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Abstract

We consider a model for a disease with two competing strains and vaccination. The vaccine provides

complete protection against one of the strains (strain two) but only partial against the other (strain one).

The partial protection leads to existence of subthreshold equilibria of strain one. If the first strain mutates

into the second, there are subthreshold coexistence equilibria when both vaccine-dependent reproduction

numbers are below one. Thus, a vaccine that is specific towards the second strain, and in absence of other

strains should be able to eliminate it by reducing its reproduction number below one, cannot do so because

it provides only partial protection to another strain that mutates into the second strain.
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1 Introduction.

Many diseases are caused by more than one antigenically different variant of the causative agent. Such variants

are referred to as different strains of a microorganism. The number of strains that give rise to the same disease

depends on the mutability of the parasite. For some highly mutable viruses, like HCV (hepatitis C virus) that

causes hepatitis C, there are more than one hundred strains of the virus identified so far, classified into six

genotypes. Bacterial pneumonia is caused by more than ninety different serotyps of Streptococcus pneumoniae,

some of which are much more common than others. Influenza type A viruses mutate continuously. These

changes in the virus are called antigenic drifts. Although an infection with one strain of influenza type A leads

to life long immunity, the antigenic drift produces new virus strains to which the host has only partial immunity

or no immunity at all and can be reinfected with the disease.
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1.1 Multi-strain disease interactions

The dynamics of the pathogen-host interactions involving multiple strains and the implications for the

dynamics of the disease has fascinated researchers for a long time. Bremermann and Thieme [5] justify a

competitive exclusion principle for the interactions of multiple strains by considering a multistrain SIR ODE

model with possible acquired immunity to all strains and demographic renewal. In particular they show that

the strain with the largest reproduction number (R0) will outperform and eliminate the remaining strains in the

system, provided that the growth of the host is limited by the carrying capacity of the environment. Castillo-

Chavez, Huang and Li also establish that competitive exclusion is the norm in a two-sex SI model of gonorrhea

with demographic renewal and two strains [10].

Many diseases, however, are represented by several or a multitude of strains which appear to coexist in

nature. Dengue fever has four different serotypes which coexist often in the same geographical region. Infection

with one of the serotypes gives permanent immunity but the same host remains vulnerable to infections with

the remaining serotypes. Some particular sequences of infections with these four serotypes are believed to

lead to the deadly hemorrhagic fever. The competitive exclusion and coexistence of two of the four dengue

serotypes is discussed in [15]. Feng and Velasco-Hernándes [15] consider the possibility of infecting an already

infected individual with the other strain (a process called super-infection). They present numerical evidence

that coexistence of the two strains is possible. A model of consecutive infections with two dengue fever serotypes

is considered in [12] where it is also established that the two strains can coexist.

In fact, both the super-infection in [15] and the cross-immunity in [12] are known mechanisms that lead to

coexistence of strains. Super-infection has been found earlier to lead to coexistence in a two-strain model in

[26, 35] and to more complex dynamics in multi-strain models in [38]. Cross-immunity has been discussed mainly

in relation to influenza and several articles report the presence of coexistence equilibria in this case [7, 8, 2, 28].

Similarly to super-infection, coinfection, which is defined as the simultaneous infection of the same host with

two different parasites, or two different strains of the same parasite, also leads to coexistence of the strains on

the population level [36]. Under the same conditions as the ones considered in [5] the competitive exclusion

principle will no longer be valid if the host population is allowed to grow exponentially in time. Apparently,

in an exponentially growing host population there is enough ”room” for two strains to coexist [31, 1]. Parasite

polymorphism is obtained also via density dependent host death rate [3].

In this paper we consider another mechanism that is known to generate coexistence, namely mutation [4].

By mutation of the strains on population level we understand a process of substitution on personal level of

one of the strains by the other. In particular, we assume that if in a host, infected by the first strain, a small

amount of the second strain is produced, then it takes over the host as a result of intra-host competition.

