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Abstract

The primary focus of malaria research and control has been on P. falciparum, the most
severe of the four Plasmodium species causing human disease. However, the presence of both
Plasmodium falciparum and Plasmodium vivax occurs in several countries, including India.
We developed a mathematical model describing the dynamics of P. vivax and P. falciparum
in the human and mosquito populations and fit this model to Indian clinical case data to
understand how enhanced control measures affect the competition between the two Plasmodium
species. Around 1997, funding for malaria control in India increased dramatically. Our model
predicts that if India had not improved its control strategy, the two species of Plasmodium
would continue to coexist. To determine which control measures contributed the most to the
decline in the number of cases after 1997, we compared the fit of seven models to the 1997-2010
clinical case data. From this, we determined that increased use of bednets contributed the most
to case reduction. During the enhanced control period, the best model predicts that P. vivax
is out-competing P. falciparum. However, the reproduction numbers are extremely close to the
invasion boundaries. Consequently, we cannot be confident that this outcome is the true future
of malaria in India. We address this uncertainty by performing a parametric bootstrapping
procedure for each of the seven models. This procedure, applied to the enhanced control period,
revealed that the best model predicts that P. vivax outcompeting P. falciparum is the most
likely outcome, whereas the remaining candidate models predict the opposite. Moreover, the
predictions of the top model are counter to what one expects based on the case data alone.
Although the proportion of cases due to falciparum has been increasing, the best fitting model
reveals that this observation is insufficient to draw conclusions about the longterm competitive
outcome of the two species.
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1 Introduction

Roughly 250 million people suffer from malaria infection each year, resulting in nearly one million
deaths [32]. Malaria is the fifth leading killer among infectious diseases worldwide, and it is the
second leading cause of death in Africa, behind HIV/AIDS [6]. Despite many attempts at controlling
malaria in India over the past sixty years, India still produces roughly 70% of the malaria cases
within Southeast Asia, resulting in about two million cases and 1000 deaths each year. While
mortality due to Plasmodium infection is low in India relative to the total morbidity, malaria still
poses an enormous burden to the country. Several factors, including the biology and epidemiology
of the disease, emerging drug-resistance of parasites, insecticide resistance of mosquitoes, and socio-
economic barriers, have proven to be difficult obstacles to overcome in the ongoing pursuit of malaria
control.

1.1 Plasmodium vivax and Plasmodium falciparum parasites and obstacles

they pose to malaria control

P. vivax and P. falciparum have very similar life cycles, with one important exception. When a
human is infected by a mosquito with P. vivax, some of the parasites become hypnozoites, which can
remain dormant in the human liver cells for some time, then reactivate. Consequently, individuals
infected with P. vivax are prone to relapses. In fact, P. vivax infections exhibit relapses roughly
30% of the time after the initial clinical episode [1]. Fortunately, P. falciparum parasites do not
have a hypnozoite stage, and thus relapses do not occur in falciparum infections.

Despite the absence of relapse in falciparum malaria infections, P. falciparum is associated with
the highest risk of mortality for humans among the malaria parasite species. Vivax infections are
considered to be benign, however the symptoms are still debilitating and diminish both a person’s
quality of life and their productivity. Moreover, some recent cases of P. vivax malaria have been far
more severe than is traditionally expected of this disease, sometimes resulting in death. The liver
stages of P. vivax can also be extremely long, up to three years, allowing P. vivax parasites to lay
dormant and weather the low transmission seasons until conditions have improved, making vivax
in some respects, a more formidable foe than P. falciparum in terms of malaria control.

Although symptoms due to malaria infection can be quite severe and sometimes deadly, it is likely
that, because multiple infections can temporarily build a person’s immunity to the disease, a large
proportion of malaria cases in India are asymptomatic or display very mild symptoms, particu-
larly in regions with meso- to hyper-endemicity [17]. A study of malaria infection in pregnant
women in Jharkhand State, India, found that nearly half of the women in the study carried asymp-
tomatic malaria infection [15]. Since asymptomatic human malaria infections are still infectious
to mosquitoes, unlikely to be treated, and consequently longer-lived, asymptomatic humans, in
addition to liver stage vivax infected humans, create a reservoir for malaria parasites. Further-
more, the long duration of untreated or unsuccessfully treated infections increases the likelihood
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of co-infection with P. vivax and P. falciparum species. It can be very difficult to identify malaria
co-infections because it is not yet very well understood how the two species interact. Co-infected
individuals can also be very difficult to treat because a drug that works for one infection may confer
resistance in the other.

1.2 Objectives of modeling P. vivax-P. falciparum disease dynamics

In this paper, we develop a P. vivax–P. falciparum malaria model with co-infection to address
questions regarding control measures in the context of India. We want to find out what effect
certain control measures have on the competition between the two parasite species, how the presence
of two circulating parasites affects what control measures should be implemented and how they
can best be implemented. The current literature on malaria in India dictates that there is a
need to address not only Plasmodium falciparum malaria, which is more commonly studied and
modeled, but Plasmodium vivax as well. Chiyaka et al. have published the first two-species malaria
model, incorporating P. falciparum and P. malariae [7]. However, there is still a need to model
P. falciparum and P. vivax disease dynamics, particularly because the epidemiology of these two
parasites is so different. These differences, which are intrinsic to the parasite biology and are likely
to greatly enhance the parasites’ ability to persist in a population in the face of numerous control
efforts, need to be included in a mathematical model if we want to provide insight into problems
regarding competition between parasite species in India and how to develop an effective control
policy for India. In Section 2, we introduce the two-parasite ordinary differential equation malaria
model. In Section 2.5 we present the disease-free equilibrium, the basic reproductive number for
the model, and the control reproductive number. We present the isolated endemic equilibria of
the system in section 2.7 and a complete description and interpretation of the invasion numbers
in Section 2.8. Section 3 explains the parameters used in the model and the values chosen for
each parameter. In Section 3.3, for the 1987-1996 period, we estimate transmission parameters
by fitting the ODE model to Indian malaria case data. Comparison of several models for the
enhanced control period (1997-2010) in Section 3.4 allowed us to determine which control measures
contributed the most to the success of control programs. In the same section, we also present an
uncertainty analysis to determine the most likely outcome of malaria in India.

2 P. falciparum and P. vivax Malaria Co-infection Model

In the two-parasite malaria model below, it is assumed that the mosquito population size, Nm, is
constant, and that the size of the human population, N , exhibits logistic growth. The state variable
M denotes the number of mosquitoes that are fully susceptible to both P. vivax and P. falciparum
parasites. Similarly, S denotes the number of humans who are fully susceptible to both malaria
parasites. The number of infected mosquitoes at a given time is J , the sum of P. vivax infected
mosquitoes (Jv) and P. falciparum infected mosquitoes (Jf ).
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Human deaths due to P. vivax infection are rare, and are thus considered to be negligible. Although
deaths due to P. falciparum do occur, the associated mortality rate in India is very small compared
with the total morbidity due to malaria. Once infectious individuals recover fully from malaria,
they again become susceptible to malaria infection and move to class S. As a result, in this two-
parasite model, all humans recover from malaria infection. Once infectious individuals recover fully
from malaria, they again become susceptible to malaria infection and move to class S. Thus, when
we refer to an individual “surviving” a particular stage, we mean that they did not die due to
natural mortality before the end of that stage.

2.1 Modeling the dynamics of Plasmodium vivax infection in the human pop-

ulation

First, we describe the dynamics of P. vivax malaria in the human population. When a P. vivax
infected mosquito successfully transmits a malaria parasite to a human, we assume that these
humans first go through a liver stage, denoted by L, in which the malaria parasites remain un-
infectious. This liver stage acts as both the initial incubation period for the P. vivax malaria
parasites in a human and as the period between relapses in which malaria parasites remain in
a dormant liver stage as hypnozoites. Because asymptomatic individuals create a reservoir for
malaria, posing significant challenges to malaria control, and because malaria infected individuals
do not become infectious until the parasites have gone through the human liver stage [2], the model
allows for a fraction of the individuals in the liver stage to bi-pass the symptomatic stage and move
directly to the P. vivax infectious stage Iv. We refer to individuals who bi-pass the symptomatic
stage as “asymptomatic”, and those who do not are referred to as “symptomatic”.

A human presenting symptoms is considered a “clinical case” and we let Cv denote the P. vivax
clinical cases at any given time. Assuming an individual in Cv does not die of natural mortality, he
or she will become infectious and move into the Iv stage. Once in this infectious stage, individuals
have the potential to fully recover, returning to the susceptible class S via either successful treatment
or natural recovery. We assume that although individuals may begin treatment during the clinical
stage, the treatment does not affect the person’s progression to the infectious stage. Consequently,
we assume that even in treated individuals, gametocyte clearance (loss of infectiousness) occurs in
the infectious stage.

As described previously, because some P. vivax parasites become hypnozoites during the liver stage,
remain dormant in the liver for some period, and are reactivated at a later time, vivax malaria
patients who are not successfully treated are prone to relapses. Thus, in our model, individuals
in the vivax infectious class Iv can return to the liver stage L and repeat the cycle of the vivax
infection.
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2.2 Modeling the dynamics of Plasmodium falciparum infection in the human

population

Plasmodium falciparum infections, while typically more severe than vivax infections, exhibit simpler
infection dynamics than vivax infections. In particular, P. falciparum parasites do not have a
hypnozoite stage, and consquently, individuals infected with only P. falciparum do not experience
relapses. In light of this difference between P. falciparum and P. vivax infections, we omit the
falciparum incubation period which is typically shorter than that of P. vivax, meaning that once
a human is infected by a P. falciparum infectious mosquito, that individual moves directly either
to the falciparum clinical stage Cf , or moves to the falciparum infectious stage If . As noted in
the description of vivax infection dynamics, we refer to the individuals who bi-pass the clinical
stage as “asymptomatic” individuals. Those who pass through the clinical stage are referred to as
“symptomatic” individuals. Once in the P. falciparum infectious stage, as with P. vivax infection,
individuals can fully recover via either successful treatment or natural recovery.

The state variables Iv and If include both asymptomatic infectious individuals and infectious
individuals who have shown symptoms. It will be assumed that symptomatic individuals are
treated and asymptomatic individuals are not treated. Thus, the recovery rate from Iv and If will
be a function of both the natural recovery rate and the treatment-recovery rate.

