue
bars – the rainfall, and the green line is the temperature.
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Table 2. Definition of the variables in the modeling framework

Variable Meaning

Sd Susceptible domestic birds

IHd
Birds infected with HPAI

V Amount of virus in the environment

S Susceptible humans

I Infected humans with HPAI

of sunlight per day. The average number of hours of sunlight per day is highest in the
summer months May-September, and lowest in the winter months. Sunlight and UV
radiation in humans affect vitamin-D and melatonin levels which in turn have effect on
host susceptibility to influenza [13]. This may suggest that similar mechanisms play
role in poultry and affect the seasonality of H5N1 in both poultry and humans. We
model this type of seasonality as seasonally forced susceptibility in the direct bird-to-
bird transmission of H5N1.
Birds infected with HPAI shed more through the respiratory tract which is in con-

trast to LPAI where transmission is primarily through the fecal-oral route. Preferential
shedding through the oropharynx has been consistently shown with HP H5N1 viruses
[9], meaning that direct bird-to-bird transmission of the virus is the primary route of
transmission for HP H5N1. The period of survival of the virus in bird secretions, feces,
and as aerosols depends on a number of factors, including ambient temperature and
humidity which fluctuate with seasons [49] and may contribute to H5N1 seasonality.
This type of seasonality again can be modeled as seasonally forced transmissibility in
the direct bird-to-bird transmission of H5N1.
To introduce the first model, we divide the domestic bird population into 2 classes:

susceptible birds, Sd and infected birds with HPAI, IHd
. We use a simple SI model for

the dynamics of HPAI among poultry, since almost all birds infected with avian influenza
either die from infection or are culled to prevent the spread of the disease. The model
for the bird population is coupled with a simple SI model for the human population
that captures the zoonotic transmission of H5N1 to humans. The dynamic variables of
the human portion of the model are S – the number of susceptible humans and I – the
number of infected humans. The description of the dynamic variables can be found in
table Table 2. We call the model with seasonality in transmissibility “Model 1”. The
model takes the form:
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Table 3. Definition of the parameters in the modeling framework

Parameter Meaning

Λd Birth/recruitment rate of domestic birds

βHd
(t) Transmission rate of HPAI among domestic birds

Iw(t) Number of infected wild birds

f(Iw(t)) Periodic source of infection from wild birds

µd Natural death rate of domestic birds

νHd
HPAI-induced mortality rate for domestic birds

δ(t) Decay rate of the virus

η Shedding rate of the virus into the environment

Λ Birth/recruitment rate of humans

β Transmission coefficient of HPAI from birds to humans

µ Natural death rate of humans

ν Death rate of humans due to HPAI

ρ Transmission rate of the free virus

M1















































dSd

dt
= Λd − βHd

(t)IHd
Sd − µdSd,

dIHd

dt
= βHd

(t)IHd
Sd − (µd + νHd

)IHd

dS

dt
= Λ− βIHd

S − µS

dI

dt
= βIHd

S − (µ+ ν)I

with positive initial conditions : Sd(0), IHd
(0), S(0), I(0) > 0. Parameters of the model

are described in Table 3.
The transmission rate βHd

(t) is assumed to be periodically forced. In particular, we
take

(3.1) βHd
(t) = κ1 sin

(

2π

365
(t + ω1)

)

+ κ2

This form assumes 365-day periodicity and has amplitude κ1, vertical shift κ2, and phase
shift ω1 which are to be determined by fitting. This simple sinusoidal function is chosen
for two reasons: (1) It has the advantage of simplicity and ease in computation; (2) In
some cases this sinusoidal function may represent a linear transformation of a weather
covariate [33]. We assume that κ1 ≤ κ2 so that βHd

(t) ≥ 0 for all time.

3.2. Seasonally introduced infections from wild birds. The role of wild migratory
birds in the global spread of H5N1 has been controversial and is still being investigated
[44]. It appears that some wild migratory birds can be asymptomatic to HP H5N1 and
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can carry the virus over long distances [35]. Outbreaks of HP H5N1 strains among wild
birds are limited temporally and occur primarily during the winter and spring months. In
Thailand, Keawcharoen et al. find that there is strong association between the outbreaks
in wild birds and poultry. In particular, the authors find that the transmission efficiency
of H5N1 among poultry flocks was 1.7 times higher in regions with infected wild birds in
the given or the preceding month [20]. Prosser et. al. [35] also find connection between
wild bird and poultry outbreaks but conclude that wild bird outbreaks follow poultry
outbreaks. Both studies remark that whether the wild bird outbreak are a cause for the
poultry outbreak or vice versa is difficult to ascertain.
We assume that seasonality in migratory patterns of wild birds could be another

possible source for oscillations of H5N1 in poultry. Wild migratory birds move from
their breeding grounds to their wintering grounds in the fall, potentially contacting lo-
cal poultry during stopovers and at destination, and spreading the virus south along
their migratory pathways [30]. We will capture a periodic introduction of HP H5N1 into
poultry through one source term accounting for oscillatory wild bird→poultry transmis-
sion. We assume the incidence term of new infections coming from the wild birds to the
poultry is given by f(Iw(t))Sd where

f(Iw(t)) = κ3 sin

(

2π

365
(t+ ω2)

)

+ κ4.