Consequently, the same host is then infected by the second strain. We call the combined effect of these two

processes mutation and denote the rate at which that happens by ρ. Li, Zhiu et al. [27] investigate an epidemic

model of mutating pathogens in a recent article and find a unique coexistence equilibrium which may lose

stability. In fact, mutation enters several other articles as a mechanism that promotes coexistence. In [6, 14]

incomplete treatment of individuals infected with tuberculosis (TB) leads to emergence of drug-resistant strain of

the disease. The authors conclude that natural TB strains will not coexist under their models but a natural and

a drug-resistant strain which is in fact a mutant of the natural strain will coexist under appropriate conditions.

In [14] the natural strain can dominate only in the absence of mutation; if mutation is present there are only

two possible outcomes: either the two-strains are both present in the population or the drug-resistant strain

dominates. We obtain similar results in this article.
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1.2 Vaccination in multi-strain diseases.

Vaccination is a wide spread method for disease prevention and control. It produces better results against

diseases generated by pathogens of low mutability. One of the most successful vaccination campaigns is the

campaign for the eradication of smallpox. The World Health Organization declared the disease eliminated in

1980. Measles has been essentially also eradicated in developed countries and vaccination against mumps and

chicken pox gives promising results since the causative agents of these diseases show little tendency to vary

antigenically. Although poliomyelitis is caused by three antigenic types, since they do not change significantly,

vaccination against each one is necessary but produces promising results. On the other hand, vaccination against

highly mutable viruses is either not very efficient or not at all possible at present time. Vaccination against

bacterial pneumonia whose causative agent is represented by more than ninety serotypes, is carried out with

vaccines containing agents of up to twenty-three of the most common serotypes.

Vaccines against highly mutable viruses such as as HIV and HCV at this time are not available. Providing

adequate immunity against influenza has been a particularly challenging task. Because the virus continuously

mutates and generates new strains any immunity furnished by a vaccine or by infection is short lived as the next

flu season the same host faces a new set of strains. Thus, annual vaccinations are necessary. The vaccines are

also updated every season. They are typically trivalent and consist of two type A strains and one type B strain.

For the US, CDC estimates early in the year what strains are likely to be most distributed in the following

flu season and makes a recommendation for the composition of the vaccine. The decision which strains to be

included in the vaccine is based on methods for predicting the evolution of influenza A [25, 22] as well as global

surveillance. We model this epidemiological situation when the present virus, which is only partially targeted

by the vaccine, mutates into a strain to which the vaccine is specific.

The impact of vaccination on the evolution of strain interactions in multistrain diseases has been investigated

trough models in several articles [37, 17, 35, 39, 40]. McLean [37] supports the view that as vaccination provides

weaker immunity compared to infection, it gives favorable environment for the emergence of vaccine-resistant

strains. T. Porco and S. Blower investigate [39] how the mode of action of potential HIV vaccine will influence

the coexistence of two HIV subtypes. In particular, they find that if the vaccine provides full protection against

subtype one for a given fraction of the vaccinated individuals and a complete protection against subtype two

for a fraction of those protected against subtype one, then coexistence of the subtypes is possible. On the other

hand if the vaccine acts only by decreasing the infectivity in vaccinated individuals infected with either subtype,

then coexistence is not possible. In [40] the authors assume that the vaccine reduces the susceptibility of the

vaccinated individuals and it is established that coexistence is possible. In both articles vaccination is applied

before individuals enter the system.

Lipsitch [29] considers the interplay of two serotypes of bacteria subjected to serotype-specific or bivalent

vaccine. He applies his theoretical results to shed light on existing data on serotype replacement in Haemophilus

influenzae. The ability of the vaccines to target only specific strains of the causative agent has generated

significant concern in epidemiology as this could increase the incidence of the disease from other strains not

represented in the vaccine. This has not occurred with the use of H. influenzae type b vaccines but has occurred

in trials of pneumococcal vaccines. In [30] these different outcomes are investigated with the use of mathematical

models.

1.3 Multiple and subthreshold coexistence equilibria.

In simple epidemic models typically when the reproduction number is below one only the disease-free equi-

librium exists. This equilibrium is locally and globally stable which implies that the disease will disappear from
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the population. Recommendations for disease control can be made based on that observation. In particular,

measures which act to reduce the reproduction number below one will lead to the disease disappearance.