2.3 Modeling co-infection

Gupta et al. used 180 samples from six endemic regions in India to estimate the proportion of
malaria cases that are mixed infections. The samples showed that roughly 46% of the malaria
infections were P. falciparum–P. vivax co-infections [14]. Consequently, the ability for humans to
obtain concurrent malaria infections should play an important role in a P. falciparum–P. vivax
malaria model for India. Mixed infection is incorporated into the model by introducing two more
“clinical case” state variables, Cvf and Cfv. A P. vivax infected individual in either the liver stage
or the infectious stage who becomes co-infected with falciparum will move to Cvf . At this stage we
assume that individuals coming from the liver stage become infectious with vivax, those arriving
from the infectious stage remain infectious with vivax, and all individuals in Cvf show symptoms of
malaria infection, although it may not be clear which infection is causing the symptoms. According
to Snounou et al., the assumption that co-infection with P. falciparum can reactivate hypnozoites in
the dormant liver-stage, producing P. vivax blood-stage parasites, is plausible [30]. Similarly, a P.
falciparum infectious individual can become co-infected with P. vivax. These individuals will move
to the Cfv stage provided they have not succumbed to natural mortality. Individuals in Cfv are still
infectious with P. falciparum, but present symptoms associated with P. vivax infection. We will
refer to individuals who have been in stages Cvf and Cfv as “vivax co-infected” and “falciparum
co-infected” individuals, respectively. If a co-infected individual survives the clinical stage, they
become infectious with both malaria parasites and move to Ic.
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In this two-parasite model, we assume that all co-infected individuals are treated during the infec-
tious co-infected stage Ic. This assumption is reasonable since most co-infected individuals show
symptoms [30]. The question is, what treatment do we give these co-infected individuals? Ac-
cording to the 2009 malaria diagnosis and treatment guidelines for India, P. falciparum–P.vivax
co-infected individuals should be given the same treatment that is given to P. falciparum infected
patients [23]. However, malaria diagnostic tests often only detect one of the two parasite species in
the host, leading health-care providers to treat only the observed infection [20]. When only one of
the two infections is treated, symptoms for the other malaria infection emerge anywhere from 17
to 63 days post-treatment [21]. The model incorporates this emergence of the hidden infection by
allowing individuals in the infectious co-infected class Ic to move into either Iv or If after recovery
from the initial observed (and hence treated) infection. If P. falciparum is treated first, then the P.
vivax infection will emerge and individuals move into the infectious class Iv. Likewise, those who
are treated for P. vivax first move to the infectious class If some time post-vivax treatment. In our
model, however, individuals treated for P. vivax first will not show symptoms following treatment
of the co-infection since falciparum symptoms do not occur following falciparum infectiousness.
Only co-infected individuals treated for P. falciparum first have the possibility of developing symp-
toms, in particular vivax symptoms, since individuals in Iv can relapse. Consequently, our model
does not capture the phenomenon described above where P. falciparum symptoms emerge following
vivax treatment. This discrepancy can be resolved by adding a P. falciparum incubation period
to the model, however for simplicity, and because the majority of co-infections are treated for P.
falciparum first, followed by the onset of P. vivax symptoms, we find that incorporating only a
vivax incubation/liver stage sufficient to capture the most important features of the two-parasite
species disease dynamics.

2.4 Disease dynamics in the mosquito population

The human component of the two-parasite malaria model includes five infectious classes: two classes
are infectious with vivax only (Iv and Cvf ), two classes are infectious with falciparum only (If and
Cfv), and one class is infectious with both vivax and falciparum (Ic). Thus, mosquitoes have five
means by which they can become infected. A susceptible mosquito infected by a human in class Iv
or Cvf will develop a P. vivax infection. A susceptible mosquito infected by a human in class If
or Cfv will develop a P. falciparum infection. In the event that a mosquito becomes infected by
a co-infected infectious human (Ic), the model assumes that the mosquito will contract only one
of the two malaria parasite species. Which species it contracts will depend on the probability of
“picking up” that particular species. Since mosquitoes have a short lifespan, we assume that all
mosquitoes die natural deaths rather than disease-induced deaths. A summary of all state variables
is given in Table 1. A description of the model parameters, as well as the estimates used in later
model simulations, is given in Tables 2 and 3.

The two-parasite malaria model diagram in Figure 1 can be described mathematically as fol-
lows:
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Table 1: Description of model State Variables at time t.

State Variables Description

Nm Mosquito population size - defined to be constant

N(t) Human population size at time t

M(t) Number of susceptible mosquitoes at time t

S(t) Number of susceptible humans at time t

m(t) Proportion of mosquitoes that are susceptible at time t

Jv(t) Number of P. vivax infected mosquitoes at time t

Jf (t) Number of P. falciparum infected mosquitoes at time t

jv(t) Proportion of mosquitoes that are P. vivax infected at time t

jf (t) Proportion of mosquitoes that are P. falciparum infected at time t

L(t) Number of human P. vivax liver stage infections at time t

Cv(t) Number of human P. vivax cases at time t

Cf (t) Number of human P. falciparum cases at time t

Iv(t) Number of P. vivax infectious humans at time t

If (t) Number of P. falciparum infectious humans at time t

Cvf (t) Number of symptomatic co-infected cases,
infectious with P. vivax only, at time t

Cfv(t) Number of symptomatic co-infected cases,
infectious with P. falciparum only, at time t

Ic(t) Number of co-infected humans infectious
with both P. vivax and P. falciparum at time t
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Figure 1: Mosquito and Human Population Dynamics Diagram under the influence of two circulat-
ing malaria parasites. Bold arrows indicate the acquisition of a new infection, and dotted arrows
indicate recovery from either P. vivax or P. falciparum infection.
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Mosquito Dynamics:

dJv
dt

= bv

(
Iv + Cvf

N

)
(Nm − J) + ζbv

Ic
N

(Nm − J)− dJv (1)

dJf
dt

= bf

(
If + Cfv

N

)
(Nm − J) + (1− ζ)bf

Ic
N

(Nm − J)− dJf (2)

where J
.
= Jv + Jf , Nm is constant, and M = Nm − J .

Since it is difficult to estimate how large the mosquito population is, we modify the mosquito
dynamics equations by considering the proportion of mosquitoes infected rather than the number
of mosquitoes infected. Thus, dividing equations (1) and (2) by the total mosquito population size
Nm, we arrive at the following set of equations describing the mosquito infection dynamics:

djv
dt

= bv

(
Iv + Cvf

N

)
(1− j) + ζbv

Ic
N

(1− j)− djv

djf
dt

= bf

(
If + Cfv

N

)
(1− j) + (1− ζ)bf

Ic
N

(1− j)− djf

where now j
.
= jv + jf = 1

Nm
(Jv + Jf ), denotes the fraction of the mosquito population that is

infected with malaria parasites and hence, m = 1− j represents the fraction of mosquitoes that are
susceptible to malaria infection. Note that

m′ = −j′ = −
(
bv

(
Iv + Cvf

N

)
+ ζbv

Ic
N

+ bf

(
If + Cfv

N

)
+ (1− ζ)bf

Ic
N

)
m− d(1 −m).

In the above system, bv and bf are human-to-mosquito transmission rates, d is the mosquito natural
mortality rate, and ζ is the probability that if a susceptible mosquito bites an Ic human, the
mosquito will contract vivax rather than falciparum.
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Human Dynamics:

dS

dt
=

dN

dt
− dLv

dt
− dC

dt
− dI

dt

= rN

(
1− N

K

)
+ ρvIv + ρf If − (βvjv + βf jf )S − µS

dL

dt
= βvSjv + δIv − αvβf jfL− (λ+ µ)L

dCv

dt
= σvλL− (νv + µ)Cv

dIv
dt

= (1− σv)λL+ νvCv + ηf Ic − αvβf Ivjf − (δ + ρv + µ)Iv

dCvf

dt
= αvβf (Iv + L)jf − (νvf + µ)Cvf

dCf

dt
= σfβfSjf − (νf + µ)Cf

dIf
dt

= (1− σf )βfSjf + νfCf + ηvIc − αfβvIf jv − (ρf + µ)If

dCfv

dt
= αfβvIf jv − (νfv + µ)Cfv

dIc
dt

= νvfCvf + νfvCfv − (ηv + ηf + µ)Ic

where C
.
= Cv +Cf +Cvf +Cfv, I

.
= Iv + If + Ic, and the total population size is described by the

logistic equation dN
dt = rN

(
1− N

K

)
− µN .

The mosquito-to-human transmission rates for vivax and falciparum are denoted by βv and βf ,
respectively. The natural human mortality rate is given by µ. A proportion σv of vivax and
a proportion σf of falciparum cases are symptomatic. We assume symptomatic individuals get
treated and clear blood-stage parasites at a rate γi from infection i and asymptomatic individuals
clear blood-stage parasites at a rate ri (i = v, f). Thus, the rates of returning to the susceptible
class, denoted by ρv and ρf , are a function of both treatment and natural parasite-clearance rates:
ρi = σiγi + (1 − σi)ri, for i = v, f . Vivax -infected individuals progress at a rate λ from the liver
stage to either Cv or Iv. Vivax -symptomatic and falciparum-symptomatic individuals progress to
the infectious stage at rate νv and νf , respectively. Similarly, vivax -co-infected and falciparum-
co-infected individuals enter Ic at rates νvf and νfv, respectively. αv and αf are cross-immunity
coefficients. δ is the rate at which vivax -infected individuals relapse. This parameter is given by
δ = prσvγf + (1− σv)rv, where pr is the probability that a treated vivax patient relapses. Finally,
ηv and ηf are the probabilities that an Ic individual is treated first for vivax and, respectively, for
falciparum infection. A complete list of the model parameters and their descriptions is presented
in Tables 2 and 3.
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2.5 Derivation of the disease-free equilibrium, basic reproductive number R0

and control reproductive number RC

Note that dN
dt can be rewritten in the form dN

dt = (r − µ)N

(
1− N

K(1−µ
r )

)
so that the intrinsic

growth rate of the population r̂ is r − µ, and the carrying capacity K̂ is K
(
1− µ

r

)
.

The disease-free equilibrium is (N∗,m∗, j∗v , j
∗

f , S
∗, L∗, C∗

v , C
∗

f , I
∗

v , I
∗

f , C
∗

vf , C
∗

fv , I
∗

c )DFE
=

(K̂, 1, 0, 0, K̂ , 0, 0, 0, 0, 0, 0, 0, 0). N∗ and S∗ are easily determined by setting the right hand side

of dN
dt = r̂N

(
1− N

K̂

)
equal to zero and noting that when there is no disease, S = N . Since

m∗ = 1− j∗, we have that m∗ = 1 when there is no disease.

The basic reproductive number, R0, of an epidemiological model is the average number of secondary
cases produced by one infectious individual in an otherwise fully susceptible population where no
control is being implemented. The control reproductive number, RC , is defined similarly, with the
exception that control measures are assumed to be in place. If R0 < 1, the disease-free equilibrium
is locally asymptotically stable, implying that the disease will eventually become extinct. On the
other hand, if R0 > 1, the disease-free equilibrium is unstable [31]. Consequently, determining
an expression for the basic reproductive number from the model and estimating its value is a key
component to understanding how difficult it will be to control transmission of the disease and
what control measures will be the most effective. An important goal of any infectious disease
control program is to implement control measures in such a way as to successfully bring the control
reproductive number below one. The isolation reproductive numbers of a multi-parasite model,
such as this two-parasite malaria model, are the basic reproductive numbers for the model when
only one parasite species is present at a time.

