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We introduce a general framework to study the dynamics of multiple strain pathogens
that can impart cross–immunity through a variety of structures. We propose two types
of immunity and apply them to assess the dynamics of two competing strains. We illus-
trate this framework using two “visions”: the next–to–kin protection (NTKP) approach
which assumes that strains confer cross–immunity to next in order (neighboring) strains,
while providing no protection against all other strains; and the differential protection
(DP) approach assumes that individuals randomly gain partial (may be reinfected) and
full cross-immunity following an infection with respective probabilities. We show that
the risk of infection with a particular strain is significantly higher in the DP model that
the NKTP. Moreover, we demonstrate that weaker cross-immunity structures in these
models are more likely to lead to instability (sustained oscillations) in the strain coexis-
tence mode. That is, periodic oscillations are sustained in the two-strain DP model for
intermediate to weak levels of cross-immunity, while the NTKP model requires at least
three strains to support these unstable dynamics.

Keywords: Multiple Strains; Cross–Immunity; Reinfection; Coexistence; Sustained
Oscillations; Oscillatory Coexistence; Next–to–Kin Protection; Differential Protection.

1. Introduction

Studying the dynamics of infectious diseases often involves the interaction of mul-
tiple strain pathogens. Some commonly studied pathogens include dengue and
influenza (flu) viruses. These viruses differ significantly in their cross-reactive
immunological response induced by between-strain competition. The cross-reactive
antibody response for influenza follows the more common immunological response
in which a previous virus exposure yields partial protection against prospective
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strains, as long as virus strains are antigenically similar. Unlike flu viruses, cross-
reactive antibodies following a dengue infection act to enhance (rather than to
restrict) the severity of subsequent infections by other dengue strains.1 In view of
the complexities that arise when multiple pathogens interact and affect a host’s
susceptibility to infection or transmissibility of future infections, many studies have
been proposed to study the dynamics of co-circulating pathogens and the immuno-
logical structures by which they interact/compete.

In particular, flu viruses have been studied extensively, yet their ability (vir-
ulence) to continuously evade a host’s immune system through genetic mutations
allows them to persist, primarily during winter in temperate zones. The coupled
interaction of a host’s immunity and a pathogen’s ability to invade a host are at
the forefront of mechanisms that seem to promote the emergence and re–emergence
of flu outbreaks. The virus gradual evolutionary changes that occur through minor
mutations (antigenic drift) are responsible for annual epidemics that affect 20 to
50% of the US population each winter season. Other more dramatic and less com-
mon mutations (antigenic shift) involve abrupt major changes in the virus surface
proteins (Hemagglutinin, Neuraminidase), resulting in a new virus subtype. While
cross-immunity is conferred among antigenically similar strains (antigenic drift),
this is not the case between strains that belong to distinct subtypes (e.g. H1N1 and
H3N2).

Mathematical models have been used to assess the impact of age–structure,
quarantine, and isolation (among a few) in supporting the seasonality of flu, but
clearly, evolution plays the critical role. Studies that assess the impact of cross–
immunity on influenza dynamics within a population that incorporates multiple
strains with diverse forms of immune responses typically involve complex and fre-
quently untractable frameworks, but an effort must be made to carry out such
analysis.

In fact, recent modeling efforts include high dimensional strain interactions and
“detailed” immunological structures that capture virus–host interactions effectively.
The work of Andreasen, Lin and Levin2 noted as the “ALL” scheme in Gomes and
Medley,3 used a “History Based Approach” (HBA) to classify a population’s sus-
ceptibility according to prior infections. This history of previous infections was
used to determine future susceptibility through a cross–immunity structure that
reduced the probability of transmission or susceptibility among antigenically simi-
lar strains.4–9 The HBA approach assumed that individuals with a similar history
of infections were equally susceptible to new infections. Ferguson and Andreasen10

evaluated two “expressions” of cross–immunity: reduction in susceptibility or in
infectiousness. They showed that the choice of immunity–based interactions made
little difference in the dynamics of these models. More recently, Gog’s et al.
“Status Based Approach” (SBA)11,12 assessed the impact of cross–immunity from
a “pathogen’s perspective”. Their approach was used to capture the dynamics of a
host’s ability to escape infection from circulating strains. These researchers studied
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the case where partial induced cross–immunity via heterogeneous immunological
host response (“polar immunity”) followed recovery.13–15 Alternative methods that
incorporate multiple strain interaction have been proposed, however, they are not
discussed herein.16–19

The choice of cross–immunity structure, not surprisingly, naturally plays a
critical role in determining the dynamics of co-circulating pathogens. At some
level we observe dual outcomes. Some models are capable of supporting periodic
solutions2,3,10,20 while others lead to slowly dampening oscillations.11,12 This study
presents a modeling framework that incorporates the effects of interference com-
petition when multiple strains try to invade the same population. The impact of
alternative cross–immunity structures is explored with detail in two specific sce-
narios. The paper is organized as follows: Sec. 2 introduces the modeling frame-
work; Sec. 3 computes the epidemic threshold and identifies stability conditions
for the general model in the absence of the pathogen; Sec. 4 identifies strain inva-
sion conditions; Sec. 5 investigates the usefulness of this framework by exploring
the dynamics of two cross–immunity structures: the next–to–kin and differential
protection; Sec. 6 assesses model outcomes numerically; and, Sec. 7 collects results
and conclusions.

2. The Model

Our model assumes a Susceptible–Infected–Recovered (SIR) framework for a pop-
ulation facing multiple strains (antigenic variants) of a single virus subtype. The
population is further divided into sub–classes based on the current immunological
status of the host, a function of the circulating strains. SJ denotes the susceptible
individuals with immunity index set denoted by J ∈ P . Similarly, Ii

M designates
strain i infected individuals with immunity index set M ∈ P . The population of
Recovered individuals are implicitly absorbed in SJ . Immunity index sets J and M

give a multi–level description of a host’s current immunity (and susceptibility) with
respect to all strains in circulation. Past infections are assumed to confer partial
protection against future infections with antigenically similar strains, therefore, we
assume that immunity is enhanced with previous infections; these are m levels of
increasing protection with respect to each strain, L1 < · · · < Lk < · · · < Lm. Con-
sequently, the immunity index J is an ordered n–tuple (n strains) whose entries
take values from L1 to Lm. We let P denote the set of all immunity indices,
that is, of all n–tuples with entries in the set L1, . . . ,Lk, . . .Lm. In particular,
the index of individuals who are in immune level 1 (L1) with respect to all n

strains would be denoted by a n–tuple (L1, . . . ,L1, . . . ,L1). In order to simplify
the notation, we dropped the L’s and denote them by an n–tuple of 1′s, namely,
J ≡ 1 = (1, . . . , 1).