Recently, it has been observed in theoretical considerations that nontrivial equilibria can be present even

when the reproduction number of the disease is smaller than one. One way for this situation to occur is through

a phenomenon called backward bifurcation. In the case of backward bifurcation the endemic equilibrium which

bifurcates from the disease-free equilibrium at the critical value one of the reproduction number exists for values

of the reproduction number smaller than one. In fact, for values of the reproduction number between some

minimal value R∗, called minimal transition value, and one there are two or more endemic equilibria. In [34]

it is established that there is typically an even number of equilibria with alternating stability so that the one

with the lowest number of infectives is unstable. If backward bifurcation occurs, it is not sufficient to reduce the

reproduction number below one to eradicate the disease but it is necessary to reduce it below a much lower value

- the minimal transition value. Although this phenomenon is not as readily observed in data as oscillations, it

plays a significant role in the dynamics of the disease and our ability to combat it effectively.

The presence of backward bifurcation in epidemic models has led to significant interest in the literature in

recent years. In many cases backward bifurcation seems to be caused by the presence of several classes with

different susceptibilities to the disease. Thus this phenomenon often occurs in multigroup models [20, 11]. As a

special case, it can also be observed when the population is divided into never infected and previously infected

individuals [16] and in educated and uneducated individuals [19]. In addition, backward bifurcation appears

when super-infection is present [13]. Most of these models consider homogeneous populations with respect to

age structure and, as a result, the corresponding models consist of ordinary differential equations. However,

recently the heterogeneity of the host in age structure both chronological [9, 33] and disease-induced [34] have

also been found to lead to subthreshold equilibria.

One of the significant consequences of the backward bifurcation is the presence of multiple stable equilibria,

which in turn leads to the fact that initial conditions determine to which equilibrium solutions may tend. This

gives the opportunity, even in systems with time-independent coefficients, for multiple outcomes in the long-term

development of the disease.

Backward bifurcation is also very typical for models involving partially effective vaccination as vaccination

creates a class of susceptible individuals (namely the vaccinated individuals) with lower susceptibility to the

disease compared to the regular susceptible class. Several articles report the existence of subthreshold equilibria

in the presence of vaccination [18, 23, 24] but in those cases only one strain of the disease is considered. On the

other hand two-strain models with or without vaccination are associated with two dominance equilibria, one for

each strain present, and a unique coexistence equilibrium.

The impact of vaccination as a mechanism capable of generating multiple subthreshold equilibria on the

dynamics of a disease in the context of multiple strain interactions has not been investigated so far. We address

that impact in this article.

1.4 Organization of this article.

We introduce our two-strain model with vaccination and mutation in Section 2. The model consists of

three ordinary differential equations and one partial differential equation structured by the time spent in the

corresponding class. The differential equation for the total population size is given by the simplest population

model of logistic growth. We also introduce several parameters which appear often in our discussion.

In Section 3 we discuss the existence of steady states. In the first Subsection we consider the case when

there is no mutation ρ = 0. We provide the vaccine-dependent reproduction number of strain one in absence
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of mutation R◦
1(ψ), where ψ is the per capita vaccination rate. We include the vaccine-dependent reproduction

number of strain two R2(ψ) which is independent of mutation. We establish that if R2(ψ) > 1 there is always

the equilibrium E∗
2 which corresponds to dominance of the second strain. If R◦

1(ψ) > 1 there is always the

equilibrium E∗
1 which corresponds to dominance of the first strain. If R◦

1(ψ) < 1 there might be none or two

equilibria E∗
11, E∗

12. We introduce the invasion reproduction numbers of strain one and two, defined as the

number of secondary cases one infectious individual with strain i will produce during the time it is infectious

in a population where strain j is at equilibrium. We show that if each strain can invade the stable dominance

equilibrium of the other there exists a unique coexistence equilibrium E◦
∗∗. In the second Subsection we introduce

the reproduction number of strain one in the presence of mutation R1(ψ). We establish that if R1(ψ) < 1 there

might be none or two coexistence equilibria: E∗∗
21 , E∗∗

22 and if R1(ψ) > 1 there might be up to three coexistence

equilibria.