2.6 Expression of RC and R0 derived from the next generation approach

Using the next generation operator approach [31], we find that the control reproductive number
(RC) for the malaria model is given by RC = max{RCv , RCf}, where RCv is the isolation control
reproductive number for P. vivax, and RCf is the isolation control reproductive number for P. falic-
parum. For details of the derivation of RC , see appendix A.1. These isolation control reproductive
number for P. falciparum is described by the expression below:

RCf =

√
βf
d

·
[
(1− σf ) + σf

νf
νf + µ

]
bf

ρf + µ
(3)

=
√

Ra
Cf +Rs

Cf , (4)
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where

Ra
Cf =

βf
d

· (1− σf ) ·
bf

ρf + µ
(5)

Rs
Cf =

βf
d

· σf · νf
νf + µ

bf
ρf + µ

. (6)

Observe that Ra
Cf is the contribution of an asymptomatic infectious individual to the basic repro-

ductive number and Rs
Cf is the contribution of a symptomatic infectious individual.

The P. vivax isolation control reproductive number is given by

RCv =

√√√√ Ra
Cv +Rs

Cv

1− δ
δ+ρv+µ

(
R̃a

Cv + R̃s
Cv

) , (7)

where

Ra
Cv =

bv
δ + ρv + µ

· (1− σv) ·
λ

λ+ µ
· βv
d

(8)

Rs
Cv =

bv
δ + ρv + µ

· σv ·
λ

λ+ µ
· νv
νv + µ

· βv
d
, and (9)

R̃i
Cv = Ri

Cv/
(

bvβv

d(δ+ρv+µ)

)
, for i = a, s. Note that if δ were zero, in other words if P. vivax patients

never relapsed, RCv =
√

Ra
Cv +Rs

Cv where the interpretations of R
a
Cv andRs

Cv are analogous to that
of Ra

Cf and Rs
Cf , respectively. That is, R

a
Cv would be the contribution of an asymptomatic infectious

individual to the basic reproductive number and Rs
Cv the contribution of a symptomatic infectious

individual. However, the inclusion of the possibility of relapse in P. vivax infected individuals
(δ > 0) makes the expression for RCv more complicated and its biological interpretation less
straight-forward. The numerator squared of RCv is the number of new mosquito infections arising
from a single infected mosquito, without the intermediate human hosts relapsing.

To interpret the denominator of RCv, first note that R̃a
Cv + R̃s

Cv ∈ [0, 1) since R̃a
Cv + R̃s

Cv <
λ

λ+µ (1− σv + σv) = λ
λ+µ < 1 and clearly R̃a

Cv + R̃s
Cv is positive. Let x = δ

δ+ρv+µ

(
R̃a

Cv + R̃s
Cv

)
.

Then x < 1 implies that 1
1−x =

∑
∞

n=0 x
n. Because δ

δ+ρv+µ is the probability that an individual in
Iv relapses when there are no falciparum-infected individuals in the population, x is the probability
that a liver-stage human will relapse. Thus, xn is the probability that a liver-stage human will
relapse n times. So,

R2
Cv =

∞∑

n=0

(Ra
Cv +Rs

Cv) · xn. (10)
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The ith term in the sum can be interpreted as the number of new mosquito infections generated by
a single mosquito where the intermediate human hosts relapse exactly i times.

Since the only control measure explicitly implemented in the model is treatment, the basic re-
productive number for the model is given by the control reproductive number evaluated with the
treatment recovery rates (γv and γf ) equal to the natural recovery rates (rv and rf , respectively).
Using our definition of ρv, ρf , and δ this is equivalent to setting ρv = rv, δ = rv, and ρf = rf .
Thus, R0 = max{R0v , R0f}, where

R0f =

√
βf
d

·
[
(1− σf ) + σf

νf
νf + µ

]
bf

rf + µ
(11)

=
√

Ra
0f +Rs

0f , (12)

where

Ra
0f =

βf
d

· (1− σf ) ·
bf

rf + µ
(13)

Rs
0f =

βf
d

· σf · νf
νf + µ

bf
rf + µ

. (14)

Similarly,

R0v =

√√√√√
bv

2rv+µ

(
R̃a

0v + R̃s
0v

)
βv

d

1− rv
2rv+µ

(
R̃a

0v + R̃s
0v

) , (15)

where

R̃a
0v = (1− σv)

λ

λ+ µ
(16)

R̃s
0v = σv

λ

λ+ µ
· νv
νv + µ

. (17)

2.7 Isolated Endemic Equilibria and Coexistence

Determining an analytic expression for the coexistence equilibrium can be a difficult problem for
more complicated models such as this two-parasite malaria model. However, we can still gain
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insight into the conditions under which a coexistence equilibrium occurs by studying the stability
of the isolated endemic equilibria; that is, the equilibria where only one pathogen is present in
a population. Linearizing the system about these isolation equilibria provides a condition under
which the absent parasite species can invade when introduced to the population. These threshold
quantities are known as the invasion reproduction numbers.

First, we find the vivax -only equilibrium, Ev by assuming all falciparum-infected variables are zero
and setting each equation in the resulting system equal to zero. Solving this system of equations
for the non-trivial equilibrium, we find that

j∗v =
bvI

∗

v

bvI∗v + dK̂
(18)

S∗ =
µK̂ + ρvI

∗

v

βvj∗v + µ
(19)

L∗ =
βvS

∗j∗v + δI∗v
λ+ µ

(20)

C∗

v =
σvλ

νv + µ
L∗, (21)

where

I∗v =
1−R2

Cv

R2
Cv

· µK̂

ρv + δ

(
1− δ+ρv+µ

δ(Ra
Cv

+Rs
Cv)

)(
1 + µ

βv

) (22)

It is simple to show that the denominator in equation (22) is always negative. First recall that

Ra
Cv + Rs

Cv < 1 so that δ+ρv+µ
Ra

Cv
+Rs

Cv
> δ + ρv + µ. So, ρv + δ

(
1− δ+ρv+µ

δ(Ra
Cv

+Rs
Cv)

)(
1 + µ

βv

)
< ρv +

δ

(
1− δ+ρv+µ

δ(Ra
Cv

+Rs
Cv)

)
< −µ < 0. The numerator of equation (22) is negative if R2

Cv > 1. Thus,

I∗v is positive only if R2
Cv > 1. In other words, the vivax -boundary equilibrium exists only when

RCv > 1.

Now, we find the falciparum-only equilibrium Ef by setting all vivax -infected variables equal to
zero, and finding the non-trivial equilibrium of the resulting system.
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j∗f =
bfI

∗

f

bfI
∗

f + dK̂
(23)

S∗ =
µK̂ + ρfI

∗

f

βf j
∗

f + µ
(24)

C∗

f =
σfβf
νf + µ

S∗j∗f , (25)

where

I∗f =
1−R2

Cf

R2
Cf

· µK̂

ρf − bfβf

d(Ra
Cf

+Rs
Cf )

(
1 + µ

βf

) (26)

Using the definition of Ra
Cf + Rs

Cf , we have that
bfβf

d(Ra
Cf

+Rs
Cf )

=
ρf+µ

(1−σf )+σf

νf
νf+µ

< ρf + µ. Since

ρf − ρf+µ

(1−σf )+σf

νf
νf+µ

(1+µ/βf ) < ρf −(ρf +µ) = −µ < 0, the denominator of equation (26) is always

negative. Consequently, I∗f is positive only when RCf > 1.

2.8 Invasion numbers Rf
vandR

v
f

The basic reproduction number is a threshold that determines whether a disease can invade the
disease-free equilibrium or not. Likewise, invasion numbers are threshold quantities that determine
if a disease can invade another disease’s endemic equilibrium. These quantities are very useful in
understanding the competition between pathogens in a multi-strain model. Here, we find analytic
expressions for Rf

v , the invasion number of P. vivax when the system is at the P. falciparum-
only equilibrium, and Rv

f , the invasion number of P. falciparum at the P. vivax -only equilibrium.

Typically, the following result can be established: if RCf > 1 and Rf
v < 1, then the falciparum-

only equilibrium is locally asymptotically stable and unstable otherwise. Similarly, if RCv > 1 and
Rv

f < 1, the vivax -only equilibrium is locally asymptotically stable and unstable otherwise. Both

species coexist when Rf
v and Rv

f are greater than one.

The invasion numbers were derived using the next generation approach [11], the details of which
are presented in appendix A.2. We find that

Rv
f =

[
1

1− k5,3k6,5k3,6
· (k2,1k3,2k1,3 + k2,1k3,2k5,3k1,5 + k2,1k3,2k5,3k6,5k1,6

+k3,1k1,3 + k3,1k5,3k1,5 + k3,1k5,3k6,5k1,6 (27)

+ k4,1k6,4k1,6 + k4,1k6,4k3,6k1,3 + k4,1k6,4k3,6k5,3k1,5)

]1/2
.
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The factor 1/(1 − k5,3k6,5k3,6) can be written as the geometric series
∞∑
n=0

(k5,3k6,5k3,6)
n, where

k5,3k6,5k3,6 =
αfβvj∗v

αfβvj∗v+ρf+µ ·
νfv

νfv+µ ·
ηv

ηv+ηf+µ is the probability that a falciparum-only infected human

will loop through the path If → Cfv → Ic → If n times before infecting a mosquito. This
loop arises when an If individual becomes co-infected, progresses to the Ic stage, and recovers
from vivax malaria infection first, returning to the If stage. Note that an If individual can only
transmit P. falciparum parasites by infecting a mosquito before leaving that stage, or by becoming

co-infected and recovering first from vivax infection. Also note that k5,3 =
αfβvj∗v

αfβvj∗v+ρf+µ is the

transition probability for If → Cfv, k6,5 =
νfv

νfv+µ is the transition probability Cfv → Ic, and finally

k3,6 =
ηv

ηv+ηf+µ represents the transition probability Ic → If .

