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Abstract

Several articles in the recent literature discuss the complexities of the impact of vaccination on competing
subtypes of one micro-organism. Both with competing virus strains and competing serotypes of bacteria, it
has been established that vaccination has the potential to switch the competitive advantage from one of the
pathogen subtypes to the other resulting in pathogen replacement. The main mechanism behind this process
of substitution is thought to be the differential effectiveness of the vaccine with respect to the two competing
micro-organisms. In this article, we show that, if the disease dynamics is regulated by super-infection, strain
substitution may indeed occur even with perfect vaccination. In fact we discuss a two-strain epidemic model
in which the first strain can infect individuals already infected by the second and, as far as vaccination is
concerned, we consider a best-case scenario in which the vaccine provides perfect protection against both
strains. We find out that if the reproduction number of the first strain is smaller than the reproduction num-
ber of the second strain and the first strain dominates in the absence of vaccination then increasing vacci-
nation levels promotes coexistence which allows the first strain to persist in the population even if its
vaccine-dependent reproduction number is below one. Further increase of vaccination levels induces the
domination of the second strain in the population. Thus the second strain replaces the first strain. Large
enough vaccination levels lead to the eradication of the disease.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Vaccination is most effective against those viruses or bacteria that have little tendency to vary
antigenically and can only be found in humans. Many of the pathogens, however, are represented
by more than one variant. The importance of including subtypes in modeling the development
and evolution of the diseases is well recognized. Competitive exclusion and coexistence of strains
in gonorrhea and other sexually transmitted diseases are discussed in [10,11]. The re-emergence of
tuberculosis and the spread of drug-resistant strains is considered in [4,7,13]. Dengue is repre-
sented by four serotypes and infections by some particular sequences of them can be particularly
dangerous as they are believed to lead to the deadly haemorrhagic fever. Dengue models with sev-
eral serotypes are considered in [12,14]. The virus that causes influenza is so highly mutable that it
has prompted scientists to create epidemic models where the infected individuals are continuously
structured by the phenotype of the virus [17]. Other multi-strain models of influenza are consid-
ered in [2,16,8,9]. Epidemic model which investigates multistrain interactions and finds that com-
petitive exclusion is the ultimate outcome is found in [6]. Various mechanisms promote
coexistence among the strains. Some of those are super-infection [15,21,26], mutation [5,7,13],
coinfection [22], cross-immunity [8,9,12], density-dependent host mortality [3], exponential growth
of the host population [1,20] and vaccination [23].

The presence of multiple variants of the pathogen has a very significant impact on vaccination.
Typically vaccines contain one or several strains called vaccine strains. The current pneumococcal
polysaccharide vaccine contains 23 types of pneumococci that cause 90% of the cases of pneumo-
coccal bacteremia and meningitis. Each year CDC determines three strains of influenza virus —
two of type A and one of type B, to be included in the vaccine for the next flu season. Thus,
vaccines give high level of immunity against the vaccine strains and provide certain degree of pro-
tection through cross-immunity against some of the closely related pathogens. Because the vac-
cines block the spread of the stronger strains, the ones that account for most cases, they free
the ecological niche for the development of those strains against which the vaccine provides only
partial protection, or no protection at all. Recent reports in the literature reveal that vaccination
has lead to the higher presence of subtypes that before vaccination were scarce. A study in Alaska
where routine HiB vaccination was initiated in 1991 reports that although the incidence of cases of
Heamophilus influenza, type b fell 82%, the number of new cases per year of non-type b increases
120% [27]. Another study reports the re-emergence of Bordella pertussis in the Netherlands despite
high vaccine coverage. Scientists suggest as a possible reason adaptation of the virus to the
vaccination which manifests itself in larger divergence between the vaccine strains and the clinical
isolates [25]. Invasive meningococcal disease was endemic in Cuba represented mostly by serotype
C before widespread vaccination started with the polysaccharide A-C vaccine in 1979. Despite
that this vaccination resulted in reduction in meningococci C infections, the incidence continued
to rise with prevailing serogroup B [30].
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The complexities of the impact of vaccination on the competition and coexistence of two
strains is investigated through mathematical models in several articles. The earliest work on that
topic appears to be [23] (see also [32]) where the main issue discussed is the possibility of emer-
gence of vaccine-resistant strains of the disease as a result of major vaccination campaigns. In
[23] the author considers two models — in the first one the two strain impart total cross-immunity
to each other. The vaccine acts by reducing the susceptibility of the vaccinated individuals to
each strain, although it may do so by a different amount. In this model coexistence is impossible
in the absence of vaccination but it is feasible with vaccination provided the vaccine confers
different degree of protection against the two strains. In the second model super-infection is
introduced and coexistence of the strains is possible even without vaccination. This model allows
for the strain with a lower reproduction number to have higher prevalence. In this case, if one
vaccinates against the strain with higher prevalence, one can give the competitive advantage to
the strain with higher reproduction number and thus increase the overall number of infectious
individuals.

The potential impact of a future HIV vaccine on the dynamics and transmission of two sub-
types of HIV are investigated in [28,29]. In their earlier paper Porco and Blower consider a model
called a differential degree model. Here, as in [23], the vaccine acts by reducing the susceptibility of
the vaccinated individuals to both strain, possibly by a different extent. The authors find that, as a
consequence of vaccination, either strain can dominate as well as there could be coexistence.
Strain replacement is possible if the vaccine is less effective to the invading subtype than to the
established one. In their later paper Porco and Blower consider two new HIV models with vacci-
nation so that in each model the vaccine has a different mode of action. The first model, called
differential take model, allows for coexistence of the two subtypes. In the second model, called dif-
ferential reduced infectivity model, the vaccine provides no protection and coexistence is not pos-
sible, while subtype replacement can occur as the vaccine can change the relation between the two
reproduction numbers.