Since natural protection against future infections is acquired primarily through
previous exposures, we assume that hosts are born fully susceptible to all strains,
that is, they are born into the epidemiological class S{1,...,1} at the per–capita rate µ.
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We neglect disease related mortality, however, we assume a natural mortality rate
of µ. The birth rate into SJ is thereby denoted by µ δJ,1, where

δJ,1 =

{
1, if J = (1, . . . , 1)

0, otherwise, J ∈ P .

The set of all possible state indexes P has mn elements, however, not all index
n–tuples J ∈ P yield viable ordered infections sets. The routes of infection (infec-
tious classes) that are not feasible under some cross–immunity schemes are called
unattainable states. Accessible (e.g. attainable) states are denoted by A and A ⊂ P .
J = (1, . . . , 1) represents a naturally attainable state (e.g. (1, . . . , 1) ∈ A). The sub-
set of attainable states through infection with strain i is denoted by Ai, and hence,
Ai ⊂ A and

A =
⋃
i

Ai

⋃
(1, . . . , 1).

Consider a hypothetical population facing three strains (n = 3) and capable
of generating three immunity response levels (L1, L2, L3). S{1,2,3} describes the
susceptible population with immune response level L1 against strain 1, immune
response L2 against strain 2 and immune response L3 against strain 3. Similarly,
I2
{1,3,3} denotes the strain–2 infected individuals with immune response level 1

against strain 1, and immune response level 3 to strains 2 and 3. Infectious class
I2
{1,3,3} may be attained from susceptible class S{1,2,3} following an infection with

strain 2. Strain–2 infected individuals in class I2
{1,3,3} that go on to recover are

implicitly accounted for in S{1,3,3} (e.g. we do not explicitly include a recovered
class). A change in a host’s immune status occurs upon infection, that is, suscep-
tibles S{1,2,3} get infected by strain 2 and move to I2

{1,3,3} (J = {1, 2, 3} → M =
{1, 3, 3}). We evaluate the userfulness of the next–to–kin (NTKP ) and differential
protection (DP ) models. We illustrate these two models by assuming a population
with two co–circulating strains and three levels of cross–immunity.

2.1. Next–to–kin model

This cross–immunity structure assumes that each strain provides full immunity to
those infected who recover, partial immunity to the “next–to–kin” strain, and no
immunity to the remaining strains. This approach differs from1 in that we do not
allow for infection of opposite strains. Strains are numbered so that infection with
strain 1 confers partial protection to strain 2, strain–2 infection protects partially
against strain 3, and strain–3 infection protects partially against strain 1. All states
(with the exception of {1, 1, 1}) for which there is no immune level three in one entry
are unattainable (e.g. {1, 1, 2} and {2, 2, 2}). States with complete immunity (L3)
to one strain but naive to the other two are also unattainable (e.g. {3, 1, 1}). The
set of all attainable states is therefore given by

A = {{1, 1, 1}, {3, 2, 1}, {1, 3, 2}, {2, 1, 3}, {3, 2, 3}, {3, 3, 2}, {2, 3, 3}, {3, 3, 3}},
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while

A1 = {{3, 2, 1}, {3, 2, 3}, {3, 3, 2}, {3, 3, 3}}

describes the set of attainable states via infection with strain 1 (all states with
immunity level 3 in the first position).

2.2. Differential protection model

This model assumes that each strain provides partial protection against itself with
probability p and complete protection with probability q (hence p + q = 1), while
providing no protection against the remaining strains. This framework allows for
reinfection with the same strain. In this three strain example, the set of attainable
states coincides with the set of all possible states, that is, P = A (27 possible
states). In general,

A = {(i, j, k) : where i, j, k ∈ {1, 2, 3}}.

For instance, the set of attainable states via infection with strain 1 is given by the
states without immunity level 1 in the first position:

A1 = {{2, 2, 1}, {2, 3, 1}, {2, 2, 2}, {2, 3, 2}, {2, 2, 3}, {2, 3, 3}, {3, 2, 1},
{3, 3, 1}, {3, 2, 2}, {3, 2, 3}, {3, 3, 3}}.

Individuals in SJ can be infected by any strain as long as J �= 3 = {3, 3, 3}, and by
strain i as long as the ith component of J is not m (Ji �= m). More generally, SJ

may be infected by all strain i–infected hosts who are in any infectious class within
the attainable states associated with strain i (the set Ai).

The force of infection for strain i takes the form

Λi = βi

∑
K∈Ai

Ii
K ,

where βi denotes the transmissibility of strain i. This model assumes that all i–
strain infected individuals have the same probability of transmitting the disease
and contact rate. It can be noted that while the force of infection for strain 1 under
the DP model involves 18 attainable states, the NTKP model yields only four
attainable states. Hence, it is evident that the risk of new infections (per unit time)
is more likely under the DP modeling framework. A significant parameter in our
model denoted by p(J, M, i) keeps track of changes and updates of the population’s
immune status. It captures the immunological changes of SJ (with immune status
J) to Ii

M (with immune status M) following an infection with strain i. The rate at
which individuals in SJ move into Ii

M (J ⊂ M) after an infection with strain i is
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reduced by p(J, M, i). Therefore, we have that∑
M∈Ai

p(J, M, i) ≤ 1 (1)

and ∑
M∈Ai

p(1, M, i) = 1 ∀i. (2)

2.3. Model equations

Susceptible individuals SJ become infected with strain i at rate βi, recover from
strain i with rate γi or succumb to natural mortality at a rate µ. Recovered indi-
viduals are absorbed in SJ . Based on these assumptions, we model susceptibles by

d

dt
SJ =

∑
i:J⊂Ai

γiI
i
J −

∑
i : Ji �= m,

M : J ⊂ M, M ∈ Ai.