Section 4 is devoted to the local stability of equilibria. In Subsection 4.1 we investigate the stability of the

disease-free equilibrium where we obtain the typical result: if both reproduction numbers are below one it is

locally asymptotically stable, if any of the reproduction numbers is above one - it is unstable. Subsection 4.2

investigates the local stability of the equilibrium E∗
2 and establishes that it is locally stable if R1(ψ) < R2(ψ)

and unstable otherwise. Subsection 4.3 investigates the stability of equilibria which exist when there is no

mutation. It establishes that the equilibrium E∗
11 is always unstable whenever it exists.

Section 5 overviews our observations and their relation to disease control and prevention. Some of the more

technical derivations and proofs are presented in the Appendix.

2 A two-strain model with vaccination.

In this section we introduce a two-strain epidemic model. We consider a population whose total population size

at time t is denoted by N(t). The dynamics of the total population in the absence of a disease is described

by the simplest demographic model which accounts for a limited population size, namely, we assume constant

birth/recruitment of individuals in the population, denoted by Λ, and constant per capita natural death rate,

denoted by µ:

N ′(t) = Λ − µN(t).

This equation has the globally stable steady state

N =
Λ

µ
(2.1)

and we assume that this state has been attained so that the total population stays constant at all times.

Now we assume that a disease is spreading in the population. The presence of the disease divides the

population into non-intersecting subclasses. The individuals who are healthy but can contract the disease and

have not been previously vaccinated, form the class of susceptible individuals whose size at time t is denoted

by S(t). Individuals who are healthy but have been vaccinated against the causative agent of the disease form

the vaccinated class. The size of the total population in the vaccinated class is denoted by V (t). The per capita

vaccination rate is denoted by ψ. It is assumed that the vaccine protection does not wane.

We assume that two genetically distinct forms of the causative agent of the disease are present and can

infect the individuals in the population: we call the first form strain one and the second form – strain two.

Individuals who are infected with strain one form the class whose size is denoted by I(t). The individuals in this
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Figure 1: Flow-chart of the two-strain model: The term [β1I] stands for 1
N

∫ ∞

0

β1(θ)i(θ, t) dθ

class are stratified according to their time-since-infection θ, and their density is given by i(θ, t). Individuals who

are infected with strain two form the class whose size is denoted by J(t). We assume there are no individuals

who are simultaneously infected by both strain one and strain two, that is, we assume there is no coinfection.

However, strain one can mutate into strain two at a rate ρ(θ). A completely susceptible individual can come into

contact with an infective individual and become infected. If the infectious individual is a carrier of strain one

the susceptible individual becomes infected also with strain one, at a rate β1(θ). Such an individual progresses

to the infectious class but enters it with age-since-infection equal to zero. If the infectious individual is a carrier

of strain two, the susceptible individual becomes infected with strain two, at a rate β2. The newly infected

individual moves to the J-class.

The susceptible individuals are not the only ones who are healthy and can become sick after coming into

contact. We assume that the vaccine is tailored to protect against strain two and it is completely effective

against it. We call strain two vaccine-sensitive strain or simply vaccine strain. However, the vaccine is only

partially effective against strain one. For its ability to elude the immune response promoted by the vaccine, we

call strain one vaccine-evasive strain. A vaccinated individual can become infected after being in contact with

an individual infected with strain one at a rate β1(θ)δ, where δ reflects vaccine imperfection with respect to

strain one. The vaccine is perfect if δ = 0 and no vaccinated individual can be infected. On the other hand if

δ = 1 the vaccine plays no protective role. We assume 0 ≤ δ ≤ 1.

The removal rate from the class i(θ, t) is given by the function γ(θ). The total rate at which individuals

recover from the class i(θ, t) alive is given by the quantity
∫ ∞

0

γ(θ)i(θ, t)dθ.
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A proportion χ of those recover to the vaccinated class, to account for those who entered the class i(θ, t) already

vaccinated. We assume that 0 ≤ χ ≤ 1. A proportion (1−χ) recover to the susceptible class. The recovery rate

from the class J is α. Since only susceptible individuals can get infected with the second strain, they recover to

the susceptible class only.