Serotype replacement as a result of vaccination is the main topic of discussion in [18,19]. The
author discusses a two-serotype model. Host can be colonized by serotype one, serotype two or
both serotypes (coinfection). The vaccine provides full protection against the first serotype and
can provide no protection, partial protection or full protection against the second serotype.
The two serotypes can coexist in the absence of the vaccine but if they cannot coexist in the ab-
sence of the vaccine, vaccine that protects completely with respect to both of them cannot pro-
mote coexistence. The key prediction of the model is that the increase in the non-targeted
serotype is smaller than the decrease in the targeted serotype and thus the vaccine will always lead
to overall decrease in the prevalence (at least when only two serotypes are involved). It is used to
explain why serotype replacement is observed in trials of vaccines against Streptococcus pneumo-
niae but have not occurred with the use of Haemophilus influenzae, type b (HiB) vaccines. Actu-
ally, as mentioned previously, more recent studies [27] suggest that serotype replacement occurs
with the application of the HiB vaccine.

In this article we investigate the impact of a ‘perfect’ vaccine, that is a vaccine that confers 100%
protection against both strains through which the disease is represented. The main question that
we address is whether such a vaccine would still promote strain replacement. Actually we show
that, if a perfect vaccine is coupled with the so called super-infection mechanism, vaccination is
able to produce stability exchanges, coexistence of strains and switches of strain dominance. This
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scenario is related to the reproduction numbers of the two strains and to the invasion numbers of
one strain to the other. In fact their dependence on the vaccination rate is not the same for the two
strains due to the super-infection mechanism.

In the next section we introduce an SIS mathematical model and its reformulations. Although
an SIRS model would be more realistic as most diseases which allow for vaccination impart at
least short-term immunity after infection, such a model leads to more complex expressions which
obscure the main point. In section three we define the two sets of reproduction numbers: the vac-
cine-dependent reproduction numbers of the two strains, #,(y) and #,(\), and the invasion
reproduction numbers of one strain to the other, 2;(\) and %5 (/). These reproduction numbers
control the existence of the steady states. In particular we find that there are four equilibria: the
disease-free equilibrium Ej, the dominance equilibrium of strain one F;, the dominance equilib-
rium of strain two E, and one coexistence equilibrium FE,. In section four we derive condition
for local stability of each of these equilibria. Global stability of the disease-free equilibrium is
established under appropriate conditions. In section five we consider the impact of vaccination
on the competitive exclusion and coexistence of the two strains. In particular we show that if
#,(0) > #,(0) so that the first strain dominates in the absence of vaccination, increasing vaccina-
tion levels promotes coexistence of the strains and further increase of vaccination will lead to
domination of the second strain. Thus the second strain effectively replaces the first strain. Of
course, sufficiently high levels of vaccination eradicate the disease. In section six we discuss our
findings and summarize our conclusions.

2. The model formulation

In this section, we introduce a two strain epidemic model with super-infection. We consider a
population N(z) whose demography is regulated by a constant birth/recruitment rate A and a nat-
ural mortality rate u. The susceptible population S(¢) is subjected to a vaccination campaign with
vaccination rate 1. Upon vaccination, individuals move to the vaccinated class where they are
completely protected from both strains. However, the vaccine loses its protective properties with
time and eventually vaccinated individuals become susceptible again. We call the time individuals
spend in the vaccinated class vaccine-age and denote it by 0. The newly vaccinated individuals en-
ter the vaccinated class v(0, t) with vaccine-age equal to zero. The rate at which the vaccine wanes
is denoted by «(6). Susceptibles can be infected by strain one at a transmission rate ; and go to
the class 1(¢). The infected individuals in class (¢) recover at a rate y; and return to the susceptible
class. Alternatively, susceptibles can be infected by strain two at a transmission rate f§», in which
case they go to the class J(#). Infected individuals with strain two recover at a rate y, and upon
recovery return to the susceptible class. We assume that those infected with the second strain
can come into a contact with infectious individuals with the first strain and become reinfected with
the first strain. This process is referred to as super-infection. The transmission coeflicient in case of
super-infection is 516 where 0 is the coefficient of reduction or enhancement of infection at rein-
fection. In particular, if 6 > 1 then reinfection is more likely than the regular infection while if
0 <0 <1 then reinfection is less likely than the regular infection. If 6 =0 there is no super-
infection.
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Thus, the model takes the form:

S() = A= pyy =By — (s DS+l +0+ [ a(0)o(0.0 a0

, ST U
I'(t) :ﬁlﬁ+ﬁléﬁ— (n+y)I,

T = a3~ BT~ (e, O
d d
5,0(0,0) + 550(0,1) = —a(0)0(0,1) — v (0, 1),
v(0,7) = ¥S(1),
where

N(t)=S(t)+1(t) +J(t) + /DO v(0,1)do,

and is equipped with the following initial conditions:
S(O) :S(), I(O) :[o, J(O) :Jo, U(Q,O) :Uo(e).
We first note that this problem has a unique solution in the positive cone S > 0,7 > 0, J = 0,

v(0,t) = 0. Also, summing the equations, we have that the total population N(z) satisfies the dif-
ferential equation

N'(t) = A — uN(t)

whose solution is given by the formula
A
N(t) = Noe™™ +—(1 —e™).
u

Thus, we can assume that the initial value is

* A
N0:S0+10+J0+/ UO(G)dH:;
0

in order to have a population of constant size N = 4.
Furthermore, integrating the fourth equation in (1) along the characteristic line ¢ — 6 = con-
stant, we get the following formula