Λip(J, M, i)SJ − µSJ J �= 1. (3)

The inflow rate of SJ is given by the sum of recoveries from infections with different
strains i for which J belongs to (Ai). The loss terms are due to deaths µSJ and
infections of susceptibles not completely immune (Ji �= m). The inflow to the Ii

M

class comes from all those immune states from which one moves to immune state M

after infection with strain i. Individuals in Ii
M can have immune status in the set of

states attainable through infection with strain i, that is, if M is the immune state
of an infectious individual, we necessarily have that M ∈ Ai. The incidence terms
in all inflow terms include the force of infection Λi. The outflow of (4) includes
recovery and deaths of strain–i infected individuals. Thus, the dynamics of Ii

M are
modeled by

d

dt
Ii
M =

∑
J:J⊂M

Λip(J, M, i)SJ − (µ + γi)Ii
M . (4)

For a description of the completely susceptible class S1, we consider that no pre-
vious infections have occurred and therefore no recoveries are accounted for in the
equation for susceptibles. Since

∑
M∈Ai

p(J, M, i) = 1 for every i and δJ,1 = 1, we
obtain

d

dt
S1 = µ −

n∑
i=1

ΛiS1 − µS1. (5)

We assume that as soon as hosts become infected with strain i, they acquire imme-
diate immunity, therefore no strain–i infectives with immune status level L1 with
index position i are included. The population is structured into non–intersecting
sub–classes and the total population (N) is given by the sum of all classes

N =
∑

J

SJ +
∑
i,M

Ii
M ,

which has been normalized so that N = 1 (dN
dt = 0).
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3. Stability and Threshold Conditions

We simplify and reduce the number of parameters in the original model (3)–(4) by
re–scaling time to µ−1 units

d

dt
SJ = δJ,1 − SJ +

∑
i:J⊂Ai

(ei − 1)Ii
J −

∑
i : Ji �= m

M : J ⊂ M, M ⊂ Ai

Λip(J, M, i)SJ

d

dt
Ii
M =

∑
J:J⊂M

Λip(J, M, i)SJ − eiI
i
M ,

(6)

where

ei =
µ + γi

µ
.

Re–scaling βi replaces it by βi

µ , however, we will continue to denote this re–scaled
force of infection term by Λi. The equation for S1 is given by

d

dt
S1 = 1 −

n∑
i=1

ΛiS1 − S1. (7)

We study the equilibria of the original linearized system. The existence of non–
trivial equilibria and their stability is derived from the reproduction number of
strain i given by

Ri =
βi

γi + µ
. (8)

The basic reproduction number of strain i (Ri) describes the average number of
secondary infections generated by a strain–i infected individual in a fully suscep-
tible population. It can be noted that Ri does not depend on the cross–immunity
function p(J, M, i). However, the explicit formulation of the reproduction numbers
is described by

Ri =
βi

γi + µ
× 1×

∑
M∈Ai

p(1, M, i),

where the last sum is equal to one (see Eq. (2)). Using Eq. (7), we calculate
S1–equilibrium

S1(Λ) =
1

1 +
∑n

i=1 Λi
,

where Λ denotes the force of infection at equilibrium, Λ = (Λ1, . . . , Λn). The rest of
the SJ−equilibria terms are obtained by solving (6) inductively and using ordering
of the index set J . First, we solve for immunity state levels M which can be obtained
directly from the completely immunity–naive level 1 through infection with one of
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the strains. We obtain Ii
M and the corresponding SJ . We continue with the next

levels of immunity levels by applying

SJ(Λ) =

∑
i:J⊂Ai

(ei − 1)Ii
J∑

i : Ji �= m

M : J ⊂ M, M ∈ Ai

Λip(J, M, i) + 1
J �= 1 (9)

and

Ii
M (Λ) =

∑
J : J ⊂ M

Λip(J, M, i)SJ

ei
. (10)

It can be shown that if all coordinates of Λi are non–negative, then all values of SJ

and Ii
M are non–negative and sum to 1. These values correspond to an attainable

equilibrium provided that Λ satisfies

Λi = Riei

∑
M∈Ai

Ii
M (Λ) = Ri

∑
M∈Ai

∑
J:J⊂M

Λip(J, M, i)SJ(Λ).

The ith force coordinate of infection Λi at a given equilibrium (Λ) can be determined
provided that it satisfies Λi = 0, or

1 = Ri

∑
M∈Ai

∑
J:J⊂M

p(J, M, i)SJ(Λ), for those i for which Λi �= 0.

The disease–free equilibrium E0 is calculated by setting Λi = 0 for all i. In the E0

state, the entire population is completely susceptible (S1 = 1) and all other classes
equate to zero

SJ = 0 ∀J �= 1

Ii
M = 0 i = 1, . . . , n, M ∈ Ai.

(11)

Note that the disease–free equilibrium always exists. Besides E0, there are n

simple boundary equilibria where only strain i strain is established. We denote such
equilibria by Ei, i ∈ {1, . . . , n}.
Proposition 3.1. If Ri > 1 then there exists the ith edge (simple boundary)
equilibrium Ei.

Proof. To see this let Λj = 0 for j �= i. Let

Fi(Λi) = Ri

∑
M∈Ai

∑
J:J⊂M

p(J, M, i)SJ(Λi).

First we notice Fi(0) = Ri. Hence Fi(0) > 1 for Ri > 1. Next we notice that Fi(Λi)
satisfies

lim
Λi→∞

Fi(Λi) = 0.

To see this we notice that from (9) we have

S1(Λi) =
1

1 + Λi
.
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Thus, S1(Λi) is decreasing and going to zero as Λi → ∞. We continue following the
order provided by the set M . For all index sets M which can be obtained from 1
by infection with the strain i we have that terms like p(1, M, i)S1 are going to zero
as Λi → ∞. Thus, Ii

M

Λi
are going to zero (see Eq. (10)). For SJ with J like M and

Ji �= m, we have

SJ (Λi) =
(ei − 1)Ii

J

Λi

∑
M :J⊂M,M∈Ai

p(J, M, i) + 1
≤ (ei − 1)Ii

J

Λi

∑
M :J⊂M,M∈Ai

p(J, M, i)

and consequently, it is going to zero as Λi goes to infinity. We notice that Ii
M for

M ∈ Ai depends on SJ for J ⊂ M and hence J does not have its ith component
equal to m. Hence,

lim
Λi→∞

SJ(Λi) = 0

and the same is true for F(Λi). Consequently, there exists Λ∗
i > 0 such that

Fi(Λ∗
i ) = 1.