We can interpret the remaining terms in Rv
f similarly. Instead of a path representing a loop that

a single individual takes, each path below represents the path for how one falciparum infected
mosquito can lead to a new mosquito infection.

k2,1k3,2k1,3 = jf → Cf → If → jf

k2,1k3,2j5,3k1,5 = jf → Cf → If → Cfv → jf

k2,1k3,2k5,3k6,5k1,6 = jf → Cf → If → Cfv → Ic → jf

k3,1k1,3 = jf → If → jf

k3,1k5,3k1,5 = jf → If → Cfv → jf

k3,1k5,3k6,5k1,6 = jf → If → Cfv → Ic → jf

k4,1k6,4k1,6 = jf → Cvf → Ic → jf

k4,1k6,4k3,6k1,3 = jf → Cvf → Ic → If → jf

k4,1k6,4k3,6k5,3k1,5 = jf → Cvf → Ic → If → Cfv → jf

If we multiply any one of the terms above by
∞∑
n=0

(k5,3k6,5k3,6)
n, then the nth term in the resulting

sum will have the same chain of events as above, with the exception that the If individual takes
the If → Cfv → Ic → If loop n times before continuing to the next stage in the chain. Thus,
the next-generation approach leads to an expression of the invasion numbers whose square has

the biological interpretation we desire:
(
Rv

f

)2
is the number of secondary falciparum mosquito

infections caused by a single falciparum-infected mosquito in a population at the vivax isolated
endemic equilibrium.

Now we introduce the invasion number Rf
v , whose expression is more complicated than that of

Rv
f . Despite its more complicated form, we can show that the square of this invasion number is

the number of new vivax -infected mosquitoes arising from a single vivax -infected mosquito in a
population at the falciparum isolated endemic equilibrium. From the next generation approach, we
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find that

Rf
v = {[k6,1(k1,5k7,6k4,7(k5,4 + k2,4k5,2) + k1,7k7,6(1− k2,4(k3,2k4,3 + k4,2)))

+ k2,1[(k1,5 + k1,7k7,5)(k3,2k4,3k5,4 + k4,2k5,4 + k5,2)]} (28)

÷ (1− k2,4(k3,2k4,3 + k4,2)− k4,7k7,5(k5,4 + k2,4k5,2))}1/2, where

k6,1 =
αfβvI

∗

f

d

k1,5 =
bv(1− j∗f )

K̂(νvf + µ)

k7,6 =
νvf

νvf+µ

k4,7 =
ηf

ηv + ηf + µ

k5,4 =
αvβf j

∗

f

αvβf j
∗

f + δ + ρv + µ

k2,4 =
δ

αvβf j
∗

f + δ + ρv + µ

k5,2 =
αvβf j

∗

f

αvβf j
∗

f + λ+ µ

k1,7 = ζk1,5

k7,6 =
νfv

νfv + µ

k3,2 =
σvλ

αvβf j
∗

f + λ+ µ

k4,3 =
νv

νv + µ

k4,2 =
(1− σv)λ

αvβf j
∗

f + λ+ µ

k2,1 =
βvS

∗

d

k7,5 =
νvf

νvf + µ

To arrive at the correct biological interpretation, we first observe that expanding the expression

for
(
Rf

v

)2
reveals that each term in the resulting sum represents a path by which one vivax -

infected mosquito results in another mosquito infection. For example, the first term (rearranged),
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k6,1k7,6k4,7k5,4k1,5, represents the number of If -humans infected by a vivax -infected mosquito before
dying, causing those humans to progress to the Cfv stage, times the fraction of people that survive
the Cfv stage and progress to the Ic stage, times the fraction of individuals that survive this
stage and are treated for falciparum prior to treatment for vivax, entering the Iv stage, times the
probability that these individuals are infected by a falciparum-infected mosquito and progress to
the Cvf stage, and finally, times the number of susceptible mosquitoes a Cvf human infects prior to

progressing to the co-infectious stage Ic. Each term in Rf
v represents such a path from an infected

mosquito to another mosquito infection. The negative terms, as we will demonstrate, account for
infections that arise because a human passes through the same stage more than once. In appendix
A.2, we argue that the denominator of Rf

v is positive. Thus, it must be that k2,4(k3,2k4,3 + k4,2) +
k4,7k7,5(k5,4 + k2,4k5,2) is less than one. Using the same reasoning as we did for RCv and Rv

f , we
can rewrite 1/(1 − k2,4(k3,2k4,3 + k4,2)− k4,7k7,5(k5,4 + k2,4k5,2)) as a geometric series, allowing us
to fully interpret the invasion number.

Since 1/(1 − x− y) =
∞∑
n=0

(x+ y)n when |x+ y| < 1, we can rewrite Rf
v as

(
Rf

v

)2
=

[
k6,1k1,5k7,6k4,7(k5,4 + k2,4k5,2)

+ k2,1(k1,5 + k1,7k7,5)(k3,2k4,3k5,4 + k4,2k5,4 + k5,2)
]

(29)

×
∞∑

n=0

[k2,4(k3,2k4,3 + k4,2) + k4,7k7,5(k5,4 + k2,4k5,2)]
n

+ k6,1k1,7k7,6
1− k2,4(k3,2k4,3 + k4,2)

1− k2,4(k3,2k4,3 + k4,2)− k4,7k7,5(k5,4 + k2,4k5,2)

Now, we can rewrite the fraction in the last term so that the expression for Rf
v is fully interpretable.

Note that this term is of the form (1− x)/(1− x− y), where x is precisely k2,4(k3,2k4,3 + k4,2) and
y is k4,7k7,5(k5,4+ k2,4k5,2). Using the fact that 1−x

1−x−y = 1−x−y+y
1−x−y = 1+ y

1−x−y , we have that

1− x

1− x− y
= 1 + y

∞∑

n=0

(x+ y)n (30)

Hence, we arrive at a fully interpretable expression for the invasion number

(
Rf

v

)2
=

[
k6,1k1,5k7,6k4,7(k5,4 + k2,4k5,2)

+ k2,1(k1,5 + k1,7k7,5)(k3,2k4,3k5,4 + k4,2k5,4 + k5,2)
]

(31)

×
∞∑

n=0

(x+ y)n + k6,1k7,6k1,7

(
1 + y

∞∑

n=0

(x+ y)n

)
.
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The terms x = k2,4(k3,2k4,3+k4,2) and y = k4,7k7,5(k5,4+k2,4k5,2) represent four different transmis-
sion paths. x represents two ways a person can start in, and return to, stage Iv. One path travels
through the symptomatic class while the other does not. Similarly, y represents two ways in which
a person in Ic can arrive at stage Cvf . One of these two paths travels through stage L, while the
other path bypasses stage L.

The nth term in the summation
∑

∞

n=0(x+y)n represents the probability of taking any combination
of the four loops, resulting in a total of exactly n loops. The 1 in parentheses represents the

probability that an individual makes no loops. Finally, the nth term in the expression y
∞∑
n=0

(x+y)n

represents the probability that an individual first takes one of the loops in y, then makes a total of
exactly n loops consisting of some combination of the four loops described by x and y. The second
summation in equation (31) arises because the only way in which an individual can enter path x
(Iv → L(L → Cv → Iv + L → Iv)) from path k1,7k6,1k7,6 (Ic → jv → Cfv → Ic) is by first entering
path y (Ic → Iv(Iv → Cvf + Iv → L → Cvf )). Conversely, paths x and y can be reached from all
other paths represented in equation (31).

By carefully rewriting the invasion numbers to consist of terms that can be interpreted as either
probabilities or fractions of a population of individuals in a particular state, we have shown that
it is possible to link the mathematical expressions to a biological interpretation relevant to public
health. In Section 3.4, we illustrate how these analytic expressions can be used to understand the
interplay between the use of malaria interventions and the competition between falciparum and
vivax.

3 Description of model parameters and choice of parameter values

for the years from 1987 to 1996

To answer questions about disease dynamics and the use of control measures in India, we must
determine realistic estimates to parameterize our mathematical model. To do this we found rea-
sonable estimates from the malaria literature for all parameters but the transmission parameters
(bv, bf , βv , and βf ) and human population growth parameters (r and K). Using these estimates
from the literature, we estimate the remaining parameters by fitting the model to malaria case data
for India. In the following sections we first discuss the choice of estimates for parameters found in
the literature, then we describe the procedure for estimating the human population intrinsic growth
rate, carrying capacity, and the malaria transmission parameters.
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Table 2: Description of model parameters pertaining to mosquito population dynamics and their
estimates

Parameters Description Value Reference

d Natural death rate 365
14 years−1 [3]

ζ Probability that a susceptible mosquito that gets 670
670+332 see 3.1.4

infected by a co-infected human contracts P. vivax

1− ζ Probability that a susceptible mosquito that gets
infected by a co-infected human contracts P. falciparum

3.1 Estimation of parameters from literature

3.1.1 Time to infectiousness

Following the onset of symptoms, it takes roughly 4 days for P. vivax infections to become infectious
in a human host [12], and approximately 7 days for P. falciparum infection [18]. Thus, we take
νv and νf , the rate of progression from symptomatic to infectious for P. vivax and P. falciparum,
respectively, to be 365

4 years−1 for P. vivax, and 365
7 years−1 for P. falciparum. We assume that

becoming co-infected does not alter the time it takes to become infectious. Thus, we let νfv = νv
and νvf = νf .

3.1.2 Estimating recovery rates

The rate of recovery from Iv and If to the susceptible class S is estimated by ρv = (1 − σv)rv +
σvγv and ρf = (1 − σf )rf + σfγf , respectively. In other words, a fraction recover at the natural
recovery rate, and a fraction recover at the treatment recovery rate. Since Chloroquine targets
only the asexual blood stages of the parasite, there may still be gametocytes remaining at the end
of treatment. It takes roughly 8 days for gametocytes to mature, and the lifespan of a mature
gametocyte is roughly between 3.5 and 4 days. From this, we estimate that individuals treated for
falciparum with drugs that do not kill the gametocytes can remain infectious for up to 12 (8+4)
days after treatment is completed. Thus, treatment of P. falciparum infections with Chloroquine
reduces the infectious period from roughly 200 days (ref) to 12 days, and we take rf = 365

200 years−1,
and γf = 365

12 years−1. A study of P. vivax gametocytemia found that out of 516 patients treated
with CQ, only 4 still had not cleared the gametocytes by the third day of treatment [22]. Using
this finding, we let γv = 365

3 .
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Table 3: Description of model parameters pertaining to human population dynamics and their
estimates

Parameters Description Value Reference
1
λ Duration of P. vivax liver stage 90 days see 3.1.3
1
νv

Time until infectious after 4 days [12]

P. vivax symptom onset
1
νf

Time until infectious after 7 days [18]

P. falciparum symptom onset
1

νvf
Duration of Cvf

1
νf

see 3.1.1
1

νfv
Duration of Cfv

1
νv

see 3.1.1

µ Natural death rate 1
60.55 years−1 see 3.3

γv P. vivax blood-stage parasite 1
3 days−1 [24]

clearance rate with treatment

γf P. falciparum treatment recovery rate 1
12 days−1 see 3.1.2

rv P. vivax natural blood-stage 365/30 years−1 see 3.1.3
parasite clearance rate

rf P. falciparum natural recovery rate 365
200 years−1 see 3.1.2

ρv Recovery rate from Iv to S see 3.1.2

ρf Recovery rate from If to S see 3.1.2

pr Probability of post-treatment 0.23 − 0.44 (0.2904) [1]
P. vivax relapse

δ P. vivax relapse rate prσvγv + (1− σv)rv see 3.1.3

σv Probability that a P. vivax 0.82 [29]
infected human becomes symptomatic

σf Probability that a P. falciparum
infected human becomes symptomatic 0.90 assumed

αv Pv -induced cross-immunity to Pf 1

αf Pf -induced cross-immunity to Pv 1

η Fraction of co-infected infectious individuals 0.75 see 3.2
that recover first from P. falciparum

ηv Rate of progression from Ic to If ηγv
due to P. vivax treatment

ηf Rate of progression from Ic to Iv (1− η)γf
due to P. falciparum treatment
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3.1.3 Parameterizing P. vivax relapse

Joshi et al. [16] note that patterns of P. vivax relapse can be categorized into three groups. The
first group is referred to as the tropical type which is characterized by an early primary attack with
frequent relapses. The time intervals between relapses of the tropical type are between one and
three months. Group II has relapse intervals of intermediate length - approximately between three
and five months long. And finally, group III, also known as the temperate type, is characterized by
a long primary latent period and relapses occurring every six to seven months.