The model takes the form (see Figure 1):

S′(t) = Λ −
S

N

∫ ∞

0

β1(θ)i(θ, t)dθ − β2
SJ

N
− (µ + ψ)S + (1 − χ)

∫ ∞

0

γ(θ)i(θ, t)dθ + αJ

(∂t + ∂θ)i(θ, t) = −(γ(θ) + ρ(θ) + µ)i(θ, t)

i(0, t) =
S

N

∫ ∞

0

β1(θ)i(θ, t)dθ + δ
V

N

∫ ∞

0

β1(θ)i(θ, t)dθ

J ′(t) = β2
SJ

N
− (µ + α)J +

∫ ∞

0

ρ(θ)i(θ, t)dθ

V ′(t) = ψS − δ
V

N

∫ ∞

0

β1(θ)i(θ, t)dθ + χ

∫ ∞

0

γ(θ)i(θ, t)dθ − µV

(2.2)

The parameters of the model and their meanings are listed in Table 1. We remark that this model with strain

two and the age-since-infection structure removed is exactly the model considered in [18].

We assume that all parameters are nonnegative and µ > 0. We also assume that

β1(θ), ρ(θ), γ(θ) ∈ L∞(0,∞) with γ̄ = sup
θ∈(0,∞)

γ(θ) β̄1 = sup
θ∈(0,∞)

β1(θ) ρ̄ = sup
θ∈(0,∞)

ρ(θ).

Notation Meaning

Λ birth/recruitment rate into the population

µ per capita natural death rate

β1(θ) effective per capita infection rate by strain 1

β2 effective per capita infection rate by strain 2

ψ per capita vaccination rate

γ(θ) per capita recovery rate from the class i(θ, t)

α per capita recovery rate from the class J

χ proportion of recoveries to the vaccinated class, given recovery from strain 1

1 − δ efficiency of vaccine

ρ(θ) per capita mutation rate of strain 1 into strain 2

Table 1: List of Parameters

To ensure well-posedness we endow the system (2.2) with initial conditions: S(0) = S0, i(θ, 0) = i0(θ),

J(0) = J0, V (0) = V0, where S0, J0, and V0 are given nonnegative constants, while i0(θ) is a given nonnegative,

integrable function. The initial conditions must satisfy the relation (see (2.1))

N = S0 +

∫ ∞

0

i0(θ)dθ + J0 + V0,

so that the system is consistent with the assumption on the total population and

N = S(t) +

∫ ∞

0

i(θ, t)dθ + J(t) + V (t). (2.3)
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The system (2.2) with the initial conditions is well-posed, that is, independently of what nonnegative initial

conditions are taken, the model has a unique nonnegative solution which depends continuously on the initial

data. This result can be established with standard techniques.

The following notations will be used throughout the paper. The quantities

π0(θ) = e−
∫

θ

0
γ(ξ)dξ, π(θ) = e−

∫

θ

0
γ(ξ)dξe−

∫

θ

0
ρ(ξ)dξ

give the proportion of individuals remaining in the infectious class of strain one until progression age θ in the

cases when ρ(θ) = 0 and when ρ(θ) 6= 0 respectively, given that the individuals have survived till that age. Next

we define

Γ◦ =

∫ ∞

0

γ(θ)π0(θ)e
−µθdθ Γ =

∫ ∞

0

γ(θ)π(θ)e−µθdθ (2.4)

It is easy to see that 0 ≤ Γ ≤ Γ◦ < 1 (see identity (2.7)). The parameters Γ and Γ◦ give the proportion of

individuals leaving the infectious period of strain one through recovery in the cases without and with mutation

respectively. The proportion of individuals leaving the infectious class of strain one through mutation of the

strain with which they are infected is given by

φ =

∫ ∞

0

ρ(θ)π(θ)e−µθdθ (2.5)

The proportion of individuals who die while infectious with strain one is given by µ∆◦ in the case of no mutation,

and by µ∆ in the case with mutation where ∆◦ and ∆ denote the integrals

∆◦ =

∫ ∞

0

π0(θ)e
−µθdθ ∆ =

∫ ∞

0

π(θ)e−µθdθ. (2.6)

Naturally, the sum of the proportions of surviving the infectious with strain one period and dying while in it is

equal to one:

Γ + φ + µ∆ = 1. (2.7)

In fact, this equality can be justified rigorously by integrating by parts the integral in Γ. Finally, we introduce

the following notation

B◦
1 =

∫ ∞

0

β1(θ)π0(θ)e
−µθdθ B1 =

∫ ∞

0

β1(θ)π(θ)e−µθdθ (2.8)

In the next section we discuss the equilibria of the model.