In order to determine the stability of the general system, we approximate the solu-
tion near a steady state (S∗

J , I∗M ) by its linearization as follows:

∂ṠJ

∂SM
=



−1 −

∑
i : Ji �= m

M : J ⊂ M, M ∈ Ai

Λip(J, M, i), if J = M,

0, if J �= M.

(12)

∂ṠJ

∂Ii
M

=




(ei − 1),

if J = M,M ∈ Ai and Ji = m,

(ei − 1)Riei

∑
M :J⊂M,M∈Ai

p(J, M, i)SJ ,

J = M,M ∈ Ai and Ji �= m,

−Riei

∑
M :J⊂M,M∈Ai

p(J, M, i)SJ ,

if M �= J,M ∈ Ai, Ji �= M

0, else.

(13)

∂İi
M

∂SM
=

{
Λip(M, M, i), if M ⊂ M,

0, else.
(14)

∂İi
M

∂Ij
M

=




Riei

∑
J:J⊂M

p(J, M, i)SJ − ei, if i = j, M = M,M ∈ Ai

Riei

∑
J:J⊂M

p(J, M, i)SJ , if i = j, M �= M, M ∈ Ai

0, else.

(15)
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We use the linearization above to establish the local stability of the disease–free
equilibrium.

Proposition 3.2. If Ri < 1 for all i then the disease–free equilibrium E0 is locally
stable. If Ri > 1 for some i, the disease–free equilibrium E0 is unstable.

Proof. The partial derivatives in the expressions above simplify significantly when
computed at the disease–free equilibrium. We have that

∂ṠJ

∂SM
=

{
−1, if J = M,

0, if J �= M.

The derivatives of the right hand sides of SJ with respect with Ii
M are complicated

but are not relevant for E0. The derivatives of Ii
M with respect to SM equate to

zero

∂İi
M

∂SM
= 0

for all M , M and i.

∂İi
M

∂Ij
M

=



Rieip(1, M, i) − ei, if i = j, M = M,M ∈ Ai

Rieip(1, M, i), if i = j, M �= M,M ∈ Ai

0, else.

Thus, the Jacobian J consists of −1’s along the diagonal and block matrices Bi

and additional simplifying structure discussed below.

J =




−1 ∗ · · · ∗ · · · ∗
0 −1 · · · ∗ · · · ∗
0 0 · · · · · · ∗
0 0 · · · B1 · · · ∗
0 0 · · · 0 · · · ∗
0 0 · · · 0 · · · Bn




.

Thus, the eigenvalues of the Jacobian at the disease–free equilibrium consist of −1
while the eigenvalues of the matrices Bi (for i = 1, . . . , n) are described further.
The ith block has the form Bi = eiB̂i where

B̂i =



Rip(�) − 1 Rip(
) · · · Rip(◦)
Rip(�) Rip(
) − 1 · · · Rip(◦)

· · ·
Rip(�) Rip(
) · · · Rip(◦) − 1




and Mj are indices in Ai, p(1, M1, i) = p(�), p(1, M2, i) = p(
) and p(1, M2, i) =
p(◦). We find the eigenvalues by computing the determinant

|B̂i − λI|.
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The determinant is calculated by multiplying the first row by −1 and adding it to
the remaining rows. The resulting determinant will have 1 + λ in the first column
except the first entry, −1 − λ in the diagonal entry for rows 2, . . . , k and zeroes
elsewhere. The first row is as before. We proceed to add each column from the
second to the last, and to the first column. The first entry becomes

Ri

∑
M∈Ai

p(1, M, i) − 1 − λ = Ri − 1 − λ.

The remaining entries along the diagonal are given by −1 − λ and those entries
below–the–diagonal equal to zero. Thus, the eigenvalues of B̂i are −1 and Ri − 1.
Consequently, if all Ri < 1 then all eigenvalues of the Jacobian are negative and the
disease–free equilibrium is locally stable. However, if there is a single Rj > 1 then
the Bjth block has a positive eigenvalue and the disease–free equilibrium becomes
unstable. This completes the proof.

Notice that the eigenvalues of Bi are ei times the eigenvalues of B̂i, hence, the
eigenvalues of Bi and B̂i have the same sign. Next, we show that the disease–free
equilibrium is not only locally stable but globally stable whenever all the reproduc-
tion numbers are less than unity. Thus, keeping all reproduction numbers below
one prevents an outbreak from becoming established.

Proposition 3.3. If Ri < 1 for all i, then the disease–free equilibrium E0 is globally
stable.

Proof. We consider the original equations rather than the non–dimensional equa-
tions. Let

Ii =
∑

M∈Ai

Ii
M ,

where

βiIi = Λi.

Adding the equations in (4) for all M ∈ Ai while assuming a fixed i gives

d

dt
Ii =

∑
M∈Ai

∑
J:J⊂M

βiIip(J, M, i)SJ − (γi + µ)Ii.

The value of the sum increases if we include all J rather than only those which are
subsets of M . Hence, we can exchange the two sums. Hence, using Eq. (1) gives

d

dt
Ii ≤ βiIi

∑
J

SJ − (γi + µ)Ii.
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Integrating these equations yields

Ii(t) = e−(γi+µ)tIi(0) + βi

∫ t

0

e−(γi+µ)(t−τ)Ii(τ)
∑

J

SJ (τ) dτ. (16)

Notice that ∑
J

SJ < 1 and lim sup
t

∑
J

SJ ≤ 1.

Hence, taking the lim sup as t → ∞ in inequality (16) we obtain,

lim sup
t

Ii ≤ Ri lim sup
t

Ii.

Since Ri < 1, this inequality can only be true if

lim sup
t

Ii = 0.

The same argument applies for every i. Hence, the number of individuals in all
infectious classes goes to zero. From Eq. (3), for J �= 1, we have that

lim sup
t

SJ = 0,

and we know that,

lim
t

S1 = 1.

This completes the proof.

4. Strain Invasion

A pathogen’s ability to invade a population seems to depend on a combined set of
factors that include the host’s immune system and the population’s susceptibility.
At the host level, a pathogen is most likely to generate an infection (invade) if a
host has little–to–none acquired cross–immunity, that is, prior exposure to a similar
(antigenically) strain. At the population level, a pathogen (strain) may be capable
of becoming established if sufficient levels of susceptibility are present.