In this malaria model, we assume that P. vivax infected individuals who relapse are those who
either were never treated or were unsuccessfully treated. Since P. vivax parasites inducing short-
term relapse patterns were found to be less susceptible to anti-relapse drugs [16], we assume that
individuals who were unsuccessfully treated for P. vivax exhibit group I relapse patterns. Thus,
they should relapse every one to three months. The rate at which a relapsing individual progresses
from Iv to L is the rate at which that individual loses infectiousness (i.e. the rate at which
gametocytes are cleared from the blood). We assume that treated individuals lose infectiousness at
a rate γv, regardless of whether treatment was successful or not, and untreated (i.e. asymptomatic)
individuals lose infectiousness at a rate rv. Adak et al. determined that 29.04 percent of P. vivax
patients treated only with Chloroquine (CQ) relapsed following treatment [1]. Thus, the rate at
which individuals progress from Iv to the liver stage class L, is given by δ = .2904σvγv+(1−σv)rv .
If no one is treated, then δ = rv.

The time between P. vivax relapses is usually defined as the time between clinical episodes. How-
ever, in this model it is possible for individuals who relapse, in the sense that the parasite repeats
the cycle of infection within the human host, without passing through the symptomatic stage Cv.
We will take the time between relapses to be the time it takes to progress from Iv to L ( 1

rv
for

an untreated individual and 1
γv

for an unsuccessfully treated individual), plus the time it takes to

progress from L to the next infected stage ( 1λ). Thus, if we take the average time between relapses
to be three months for an unsuccessfully treated individual, 1

λ + 1
γv

= 3 months ≈ 90 − 93 days.

Since 1
γv

is approximately 3 days long, we take 1
λ to be 90 days. In other words, λ = 365

90 years−1.
Asymptomatic individuals could have relapse patterns associated with group I, II, or III - experi-
encing a relapse anywhere from every one to seven months. Thus, we take 1

rv
+ 1

λ to be the average

of four months long. In other words, 1
λ +

1
rv

≈ 120−124 days. From this estimate and our estimate
for 1/λ, we assume that it takes roughly 30 days for an untreated P. vivax infected individual to
lose infectiousness.

3.1.4 Estimation of ζ

A study conducted by Phimpraphi et al. [25] showed no significant difference in gametocyte pro-
duction by P. vivax or P. falciparum parasites in a co-infected human than in humans who were
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only infected with one of the two parasite species. Also, P. vivax gametocyte densities were found
to be higher than P. falciparum densities in infected humans, with roughly 670 P. vivax gameto-
cytes per µl of blood and 332 P. falciparum gametocytes per µl of blood. Since gametocytes are
the infectious stage of the malaria parasites in humans, we use these findings to determine a rough
estimate of the parameter ζ, the proportion of mosquitoes infected by a human in Ic that contract
P. vivax. We assume that ζ is the density of vivax gametocytes in the blood divided by the total
gametocyte density. In other words, ζ = 670

670+332 ≈ 0.67.

3.2 Estimation of η

P. vivax and P. falciparum are also endemic to Thailand with roughly half the cases resulting from
P. vivax infection and half due to P. falciparum infection. Approximately 10 percent of cases in
Thailand initially diagnosed as P. vivax cases and 30 percent of cases initially diagnosed as P.
falciparum cases turned out to be co-infections [33]. From this, we estimated that the proportion
of co-infected cases treated first for P. falciparum is η = 0.75.

3.3 Estimation of population growth and transmission parameters using popu-

lation and malaria case data for India

1950 1960 1970 1980 1990 2000 2010
3

4

5

6

7

8

9

10

11

12
x 10

8

Year

P
op

ul
at

io
n 

S
iz

e

Figure 2: Plot of time series data for India’s Population Size from 1950 to 2009 and the best fit of
the logistic curve to this data. Population data was obtained from [28].
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From life expectancy data for India [19], we estimated that the average life expectancy between
the years 1987 and 2009 is approximately 60.55 years, giving us µ = 1/60.55 years−1. Using
this estimate and a nonlinear least-squares fit of the logistic equation to India’s population data,
estimates are obtained for the parameters r and K (see Table 4). The best fit of the logistic curve
is illustrated in Figure 2.

Table 4: Estimates of r and K.

Parameter Description Estimate CI

r Intrinsic growth rate 0.0398 years−1 0.0392–0.0404
K Population Carrying capacity 7.5616 · 109 humans 6.2919 · 109–8.8313 · 109

Assuming that the use of control measures remained fairly similar during the period from 1987
to 1996, we can estimate the transmission rates bv, bf , βv , βf by imputing the parameter values
in Tables 2, 3, and 4, and fitting the model to the malaria case data. More precisely, we used
the ‘nlinfit’ function in MATLAB to minimize the sum of squares of the difference between the
data and the solutions curves by comparing solution curve Cv to the P. vivax data and similarly
comparing the solution curve Cf + Cvf + Cfv to the P. falciparum plus mixed-case data. From
this fitting procedure, we obtain estimates for the transmission parameters, summarized in Table
5. The controlled reproduction numbers RCv and RCf can now be calculated using the expressions
in Section 2.5 (see Table 5).

Table 5: Pre-1997 estimates of the transmission parameters.

Parameter Estimate CI

bv 14.5409 14.2907–14.7911
bf 14.0442 6.2573–21.8311
βv 191.3306 188.3507–194.3105
βf 51.7312 23.2618–80.2006

RCv 1.0203
RCf 1.0052

The resulting reproduction number is larger than one, implying mathematically that at least one
of the two malaria parasites will persist. Yet, in practice, the extremely close proximity of RCv and
RCf to the persistence threshold makes it difficult to arrive at any definitive conclusion regarding
the outcome of malaria in India. As a step towards addressing this concern, we use a parametric
bootstrapping procedure to estimate confidence intervals for RCv and RCf . The procedure, which
we will re-iterate here with slight modifications, is described in [8] by Chowell et al.

Let us denote the solution curves Cv and Cf + Cfv + Cvf that best fit the data by Sv and Sf ,
respectively. In one iteration of the bootstrap procedure, we simulate new vivax case data by
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Table 6: Pre-1997 mean, median, standard deviations, and confidence intervals for RCv and RCf ,
derived from parametric bootstrap.

Parameter mean median stand. dev. 95% CI

RCv 1.0203 1.0204 0.0006 1.0192–1.0214
RCf 1.0052 1.0052 0.0001 1.005–1.0055

drawing points for each year (1987-1996) from a Poisson distribution with mean equal to the
value of Sv at the corresponding year. In the same iteration we simulate new falciparum/mixed
case data in the same manner. New estimates for the transmission parameters are determined
by fitting Cv and Cf + Cfv + Cvf to the simulated data. This procedure is repeated 1000 times.
Calculating the isolated controlled reproduction numbers for each of the 1000 runs allows us to
produce histograms of the 1000 values of RCv and RCf . These figures (see Figures 3) reveal that
the values of the reproduction numbers generated by the bootstrapping procedure appear fairly
symmetric. Consequently, it is simple to determine appropriate 95% confidence intervals for RCv

and RCf (see Table 6) by determining the 0.025 and 0.975 quantiles of the 1000 estimates. Figure

3 illustrates that the estimates of RCv, RCf , R
f
v , and Rv

f are consistently greater than one. Hence,
we can conclude that the two Plasmodium species would likely continue to coexist after 1997 had
malaria intervention strategies not improved.
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Figure 3: Histograms of (a) RCv and Rv
f data and (b) RCf and Rf

v data generated by bootstrap
for the period 1987-1996.
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3.4 Estimation of parameters for the enhanced malaria control period

Around 1997, several programs arose that resulted in an upsurge in funding for malaria control
in India. As a consequence of enhanced malaria control, parameters related to different control
policies undoubtedly also changed around 1997. Here, we attempt to assess that change by again
fitting our malaria model, this time to case data for the period 1997-2010.

In general, an increase in the use of bednets decreases mosquito biting rate, increased use of insec-
ticide treated bednets (ITNs) both decreases biting rate and increases the mosquito mortality rate,
improved treatment increases the recovery rate, and insecticides increase the mosquito mortality
rate. A combination of these control measures is often used. Our first goal here is to understand
which of these control measures, or combination of control measures, contributed the most to the
decline in the number of malaria cases after 1996. Secondly, we want to understand how the increase
in funding for malaria has affected the competition between P. vivax and P. falciparum.

To address the first question – which parameters contributed the most to the post-1996 decline
in cases – we fit the model to the 1997-2010 data several times, each time estimating a different
combination of parameters relevant to malaria control while leaving the remaining parameters in
the model fixed to their 1987-1996 estimates. We consider each of these parameterizations of the
model to be a different model. For each model, we calculate the corrected Akaike Information
Criterion (AICc) - a measure of the goodness of fit of a model to the data, discounted by the
number of parameters estimated relative to the size of the dataset. The AICc values allow us to
order the models from best to worst: the model with the smallest AICc is the best model, and
the model with the largest AICc is the worst model. To make the distinction between the models
clearer, we calculate the △AICc for each model: the difference in AICc between the model and
the model with the smallest AICc. This means that the “best” model has a △AICc of zero. The
results of this model comparison are summarized in Table 7. The rule of thumb is that candidate
models with △AICc’s between 0 and 2 have strong support, models with △AICc between 4 and
7 have considerably less support (but should still be considered), and models with △AICc greater
than 10 should be disregarded as potential candidates [5].