The amplitude κ3 and the vertical shift κ4 satisfy the inequality κ3 ≤ κ4 so that
f(Iw(t)) ≥ 0 for all time. This incidence term captures two possible scenarios of season-
ality: (1) The number of infected wild birds is approximately constant but the contact
rate c(t) is oscillatory due to the migration patterns of the wild birds. In this case
f(Iw(t)) = c(t)Iw; (2) The number of infected wild birds oscillates periodically Iw(t) in
general or from the perspective of poultry in wintering grounds. The seasonality in the
number of infected birds can be a result of the seasonal breading patterns, as is in LPAI
[4]. Seasonal breeding creates a new cohort of completely susceptible individuals, who
then migrate possibly while infected to the wintering grounds where they contact the
local poultry. Furthermore, we assume that the incidence of poultry is proportional to
the product f(Iw(t))Sd. The function f(Iw(t)), as defined above, again has period of
365 days.
We call the model that incorporates seasonality introduced by wild bird migration

“Model 2”. Model 2 uses the same notation as Model 1 (see Table 3 and Table 2).
Model 2 is given below.

M2















































dSd

dt
= Λd − βHd

IHd
Sd − f(Iw(t))Sd − µdSd,

dIHd

dt
= βHd

IHd
Sd + f(Iw(t))Sd − (µd + νHd

)IHd

dS

dt
= Λ− βIHd

S − µS

dI

dt
= βIHd

S − (µ+ ν)I

In Model 2 we assume that the transmission rate among poultry βHd
is constant.
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3.3. Seasonality induced by environmental transmission of HP H5N1. For low
pathogenic avian influenza viruses and wild aquatic birds the role of the environmental
transmission of the virus is well documented [39, 40, 45]. But LPAI viruses are trans-
mitted through the fecal-oral route and shed primarily through the cloaca. HP H5N1
viruses, in contrast, are shed through the oropharynx and their main route of trans-
mission is direct transmission. However, recently, studies indicate that the HP H5N1
viruses are becoming more stable in the environment. H5N1 viruses isolated from 2004
outbreaks in ducks survived at 37oC for 6 days, compared with 2 days for viruses from
the 1997 outbreak [50]. The increasing adaptation of the H5N1 virus to persistence in
the environment suggests that this route of transmission of highly pathogenic viruses
may be gaining importance [8, 49]. Indeed, a recent article focuses on the persistence of
HP H5N1 on solid surfaces, chicken feces and soil depending on the ambient humidity
and temperature [46]. Several studies investigate the persistence of the virus in different
types of water and find that prolonged infectivity is possible [7, 28]. The dependence
of the viral survival in the environment on temperature and humidity fluctuation may
be introducing seasonality in H5N1 transmission among poultry. We model this type
of seasonality through a periodic inactivation rate of the virus in the environment δ(t).
To introduce the model, let V (t) be the amount of virus in the environment measured
in number of virions. We assume that the rate of transmissibility of the the virus is
proportional to the free virus present in the environment and choose the force of infec-
tion as ρV . The model that involves seasonality in environmental transmission only is
called Model 3. Model 3 is obtained from Model 1 by adding an equation modeling the
dynamics of the virus in the environment and setting the transmission rate βHd

(t) to
constant βHd

. Birds shed virus into the environment at a rate η.
Model 3 is introduced below:

M3































































dSd

dt
= Λd − βHd

IHd
Sd − ρV Sd − µdSd,

dIHd

dt
= βHd

IHd
Sd + ρV Sd − (µd + νHd

)IHd

dV

dt
= ηIHd

− δ(t)V

dS

dt
= Λ− βIHd

S − µS

dI

dt
= βIHd

S − (µ+ ν)I

We assume that the virus inactivation rate δ(t) is a sum of two components – one
corresponding to solid environment, and another, corresponding to water. The two
terms in δ(t) were used because of separate data for virus survival in soil and water and
the relative contribution of each one is unknown.

δ(t) = α

(

κ5 sin

(

2π

365
(t+ ω3)

)

+ κ6

)

+ (1− α)

(

κ7 sin

(

2π

365
(t + ω4)

)

+ κ8

)

where α is the fraction of solid environment. We identify the coefficients κ5, . . . , κ8 in
the next section.
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Environmental transmission is well recognized route of transmission for LPAI viruses
in wild birds. Mathematical models of environmental transmission, in addition to di-
rect transmission, have shown significant impact of environmental transmission on the
persistence of LPAI strains in wild birds [3, 4, 5, 37, 38]. The role of environmental
pathways in the transmission of HPAI and its potential impact on the seasonality of
H5N1 cases is partly what we address with this modeling framework.

4. Modeling framework and fixed parameter pre-estimation

To address what mechanism(s) may be responsible for the seasonality in the H5N1
cases in birds and humans and how we should model this seasonality, we consider a
modeling framework that consists of a number of models, including Models 1,2 and 3
above. We then pre-estimate some of the parameters of the modeling framework and we
fit each model in the framework to the cumulative number of human H5N1 cases.