3 Steady states.

Using (2.1) and the notation

s∗ =
S∗

N
, i∗(θ) =

i∗(θ)

N
, j∗ =

J∗

N
, v∗ =

V ∗

N
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where S∗, i∗(θ), J∗, V ∗ is a time-independent solution of (2.2), we obtain the following system for the equilibria

which consists of four algebraic equations and one ordinary differential equation:

0 = µ − s∗
∫ ∞

0

β1(θ)i
∗(θ)dθ − β2s

∗j∗ − (µ + ψ)s∗ + (1 − χ)

∫ ∞

0

γ(θ)i∗(θ)dθ + αj∗

d

dθ
i∗(θ) = −(γ(θ) + ρ(θ) + µ)i∗

i(0) = s∗
∫ ∞

0

β1(θ)i
∗(θ) dθ + δv∗

∫ ∞

0

β1(θ)i
∗(θ) dθ

0 = β2s
∗j∗ − (µ + α)j∗ +

∫ ∞

0

ρ(θ)i∗(θ) dθ

0 = ψs∗ − δv∗

∫ ∞

0

β1(θ)i
∗(θ) dθ + χ

∫ ∞

0

γ(θ)i∗(θ)dθ − µv∗

(3.1)

From the equation for the total population size (2.3) we get also the following algebraic condition:

s∗ +

∫ ∞

0

i∗(θ)dθ + j∗ + v∗ = 1. (3.2)

that is also a consequence of (3.1).

The point E∗ = (s∗, i∗(θ), j∗, v∗) gives an equilibrium solution of the system (2.2) if and only if s∗, i∗(θ), j∗,

v∗ are non-negative and solve the system (3.1).

The equilibrium which is always present is the disease-free equilibrium, that is, an equilibrium in which there

are no infected individuals:

E0 = (s0, 0, 0, v0)

where

s0 =
µ

µ + ψ
(3.3)

is the proportion of susceptible individuals in the disease-free population and

v0 =
ψ

µ + ψ

is the proportion of vaccinated individuals in the disease-free population.

To find endemic equilibria, that is, equilibria in which the number of infectives is not zero, we solve the

second equation in (3.1), with i(0) given by the third equation, getting

i∗(θ) = i(0)π(θ)e−µθ, (3.4)

then substitute the solution in the remaining equations to obtain a system of nonlinear algebraic equations:

0 = µ − B1s
∗i∗ − β2s

∗j∗ − (µ + ψ)s∗ + (1 − χ)Γi∗ + αj∗

i∗ = B1s
∗i∗ + δB1v

∗i∗

0 = β2s
∗j∗ − (µ + α)j∗ + φi∗

0 = ψs∗ − δB1i
∗v∗ + χΓi∗ − µv∗

(3.5)

where i∗ denotes i(0). From the last equation in the system (3.5) we express v∗ in terms of i∗ and s∗ as

v∗ =
ψs∗ + χΓi∗

δB1i∗ + µ
. (3.6)

Solving for s∗ in the first equation we have

s∗ =
µ + (1 − χ)Γi∗ + αj∗

B1i∗ + β2j∗ + µ + ψ
(3.7)

Observe that s∗ thus defined is positive and smaller than one if B1 > (1 − χ)Γ and β2 > α.
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3.1 Nontrivial equilibria in absence of mutation: the case ρ(θ) = 0.