The results of this analysis yielded that model A = {γv, γf , av, af} corresponding to estimating
treatment recovery rate and biting rate parameters best explains the observed data. Using the rule
of thumb for △AICc values, model B has strong support, models C, D, E , and F have less support
but should still remain in the pool of possible models, and model G should be discarded. However,
it is important to point out that models A and B were sensitive to the initial guess for the parameter
values in the fitting procedure, whereas the remaining model results were fairly robust to the initial
guess. This means that the relationship between models C, D, E , F , and G remain the same for
different initial parameter guesses while A and B find different positions in the list depending on
the initial guess. We arrived at the ordering presented in Table 7 by repeating the fitting procedure
for 3 different initial guesses for each of the seven models, and choosing the estimates corresponding
to the smallest confidence intervals.
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In general, adding the estimation of d, mosquito death rate, to a model increased the AICc value,
suggesting that changes in mosquito death rate do not explain the decline in cases beginning in 1997.
Similarly, since model C = {av, af} performed better than D = {γv , γf} and likewise E = {av, af , d}
performed better than F = {γv, γf , d}, we conclude that changes in mosquito biting rate better
explain the decline in malaria prevalence than do changes in treatment recovery rates. Moreover,
a smaller change in biting rate (roughly half) is required to yield the same results as changing the
treatment recovery rate.

Some of the results are more surprising and difficult to interpret. For example, the results of model
A suggest that treatment recovery rates in 1997-2010 were worse, particularly for treatment of
vivax malaria, than in 1987-1996. This outcome of the model could be a conseqeunce of increased
parasite resistance to drugs.
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Figure 4: (a) Best fit of model to 1987-1996 case data; (b) Best fit of model to 1997-2010 data.
Data from [9].

Models A through F can also provide some insight into how enhanced control measures affect the
competition between P. falciparum and P. vivax. Using the parameter estimates yielded by each
candidate model and the analytic expressions for the reproduction numbersRCv and RCf along with

analytic expressions for the invasion numbers Rf
v and Rv

f , we can determine in which region of the
competitive outcome graph the point {RCv, RCf} lies. The set of candidate models {A,B} yields
a set of reproduction numbers lying in a region where P. vivax outcompetes P. falciparum (Figure
5). On the other hand, the set of models {C,D, E ,F} yields a set of reproduction numbers lying
within corresponding invasion boundaries where P. falciparum outcompetes P. vivax. A summary
of the isolation reproduction numbers resulting from each model candidate is given in Table 8. The
result that model A predicts P. vivax will outcompeteP. falciparum is surprising given that the
data suggests the opposite. However, extending the solution corresponding to model A (Figure 6)
to the year 2200 confirms that the data is potentially misleading. Although the proportion of cases
due to falciparum has been increasing, model A reveals that this observation is insufficient to draw
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Figure 5: (a) Graph of Rf
v = 1 and Rv

f = 1 for the period 1987-1996 (green and blue lines,
respectively) and 1997-2010 (grey lines) as a function of RCv and RCf ; (b) Plot of the point
(RCv, RCf ) for India before and after 1997. Prior to 1997, India was in the coexistence region.
During period of enhanced control measures (1997-2010), India is in the region where P. vivax will
eventually outcompete P. falciparum.

conclusions about the longterm competitive outcome of the two species.

While this type of analysis has the potential to unveil information regarding the future of malaria
in a region, the reproduction numbers in each case lie very close to the invasion boundaries, and
consequently it is difficult to draw definitive conclusions about the outcome of malaria. To address
this concern, we again carried out a parametric bootstrap procedure to not only estimate confidence
intervals for the reproduction numbers, but to also determine what the probability is that the
reproduction number will lie in any one of the four possible competitive-outcome regions. For each
of the six candidate models, we also calculated the AICc for every 1000 runs in the bootstrap
routine to determine what the most frequent ordering of the set of candidate models is. To make
sure that the results of the bootstrap method between models is comparable, we draw 1000 sets of
data from a Poisson distribution with mean equal to the solution curve associated with model A
in Table 7 – the best fitting model based on AICc values.

The bootstrapping procedure allowed us to compile 1000 sets of parameter estimates for each of
the six models (ignoring model G because of the poor fit), from which we computed 1000 pairs
of reproduction numbers (RCv, RCf ). The new parameter sets and reproduction number pairs
were used to compute the invasion numbers for the 1000 runs, allowing us to determine what the
probability is that a model will land in a particular competitive-outcome region. The results are
listed in Table 9. The competitive outcomes vary the most for models A and B, which is consistent
with our earlier observation that these two models were the most sensitive to the initial parameter
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Table 7: Post-1996 models ordered by △AICc value (difference from best AICc value -123.9).

Model Parameter Percent change from CI ∆ AICc
pre-1997 estimate

A av -43.3 -67.3 – -19.3 0.0
af -1.1 -1.2 – -1.1
γv -68.1 -97.4 – -38.8
γf -1.2 -1.5 – -0.9

B av -45.4 -67.9 – -22.9 2.8
af 0.9 -7.9 – 9.8
γv -73.3 -97.4 – -49.2
γf -5.9 -22.6 – 10.8
d 9.4 9.2 – 9.5

C av -3.1 -3.3 – -2.9 4.1
af -0.5 -0.5 – -0.5

D γv 6.9 6.8 – 7.0 5.2
γf 1.0 0.9 – 1.1

E av -0.6 -0.8 – -0.4 7.0
af 2.0 2.0 – 2.1
d 5.2 5.1 – 5.2

F γv 3.7 3.5 – 3.8 7.1
γf -1.9 -2.4 – -1.4
d 2.9 2.4 – 3.4

G d 2.4 1.8 – 3.0 85.7

guess used for fitting.

Although the 1000 bootstrapped samples resulted in 123 different orderings, 5 orderings made up
more than half of the samples. The original ordering {A,B, C,D, E ,F ,G} occurred 10.1% of the
time. 29.5% of the runs led to the ordering {A, C,D, E ,F ,B,G}. 9.7% of the samples yielded the
ordering {C,D, E ,F ,A,B,G}. The ordering {C,D, E ,F ,B,A,G} appeared 8.4% of the time, while
4.7% of the samples resulted in the ordering {B,A, C,D, E ,F ,G}. The AICc values selected model
A as the top model 54.4% of the time. Of these 544 samples for which model A was selected
as the top model, roughly 15.1% yielded the outcome that vivax and falciparum would continue
to coexist, 44.9% yielded that vivax would outcompete falciparum, 18.4% yielded that falciparum
would outcompete vivax, and finally 21.7% yielded that both species would become extinct.

Determining confidence intervals for the reproduction numbers for each model was not as straight-
forward as it was for the 1987-1996 time period. Histograms of the reproduction numbers for
each model revealed that not all of the samples of RCf were symmetric. In fact, the collection of
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Figure 6: Model A solution curve extended to the year 2200.

Table 8: 1997-2010 estimates of RCv and RCf for each candidate model.

A B C D E F
RCv 1.00111 1.00221 0.98891 0.98757 0.98874 0.98820
RCf 0.99990 0.99997 1.00018 1.00014 1.00015 1.00022

reproduction numbers RCf for model B exhibits a bimodal distribution. Since, models A and C
were the most common models taking “first place”, and because their corresponding reproduction
numbers exhibited fairly symmetric distributions (see Figure 7), we present the confidence intervals
for these two models. The 95% confidence intervals for RCv and RCf , respectively, corresponding
to model A are (0.99133 – 1.00640) and (0.99890 – 1.00075). For model C, the confidence intervals
are (0.98676 – 0.99079) and (0.99979 –1.00054). Ultimately, the percentages in Table 9 provide
more meaningful information than the confidence intervals derived for the post-1996 reproduction
numbers. Figure 7 illustrates that the spread of the RCf data resulting from the bootstrap proce-

dure was always less than the spread of Rf
v . Conversely, the variance in RCv is greater than that

of Rv
f . This observation, which was consistent across all six candidate models suggests that RCf is

less sensitive than Rf
v , and RCv is more sensitive than Rv

f , to changes is parameter values.
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Table 9: Percentage of bootstrap runs in which vivax and falciparum will coexist (I), vivax will
outcompete falciparum (II), falciparum will outcompete vivax (III), and the percentage of runs in
which both will become extinct (IV).

I II III IV

A 14.3 44.0 19.2 22.5
B 4 11.3 53.3 31.4
C 0.2 0 77.4 22.4
D 0 0 74.3 25.7
E 0 0 77.9 22.1
F 0.4 0 83.40 16.2
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Figure 7: Subfigure (a) presents a histogram of the Rf
v and RCv bootstrap data for model A.

Subfigure (b) is a histogram of the Rv
f and RCf bootstrap data for model A.

4 Discussion

India, as is true for many other countries, has struggled with the control of malaria, experiencing
several ups and downs. While more recent efforts have been successful in dramatically decreasing
the number of cases, India is still far from reaching its goal. Consequently, knowing which of the
control strategies India’s success can be attributed to is valuable to India’s future success and
could help India use their resources more efficiently. The presence of two malaria parasites in India
makes this a challenging problem, both in practice and in terms of mathematical modeling. To our
knowledge, attempts to model both vivax and falciparum ([26], [27]) at the population level do not
include the possibility of co-infection. Chiyaka et al. [7] address co-infection in their falciparum-
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malariae malaria model, however the symmetric nature of this model does not lend itself well to
the application to falciparum and vivax. Our falciparum-vivax model addresses the need for a
model that considers not only the possibility of co-infection, but also the characteristics of vivax
that differentiate it from falciparum.

Competition between species can have a profound effect on survival. We have shown with our
model, by studying the invasion boundaries, that two species can coexist, even if the isolated
reproduction number of one of the species is less than one. This has important consequences for
malaria control, since reducing one of the reproduction numbers below one may not be sufficient
to eradicate either pathogen or the disease.

The emergence of parasite resistance to drug therapies is also of great concern since this foreboding
obstacle poses a threat to the success of malaria control. While we do not address parasite resistance
directly in our model, the fitting of several models to the enhanced malaria control period suggested
that sufficient use of bednets may be able to counteract the negative effects of increased resistance
to the treatment of malaria. In fact, the model selected as the best model for the majority of the
bootstrapped samples (54.4% of the time) in Section 3.3, was one in which both biting rate and
treatment recovery rates decreased after 1996. A decrease in recovery rate increases the average
time to recovery following the administration of anti-malarial drugs. As expected, our top model
indicates that decreasing biting rate and increasing the time to recovery following treatment have
opposing effects on the reproduction number.

Incorporating both P. falciparum and P. vivax malaria into our model provided us with a way
to determine what the most likely outcomes are for malaria in India. Bootstrapping of the best
post-1996 model (model A) yielded that P. vivax outcompeting P. falciparum is the most likely
outcome, while the probability of extinction is only slightly more probable than the probability
that falciparum will outcompete vivax malaria (22.5% versus 19.2%). The remaining candidate
models predicted that P. falciparum outcompeting vivax is the most likely outcome. A side-by-side
comparison of the histograms of the reproduction numbers and the invasion numbers revealed that
the variance in RCf was always less than the variance in Rf

v . Conversely, the variance in RCv is
greater than that of Rv

f . This means that estimating the reproduction numbers alone may not be
a good predictor of the outcome of the disease.