Ko(0)
v(@,t){vo(et)Ko(Ht) for 0 >t 2)
US(t — 0)Ko(0) for 0<t.

where

0
K()(e) _ efuﬁf‘]; (1) d‘c.

Substituting (2) into the first equation in (1) we obtain

S(0) = A= py5 =By — (et WS+l +3 + [ Ki(0)S—0)d0+Fi(0), o)
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where
K1 (0) = ya(0)Ko(0), (4)
ﬂa%—/mwwgﬁ%%ggﬁda

and Fi(¢) satisfies
lim Fl(t) =0.
—00

Thus we can replace the first equation in (1) by Eq. (3) and study following integro-differential
system in the variables S(z), 1(¢), J(¢),

S’(z):A—ﬂl%—ﬁz%’—<u+w>s+w+w+/o K/ (0)S(— 0)d0 + Fy (o),
I'(t) = ﬁl +ﬁ15__(H+V1)[a (5)

J'(t) = ﬁzﬁ_ﬁléﬁ_ (1 +72)J.

In fact we can disregard the last equation in (1) because the first three do not contain v(6, t).
Once we have solved (5) we can use (2) to obtain v(6,1).

3. Steady states

According to [24], any equilibrium (S*, I",J) of the system (5), if it exists, must be a constant
solution of the limiting system associated with (5). Thus we have to look for solution of the fol-
lowing system:

S ST . ) . .
A= py—— N + By —— N +(u+Y)S = A\S =y I =T,
=pBi— N +51 N — (U4 )7, (6)
0=p—+ N —ﬁ1 — (U4 )T,
where
a = / Ki(0)d0 =y — 'y (7)
0
and

Ho= / Ko(0)d0
0
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In interpreting these quantities we notice that p.¢" is the probability of dying while in the vacci-
nated class and

/ " (0)Ko(0)d0 = 1 — ut's

is the probability of leaving the vaccinated class with lost immunity but alive. Thus
Ay =y(1 — puA'y) is the per capita rate at which individuals enter the susceptible class after going
through the vaccination class.

We note that any solution of (6) corresponds to the following steady state for the distribution of
vaccinate individuals.

0"(0) = YS*Ko(0).

System (6) always has the disease-free equilibrium

o= (s 9) "

while the existence of non-trivial equilibrium will depend on the value of the two parameters

b
M= G iAy 7
() = b, (10)

(4 72) A+ A 0)

which are the basic reproduction numbers for the strain / and strain J, respectively, and give the
average number of secondary infectious cases produced by an infected individual with strain [/
(respectively, by an infected individual with strain J) during the entire infectious period in a purely
susceptible population. We note that the two reproduction numbers are decreasing functions of
and can be decreased to zero by the vaccination. In addition

R(Y) < R (Y) if and only if £,(0) < %,(0).

Consequently vaccination cannot switch the relationship between the two reproduction numbers.

To understand the form of the reproduction numbers we notice that the time spent in the class 7
is T and therefore Q is the number of secondary infections one infectious individual will pro-
duce'in a completely susceptlble population. However, the disease-free population in our case con-

sists of both susceptible individuals whose proportion in the total population is ; H} 7 and

vaccinated individuals with complementary proportion. Thus, the reproduction number is the
product of the secondary infections one infectious individual will produce and the probability that
an individual chosen at random is susceptible.

Solving system (6) we see that, besides E, the following one strain exclusive equilibria are fea-
sible, under some conditions on %, () and %,(y). Namely we have

(1) The following strain one exclusive equilibrium exists
El = (ST,IT,O),
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where

i N 1
Si=m N(l %w))’ {1

if and only if #,(y) > 1;
(2) The following strain two exclusive equilibrium exists
E2 = (S; 07‘];)7
where

LN
=m0 N<1 %w))’ 12

if and only if 2,() > 1.

Furthermore, the presence of a coexistence equilibrium depends on two other reproduction
numbers, namely the invasion reproduction numbers %; () and 25(y). By definition, the invasion
reproduction number of the first strain %7(i/) gives the number of secondary infections that one
infected individual with the first strain will produce in a population in which the second strain J is
at equilibrium. We refer to [28] for the explanation how these numbers are computed. The inva-
sion reproduction number of the first strain in our case is given by (see (12))

W) :ﬁ% +m<o>(1 —ﬁ) (13)

We note that the invasion reproduction number of the first strain is a decreasing function of .
Thus, vaccination decreases the invasion capabilities of the first strain. Analogously, the invasion
reproduction number of the second strain %;(w) gives the number of secondary infections that
one infected individual with the second strain will produce in a population in which the first strain
1 is at equilibrium. The invasion reproduction number of the second strain in our case is given by

(see (11))
1 _ %2(0) Blé 1
=25 50 (1 .5) "

The invasion reproduction number of the second strain increases with . Thus, vaccination facil-
itates the invasion capabilities of the second strain.