4.1. The modeling framework. We develop seven models that encompass different
combinations of the drivers of seasonality introduced in Section 3. Model 1,2, and 3
are a part of that modeling framework. We also include models that incorporate pairs
of drivers, all possible combinations, and a model that incorporates all three possible
drivers of seasonality.
Model 1, 2, and 3 are as defined above. Model 4 (M4) in that framework includes

seasonality in the direct bird-to-bird transmission rate and seasonal introductions of
H5N1 from wild birds, Model 5 (M5) includes seasonal introductions of H5N1 from wild
birds and seasonality from environmental transmission of H5N1, Model 6 (M6) includes
seasonality from bird-to-bird transmission of H5N1 and seasonality from environmental
transmission, and finally Model 7 includes all three drivers. We call Model 7 (M7) the
global model. Transitions in the global model are illustrated in the flow-chart given in
Figure 3.
The global model is given below:

M7































































dSd

dt
= Λd − βHd

(t)IHd
Sd − f(Iw(t))Sd − ρV Sd − µdSd,

dIHd

dt
= βHd

(t)IHd
Sd + f(Iw(t))Sd + ρV Sd − (µd + νHd

)IHd

dV

dt
= ηIHd

− δ(t)V

dS

dt
= Λ− βIHd

S − µS

dI

dt
= βIHd

S − (µ+ ν)I

where the variables and the parameters are explained in Table 2 and Table 3.
Each of the models M1 − M6 is obtained from the global model by setting certain

parameters equal to zero. In other words models M1 − M6 are nested in the global
model. Table 4 gives a list of the models and how each model is obtained from the
global model.
The total bird population size Nd = Sd + IHd

for the global model satisfies the differ-
ential equation

N ′

d(t) = Λd − µdNd − νHd
IHd

.
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Figure 3. Flow chart of the global model M7

Sd IHd

βHd
(t)

S I

V

Iω

β

ηρV

µd + νHd

µ+ ν

µ

µd

δ(t)

Table 4. Summary of the models in the modeling framework

Model Drivers of seasonality Reduction parameters

M1 seasonal bird-to-bird transmissibility η = 0, ρ = 0, f(Iw) = 0

M2 seasonal introductions from wild birds η = 0, ρ = 0,βHd
(t) = βHd

M3 seasonality from environmental transmission f(Iw) = 0, βHd
(t) = βHd

M4 (1) seasonality in bird-to-bird transmission η = 0, ρ = 0

(2) seasonal introductions from wild birds

M5 (2) seasonal introductions from wild birds βHd
(t) = βHd

(3) seasonality from environmental transmission

M6 (1) seasonality from bird-to-bird transmission

(3) seasonality from environmental transmission f(Iw) = 0

M7 all three mechanisms
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This equation is not closed but it can be easily seen that the total bird population size
satisfies the inequality

N ′

d(t) ≤ Λd − µdNd.

Hence, lim suptNd ≤ Λd/µd. We will use this quantity as an approximation of the total
bird population size in pre-estimating parameters. Similarly, the total human population
size N = S + I for the global model satisfies the differential equation

N ′(t) = Λ− µN − νI.

This equation is also not closed but it can be easily seen that the total human population
size satisfies the inequality

N ′(t) ≤ Λ− µN.

Hence, lim suptN ≤ Λ/µ. We will use this fraction as an approximation of the total
human population size.

4.2. Pre-estimating common parameters. Even the simplest Model 1 has ten pa-
rameters and four initial conditions that may need fitting. Fitting that many parameters
may make the problem sensitive to the initial conditions of the parameters and may result
in rather large and unrealistic confidence intervals. To reduce the number of parameters
fitted with each model, we pre-estimate some parameters.

4.2.1. Pre-estimating demographic and infection-related parameters. To estimate param-
eters, we need to set up units. We measure time t in days. Generally, we pre-estimate
the demographic parameters for humans and poultry as well as the duration of infectious
period, and we fit parameters related to the seasonal forcing and transmission rates. We
first pre-estimate the parameters related to poultry. Commercial poultry is kept for
about 2 years. Hence, µd = 1/(2 ∗ 365) days−1. The total world poultry population can
be obtained from the Food and Agriculture Organization of the United Nations (FAO)
[10]. FAO gives 20.4 billion poultry units in 2008 (1 poultry unit = 1 domestic bird, for
example 1 chicken). We write the total poultry population size as Nd = 2040 counting
this number in units of 107 individuals. Then Λd ≈ Ndµd. Hence, Λd = 1020/365 times
107 individuals per day. The duration of infectiousness in domestic birds is taken to be
10 days [18], that is νHd

= 0.1 days−1. We pre-estimate the human parameters in a sim-
ilar way. Several sources give an average value of human lifespan. We take that to be 65
years [51], therefore µ = 1/(65∗365) days−1. World human population is approximately
6.5 billion. As before we consider N ≈ 65000 in units of 105 people. That gives a value
of Λ = 1000/365 births per day in units of 105 individuals. We assume that initially
whole population is susceptible, thus S(0) = 65000, and set I(0) = 0.00047 in units of
105 people. Various sources [18, 48] give the mean duration of infection in humans of
the bird-to-human avian influenza strain to be of 6-7 days. We take ν = 0.15 days−1.

4.2.2. Pre-estimating parameters related to δ(t). Viral clearance rate δ(t) is associated
with 6 parameters. To reduce the number of parameters fitted, we pre-estimate κ5, . . . , κ8.
Parameters κ5, κ6 are associated with solid environment, and parameters κ7, κ8 are as-
sociated with water. Article [46] studied viral persistence on solid environment under
different environmental conditions. Articles [7, 28] studied viral persistence in different
types of water. We use the results of these articles to estimate high and low values of
δ(t) which we denote by d, the decay rate of the virus. Then we estimate κ5, . . . , κ8 by
fitting a general sine function through the high and the low.
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Table 5. High and low values of d for solid surfaces (chicken feces and
soil) and water (pond water and seawater).