The application of our mathematical model to data suggested that the future of malaria in India is
uncertain. Although we addressed the uncertainty in the model predictions, it’s important for us
to note that applying the same methods to data sets for smaller regions is likely to produce very
different results. In the future, we hope to use the framework we have developed here to make more
confident predictions about the outcome of malaria in various regions of India.
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A Appendix

A.1 Finding RC using the Next-Generation approach

RC is a threshold criterion that determines whether P. vivax or P. falciparum will be able to invade
the disease-free equilibrium.

Following the approach of Diekmann et al. [11], we consider a subset of our system comprising only
of equations for the infected state variables. We order these equations as follows:
{j′v , L′, C ′

v , I
′

v, j
′

f , C
′

f , I
′

f , C
′

vf , C
′

fv , I
′

c}. Next, we write the Jacobian (evaluated at the disease-free
equilibrium) J of the subsystem as the difference of two matrices F and V (J = F − V ). We
choose these matrices such that the elements of F include only new infections and the remaining
transitions (recovery, relapse, death, or progression to a new disease state) appear in the V matrix,

giving us F =

(
F1 F2

F3 0

)
where,

F1 =




0 0 0 f1,4 0
f2,1 0 · · · · · · 0

0
...

. . .
...

0
...

. . .
...

0 0 · · · · · · 0




, F2 =




0 0 f1,8 0 f1,10
0 0 · · · · · · 0

0
...

. . .
...

0 0 0 0
0 f5,7 0 f5,9 f5,10




, F3 =




0 0 0 0 f6,5
0 0 · · · · · · 0

0
...

. . .
...

0
...

. . .
...

0 0 · · · · · · 0




,

and V =

(
V1 V2

0 V3

)
where,

V1 =




v1,1 0 0 0 0

0 v2,2 0 −v2,4
...

0 −v3,2 v3,3 0
...

0 −v4,2 v4,3 v4,4 0
0 · · · · · · 0 v5,5




, V2 =




0 0 0 0 0
0 0 · · · · · · 0

0
...

. . . 0

0
...

. . . −v4,10
0 0 · · · · · · 0




,
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V3 =




v66 0 0 0 0
−v7,6 v7,7 0 0 −v7,10
0 0 v8,8 0 0
0 0 0 v9,9 0
0 0 −v10,8 −v10,9 v10,10




.

The nonzero elements of F are f1,4 = bv/K̂, f2,1 = βv/K̂, f1,8 = bv/K̂, f1,10 = ζbv/K̂, f5,7 =
bf/K̂, f5,9 = bf/K̂, f5,10 = (1− ζbf/K̂), f6,5 = σfβf K̂.

The nonzero elements of V are v1,1 = d, v2,2 = λ + µ, v2,4 = δ, v3,2 = σvλ, v3,3 = νv + µ, v4,2 =
(1 − σv)λ, v4,3 = νv, v4,4 = δ + ρv + µ, v5,5 = d, v4,10 = ηf , v6,6 = νf + µ, v7,6 = νf , v7,7 =
ρf+µ, v7,10 = ηv, v8,8 = νvf+µ, v9,9 = νfv+µ, v10,8 = νvf , v10,9 = νfv, v10,10 = ηv+ηf+µ.

If F is nonnegative and V is a nonsingular M-matrix (a Z-matrix whose eigenvalues have positive
real part), then ρ(FV −1) < 1 if and only if all eigenvalues of J = F − V have negative real
part (Lemma 2 in [10]). This is equivalent to saying that if F and V satisfy these properties,
then the disease free equilibrium is locally asymptotically stable only when the spectral radius
(or dominant eigenvalue) of FV −1 is less than one. Furthermore, the inverse of an M-matrix is
nonnegative [10], so that FV −1 is also nonnegative. FV −1 nonnegative implies that FV −1 has a
positive real eigenvalue with modulus greater than or equal to all other eigenvalues of FV −1 [4]. In
other words, ρ(FV −1) > 0. Since ρ(FV −1) is positive, it makes sense to define RC to be precisely
ρ(FV −1).

Thus, to derive an expression for RC , we must first check that F and V satisfy the appropriate
conditions. Clearly F is a nonnegative matrix and V is a Z-matrix, that is, a matrix with nonpositive
off-diagonal elements. One can show that a Z-matrix A is an M-matrix by showing that there exists
a nonnegative vector v such that Av is positive [13].

We claim that for v = (1, · · · , 1)T , V T v is positive. Since V is a Z-matrix, it is clear that V T is
also a Z-matrix. Furthermore, since V and V T have the same eigenvalues, if V T is an M-matrix,
then so is V . Showing that V T v > 0 is equivalent to showing that all row sums of V T are positive,
or equivalently that all column sums of V are positive.

It is simple to show that Sj :=
10∑
i=1

vi,j > 0 for each j ∈ {1, 2, · · · , 10}:
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S1 = v1,1 > 0

S2 = v2,2 − v3,2 − v4,2

= λ+ µ− σv − (1− σv) = µ > 0

S3 = v3,3 − v4,3

= nuv + µ− νv = µ > 0

S4 = −v2,4 + v4,4

= −δ + δ + ρv + µ = ρv + µ > 0

S5 = v5,5 > 0

S6 = v6,6 − v7,6

= νf + µ− νf = µ > 0

S7 = v7,7 > 0

S8 = v8,8 − v10,8

= νvf + µ− νvf = µ > 0

S9 = v9,9 − v10,9

= νfv + µ− νfv = µ > 0

S10 = −v4,10 − v7,10 + v10,10

= −ηf − ηv + ηv + ηf + µ = µ > 0.

Thus, V is an M-matrix, and consequently, RC = ρ(FV −1). To determine the expression for RC ,
we first compute the inverse of V using the formula V −1 = 1

det(V )Adj(V ), where Adj(V ) is the

adjugate of V . ci,j := (−1)(i+j)Vi,j is called the (i, j) cofactor of V . The matrix C whose elements
are the cofactors of V is called the cofactor matrix of V . The adjugate of V is defined to be the
transpose of the cofactor matrix of V , that is, Adj(V ) := CT .

We find that C−1 = 1
det(V )

(
C1 C2

0 C3

)
, where Ci are defined as follows for i = 1, 2, 3:

C1 =




c1,1 0 0 0 0
0 c2,2 c3,2 c4,2 0
0 c2,3 c3,3 c4,3 0
0 c2,4 c3,4 c4,4 0
0 0 0 0 c5,5




, C2 =




0 0 0 0 0
0 0 c8,2 c9,2 c10,2
0 0 c8,3 c9,3 c10,3
0 0 c8,4 c9,4 c10,4
0 0 0 0 0




, and
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C3 =




0 0 0 0 0
c6,7 c7,7 c8,7 c9,7 c10,7
0 0 c8.8 0 0
0 0 0 c9,9 0
0 0 c8,10 c9,10 c10,10




.

Thus, FV −1 = 1
det(V )



K1 0 K2

0 K3 K4

0 0 0


, where

K1 =




0 f1,4c2,4 f1,4c3,4 f1,4c4,4
f2,1c1,1 0 0 0

0 0 0 0
0 0 0 0


 ,

K2 =




f1,4c8,4 + f1,8c8,8 + f1,10c8,10 f1,4c9,4 + f1,10c9,10 f1,4c10,4 + f1,10c10,10
0 0 0
0 0 0
0 0 0




K3 =




0 f5,7c6,7 f5,7c7,7
f6,5c5,5 0 0
f7,5c5,5 0 0


 , and

K4 =



f5,7c8,7 + f5,10c8,10 f5,7c9,7 + f5,9c9,9 + f5,10c9,10 f5,7c10,7 + f5,10c10,10

0 0 0
0 0 0


 .

The nonzero eigenvalues of FV −1 are precisely the eigenvalues of F̂ V −1, where

F̂ V −1 =
1

det(V )

(
K̂1 0

0 K̂2

)
,

and K̂1 =

(
0 f1,4c2,4

f2,1c1,1 0

)
and K̂2 =




0 f5,7c6,7 f5,7c7,7
f6,5c5,5 0 0
f5,7c5,5 0 0


 .

Since F̂ V −1 is block triangular, its eigenvalues are the eigenvalues of K̂1/det(V ) and K̂2/det(V ).

Using the formula for the elements ci,j of the cofactor matrix C, we find that
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c1,1 = [v2,2v3,3v4,4 − v2,4(v3,2v4,3 + v3,3v4,2)](v5,5v6,6v7,7v8,8v9,9v10,10)

c2,4 = v1,1(v32v43 + v33v42)v5,5v6,6 · · · v10,10
c5,5 = v1,1[v2,2v3,3v4,4 − v24(v32v43 + v33v42)]v6,6 · · · v10,10
c6,7 = v1,1v5,5v7,6[v2,2v3,3v4,4 − v24(v32v43 + v33v42)]v8,8 · · · v10,10
c7,7 = v1,1v5,5 · · · v10,10[v2,2v3,3v4,4 − v24(v32v43 + v33v42)].

The determinant of V is det(V ) = v1,1v2,2 · · · v10,10[1 − k2,4(k3,2k4,3 + k4,2)], where ki,j denotes
vi,j/vj,j.

By finding the roots of the characteristic polynomials of K̂1 and K̂2, we arrive at the analytic
expression for RC : RC = max{RCv , RCf

}, where RCv and RCf
are as described in section 2.6.

A.2 Finding Rf
v using the Next-Generation approach

The procedure for finding an analytic expression for the invasion reproduction numbers Rf
v and

Rv
f , although more challenging to carry-out, is identical to the procedure presented in A.1 for

deriving RC . The infected subsystem will now consist only of equations for state variables infected
with P. vivax, since we want to determine the stability of the falciparum-only equilibrium when
vivax attempts to invade. We first find the Jacobian of our infected subsystem, evaluated at the
falciparum-only equilibrium, with the equations ordered as follows: {j′v , L′, C ′

v , I
′

v, C
′

vf , C
′

fv , I
′

c}. We
write J = F − V , where F and V are 7× 7 square matrices and

F =




0 0 0 f1,4 f1,5 0 f1,7
f2,1 0 · · · · · · · · · · · · 0

0
...

. . .
...

0
...

. . .
...

0
...

. . .
...

f6,1
...

. . .
...

0 0 · · · · · · · · · · · · 0




and V =




v1,1 0 · · · · · · 0 · · · 0

0 v2,2 0 −v2,4
...

. . .
...