The two invasion number determine the occurrence of one coexistence equilibrium. In fact,
solving (6) for non-trivial I and J* we see that it there exists the equilibrium

E. = (S.I"J)

where

S*

[ OBy + 72— ]N
By =B+ Bio(L+yo)]
. _ Bo(Bid+v2—y1) N
r= [ﬁz—ﬁl+ﬁla<1+wo> (“”2)] Bro’

Bi(B10+ 72— 71) ]ﬁ
By — By + Bro(1 + o)) Bro”

(15)

s = |-
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that is feasible if and only if the following condition is satisfied

1 < Bio+ 7, — 7 < 1
K(0) By — B+ BiS(L +Ao) ~ 2:(0)
Thus we have

(3) If 6f1 + y2 — y1 > 0, the coexistence equilibrium (15) exists if and only if the two invasion
reproduction numbers are both greater than one, that is if

B > 1 AW) > 1. (17)

In fact, we can easily check that the upper inequality in (16) is equivalent to the inequality
Z5(y) > 1 while the lower inequality is equivalent to the inequality %2 () > 1.

Moreover we have the following ‘complementary’ situation that is also easy to check.

(4) If 6p1 + 7y, — y1 <0, the coexistence equilibrium (15) exists if and only if the two invasion
reproduction numbers are both less than one, that is if

HW) <1 M) <1 (18)
We note that feasibility implies

21(0) < 2,(0).
We summarize the issues above in the following theorem:

Theorem 1. Let %1 (Y), Z#2(Y), #1(\), R (W) be the reproduction numbers respectively defined in
(9), (10), (13), (14). Then

(16)

(1) The linear disease free equilibrium Ey given in (8) exists for all values of the parameters.
(i1) The strain one exclusive equilibrium E, given in (11) exists if and only if %,(¥) > 1.
(iil) The strain two exclusive equilibrium E, given in (12) exists if and only if #,() > 1.
(iv) If 6B1 + yo—y1 > 0, the coexistence equilibrium E"given in (15) exists if and only if%’f(tp) > 1
and Ry(f) > 1.
(V) If 6By + 72—71 <0, the coexistence equilibrium E* given in (15) exists if and only if #;() < 1
and R5(Y) < 1.

We see that though condition (16) shows a rather complicated dependence of coexistence from
the parameters, nevertheless there is a simple description in terms of significant parameters such as
reproduction numbers and invasion numbers. Since we want to investigate the role of vaccination,
we are interested in different scenarios in which coexistence and strain switches occur versus the
vaccination rate . We will discuss this aspect in Section 5, while in the next section we prelim-
inarly focus on stability of the equilibria.

4. Stability analysis

In this section we investigate the stability properties of the equilibria whose existence has been
stated in the previous analysis. We start with the trivial disease free equilibrium.
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Theorem 2. For any positive solution (S(t), I(t), J(?)) of system (5), if

21(0) <1 and %#,(0) <1, (19)
then the disease free equilibrium Eq is a global attractor.
Proof. Let

foo =lim inf f(z), [f>= tlimoo sup f(2).

t—00

Note that £ < 1, and

J'(t) = ﬁsz—J— ﬂlfs[l— (1 + ) < Bod — (u+72)J.

From #,(0) = #/j < 1 we know that
J({t)—0 as t— oo.

From

I'(t) = ﬁl +/315——(H+V1)17
and £ < 1, £ < 1 it follows that

I'(t) < Bl + proJ — (u+p))1.

Choose a sequence ¢, — oo such that I(z,) — I°°, and I'(t,) — 0 (see [31]), note that J(¢,) — O as
t, — oo, then

0< (B —pu—y)I™.

Since #,(0) = #ﬁl < 1, we have I° = 0, therefore lim,_, /(1) =

Finally, we choose the sequences 71 — oo, 2 — oo such that S(tl) — 8%, S(2) — S, and
S'(t}) — 0, 8'(£2) — 0. Then, from the first equation in (5), noticing that J(¢), I(¢) and F(¢) go to 0
as t — oo, it follows that

0< A~ (u+Y)S™ + (Y —yuA)S™,

0=>A—(u+y)Sec+ (Y —yuA')Sx
So, we get

N A

S =S = T gy

and the proof is complete. [J

The previous Theorem holds under condition (19), if it is not satisfied we can still prove local
stability.

Theorem 3. If
R(Y) <1 and R (Y) <1, (20)
then the disease free equilibrium E is locally stable. If (20) is not true Ey is unstable.



M. Iannelli et al. | Mathematical Biosciences 195 (2005) 23-46 33

Proof. Taking the linearization of system (5) at the point Ey, we get the following characteristic
equation

> B B
A — Kq(4 —_—
0 A+ u+y 1+ﬁ,’;%0 0 =0
0 0 )~+(M+“/z)—%l;%fo

where K, (4) denotes the Laplace transform of K;(6). This equation is equivalent to
= () () = D2 = (1 + 72)(Z2(h) = DI2+ p+ 3 = Ki(2)] = 0.

We see that if %,(y) > 1 or #Z,() > 1, then at least one solution of this equation has a positive
real part, so Ej is unstable.
If 2,(¥) < 1 and Z,(y) < 1, then all the solution of the characteristic equation have negative
real parts if all the roots of the equation
A+ u+y—K(2) =0, (21)

have negative real parts.
Let ‘R4 > 0 then we have

Rl = [ s e e b0 ao) <y [ ato)e b0 a0 -y,
0

but also
Atuty|Zutd >y

so that 4 cannot be a root of (21). From which we conclude that under (20) all the roots of (21)
have non-negative real parts. This completes the proof. [

The theorem below says that each strain can dominate if its reproduction number is larger than
one and the other strain cannot invade its equilibrium.

Theorem 4. The one strain exclusive equilibria satisfy:

(a) If #,() > 1, the boundary equilibrium E\ is stable for () < 1 and unstable for Z5(y) > 1.
b) If #,(\) > 1, the boundary equilibrium E, is stable for #;(\f) < 1 and unstable for #;() > 1.