We study the scenario for which a single strain may invade a population at
equilibrium, that is, a population supporting co–circulating strains. The conditions
that support the successful invasion of strain i are computed by evaluating the
Jacobian at the equilibrium E . That is, we start with a system at equilibrium (S∗

J ,
I∗M ), where it is assumed that strain i (and possibly other strains) are absent. The
invasion reproduction number of strain i is given by

R̂i = Ri

∑
M∈Ai

∑
J:J⊂M

p(J, M, i)S∗
J . (17)

Strain i becomes established if R̂i > 1 (unstable equilibrium (S∗
J , I∗M )) while R̂i < 1

implies that strain i is unable to invade, rendering a possibly stable equilibrium
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(S∗
J , I∗M ). In general, if Ri < 1 we do not know whether the equilibrium is stable

or not, we do not expect strain i to persist.

Proposition 4.1. Let E = (S∗
J , I∗M ) be an equilibrium in which strain i is not

present, that is Ii
M = 0 for all M ∈ Ai. If R̂i > 1 then the equilibrium E is

unstable, that is, strain i can invade.

Proof. The partial derivatives of the right-hand sides of the system (6) are com-
puted in the expressions (12)–(15). The variables are arranged so that leading
entries are all the susceptible classes followed by all I1

M classes, then all I2
M classes

and so on until we include all In
M classes. With this arrangement we let S be the

matrix S = ( ∂ṠJ

∂SM
), where the different entries are obtained by varying J and M.

The diagonal entries of this matrix are nonzero and the rest are zero. We denote by
Xj the matrix Xj = ( ∂İj

M

∂SM ) where the different entries are obtained by varying M

and M. The matrix Xj is identically zero if and only if the strain j is not present

in the equilibrium E . In particular Xi = 0. Furthermore, we denote by Bi = ( ∂İi
M

∂Ii
M

)
where

∂İi
M

∂Ij
M

=




Riei

∑
J:J⊂M

p(J, M, i)SJ − ei, if i = j, M = M,M ∈ Ai

Riei

∑
J:J⊂M

p(J, M, i)SJ , if i = j, M �= M,M ∈ Ai

0, else.

With this notation the Jacobian at the equilibrium E consists of the matrix S, the
matrices Xj and block matrices Bi which are full without zero entries:

J =




S ∗ · · · ∗ · · · ∗
X1 B1 · · · 0 0 0
· · · · · · · · · · · · · · ·
0 0 · · · Bi · · · 0
· · · · · · · · · · · · · · · · · ·
Xn 0 · · · 0 · · · Bn




.

Thus, the eigenvalues of the Jacobian at the equilibrium E includes the eigenvalues
of the matrix Bi which has the form Bi = eiB̂i where

B̂i =




Ri

∑
J⊂M1

p(�)SJ − 1 Ri

∑
J⊂M2

p(
)SJ · · · Ri

∑
J⊂Mk

p(◦)SJ

Ri

∑
J⊂M1

p(�)SJ Ri

∑
J⊂M2

p(
)SJ − 1 · · · Ri

∑
J⊂Mk

p(◦)SJ

· · ·
Ri

∑
J⊂M1

p(�)SJ Ri

∑
J⊂M2

p(
)SJ · · · Ri

∑
J⊂M3

p(◦)SJ − 1




.
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SJ is the corresponding value in the equilibrium E , Mj are indices in Ai,
p(J, M1, i) = p(�), p(J, M2, i) = p(
) and p(J, M2, i) = p(◦). To find the eigen-
values of B̂i we compute the determinant

|B̂i − λI|.
We multiply the first row by −1 and add it to the remaining rows. We obtain a
determinant which has 1 + λ in the first column, except the first entry −1 − λ in
the diagonal entry for rows 2, . . . , k and zeroes elsewhere. The first row is as before.
Then we add each column from the second, to the last, to the first column. The
first entry becomes

Ri

∑
M∈Ai

∑
J:J⊂M

p(J, M, i)SJ − 1 − λ.

The remaining entries along the diagonal are −1 − λ and the entries below the
diagonal are zero. Thus, the eigenvalues of Bi are −1 and R̂i − 1. Consequently,
if R̂i > 1 then the Jacobian J has a positive eigenvalue and the corresponding
equilibrium E is unstable. This completes the proof.

5. Two–Strain Models

We apply the next–to–kin protection and differential protection models to study
the dynamics of a population supporting two co–circulating strains under specific
assumptions on p(J, M, i). We simulate the dynamics supported by these models
and provide details on the equations and assumptions on p(J, M, i) in the Appendix.

5.1. Next–to–kin protection model

We assume a population of two antigenically similar (i.e. strains of a common flu
subtype) strains that interact via the next–to–kin protection (see Fig. 1). Proba-
bilities p1 and p2 denote reduced susceptibility of fully naive individuals (S{1,1})
to infection with strains 1 and 2, respectively. Following a prior infection, p3

and p4 denote the acquired protection against future infections for the suscepti-
ble classes S{3,2} and S{2,3} (respectively). For simplicity, we assume that fully
naive individuals become infected with strain 1, and strain 2 with probabilities

Fig. 1. Schematic diagram of a two–strain model assuming the next–to–kin protection framework.
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equal to one, respectively (e.g. p1 = 1, p2 = 1). Secondary infections occur
with probability p (e.g. p3 = p4 = p). For a two–strain model, flu may prevail
in three possible states. That is, either strain 1 or 2 persist independently, or
they coexist. We study the stability of strain 1 (E∗

1 ) and strain 2 (E∗
2 ) by letting

W = (S{1,1}, S{2,3}, S{3,2}, S{3,3}, I1
{3,2}, I

1
{3,3}, I

2
{2,3}, I

2
{3,3}) denote the state vari-

ables in system (A1) described in the Appendix. Assessment of the equilibrium of
a single strain yields S{2,3} = S{3,3} = I1

{3,3} = I2
{2,3} = I2

{3,3} = 0 in (A1) and the
boundary equilibria for strains 1 and 2 are given by

E∗
1 = (S∗

{1,1}, 0, S∗
{3,2}, 0, I1∗

{3,2}, 0, 0, 0)