... −v3,2 v3,3 0 0 · · · 0

... −v4,2 −v4,3 v4,4 0 0 −v4,7

... −v5,2 0 −v5,4 v5,5 0 0
0 · · · · · · · · · 0 v6,6 0
0 · · · · · · 0 −v7,5 −v7,6 v7,7




.

where the elements of F are: f1,4 = bv(1−j∗v )/K̂, f1,5 = f1,4, f1,7 = ζf1,4, f2,1 = βvS
∗, and f6,1 =

αfβvI
∗

f .

The elements of V are: v1,1 = d, v2,2 = αvβfj
∗

f + λ+µ, v2,4 = δ, v3,2 = σvλ, v3,3 = νv +µ, v4,2 =
(1 − σv)λ, v4,3 = νv, v4,4 = αvβf j

∗

f + δ + ρv + µ, v4,7 = ηf , v5,2 = αvβf j
∗

f , v5,4 = v5,2, v5,5 =
νvf + µ, v7,5 = νvf , b7,6 = νfv, v7,7 = ηv + ηf + µ.
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Again, it is clear that V has the Z-sign pattern. So, as described in A.1, it is straightforward to
show that V is an M-matrix by verifying that all column-sums of V are positive. The inverse of V
has the following form, where the dots represent zeros:

V −1 =




v̂1,1 · · · · · ·
· v̂2,2 v̂2,3 v̂2,4 v̂2,5 v̂2,6 v̂2,7
· v̂3,2 v̂3,3 v̂3,4 v̂3,5 v̂3,6 v̂2,7
· v̂4,2 v̂4,3 v̂4,4 v̂4,5 v̂4,6 v̂4,7
· v̂5,2 v̂5,3 v̂5,4 v̂5,5 v̂5,6 v̂5,7
· · · · · v̂6,6 ·
· v̂7,2 v̂7,3 v̂7,4 v̂7,5 v̂7,6 v̂7,7




.

So,

FV −1 =




f1,4v̂4,2 f1,4v̂4,3 f1,4v̂4,4 f1,4v̂4,5 f1,4v̂4,6 f1,4v̂4,7
· +f1,5v̂5,2 +f1,5v̂5,3 +f1,5v̂5,4 +f1,5v̂5,5 +f1,5v̂5,6 +f1,5v̂5,7

+f1,7v̂7,2 +f1,7v̂7,3 +f1,7v̂7,4 +f1,7v̂7,5 +f1,7v̂7,6 +f1,7v̂7,7
f2,1v̂1,1 · · · · · ·

· · · · · · ·
· · · · · · ·
· · · · · · ·

f6,1v̂1,1 · · · · · ·
· · · · · · ·




The nonzero eigenvalues of FV −1 are precisely the nonzero eigenvalues of the 3x3 matrix

F̂ V −1 =




f1,4v̂4,2 f1,4v̂4,6
· +f1,5v̂5,2 +f1,5v̂5,6

+f1,7v̂7,2 +f1,7v̂7,6
f2,1v̂1,1 · ·
f6,1v̂1,1 · ·




.

The characteristic polynomial of F̂ V −1 is given by p(τ) = |F̂ V −1− τI| = τ [k6,1(f1,4v̂4,6+ f1,5v̂5,6+
f1,7v̂7,6) + k2,1(f1,4v̂4,2 + f1,5v̂5,2 + f1,7v̂7,2) − τ2], where ki,j := vi,j/vj,j. Since V is an M-matrix,
we know that the inverse of V has only nonnegative elements. Thus, v̂5,6, v̂7,6, v̂5,2, and v̂7,2 are
nonnegative, and the largest positive root of p(τ) is
τ∗ =

√
k6,1(f1,4v̂4,6 + f1,5v̂5,6 + f1,7v̂7,6) + k2,1(f1,4v̂4,2 + f1,5v̂5,2 + f1,7v̂7,2)].

Recall that v̂i,j are the elements of V −1. Thus, v̂i,j = (−1)i+jcj,i/det(V ), where C := (ci,j) is
the cofactor matrix of V . To determine v̂4,6, v̂5,6, v̂7,6, v̂4,2, v̂5,2, and v̂7,2, we need only calculate
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c6,4, c6,5, c6,7, c2,4, c2,5, c2,7, and det(V ).

c6,4 = v1,1v2,2v3,3v5,5v4,7v7,6

c6,5 = v1,1v7,6v4,7v3,3(v2,2v5,4 + v2,4v5,2)

c6,7 = v1,1v7,6v5,5[v2,2v3,3v4,4 − v2,4(v3,2v4,3 + v3,3v4,2)]

c2,4 = v1,1v6,6[v7,5v5,2v3,3v4,7 + v7,7v5,5(v3,2v4,3 + v3,3v4,2)]

c2,5 = v1,1v6,6v7,7[v3,2v4,3v5,4 + v3,3(v4,2v5,4 + v4,4v5,2)]

c2,7 = v1,1v6,6v7,5[v3,2v4,3v5,4 + v3,3(v4,2v5,4 + v4,4v5,2)],

and

det(V ) = v1,1v2,2 · · · v7,7[1− k2,4(k3,2k4,3 + k4,2)− k7,5k4,7(k5,4 + k2,4k5,2)]

= 1− δ
αvβf j

∗

f
+δ+ρv+µ

(
σvλ

αvβf j
∗

f
+λ+µ · νv

νv+µ + (1−σv)λ
αvβf j

∗

f
+λ+µ

)

− νvf
νvf+µ · ηf

ηv+ηf+µ

(
αvβf j

∗

f

αvβf j
∗

f
+δ+ρv+µ + δ

αvβf j
∗

f
+δ+ρv+µ · αvβf j

∗

f

αvβf j
∗

f
+λ+µ

)

The invasion reproduction number Rf
v := τ∗. Making the appropriate substitutions into τ∗, we

arrive at the expression for Rf
v in section 2.8

A.3 Finding Rv
f using the Next-Generation approach

To derive Rv
f , we find the Jacobian of the falciparum-infected subsystem, with the order:

{j′f , C ′

f , I
′

f , C
′

vf , C
′

fv, I
′

c}. The Jacobian evaluated at the vivax -only equilibrium is given by J =
F − V , where

F =




0 0 f1,3 0 f1,5 f1,6
f2,1 0 · · · · · · · · · 0

f3,1
...

. . .
...

f4,1
...

. . .
...

0
...

. . .
...

0 0 0 0 0 0




, and V =




v1,1 0 0 0 0 0
0 v2,2 0 0 0 0
0 −v3,2 v3,3 0 0 −v3,6
0 0 0 v4,4 0 0
0 0 −v5,3 0 v5,5 0
0 0 0 −v6,4 −v6,5 v6,6




,

where f1,3 = bf (1 − j∗v )K̂, f1,5 = f1,3, f1,6 = (1 − ζ)f1,3, f2,1 = σfβfS
∗, f3,1 = (1 − σf )S

∗, f4,1 =
αvβf (I

∗

v+L∗), and v1,1 = d, v2,2 = νf+µ, v3,2 = νf , v3,6 = ηv, v4,4 = νvf+µ, v5,3 = αfβvj
∗

v , v5,5νfv+
µ, v6,4 = νvf , v6,5 = νfv, v6,6 = ηv + ηf + µ.

F is nonnegative and V is a nonsingular Z-matrix. We show, as we did in appendices A.1 and
A.2, that V is also an M-matrix by showing that the column sums of V are positive. Since each
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vi,j > 0 and v2,2 > v3,2, v3,3 > v5,3, v4,4 > v6,4, v5,5 > v6,5, and v6,6 > v3,6, each column sum is
positive, and hence V is a nonsingular M-matrix. Thus, V −1 is nonnegative (hence FV −1 is also
nonnegative) and all eigenvalues of J have negative real part if and only if Rv

f := ρ(FV −1) < 1.
Using the notation that C := (ci,j) is the cofactor matrix of V , we have that

V −1 =
1

det(V )
·




c1,1 · · · · ·
· c2,2 · · · ·
· c2,3 c3,3 c4,3 c5,3 c6,3
· · · c4,4 · ·
· c2,5 c3,5 c4,5 c5,5 c6,5
· c2,6 c3,6 c4,6 c5,6 c6,6




.

So,

FV −1 =
1

det(V )
·




f1,3c2,3 f1,3c3,3 f1,3c4,3 f1,3c5,3 f1,3c6,3
0 +f1,5c2,5 +f1,5c3,5 +f1,5c4,5 +f1,5c5,5 +f1,5c6,5

+f1,6c2,6 +f1,6c3,6 +f1,6c4,6 +f1,6c5,6 +f1,6c6,6
f2,1c1,1 0 · · · · · · · · · 0

f3,1c1,1
...

. . .
...

f4,1c1,1
...

. . .
...

0
...

. . .
...

0 0 0 0 0 0




Observe that the nonzero eigenvalues of FV −1 are exactly the nonzero eigenvalues of

F̂ V −1 =
1

det(V )
·




f1,3c2,3 f1,3c3,3 f1,3c4,3
0 +f1,5c2,5 +f1,5c3,5 +f1,5c4,5

+f1,6c2,6 +f1,6c3,6 +f1,6c4,6
f2,1c1,1 0 · · · 0

f3,1c1,1
...

. . .
...

f4,1c1,1 0 · · · 0




, where
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c1,1 = v2,2 · · · v6,6(1− k3,6k5,3k6,5)

c2,3 = v1,1v4,45, 5v6,6v3,2

c3,3 = v1,1v2,2v4,4v5,5v6,6

c4,3 = v1,1v2,2v5,5v3,6v6,4

c2,5 = v1,1v4,4v6,6v3,2v5,3

c3,5 = v1,1v2,2v4,4v6,6v5,3

c4,5 = v1,1v2,2v5,3v3,6v6,4

c2,6 = v1,1v4,4v3,2v5,3v6,5

c3,6 = v1,1v2,2v4,4v5,3v6,5

c4,6 = v1,1v2,2v3,3v5,5v6,4, and

det(V ) = v1,1 · · · v6,6(1− k3,6k5,3k6,5).

Recall (from the previous appendices) that ki,j := vi,j/vj,j.

The only positive root of the characteristic polynomial p(τ) = |F̂ V −1 − τI| is τ∗ = √
a1 + a2 + a3,

where

a1 =
k2,1

1− k3,6k5,3k6,5
· (k3,2k1,3 + k3,2k5,3k1,5 + k3,2k5,3k6,5k1,6)

a2 =
k3,1

1− k3,6k5,3k6,5
(k1,3 + k5,3k1,5 + k5,3k6,5k1,6)

a3 =
k4,1

1− k3,6k5,3k6,5
· (k6,4k1,6 + k6,4k3,6k1,3 + k6,4k3,6k5,3k1,5) .

Since the invasion number Rv
f is defined to be the dominant eigenvalue of FV −1, Rv

f = τ∗ =√
a1 + a2 + a3, the expression presented in section 2.8.
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