Proof. Let #,(y) > 1. Then the equilibrium E; exists and the linearization of (5) at E; gives the
following characteristic equation:

B
7,(0) V2
—T A —5717]
0 0 = (u+m)(@W) 1)

/1+7Z1+,u+lﬁ—l/{'1(/l) u

=0, (22)
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where 7, = (1 — m) > 0. One of the roots of this equation is

= () (%) = 1)

so that, if () > 1 then E| is unstable. If instead 2;() < 1 then /, is negative and we have to
examine the other two roots of (22) that are given by the equation

P+ (G pmi+ Au+ = Ki(2) = 0. (23)

Using (4) we have that

Ki(2) = = (2 + pyKo(4), (24)
so that (23) can be written as
(2 + WA+ m + WKe(2)] = 0. (25)

Thus we have another negative root 1, = —u and we are left with the square bracked factor in
(25). Using again (24) we need to check the roots of

Jm = Ki(2) + mpKo(4). (26)
Now, if A is such a root and RA = 0, we have

U< m AP < by = Ky Ko(d)| < A+ Ao =, (27)

where we have used (7). In conclusion, all the roots of (22) have negative real part. Finally, con-

cerning part (b), we note that it can be proved in the same way as we proved part (a). [

Finally we analyze stability of coexistence equilibrium. First we adopt the following condition

B2 = By (28)
We have
Theorem 5. Assume Of, + y> — 91 >0, 1Y) > 1, Z() > 1 and (28). Then E. is stable.
Proof. We note first that if 25(1) > 1 we necessarily have %,(0) > %,(0) that, together with (28),
implies > > f; and y, > y;. Thus we are under the assumptions of item (iv) of Theorem 1 and the

equilibrium E, exists. The linearization of (5) at this point gives the following characteristic
equation

A By + Boj* + () — Ki(2) Bis* = Bas™ =7
=By’ A= Bys* = B1oj" + u+y, — 08" =0,
A Bioj* A= Pos™ + 101" + u+ 7y,
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*

where in order to simplify the notations, we have set i* =4, j* =% s
the determinant and using (6), the above equation is equivalent to

/1+u+tp—f<1()») Atu A+un

—p,i* A —pB,0i* | =0
—BoJ" Broj* A
and, using (24), it is equivalent to
1+ yKo(A) 0 1
(2w =B A+ poir —poit | =0.
—BJ* —A+ Boj* )
Now, since we have the root 1 = —pu, we are left with the analysis of

L+ YR D)E + (BOVH ) + MBi + Bor) + (B — B0 = O,
that, since (4 + u)YKo(1) =  — K, (1), can be rewritten as
RAG) = (B By ) X S5 (i) 4 i+

where

(B, = B1)Boi"j"
(Bii* + BoJ")

A= (B0)i')", B=

_s
N

35

. Now, manipulating

(29)

(30)

(31)

(32)

We note here that the condition Sy, = f»y; implies B = ‘;‘. This is a key observation in the proof

of stability. Furthermore, if Re4 = 0, it is easy to see that
|1A{ 1| <.
Let Red = 0, if we can prove the real parts of
)\4 B
Z: = .2+
A"+ 4

is non-negative, then

(A+u)

A

o o AtB
'(/311 +ﬁ2])xm(/b+,u)+)u+‘u+lp >+,

therefore, (31) has no roots with non-negative real parts, and we complete the proof of this the-

orem. Letting A = x + 1y, x = 0, we have

A+ B x+B+1iy .
ReZ =R A =R -
¢ e{/lz+A( +M)} e{xz—y2+A+2xy1(x+u+ly)}

_Re{(x+§‘+iy)(x2 —y’+4 —2xyi)(x—|—,u+iy)}

(x? —)? +A)2 + 4x2y?
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(P — A+ 22 + (D + 2+ (A + 2407 + (Ap + L)
(x2 — 2 +A)2 + 4x2)2

> 0.
This completes the proof. [

The proof of the previous result has been carried through assuming the special condition (28)
that is needed to be technically able to handle the characteristic equation (31). The general case
seems difficult to analyze. Another special case for which it is simple to draw a conclusion is
the case of o(6) = a(constant), i.e. the case when the protection from the vaccination decays at
a constant rate. In fact with this assumption we have

Ro(2) = / " g Jy A g / Cetmwngg o1
0 0 Atpto
and the characteristic equation (31) can be rewritten as
Prait+ad+a; =0, (33)
where

ay=p+o+y+ (B + By),
ar = (B10)* 17" + (Byi™ + Bof*) (p + o) + (By — By) 100" S,
as = (B10)i" )" (1 + o) [By — By + Bid(1 + A o).

and (in view of Routh—-Hurwitz Criteria)

ayay —ay = (Byi* + Bof") (i + o+ W) (+ ) + (By — B)B1OE W + (B + o )(B10) 1)
+ (Bii" + By )+ o) + (By — B1)B168" )]
> 0.

In fact we see that, if 5, > 1, then all these expression are positive and consequently (33) has only
roots with negative real parts. Thus we have the additional result:

Theorem 6. Assume 5f, + y,—y, >0, Z1(Y) > 1 and R3(Y) > 1. If (0) = o and B, > B, then E.
is stable.

However, the condition 5, > ff; does not necessarily occur within the situation envisaged in (iv)
of Theorem 1 and, though a; and a3 are always positive, a, and/or (a;a, — az) may be negative for
some values of the parameters. In this case, E* may lose its stability by Hopf bifurcation. In fact,
in Fig. 1 we show some numerical simulation showing existence of periodic solutions. The picture
shows the ratios Iz(v—t) and % as a function of time, when the parameters are chosen as indicated in
the figure captions.