In this section we analyze the case in which there is no mutation (ρ(θ) = 0) so that the two strains are not

directly connected but, nevertheless, they compete through susceptibles. In this case system (3.5) becomes

0 = µ − B◦
1s∗i∗ − β2s

∗j∗ − (µ + ψ)s∗ + (1 − χ)Γ◦i∗ + αj∗

i∗ = B◦
1s∗i∗ + δB◦

1v∗i∗

0 = β2s
∗j∗ − (µ + α)j∗

0 = ψs∗ − δB◦
1 i∗v∗ + χΓ◦i∗ − µv∗

(3.8)

The existence and stability of endemic equilibria depends on two parameters – the reproduction number of

each strain. The reproduction number of strain 1 in absence of mutation is given by (see the proof of Proposition

4.1 for derivation as well as the interpretation below)

R◦
1(ψ) =

B◦
1(µ + δψ)

µ + ψ

and in the absence of vaccination it is R◦
1 = R◦

1(0) = B◦
1 . Concerning the interpretation of the reproduction

number, we notice that the quantity R◦
1 = B◦

1 gives the number of secondary infections that strain one will

generate in a completely susceptible population. However, in the absence of the disease our population consists

of both susceptible and vaccinated individuals. The proportion of individuals who are susceptible is µ
µ+ψ

(see

(3.3)). Thus, the first term in R◦
1(ψ), given by

B◦

1
µ

(µ+ψ) , gives the number of secondary infections of susceptibles

an infected individual can produce in a disease-free population. The number δB◦
1 gives the number of secondary

infections an infected individual can produce in a vaccinated population; ψ
µ+ψ

is the proportion of vaccinated

individuals in a disease-free population. Thus, the second term in R◦
1(ψ), given by

δB◦

1
ψ

(µ+ψ) , gives the number of

secondary infections of vaccinated individuals an infected individual can produce in a disease-free population.

The reproduction number of the second strain is given by

R2(ψ) =
β2µ

(µ + α)(µ + ψ)
(3.9)

and in the absence of vaccination it is R2 = R2(0) = β2

µ+α
. We note that the reproduction number of the

vaccine-sensitive strain is not influenced by the presence or absence of mutation because mutation does not lead

to infections of healthy individuals with the second strain, and hence, has no impact on the number of secondary

infections one infected with strain two individual can produce in a population of susceptible and vaccinated

individuals. Since the second strain does not infect vaccinated individuals, its reproduction number consists of

a term that corresponds to the first term in R◦
1(ψ) only. Since 1

µ+α
is the mean time spent as infected with

strain two, the expression β2

µ+α
gives the number of secondary infections the vaccine-sensitive strain can produce

in a entirely susceptible population, and µ
µ+ψ

is the proportion of susceptibles in a disease-free population.

It can be seen that both R◦
1(ψ) and R2(ψ) are decreasing functions of ψ which is the expected impact

of a vaccination campaign. Because the vaccine protects completely against the vaccine-sensitive strain, its

reproduction number can be made very small if the vaccination rate is sufficiently large. On the other hand the

vaccine is only partially protective against the vaccine-elusive strain. Thus, even very large levels of vaccination

cannot reduce the reproduction number of the first strain below some threshold value

R◦
1(∞) = δB◦

1 .

10



We recall that B◦
1 = R◦

1. Vaccination acts to decrease the reproduction numbers of the strains but it often

does so by a different amount. As a result it has the ability to switch the relationship between them. This

observation is the source of the concern expressed in the literature that although vaccination might lead to the

effective control of some strains, it might also lead to the proliferation of others. We notice this phenomenon

occurring in this model too. In particular, if in the absence of vaccination the second strain dominates the first

one, that is, R◦
1 < R2 then there is a vaccination level ψ∗ given by

ψ∗ =
µ

δ

(

R2

R◦
1

− 1

)

such that

R◦
1(ψ) < R2(ψ) for ψ < ψ∗

but

R2(ψ) < R◦
1(ψ) for ψ > ψ∗.

The relation between the reproduction numbers is not changed by vaccination if R2 < R◦
1. In this case we also

have R2(ψ) < R◦
1(ψ) for all ψ.

First we investigate existence of dominance equilibria. It is easy to see that besides the disease-free equilib-

rium E0, a unique equilibrium corresponding to nonzero levels of infected with the vaccine-sensitive strain J is

also feasible:

Proposition 3.1 If R2(ψ) > 1 then the equilibrium

E∗
2 =

(

1

R2
, 0, 1 −

1

R2(ψ)
,

ψ

µR2

)

exists.

In addition one or more nontrivial equilibria corresponding to nonzero values of the vaccine-evasive strain

may exist. We consider the system (3.8) with j∗ = 0.