E∗
2 = (S∗

{1,1}, S
∗
{2,3}, 0, 0, 0, 0, I2∗

{2,3}, 0),

respectively, where S∗
{1,1}, S∗

{3,2}, S∗
{2,3}, I1∗

{3,2} and I2∗
{2,3} are described in the

Appendix.
We evaluate the ability of a particular strain to invade in terms of the invasion

reproduction numbers denoted by R̂1 and R̂2. We let R̂1 (also denoted by R2
1)

describes the number of secondary infections generated by a “typical” strain–1
infected individual in a population where strain 2 is endemic (E∗

2 ). We show that
R2

1 < 1 and R1
2 > 1 support the stability of E∗

2 , while R1
2 < 1 and R2

1 > 1
guarantee the stability of E∗

1 . Stable coexistence is possible when R1
2 > 1 or R2

1 > 1,
however, neither strain becomes established when R1

2 < 1 and R2
1 < 1. The invasion

reproduction number in Eq. (17) takes the form:

R̂1 ≡ R2
1 =

R1

R2
+ p

R1

R2

γ2(R2 − 1)
(µ + γ2)

. (18)

Similarly, the invasion reproduction number of strain 2 given that strain 1 is at
equilibrium (E∗

1 ) may be obtained by replacing indices 1’s by 2’s and vice–versa in
Eq. (18).

5.2. Differential protection model

We apply the differential protection approach to evaluate a two–strain scenario
among strains in which cross-immunity may or may not conferred (see Fig. 2).
This scenario corresponds to a situation in which the strains confer partial or full
protection to an antigenically similar strain (of similar subtype). However, this
cross-immunity structure may also apply in a situation in which the strains inter-
acting provide some protection against each other and no protection against other
strains as it is observed among strains belonging to distinct influenza subtypes
(H1N1 and H3N2). In the case when strains are antigenically similar, we assume
that immunity is enhanced uniformly with increasing viral exposures (captured by
p). However, if strains belong to different subtypes, no cross–immunity is assumed.
For instance, assuming an initial probability of 0.6, implies a reduction probability
of 0.36 (p2) against a secondary infection, a reduction of 0.22 against a third infec-
tion (p3), and so on. We make specific assumptions on the probabilities of infection
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Fig. 2. Schematic diagram of a two–strain model assuming the differential protection framework.
Susceptible individuals S{2,2} (bottom-left box) may get reinfected with strain 1 and progress to

infectious class I1
{3,2} or progress to infectious class I2

{2,3} following reinfection with strain 2.

as shown below in order to simplify our simulations and compare the dynamics of
the two–strain models supported by the NTKP and DP. However, the generality
of this framework allows for the simulation of these models without the specific
assumptions on p as shown below.

p1 = p and q1 = (1 − p) p2 = p and q2 = (1 − p)

z1 = p2 and z2 = p(1 − p) u1 = p2 and u2 = p(1 − p)

v1 = p2 and v2 = p(1 − p) k1 = p2 and k2 = p(1 − p)

x1 = p2 and x2 = p(1 − p) s1 = p2 and s2 = p(1 − p)

w = p and r = p.

The boundary equilibria for this model are given by:

E∗
1 = (S∗

{1,1}, S
∗
{2,1}, S

∗
{3,1}, 0, 0, 0, 0, 0, 0, I1∗

{2,1}, I
1∗
{3,1}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

E∗
2 = (S∗

{1,1}, 0, 0, S∗
{1,2}, S

∗
{1,3}, 0, 0, 0, 0, 0, 0, I2∗

{1,2}, I
2∗
{1,3}, 0, 0, 0, 0, 0, 0, 0, 0),

where

I1∗
{2,2} = I2∗

{2,2} = I1∗
{2,3} = I2∗

{2,3} = I1∗
{3,2} = I2∗

{3,2} = I1∗
{3,3} = I2∗

{3,3} = 0,

and

S∗
{2,2} = S∗

{2,3} = S∗
{3,2} = S∗

{3,3} = 0.
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The steady states S∗
{1,1}, S∗

{2,1}, S∗
{3,1}, S∗

{1,2}, S∗
{1,3}, I1∗

{3,1}, I1∗
{2,1}, I2∗

{1,2}, I2∗
{1,3} are

provided in the Appendix. We derive the invasion reproduction number of strain 1
while assuming that strain 2 is established as follows:

R̂1 ≡ R2
1 =

R1µ

Λ2 + µ
+ pξ2

1 [pµ(µ + γ2) + (1 − p)(Λ2p + µ)(µ + γ2) + p2γ2Λ2], (19)

where

ξ2
1 =

R1Λ2γ2

(µ + γ2)2(µ + Λ2)(µ + pΛ2)
.

The force of infection for strain 2 is given by the unique positive solution of the
quadratic in Λ2, namely

Λ2
2A + Λ2B + C = 0, (20)

where

A = p(µ + γ2),

B = µ(µ + γ2) + p[µ2(1 −R2) + µγ2(1 −R2(1 + p))],

C = (µ2 + µ2γ2)(1 −R2).

The invasion reproductive number in (19) is evaluated through incorporating
‘feasible’ solutions in (20). A similar calculation yields R̂2 (replacing indices 1’s
by 2’s and vice–versa in (19) and finding the corresponding feasible solutions with
respect to Λ1).

6. Numerical Simulations

We simulate the next–to–kin and differential protection models for a range of
parameter values that describe a disease with mild basic reproduction numbers
and ranging cross-immunity levels (see Table 1). Figure 3 illustrates the results for
two strain models assuming p values between 0.3 and 0.8. Assuming the NTKP

Table 1. Parameter values and initial conditions assumed for simulations. Assumed values
represent a hypothetical disease (strains) with a rate of spread as denoted by Ri.

Next–to–kin p β†
i R†

i γ†
i (days−1) µ (days−1) S†

J Ii
M

§
Model

Fig. 3(a) (0.3–0.8) 0.25; 0.28 1.2; 1.4 0.2 4×10−4 100 1
Fig. 4 (0.3–0.8) 0.25; 0.28 1.2; 1.4; 1.6 0.2 4×10−4 100 1

Differential
Protection
Model

Fig. 3(b) (0.3–0.8) 0.25; 0.28 1.2; 1.4 0.2 4×10−4 100 1

Note: †i = 1, 2 for strains 1 and 2; ‡J = {1, 1} is the immunity index set of the fully susceptible
population; §M is the immunity index set describing the infectious classes.