We note that with this values of the parameters all the conditions of (iv) in Theorem 1 are ful-
filled with a, and a,a, — a3 negative. Actually, for higher values of the vaccination rates y, keep-
ing the values of the other parameters fixed, the coexistence state may become asymptotically
stable, as we may see in Fig. 2 where damped oscillations of the strain J are shown.
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Fig. 2. The case of a constant «(0). Here yy = 0.35. The other parameters are chosen as in Fig. 1.
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Some more comments should be set forward concerning the case of a non-constant «(6). In fact,
in this case additional effects may occur, due to a non-exponential kernel Ky(6). Adopting the fol-
lowing form for o(6)

0 if 0<0
0) — 34
*(0) {oco it 0> 0, (34)

we may investigate stability as a function of 6*. In Fig. 3 we show stabilization of the coexistence
equilibrium due to large values of 0*. All the values of the parameters are the same as in the pre-
vious examples but for . In fact, since the model actually depends on the product %", more
than on  alone, it is significant to keep this product constant while changing 6*.

The previous considerations and simulations show that the model may present a complicated
dynamics and that existence and stability of equilibria may considerably change with the vaccina-
tion rate. A complete detailed exploration of the model goes beyond our purposes in this paper,
but we will devote next section to present two particular scenarios that illustrate how vaccination
may influence the two strains dynamics.

(a)

J() -

(b) t
Fig. 3. The case of «(0) as given in (34). Here ©=0.01, $;=35.5, fo=138, §=0.5, yy=1.5, y,=0.02, « =0.01,
WA g = 6. Case (a) 0" = 0. Case (b) 0" = 20.
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5. The role of vaccination in the competitive exclusion and coexistence of the strains

In this section we investigate the role that vaccination plays in the dynamical behavior of the
system. We will be concerned with the case y; =7, =0 as this case simplifies the computa-
tions without significantly changing the outcomes. In addition, we know from Theorem 5 that
the coexistence equilibrium is stable whenever it exists.

Since the stability of the dominance equilibria and the coexistence equilibrium depend on the
invasion reproduction numbers, we find vaccination levels i and /; such that %; () = 1 and
A5(y3) = 1. Thus,

1 — 1
V= [ 1= BB -1 -

As 3 () is a decreasing function of y we have that
Z#1(Y) > 1 if and only if ¥ <.
On the other hand since #;(}) is an increasing function of i/ we have that
Z2y(y) > 1 if and only if W > .
We also use the vaccination levels y* and y** such that #,(y") = 1 and #,(y"") = 1. The vacci-
nation levels y* and ** are as follows

L .
W= O 1] = a(0) 1] (36)

Ho

We note that some of the vaccination levels defined above may not be feasible because they may
not be positive. In correspondence of different values of the levels many situations may occur, we
will consider two significant cases.

The case #,(0) > #,(0) > 1.

In this case we also have #,(y) > %,(y) for all y. We know that here there is no coexistence
and competitive exclusion is the ultimate outcome. Since in this case we must have f/; > ff, then

Y<yy YT <y
which, in particular, means that | and y/; are positive. From the second inequality we see that, by

Theorem 4, E; exists only when < ™" because %, (/) > 1, but it is unstable because %7 () > 1.
In addition, we have ] < ¥ and y** <y*. Consequently, we have
U<y <,

and Y] is either in the interval (y**,y) or in the interval (", ;) but that does not have any im-
pact on the outcome. Thus, we have that for vaccination strategies  satisfying 0 < y < y™*, equi-
libria Ey, E; and E, exist but only E; is locally stable (%;(w) < 1). Therefore, strain one
outcompetes strain two and establishes itself in the population while strain two vanishes. If vac-
cination is increased further, that is ** < <", then only equilibria E, and E; exist and only E;
is locally stable. Consequently, strain one is again the one that dominates. For sufficiently large

vaccination strategies, that is " <, only E, exists and is stable and the disease is eradicated from
the population. We summarize these observations in the proposition:

P — Py
pio |

(35)
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Proposition 1. Assume #,(0) > #2(0) > 1. Then, for sufficiently low vaccination strategies, that is
vaccination strategies  that satisfy Wy <™ only the equilibrium E, is stable and the disease
establishes itself as strain I. On the other hand, for sufficiently high vaccination strategies, that is
vaccination strategies satisfying \y > ", only Eq exists and is locally stable and the disease vanishes
from the population.

This result is hardly surprising as strain / is the ‘stronger’ strain since it can infect even people
infected with strain two. Thus, if it dominates in the absence of vaccination it continues to dom-
inate at sufficiently low vaccination levels.

Next we consider the more interesting case

The case #,(0) > %#,(0) > 1.

In this case we also have %,() > %,(y) for all y which implies that " <™. Here we may
have coexistence as well as competitive exclusion of each strain by the other. First, we notice that

Yy <y s <y
and also

Vs < Y.
From their respective formulas in (35) we conclude that | and /; are not necessarily non-nega-
tive. Depending on whether none of them is non-negative, /| is non-negative or both are non-neg-
ative different outcomes of the competition of the strains are possible.