Chicken feces Soil Pond water Seawater

high 8.052 (low humidity) 5.42 (low humidity) 0.783 (20oC) 1.223 (20oC)

low 0.902 (high humidity) 0.55 (high humidity) 0.345 (10oC) 0.466 (10oC)

To find the high and the low of d for solid environment, which gives the interval in
which δ ranges, we use Table 4 in [46]. We assume the virus decays at the exponential
rate d so the amount of virus left in t days in

Q(t) = Q0e
−dt

where Q0 is the inoculation size. From this formula we have that

d =
1

t
ln

(

Q0

Q(t)

)

.

Article [46] uses inoculation size 2 ∗ 106 (see Table 1 in [46]). For solid surfaces we
compute the high and low values of d for chicken feces and soil as these two substances
are most often present on poultry farms. To compute the high value, we take experiment
1 with room temperature and low humidity for chicken feces (Table 4 in [46]) to be
Q(t) = 6.37 ∗ 102 for t = 1 day. From the formula above we have

d =
1

1
ln

(

2 ∗ 106

6.37 ∗ 102

)

= 8.052

For the persistence of H5N1 in water we use the results in Table 2 in [7]. In Table 2
of [7], d is estimated from the regression coefficient of the linear regression model. We
obtain the Table 5 for the low and high values of d. So the sinusoidal function for solid
surfaces satisfies

0.55 ≤ κ5 sin

(

2π

365
(t + ω3)

)

+ κ6 ≤ 8.052.

This gives κ5 = (8.052− 0.55)/2 = 3.752 and κ6 = (0.55 + 8.052)/2 = 4.301. Similarly,
for water environment, we have

0.345 ≤ κ7 sin

(

2π

365
(t+ ω4)

)

+ κ8 ≤ 1.223.

This gives κ7 = 0.439 and κ8 = 0.784.
This gives the following function δ(t):

(4.1)

δ(t) = α

(

3.752 sin

(

2π

365
(t + ω3)

)

+ 4.301

)

+(1−α)

(

0.439 sin

(

2π

365
(t+ ω4)

)

+ 0.784

)

The parameters determined in this subsection are fixed and the same for all models
and all simulations. Fixed parameters and their values are listed in Table 6.



14

Table 6. Fixed parameters in the models

Parameters Fixed Value (Model 1- Model7)

Λ 1000/365
Λd 1020/365
µ 1/(65 ∗ 365)
µd 1/(2 ∗ 365)
ν 0.15
νHd

0.1
S(0) 65000
I(0) 0.00047

5. Model fitting and results

To compare the models in the modeling framework, we fit each of the seven models
to the data on human cases of H5N1. WHO gives data on the cumulative number of
confirmed H5N1 human cases [52]. For the model selection, we use the data in the
interval 01/01/05 through 12/31/09. WHO updates the number of cumulative number
of H5N1 cases based on the countries reports; some months there are several reports and
some months there are none. The first three data points in our data set read as

1 0.00047; 18 0.00050; 33 0.00055 .

This means that prior to 01/01/05 the total number of H5N1 cases were 47 and on
January 18th the total number reached to 50 and on February 2nd it was 55. There were
several reports on January 2005, but we only used the report on January 18th. We use
approximately one data point per month from the available dataset. Because data is
given as cumulative number of new cases, we fit the cumulative number of the human
incidence C(t) where

C(t) =

∫ t

0

βS(τ)IHd
(τ)dτ

to the given data. The cumulative data is smoother than the incidence data. The
incidence is chaotic and fitting it with a deterministic model is challenging. On the
other hand fitting cumulative data has its drawbacks. One of the main concerns is that
the earlier infections have more weight than the incidences at later dates. But it is not
clear how to weigh them.

5.1. Fitting procedure. We use MATLAB to fit the model. We use an optimization
routine and perform least square fitting of C(t) to the data. For each model we fit a
different number of initial conditions and parameters which range between 6 and 15
(Table 8 gives the parameters to be fitted in each model). The optimization procedure
minimizes the least square distance

(5.1) SSR =

n
∑

i=0

|C(ti)− yi|
2

where yi is the cumulative number for the given time ti, provided by WHO. The differ-
ences C(ti)− yi are called residuals, and the sum of squares of the residuals is denoted
by SSR. For each given set of values of the fitted parameters, we use an ODE solver
to solve the differential equation system. We found out that stiff solvers in MATLAB
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perform better with the optimization routines, so we used MATLAB routines ode15s
and ode23s.
We fitted the data to the models using least square fit routine (lsqcurvefit) in MATLAB

R2010b. This nonlinear curve fitting routine (lsqcurvefit) has two algorithms as options:
“ trust-region-reflective” and “levenberg-marquardt”. Both of these numerical methods
are iterative procedure, thus it is crucial to define initial values for each parameters.
Since, lsqcurvefit finds local minima, if the initial values of the parameters are not close
to the global minimum, the routine can not find the minimum (may find a bad local
minimum). We find manual fitting helpful in defining the initial values. We performed
the manual fitting in the following way, we first solve (numerically) the ODE model with
given initial parameters, if the solution fits visually well the data, then we used these
values as initial values in the nonlinear least square routine. We also used MultiStart
which is a function in the new Global Optimization Toolbox (first launched in Matlab
2010 b) to vary the initial values of the parameters to wide range to ensure that we
obtain the global minimum. However, this has not led to any better solutions. In our
experience we find the manual fitting more helpful in determining the initial values.
Table 7 lists the initial parameter values used in our fitting. We repeated the fitting
procedure as many times as needed till the fitted parameters has not changed. That is,
till the difference between the two consecutive parameter is less than the tolerance value
of 10−15 . Matlab’s default value is 10−6 , and we adjusted it to a value close to machine
epsilon since our parameter values are very small to begin with.
We require the fitted parameters to be positive. We also require that

βHd
(t) ≥ 0 and f(Iw(t)) ≥ 0.