December 11, 2009 16:12 WSPC/129-JBS 00307

730 Nuño, Martcheva & Castillo-Chavez

3000 3500 4000 4500 5000 5500 6000
0

0.005

0.01

0.015

0.02

Time (days)

I1 3,
2
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(a)

3000 3200 3400 3600 3800 4000
0
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0.12
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Time (days)

I1 3,
3

Differential Protection Model

(b)

Fig. 3. Numerical integration of the next–to–kin protection model. (a) illustrates I1
{3,2} and

(b) I1
{3,3} for various cross–immunity levels. Incidence levels decrease with increasing

cross–immunity. That is, highest levels occurs for p = 0.8 (dark–solid) and smallest for p = 0.3
(gray–dashed).
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Fig. 4. Numerical integration of the next–to–kin protection model for three strains. Top panel
illustrates the dynamics of I3

{3,3,3} and I2
{3,3,3} and bottom panel of I1

{3,2,3} and describes the

dynamics of I1
{3,2,1}.

approach, we show that regardless of the levels of cross–immunity, oscillations
dampen over time as previously noted.13,14 However, under the DP model, two
strains are sufficient to drive sustained oscillations. To further explore the possi-
bility of oscillatory dynamics in the NTKP approach, we extended the model to
include three strains. Our simulations illustrate that three strains are sufficient to
support sustained oscillations for a wide range of cross-immunity levels (Fig. 4).

7. Discussion

Multiple strain models have been applied to study the dynamics of co-circulating
pathogens and suggest that competition mediated by cross–immunity plays a criti-
cal role in determining not only the fate but also the specific qualitative dynamics of
disease spread in a population. The early work of Castillo–Chavez et al.,13,14 estab-
lished that age–dependent survival and cross–immunity among two competing flu
strains were significant in supporting sustainable periodic solutions. Nowak and
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May21 show that assuming a framework that allows super–infection in a two–strain
model supports high levels of disease virulence which lead to coexistence.

We propose a general framework that can be used to explore specific cross–
immunity structures for multiple strain pathogens. We explore the NTKP approach
for two and three strain while assuming that strains are arbitrarily close in terms
of the host immune response (point mutations). Furthermore, we explore the DP

framework among two strains in which cross–immunity is conferred strictly against
the currently infecting strain and not the remaining strain.

We provide conditions that guarantee the local and global stability of the equi-
librium in the absence of disease (E0). The global stability (E0) results suggest that
sub–threshold coexistence as discussed in earlier work when applied to influenza22

cannot occur within this framework. That is, this demonstrates that an invading
strain may only become established in a population if its basic reproduction num-
ber (Ri) exceeds 1. Assuming that strains invade endemic (coexistence) states, we
determine conditions for the invasion of a “new” incoming strain in a population
that may be partially protected. In order to illustrate the flexibility of this frame-
work, we evaluate the role of two types of cross-immunity structures. We show that
the next–to–kin protection (NTKP) model seems unable to support the persistence
of periodic solutions, while the differential protection model, whose immunity struc-
ture is weaker than the NTKP model, is capable of generating sustained oscillations
for intermediate to weak the cross–immunity parameters.

The generality of this framework makes it useful for the assessment of the
dynamics of various diseases (strains) and their interactions. Here, we illustrate
the proposed cross-immunity structures via a limited set of examples, however, the
general framework may be applied to include more strains and possibly other cross–
immunity structures not discussed herein. As shown in previous studies, our model
confirms with two particular examples (NTKP and DP ) that cross-immunity plays
a significant role in determining the dynamics in a model of competing pathogens.
Not surprisingly, we show that reinfection supports the persistence of sustained
oscillations and that reducing the pool of susceptible hosts in a population is criti-
cal in curtailing disease burden. Under the two-strain NTKP model, the depletion
of susceptibles leads to the eventual extinction of both strains. However, including
a third strain supports a more dynamic rising and replacement of strains, yielding
a new susceptible population that continuously supports the persistence of these
strains.

This study differs from other approaches in that we do not assume simultaneous
infections; we considered cross–immunity structures not previously explored and
applicable to a range of pathogens. However, one of the strengths on this study
is that it provides a flexible framework that may be used to explore the role of
various cross–immunity structures among multiple strains without restricting the
interactions among the competing strains. Although the aim of this study was
not to compare the dynamics supported by each of the models discussed, further
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assessment of these models are required in order to compare these findings with
other multiple strain studies.3
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Appendix

Next–to–kin model

The next–of–kin protection model assumes that infection with strain 1 confers par-
tial protection p3 against a future infection while infection with strain 2 protects
against strain 1 with probability p4. Fully susceptible individuals S{1,1} become
infected with strains 1 and 2 with probabilities p1 and p2, respectively. Infected
individuals with strain i recovered at a rate γi. Based on the flow diagram illus-
trated in Fig. 1, we derive the following system of equations.

dS{1,1}
dt

= b − (Λ1p1 + Λ2p2)S{1,1} − µS{1,1},

dS{2,3}
dt

= γ2I
2
{2,3} − Λ1p4S{2,3} − µS{2,3},

dS{3,2}
dt

= γ1I
1
{3,2} − Λ2p3S{3,2} − µS{3,2},
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dS{3,3}
dt

= γ1I
1
{3,3} + γ2I

2
{3,3} − µS{3,3},

dI1
{3,2}
dt

= Λ1p1S{1,1} − (µ + γ1)I1
{3,2},

dI1
{3,3}
dt

= Λ1p4S{2,3} − (µ + γ1)I1
{3,3},

dI2
{2,3}
dt

= Λ2p2S{1,1} − (µ + γ2)I2
{2,3},

dI2
{3,3}
dt

= Λ2p3S{3,2} − (µ + γ2)I2
{3,3}. (A1)

Probabilities of disease reduction can be explicitly given by:

p1 = p({1, 1}, {3, 2}, 1) p2 = p({1, 1}, {2, 3}, 2)

p3 = p({3, 2}, {3, 3}, 2) p4 = p({2, 3}, {3, 3}, 1).