If ¥} < 0 then 23() < 1 and Z5(y) > 1 for all ¥, that is strain one cannot invade an equilib-
rium of strain two but strain two can invade an equilibrium of strain one. Therefore, there is no
coexistence equilibrium. For y <", equilibria E,, E; and E, exist but only E, is locally stable.
Consequently, strain two outcompetes strain one and establishes itself in the population. For
' <y <y only equilibria E, and E, exists and E, is locally stable. Thus disease stays in the
population with strain J. For sufficiently high vaccination strategies, satisfying y > ¢** only E

exists and is stable. This suggests extinction of the disease.
We summarize this result in the proposition:

Proposition 2. Assume %#,(0) > #1(0) > 1 and ] < 0. Then, for sufficiently low vaccination
strategies, that is vaccination strategies \ that satisfy Wy <" only the equilibrium E, is stable and
the disease establishes itself as strain J. On the other hand, for sufficiently high vaccination
strategies, that is vaccination strategies satisfying Y > ", only Ey exists and is locally stable and the
disease vanishes from the population.

If Y5 <0 <y then Z5(1)) > 1 for all y but Z;() > 1 if Y <y} and Z;() < 1 otherwise.
Since #5(y) > 1 equilibrium E; is unstable whenever it exists. Since i, > f8;, we have

0<y) <y™ (37)

and " can be in the interval (0,y]) or in the interval (], y"™). The position of " changes when
E| exists but since E is unstable whenever it exists, it doesn’t change significantly the dynamical
behavior of the system. Consequently, we consider only the two significant intervals for the vac-
cination strategies ¥ given in (37). For vaccination strategies i satisfying 0 < ¢ < v}, equilibria
Ey, E; (possibly for only part of the interval), £, and E. exist but only E, is locally stable. There-
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fore, the two strains coexist in the population. If vaccination levels are increased further, that is
Y <y <y, then equilibria E, and E, exist (E; may exist only for part of the interval) but only
E; is locally stable. Consequently, strain two eliminates strain one and is the one that dominates.
For sufficiently large vaccination strategies, that is ™ <, only E, exists and is stable and the
disease is eradicated from the population. Here we already see that vaccination has a significant
impact on the coexistence and competition of strains. In particular, for low vaccination levels
there is coexistence, for somewhat higher vaccination levels strain two eliminates strain one
and for high levels of vaccination the disease is eradicated as a whole.
We summarize these observations in the proposition:

Proposition 3. Assume #,(0) > #,(0) > 1 and 5 < 0 < . Then, for sufficiently low vaccination
levels, that is vaccination levels \y that satisfy y < ] only the equilibrium E- is stable and the disease
establishes itself with both strains I and J. For medium vaccination levels, that is vaccination levels
satisfying Wy < Wy < ™", only equilibrium E, is locally stable and the disease establishes itself in the
population with strain J. Strain I is eliminated. Finally, for sufficiently high vaccination strategies,
that is vaccination strategies satisfying > ™™, only Ey exists and is locally stable and the disease
vanishes from the population.

We conclude with the case 0 < /5 which leads to the most complex impact of vaccination on the
competitive exclusion and coexistence of the two strains. With these parameters both invasion
reproduction numbers can change their relation to one. In particular, we have that %% () >1
if y < and #2 () < 1 otherwise. We also have that Z3(y) > 1if > W} and 2}() < 1 other-
wise. In addition,

0<yy <y <y”

and y" can be either in the interval (y5,]) or in the interval (], ") but as we see later the exact
position of " does not change the dynamical outcome. Consequently, we consider three signifi-
cant intervals for the vaccination strategy. In particular, for low vaccination levels, or more pre-
cisely, vaccination levels y satisfying 0 < y < i/ we have that equilibria Ey, E; and E, exists but
only equilibrium £, is locally stable as %;(y) < 1 here. Thus, for low vaccination levels strain one
outcompetes strain two and dominates in the population (see Fig. 4). If the vaccination is in-
creased beyond 3, that is for vaccination levels y; < y <y, equilibria Ey, E, and E, exists as
well as E; at least for a part of that interval. However, from Theorem 5 it follows that E. is stable
whenever it exists, thus FE, is locally stable.

The remaining equilibria are unstable since both invasion reproduction numbers are larger than
one. In this case the two strains coexist in the population (see Fig. 5). If the vaccination levels are
increased even further and beyond ], that is vaccination levels are in the interval y; <y < Y™,
then the coexistence equilibrium E, does not exist any more as #1(/) < 1. The equilibria E, E,
exist and possibly E; for a part of that interval but only E, is locally stable. Thus for these vac-
cination levels strain two eliminates strain one and establishes itself in the population (see Fig. 6).
Finally, if vaccination is increased even further, that is Y > ™" then only E| exists and is stable
and the disease disappears from the population. As we see for these parameter values in absence
of vaccination, strain one will dominate. However, introducing vaccination and varying its level
has a very dramatic effect on the competition between the strains. Namely, for low vaccination
level, strain one continues to dominate, for medium-low vaccination levels, the two strains coexist,
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Fig. 4. For low vaccination levels, that is yy = 1.5, strain [ eliminates strain J and dominates in the population. The
remaining parameters of the simulation are ff; =2, /=3, u=0.5, «=0.5, )y =7,=0, § =0.5.
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Fig. 5. For medium-low vaccination levels, that is i = 3.5, strain J invades the equilibrium of strain 7 and the two
strains coexist. The remaining parameters of the simulation are as in Fig. 4. We note that strain [ persists in the
population despite that its vaccine-dependent reproduction number is %, (¥) :§< 1. Strain J has the higher
reproduction number and higher prevalence.

for medium-high vaccination levels strain two eliminates strain one, and for high vaccination lev-
els the disease is eradicated. This behavior is a result of the fact that vaccination decreases the
invasion capabilities of the first strain but increases the invasion capabilities of the second strain
which leads to substituting the first strain with the second.