The lsqcurvefit routine only allows bound constraints and does not allow any nonlinear
constraints such as above. We implement the positivity of βHd

(t) and f(Iw(t)) by setting

κ1 ≤ κ2 and κ3 ≤ κ4 .

We notice that we can improve the sum of square residuals (SSR) by using the best fit
parameters as initial values in the next step. We repeat this process until there are no
further improvements in the SSR.

5.2. Results of the fitting. The first result from fitting each model was that the fitting
produced parameter set for which each model best fits the data. Table 8 gives the values
of the best fitted parameters. We note that most parameters vary little from model to
model.
The main objective of this research is to find what type of mechanism(s) generates the

oscillations of the number of human and bird cases of H5N1 as well as to find a model
that models well these cases. To achieve this goal, we compare the models based on how
well each model fits the data. If we were fitting the same number of parameters for each
model, we can do the comparison based on the SSR error – the model with the smallest
SSR would be the best model. However, we fit a different number of parameters for each
model. In this case the comparison of the models, also referred to as model selection, is
performed based on the Akaike Information Criterion (AIC). Akaike developed a method
for comparing models based on their Kullback-Leibler distance (information) between
the fitted model and the true unknown model that actually generated the data.
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Table 7. Initial parameter values used in fitting

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

κ1 5.5 ∗ 10−6 - - 4.9 ∗ 10−6 - 5. ∗ 10−6 4.92 ∗ 10−6

κ2 5.35 ∗ 10−5 - - 5.1 ∗ 10−5 - 5 ∗ 10−5 5.14 ∗ 10−5

κ3 - 5 ∗ 10−6 - 4 ∗ 10−7 5 ∗ 10−6 - 5.9 ∗ 10−7

κ4 - 8 ∗ 10−6 - 4.10 ∗ 10−7 8 ∗ 10−6 - 5.9 ∗ 10−7

ω1 127 - - 127 - 127 127

ω2 - 80 - 80 80 - 80

ω3 - - 80 - 80 0.97 7.26

ω4 - - 130 - 146 147 146

β 2.3 ∗ 10−11 5 ∗
10−8/365

1.9 ∗ 10−11 2.2 ∗ 10−11 2.2 ∗ 10−11 2.0 ∗ 10−11 2.3 ∗ 10−11

βHd
- 0.03/365 5.2 ∗ 10−5 - 2.2 ∗ 10−5 - -

α - - 10−4 - 10−4 0.6 0.61

ρ - - 10−6 - 10−6 6.0 ∗ 10−12 1.7 ∗ 10−11

η - - 10−5 - 10−5 6.39 ∗ 10−4 4.65 ∗ 10−3

Sd(0) 1940.6 3750 1978.55 2004 3750 1981.19 2015.17

IHd
(0) 2.0698 0.2 2.06 1.8 0.2 2.02 1.70

V (0) - - 10−5 - 10−3 0.26 0.23

Table 8. Fitted parameters in the models

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

κ1 5.35 ∗ 10−6 - - 5.42 ∗ 10−6 - 5.01 ∗ 10−6 4.92 ∗ 10−6

κ2 5.27 ∗ 10−5 - - 5.19 ∗ 10−5 - 5.25 ∗ 10−5 5.14 ∗ 10−5

κ3 - 1.46 ∗ 10−5 - 2.5 ∗ 10−11 3.27 ∗ 10−6 - 5.88 ∗ 10−7

κ4 - 2.85 ∗ 10−5 - 3.57 ∗ 10−7 6.93 ∗ 10−6 - 5.88 ∗ 10−7

ω1 107.75 - - 106.34 - 125.81 126.71

ω2 - 79.99 - 72.70 79.99 - 80.11

ω3 - - 89.95 - 1.19 ∗ 10−3 0.97 7.28

ω4 - - 115.39 - 145.99 149.80 145.77

β 1.9 ∗ 10−11 2.5 ∗ 10−11 1.4 ∗ 10−12 2.1 ∗ 10−11 1.28∗10−10 2.0 ∗ 10−11 2.3 ∗ 10−11

βHd
- 2.37 ∗ 10−5 0.56 - 1.27 ∗ 10−5 - -

α - - 0.09 - 0.17 0.59 0.61

ρ - - 6.72 ∗ 10−3 - 2.37 ∗ 10−6 1.0 ∗ 10−12 1.7 ∗ 10−11

η - - 0.04 - 2.83 ∗ 10−6 6.36 ∗ 10−4 6.76 ∗ 10−3

Sd(0) 1975.27 2928.49 9 ∗ 10−4 2001.53 3781.88 1979.78 2015.17

IHd
(0) 1.77 0.5275 99.81 1.55 8.49 ∗ 10−3 2.0 1.70

V (0) - - 20.58 - 0.08 0.26 0.22
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Table 9. Model selection parameters: SSR, AICc, ∆i.