In order to compare the dynamics of the NTKP and DP models, we assume that
p1 = p2 = 1 and p3 = p4 = p. Letting p1 and p2 equal to 1 means that naive
individuals are fully susceptible (noted by S{1,1}). Similarly, replacing p3 and p4

with p implies that individuals previously infected with either strain 1 or 2 con-
ferred partial protection. Here, we assume that this partial protection is the same
regardless of whether the former infection was with strain 1 or 2. The steady state
of the various epidemiological sub–classes for the NTKP model are given by:

S∗
{1,1} =

b

Λ1p1 + Λ2p2 + µ

S∗
{3,2} =

γ1

(Λ2p3 + µ)
Λ1p1

(µ + γ1)
b

Λ1p1 + Λ2p2 + µ

S∗
{2,3} =

γ2

(Λ1p4 + µ)
Λ2p2

(µ + γ2)
b

Λ1p1 + Λ2p2 + µ

I1∗
{3,2} =

Λ1p1

(µ + γ1)
b

Λ1p1 + Λ2p2 + µ

I2∗
{2,3} =

Λ2p2

(µ + γ2)
b

Λ1p1 + Λ2p2 + µ
.

Differential protection model

This model assumes that each strain provides partial protection against itself with
probability p and full protection with 1 − p (post infection), thereby, providing a
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“uniform” enhancement of cross–immunity with increasing infections. We derive
the system of equations for the DP according to Fig. 2. Note that for simplicity
and to facilitate the comparison of simulations for the NTKP and DP model, we
assumed specific choices of protective cross-immunity.

dS{1,1}
dt

= b − Λ1(p1 + q1)S{1,1} − Λ2(p2 + q2)S{1,1} − µS{1,1},

dI1
{2,1}
dt

= Λ1p1S{1,1} − (µ + γ1)I1
{2,1},

dI1
{3,1}
dt

= Λ1q1S{1,1} + Λ1rS{2,1} − (µ + γ1)I1
{3,1},

dS{2,1}
dt

= γ1I
1
{2,1} − Λ1rS{2,1} − Λ2sS{2,1} − µS{2,1},

dS{3,1}
dt

= γ1I
1
{3,1} − Λ2vS{3,1} − µS{3,1},

dI2
{1,2}
dt

= Λ2p2S{1,1} − (µ + γ2)I2
{1,2},

dI2
{1,3}
dt

= Λ2q2S{1,1} + Λ2wS{1,2} − (µ + γ2)I2
{1,3},

dS{1,2}
dt

= γ2I
2
{1,2} − Λ1uS{1,2} − Λ2wS{1,2} − µS{1,2},

dS{1,3}
dt

= γ2I
2
{1,3} − Λ1kS{1,3} − µS{1,3},

dI1
{2,2}
dt

= Λ1u1S{1,2} − (µ + γ1)I1
{2,2},

dI1
{2,3}
dt

= Λ1k1S{1,3} − (µ + γ1)I1
{2,3},

dI1
{3,2}
dt

= Λ1u2S{1,2} + Λ1z1S{2,2} − (µ + γ1)I1
{3,2},

dI2
{2,3}
dt

= Λ2s2S{2,1} + Λ2z2S{2,2} − (µ + γ2)I2
{2,3},

dI2
{2,2}
dt

= Λ2s1S{2,1} − (µ + γ2)I2
{2,2},

dI2
{3,2}
dt

= Λ2v1S{3,1} − (µ + γ2)I2
{3,2},

dI1
{3,3}
dt

= Λ1k2S{1,3} + Λ1x1S{2,3} − (µ + γ1)I1
{3,3},
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dI2
{3,3}
dt

= Λ2v2S{3,1} + Λ2x2S{3,2} − (µ + γ2)I2
{3,3},

dS{2,2}
dt

= γ1I
1
{2,2} + γ2I

2
{2,2} − Λ1z1S{2,2} − Λ2z2S{2,2} − µS{2,2},

dS{2,3}
dt

= γ1I
1
{2,3} + γ2I

2
{2,3} − Λ1x1S{2,3} − µS{2,3},

dS{3,2}
dt

= γ1I
1
{3,2} + γ2I

2
{3,2} − Λ2x2S{3,2} − µS{3,2},

dS{3,3}
dt

= γ1I
1
{3,3} + γ2I

2
{3,3} − µS{3,3}, (A2)

We compare this model with the NTKP by assuming the following properties,
however, these assumptions may be relaxed as needed:

p1 + q1 = 1 p2 + q2 = 1

z1 + z2 = z u1 + u2 = u

v1 + v2 = v k1 + k2 = k

x1 + x2 = x s1 + s2 = s

We assessed the stability of this model at the following steady states:

S∗
{1,1} =

b

(Λ1 + Λ2 + µ)

S∗
{2,1} =

γ1

(Λ1r + Λ2s + µ)
Λ1p1

(µ + γ1)
b

(Λ1 + Λ2 + µ)

S∗
{3,1} =

γ1

Λ1v + µ

[
Λ1q1

(µ + γ1)
+

Λ1r

(µ + γ1)
Λ1p1

(µ + γ1)
γ1

(Λ1r + Λ2s + µ)

]
b

(Λ1 + Λ2 + µ)

S∗
{1,2} =

γ2

(Λ1u + Λ2w + µ)
Λ2p2

(µ + γ2)
b

(Λ1 + Λ2 + µ)

S∗
{1,3} =

γ2

Λ1k + µ

[
Λ2q2

(µ + γ2)
+

Λ2w

(µ + γ2)
Λ2p2

(µ + γ2)
γ2

(Λ1u + Λ2w + µ)

]
b

(Λ1 + Λ2 + µ)

I1∗
{3,1} =

Λ1q1

(µ + γ1)
b

(Λ1 + Λ2 + µ)
+

Λ1r

µ + γ1

γ1

(Λ1r + Λ2s + µ)
Λ1p1

(µ + γ1)
b

(Λ1 + Λ2 + µ)

I1∗
{2,1} =

Λ1p1
(µ + γ1)

b

(Λ1 + Λ2 + µ)

I2∗
{1,2} =

Λ2p2

(µ + γ2)
b

(Λ1 + Λ2 + µ)

I2∗
{1,3} =

Λ2q2

(µ + γ2)
b

(Λ1 + Λ2 + µ)
+

Λ2w

µ + γ2

γ2

(Λ1u + Λ2w + µ)
Λ2p2

(µ + γ2)
b

(Λ1 + Λ2 + µ)
(A3)