We summarize our findings in the proposition:

Proposition 4. Assume #(0) > #,(0) > 1 and 5 > 0. Then, for sufficiently low vaccination levels,
that is vaccination levels \y that satisfy 0 < <5 only equilibrium E, is stable and strain one
dominates in the population. For medium-low vaccination levels satisfying 5 < < | only the
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Fig. 6. For medium-high vaccination levels, that is y =4.5, strain J eliminates strain 7 and dominates in the
population. Thus, vaccination enables the weaker strain J to replace the stronger strain I in the population. The
parameters of the simulation are the same as in Fig. 4.

equilibrium E. is stable and the disease establishes itself with both strains I and J. For medium-high
vaccination levels, that is vaccination levels satisfying W, < < ™ only equilibrium E, is locally
stable and the disease establishes itself in the population with strain J. Thus strain J eliminates strain
L Finally, for sufficiently high vaccination strategies, that is vaccination strategies satisfying
W > ™, only Eq exists and is locally stable and the disease vanishes from the population.

6. Discussion

In this paper we consider the development and evolution of a disease represented by two
strains. We have assumed that the first pathogen can infect individuals already infected by the sec-
ond, a process called super-infection, while the other way around has such a small incidence that it
can be neglected. Altogether, this makes the first strain stronger. Thus, if %,(0) > %,(0) the first
strain dominates. The outcome of the competition between the strains when %,(0) < %#,(0) de-
pends on the two invasion reproduction numbers: the invasion reproduction number of the first
strain at equilibrium of the second #;(0) and the invasion reproduction number of the second
strain in the equilibrium of the first #5(0). If %,(0) <1 then strain one dominates, if
#7(0) < 1 then strain two dominates, if both invasion reproduction numbers are larger than
one, then the two strains coexist.

The population described in the model is subjected to vaccination. In the case considered here
vaccination can reduce both reproduction numbers to zero and, applied at sufficiently high levels,
it can eliminate the disease. It has been observed in previous studies and in practice that vaccina-
tion can have a very dramatic effect on the outcome of the competition between the two strains. In
some cases it can lead to replacement of one of the pathogens by the other. The main mechanism
responsible for the pathogen replacement is indicated to be the fact that the vaccine is not equally
efficient with respect to both strains. Vaccination suppresses one of the micro-organisms more
than the other, therefore giving opportunity to the second to outcompete and eliminate the first.
This process leads to replacement of the first strain by the second. The uneven effect of the vaccine
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on the two strains is expressed in the fact that vaccination reduces the two reproduction numbers
to a different extent, often leading to a change in the relation between them [23,18].

In this article we are interested in the best case scenario — that is the case when the vaccine pro-
vides perfect protection to both strains. Thus, at first sight, the vaccine does not favour any strain
and common sense implies that it should not promote replacement. As our discussion shows,
however, the impact of the mutual influence of vaccination and the mechanism of interaction
of the two strains is much more complicated. One of the outcomes is that the vaccine decreases
the invasion reproduction number of the first strain but increases the invasion reproduction num-
ber of the second strain. Hence, the vaccine favours the second strain and promotes its domi-
nance. This lack of symmetry seems to follow from the super-infection and we do not expect
that it occurs in coinfection. As a result we observe that if in the absence of vaccination only
the first strain dominates but #,(0) > #%,(0) > 1, as the vaccination levels are increased, the vac-
cine at first promotes the coexistence of the two strains, and for higher vaccination levels leads to
the elimination of strain one and the dominance of strain two. Consequently the vaccine can
enable the replacement of the first strain by the second even when vaccination provides perfect
protection with respect to both strains.

If strain one is the dominant strain in the absence of vaccination and 1 < #,(0) < %,(0), then
the vaccination threshold necessary for the elimination of strain one in the presence of the com-
petition of strain two is ¥; while the vaccination threshold necessary for the elimination of strain
one in the absence of the competition of strain two is Y. Since ] < ¢ if and only if 0%, (0) < 1,
the threshold for elimination of the stronger strain in the presence of the weaker strain is lower if
infection with the weaker strain makes infection with the stronger strain much less likely, that is in
the context of strong competition between the strains. On the other hand if the competition be-
tween the two strains is weak, that is 0,(0) > 1, and particularly when infection with the second
strain facilitates infection with the first strain, then " < ] and the threshold for elimination of
the first strain in the absence of competition by the second strain is lower. In this situation the
presence of the second strain facilitates the existence of the first strain even when its vaccine-
dependent reproduction number is below one %,(y) < 1. The two strains share a mutually ben-
eficial relationship.

Looking at the proportions of the two strains i and ;* in the coexistence equilibrium we see
that, in the case when y; =7y, =0, increasing the vaccination levels decrease i* but increase j*.
The ratio of the rate of decrease of i* and the rate of increase of j*, taken with absolute values,
is given by the ratio of the two reproduction numbers in the absence of vaccination
R(0): 2#1(0). As #,(0) > #,(0) infected individuals with strain I at equilibrium experience a lar-
ger drop as a result of vaccination than the raise that is achieved by those infected by strain J at
equilibrium. This observation was first made in [18] and has been used as a key observation poten-
tially leading to an explanation why in reality vaccination leads to serotype replacement in some
pathogens but not in others [18,19].

Studies on the impact of vaccination on competing pathogens have pointed out the complex
interactions between two pathogens and the critical impact that vaccination has on these interac-
tion. The different degree of protection that the vaccine offers with respect to the two micro-organ-
isms is the key mechanism that leads to that complex behavior in all those studies. Here we show,
that even if we can create vaccines with perfect efficacy, the possibility that they will promote
strain replacement and subthreshold coexistence of the strains still exists.
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