Model Parameters SSR AIC AICc wi ∆AICc

M1 κ1, κ2, ω1, β
Sd(0), IHd

(0)
2.2530 ∗ 10−7

−1.8935 ∗ 103 −1.8923 ∗ 103 0.9707 0.0

M2 κ3, κ4, ω2, βHd

β, Sd(0), IHd
(0)

1.4864 ∗ 10−6
−1.7104 ∗ 103 −1.7088 ∗ 103 1.3822 ∗ 10−40 183.5

M3 β, βHd
, α, ω3, ω4

ρ, η, Sd(0)
IHd

(0), V (0)

6.1751 ∗ 10−6
−1.5677 ∗ 103 −1.5646 ∗ 103 1.1662 ∗ 10−71 327.7

M4 κ1, κ2, κ3, κ4,
β, Sd(0), IHd

(0)
ω1, ω2

2.245 ∗ 10−7
−1.8879 ∗ 103 −1.8853 ∗ 103 0.0293 7.0

M5 κ3, κ4, α, ω2, ω3

ω4, ρ, η, β, βHd

Sd(0), IHd
(0)

V (0)

1.4035 ∗ 10−6
−1.7039 ∗ 103 −1.6987 ∗ 103 8.8588 ∗ 10−43 193.6

M6 κ1, κ2, β, α, ω1

ω3, ω4, ρ, η, Sd(0)
IHd

(0), V (0)

2.6693 ∗ 10−7
−1.8653 ∗ 103 −1.8608 ∗ 103 1.4026 ∗ 10−7 31.5

M7 κ1, κ2, κ3, κ4, β
α, ω3, ρ, η, Sd(0)
IHd

(0), V (0)
ω1, ω2, ω4

2.6751 ∗ 10−7
−1.8591 ∗ 103 −1.8522 ∗ 103 1.9032 ∗ 10−9 40.1

AIC, in fact, applies when the ratio of the number of data points to the number of
parameters fitted is large enough. If this ratio is not large, then a corrected version
of AIC is used, denoted by AICc. To compare the models, we compute AICc for each
model, based on the formula [6]:

(5.2) AICc = n ln

(

SSR

n

)

+ 2K +
2K(K + 1)

n−K − 1

where SSR is the sum of squares of the residuals for the fitting of the given model, n is
the number of data points, and K is the number of parameters fitted plus one.
The smaller the AICc for a model, the better that model describes the data. In order

to chose the “best” model, we first calculate the AICc values for each of the seven models,
then choose the model with the smallest AICc value. Then we say that this model with
the least AICc value is the “best” model in the sense that it is the closest to the true
unknown model. AICc estimates relative support that the data gives for a model. To
estimate that support and to compare the models, we calculate the differences between
the AICc value of a given model to the AICc value of the “best” model. For instance, if
AICcmin is the AICc of the the best fitted model, to compare model i to the best fitted
model we compute:

∆iAICc = AICci −AICcmin = ∆i



18

The main parameters needed for model comparison and selection are listed in Table 9.
Looking at that table, we see that AIC and AICc are approximately the same which
means that we are using large enough set of data for the number of parameters being
estimated. We also note that the values of the AIC and AICc are negative but this
stems from the small SSR error.
If all models are nested, that is, model Mi can be obtained from model Mi+1 by

setting the value of certain parameter(s) (usually to zero). As a rough rule of thumb
for nested models some models, depending on their AICc difference from the “best”
model, might still have support in the data, while other can be completely ruled out.
The rough principles that apply in that selection are as follows [6]: Models for which
0 ≤ ∆i ≤ 2 have substantial support in the data and should receive consideration in
making inferences. Models for which 4 ≤ ∆i ≤ 7 have considerably less support but
cannot be ruled out. Models for which ∆i > 10 have either essentially no support and
might be omitted from further consideration or at least fail to explain some substantial
structural variation in the data. If the models being compared are not nested, then these
boundaries might be somewhat larger.
Our modeling framework does not consist only of nested models but there are subse-

quences of models that are nested. The sequences of nested models that are of interest
are

M1 →֒ M6 →֒ M7

and
M1 →֒ M4 →֒ M7

Table 9 shows that the model with the lowest AICc is Model 1. Models 1, Model 6,
Model 7 form a sequence of nested models. Thus Table 9 and the above rule imply that
Model 6 and Model 7 can be disregarded as they do not explain the data as well as
Model 1. Furthermore, Model 1 is nested in Model 4 which is the second best. The
∆4 = 7, we can not disregard Model 4. It has some support from the data.
Another approach to gauge the relative support the data give to the various models in

the modeling framework, particularly when the models are not all nested, is the Akaike
weights. The Akaike weight for Model i is defined as

wi =
e−∆i/2

∑8
j=1 e

−∆j/2
.

Models whose Akaike weights sum to
∑

wi ≥ 0.95 give the confidence set of models that
explain the given data [6]. In our case w1 > 0.97 (see Table 9), so Model 1 explains the
data well enough that no other models are needed in the confidence set.
The fit the best model gives to the data is given in Figure 4. To compare the best

fitted model, we changed the Model 1 by taking βHd
(t) = βHd

to be constant so that the
new version has no seasonality. We fitted the new version of Model 1 with no seasonality
and the fitting resulted with higher residual norm (results are not shown). We plot the
fit in Figure 5for comparison.

6. Mathematical properties of the best fitted model

The best fitted model is a very simple SI epidemic model with periodic transmission
rate and disease induced mortality. Despite its simplicity, the best fitted model - Model
1, given by equation (3.1), has the property of exhibiting complex behavior. Seasonally
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Figure 4. Predictions of Model 1 and their fit to data.

forced SIR and SEIR models with periodicity in the transmission rate have a long history
of being studied as models of recurrent epidemics with childhood diseases playing a
major role in that set. Aaron and Schwartz [1] find period doubling bifurcations in the
SEIR model. More recently, the presence of chaos has also been established in SIR and
SEIR models [26, 36, 29]. Seasonally forced SI models, however, have received little
attention. We consider the best fitted model (3.1) and we address the question: In the
simplest epidemic models with seasonal forcing in the transmission rate, when does the
complexity arise?

6.1. The reproduction number. Computing the reproduction number explicitly is
not possible for most of the more complex epidemic models [24, 42]. The reproduction
number for Model 1 (3.1), however, can be explicitly computed and is given by

(6.1) R0 =
Λd

∫ 365

0

[

κ1 sin
(

2π
365

(t + ω1)
)

+ κ2

]

dt

365µd(µd + νHd
)

The integral in (6.1) can be simplified to 365κ2, giving the simpler form for R0.

R0 = Λdκ2/µd(µd + νHd
)

To see the expression (6.1), notice that Model 1 (3.1) has a time-independent disease-

free equilibrium E0 =
(

Λd

µd
, 0
)

. The equation for IHd
linearized around the disease-free
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Figure 5. Predictions of a version of Model 1 with no seasonality and
their fit to data.
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Figure 6. Plot of I with respect to time. I clearly persists and is
not going to zero if βHd

(t) is not necessarily positive. The transmission
rate βHd

(t) is given by formula (3.1) with κ1 = 0.005111486 and κ2 =
0.00032621758, νHd

= 0.7, ω1 = 127, β = 2.1 ∗ 10−11. Other parameters
are as obtained for the best fitted Model 1. The reproduction number is
R0 = 0.95.
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equilibrium IHd
(t) = 0 + i(t) splits from the linearized equation for S and it is given by

(6.2) i′(t) = βHd
(t)

Λd

µd

i(t)− (µd + νHd
)i(t).

If R0 < 1 then limt→∞ i(t) = 0. If, however, R0 > 1, then i(t) → ∞. We have
established the following result:

Proposition 6.1. Assume β(t) ≥ 0. The disease-free equilibrium E0 of the system (3.1)
is locally asymptotically stable if R0 < 1. If R0 > 1, then the disease-free equilibrium E0
is unstable.

In fact a stronger result is possible. If β(t) ≥ 0 then the disease-free equilibrium is
globally asymptotically stable.

Proposition 6.2. Assume β(t) ≥ 0. The disease-free equilibrium E0 of the system (3.1)
is globally asymptotically stable if R0 < 1.

Proof. Let ǫ > 0 be small enough. We notice that Nd(t) ≤ N̂d(t) where N̂d is the solution
of the following equation:

N̂ ′

d = Λd − µdN̂d.

We consider the more difficult case when N̂d(0) >
Λd

µd
. Then, we can find t0 > 0 such

that N̂d(t) <
Λd

µd
+ ǫ for all t > t0. From Sd(t) ≤ Nd(t) ≤ N̂d(t) we have that for every

t > t0

(6.3) I ′Hd
≤

(

βHd
(t)

(

Λd

µd

+ ǫ

)

− (µd + νHd
)

)

IHd

In the above inequality we have taken into account that β(t) ≥ 0. Since R0 < 1 we can
choose ǫ > 0 is small enough, so that

∫ 365

0

(

βHd
(t)

(

Λd

µd

+ ǫ

)

− (µd + νHd
)

)

dt < 0.

Integrating (6.3) from t0 to t we have

IHd
(t) ≤ IHd

(t0)e
∫ t0
0

(

βHd
(t)

(

Λd
µd

+ǫ
)

−(µd+νHd
)
)

dt
e
−

∫ t

0

(

βHd
(s)

(

Λd
µd

+ǫ
)

−(µd+νHd
)
)

ds
.

It is easy to see that IHd
→ 0 as t → ∞. �

If time-dependent transmission rate is not positive, there are subthreshold non-zero
solutions (see Figure 6).

6.2. Emergence of complex dynamics. Despite its simplicity, model (3.1) is capable
of producing very complex dynamical behavior. With the best fitted parameters, the
reproduction number is R0 = 1.06 and the solutions of the system converge to a periodic
solution. We increase κ1 and κ2 so that the reproduction number is larger but still
within realistic biological boundaries, so when we increase νHd

for period doubling, the
reproduction number does not drop below one. Then, we can observe period doubling,
that is a period four solution emerging from a period two solution, a period eight solution
emerging from a period four solution and etc. Eventually, the solutions of Model 1 exhibit
chaotic behavior (see Figure 7).
What drives this complex dynamical behavior in a model as simple as Model 1? From

one side this is the time-periodic transmission rate βHd
(t). If the transmission rate is
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Figure 7. Series of figures showing a period two solution, period four
solution, period eight solution, and chaos in Model 1. All parameters are
as the best fitted parameters for Model 1, except κ1 = 0.00005111486 and
κ2 = 0.00032621758. The values of νHd are νHd = 0.3, 0.315, 0.3155, 0.35.
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Figure 8. Chaos bifurcation diagram for Model 1. As νHd
increases the

system undergoes period doubling and transition to chaos. Parameters set
as the best fitted parameters except κ1 and κ2. κ1 = 0.00005111486 and
κ2 = 0.00032621758.
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constant, that is if κ1 = 0, then the autonomous version of Model 1 has a unique endemic
equilibrium which is globally stable. If, however, the model is non-autonomous, then
the parameter that drives the complex chaotic behavior is the disease-induced mortality
νHd

. Indeed, if νHd
= 0, then the resulting system (3.1) reduces to a single equation of

Bernoulli type:

(6.4) I ′Hd
= βHd

(t)(Nd(t)− IHd
)IHd

− µdIHd

where Nd is the solution of the equation N ′

d = Λd − µdNd. The Bernoulli equation can
be solved via the substitution y = 1/IHd

. The solution is given by

IHd
=

IHd
(0)

e−
∫ t

0
r(s)ds + IHd

(0)
∫ t

0
e−

∫ t

s
r(τ)dτβHd

(s)ds

where r(t) = βHd
(t)Nd(t) − µd. Equation (6.4) has a unique periodic solution that

attracts all other solutions. That result follows from Theorem 3.1 in [25] in the case
when Nd(0) = Λd/µd. If Nd(0) 6= Λd/µd, the result can be extended using the fact that
Nd(t) → Λd/µd as t → ∞ and a comparison principle (see also [41]). Therefore, for
νHd

= 0 model (3.1) does not exhibit chaotic behavior. As νHd
increases the system

undergoes period doubling and transition to chaos. This behavior is illustrated in the
chaos bifurcation diagram of Model 1 (3.1) (see Figure 8). We conclude that given
periodic contact rate or susceptibility, increasing the disease-induced virulence, in other
words decreasing the infectious period, may destabilize the system. Control measures
applied to poultry, such as culling and vaccination, often work to decrease the infectious
period. Although, for the best fitted parameters decreasing the infectious period will only
lead to the elimination of the disease, for higher reproduction number destabilization of
the system and chaos may occur before elimination.

7. Discussion

The question “What drives the seasonality in influenza A?” is a complex question
that should be addressed through integrative tools. Even for human influenza A, with
human influenza being extensively studied, this question has not received a definite
answer. It is possible that symbiosis among multiple mechanisms brings this coherent
dynamic behavior. As science has not identified the mechanisms that produce influenza
A’s seasonality, modeling the seasonality is so much more challenging.
Avian influenza H5N1 has been infecting humans regularly since 2003. The number of

cases in humans and the poultry outbreaks have been exhibiting seasonality, very much
like the one human influenza exhibits in temperate climates in the Northern hemisphere,
that is, the number of human cases and poultry outbreaks display a surge in the winter
months, December-April, and are relatively minimal during the summer months. Be-
cause avian influenza involves multiple species, tracing the roots of this seasonality is
much more difficult. On the other hand, we need avian influenza models that faithfully
reflect that seasonality, something that the early models on avian influenza completely
neglected.
In this paper we address the question “How do we model the seasonality of H5N1

influenza?”. We first examined the likelihood that some climatic factor, such as tem-
perature or rainfall, may be associated with seasonality. However, data suggests that
the association may be possible for specific regions or countries but no such association
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exists across all affected countries. One potential exception is the number hours of sun-
light per day which across all countries tends to peak in the summer and be low during
the winter months. We assume that the number of hours of sunlight may be responsible
for fluctuations in host susceptibility but further research may be necessary to elucidate
the role of sunlight in the H5N1 seasonality.
We model climatic influence, if one exist, indirectly through periodicity in the coef-

ficients. We hypothesize three potential drivers of seasonality in H5N1: (1) seasonality
in the domestic bird-to-bird transmission; (2) seasonality in the transmission from wild
birds to domestic birds; (3) seasonality stemming from environmental transmission. We
consider seven models involving these three potential mechanisms and their combina-
tions. We fit the seven models to the cumulative number of human H5N1 cases and
compare their fit using the corrected Akaike Information Criterion (AICc). We find that
the model that involves seasonality in the domestic bird-to-bird transmission (Model 1)
fits the data best – significantly better than all other models. More precisely, our best
fitted model suggest that the seasonality occurs in the one of the processes building the
transmission rate: host susceptibility, host infectivity, or the contact rate. Hence, our
best fitted model suggests, in agreement with climatic data, that seasonality in bird
susceptibility may be an explanation for the observed periodicity in H5N1 cases. Model
4 which combines seasonality from bird-to-bird transmission and seasonal introductions
from wild birds also received considerable support from the data and cannot be neglected
as a potential modeling tool.
We compute a reproduction number for the best fitted model. The value of the repro-

duction number with the best fitted parameters of Model 1 is R0 ≈ 1.06. This value of
the reproduction number is significantly smaller than other estimates of the reproduc-
tion number of H5N1. For instance, Lucchetti et al [23] uses fitting to the cumulative
number of human data and estimates a reproduction number for high pathogenic in-
fluenza R0 = 2.72. Applying various methods to a number of poultry outbreaks, Ward
et al. [43] obtains reproduction numbers in the range 1.95-2.68. Bouma et al. esti-
mates the reproduction number of H5N1 in experimental studies with mean R0 = 1.6
[2]. Compared to most existing estimates the estimate we obtain here is on the low side.
However, it should be noted that a significant portion of the data that we use to obtain
this value of the reproduction number is after 2006 when vaccination in poultry was
introduced. Hence, the reproduction number we compute here, in effect is the controlled
reproduction number, which can be expected to be much smaller.
Mathematically, our best fitted model is a very simple SI epidemic model with disease-

induced mortality and a periodic transmission rate. For the best fitted parameters the
model converges to a periodic solution. Yet, this simple model allows for realistic values
of the parameters very complex dynamics. We find period doubling and transition
to chaotic behavior. The parameter that drives this behavior is the virulence. If the
disease-induced mortality (virulence) is zero, the resulting simpler model converges to
a periodic solution, independently of the remaining parameters. The increase of the
virulence destabilizes the system and drives chaotic behavior in that simple epidemic
model with periodic transmission rate.
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