From the first equation we get for s∗ (see (3.7)):

s∗ =
µ + (1 − χ)Γ◦i∗

B◦
1 i∗ + µ + ψ

(3.10)

In the second equation we can first cancel i∗, substitute the value for v∗ from (3.6) to get

s∗ =
δB◦

1 i∗ + µ − χΓ◦δB◦
1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
(3.11)

We determine i∗ so that the two expressions for s∗ are equal. Thus, the equilibrium value for i is a solution for

the equation
δB◦

1 i∗ + µ − χΓ◦δB◦
1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
=

µ + (1 − χ)Γ◦i∗

B◦
1 i∗ + µ + ψ

(3.12)

In particular, we have the following result similar to the one above.

Proposition 3.2 If R◦
1(ψ) > 1 then the equilibrium

E∗
10 = (s∗0, i

∗
0(θ), 0, v∗

0)

exists where i∗0(θ) is determined from formula (3.4) with i(0) given by the unique positive solution of the equation

(3.12), s∗0 is determined from formula (3.11), and v∗
0 is obtained from (3.6).

11



Proof. To see the existence and uniqueness denote by

f1(i) =
δB◦

1 i + µ − χΓ◦δB◦
1 i

B◦
1(δB◦

1 i + µ + δψ)

and

g1(i) =
µ + (1 − χ)Γ◦i

B◦
1 i + µ + ψ

Equation f1(i) = g1(i) is actually equivalent to a quadratic equation and so it has at most two solutions. Since

f1(0) =
µ

B◦
1(µ + δψ)

and g1(0) =
µ

µ + ψ

then R◦
1(ψ) > 1 implies that f1(0) < g1(0). On the other hand limi→∞ f1(i) = (1−χΓ◦)/B◦

1 and limi→∞ g1(i) =

(1 − χ)Γ◦/B◦
1 . Consequently, Γ◦ < 1 implies that limi→∞ f1(i) > limi→∞ g1(i). Hence, equation (3.12) has at

least one solution and the number of the intersections of the two functions is odd. Therefore, the equation has

exactly one positive solution i∗.

♦

If R◦
1(ψ) < 1 there may be no equilibria with the vaccine-evasive strain present or, under some additional

condition on the parameters of the model, there may be two equilibria. The existence of these two equilibria

depends on the occurrence of backward (subcritical) bifurcation at the critical value i = 0 (R◦
1(ψ) = 1). Since

the reproduction number R◦
1 = B◦

1 , we choose for a bifurcation parameter B◦
1 . We rewrite equation (3.12) in a

more convenient form:

[δB◦
1 i + µ − χΓ◦δB◦

1 i][B◦
1 i + µ + ψ] = B◦

1(δB◦
1 i + µ + δψ)[µ + (1 − χ)Γ◦i] (3.13)

The equation above defines B◦
1 as a function of i, that is, B◦

1 = B◦
1(i). The bifurcation in B◦

1 at the critical

value i = 0 is backward if and only if
dB◦

1

di
(0) < 0. Using implicit differentiation in the equation above we obtain

dB◦
1

di
(0) =

B◦
1(0)[δ(1 − χΓ◦)(µ + ψ) + µ − B◦

1(0)δµ − (µ + δψ)(1 − χ)Γ◦]

µ(µ + δψ)

where B◦
1(0) is the value of B◦

1 at the critical value i = 0:

B◦
1(0) =

µ + ψ

µ + δψ
.

Thus, if
dB◦

1

di
(0) < 0, existence of the two subthreshold equilibria occurs for values of B◦

1 in some non-empty

interval with right end-point B◦
1(0). We have the following proposition

Proposition 3.3 If

δ(1 − χΓ◦)(µ + ψ) + µ <
(µ + ψ)δµ

µ + δψ
+ (µ + δψ)(1 − χ)Γ◦ (3.14)

then there exists a constant R◦
inf ∈ [0, 1) such that for

R◦
inf < R◦

1(ψ) < 1

the equilibria

E∗
11 = (s∗1, i

∗
1(θ), 0, v∗

1) and E∗
12 = (s∗2, i

∗
2(θ), 0, v∗

2)

exist. The value of i∗k(θ) is computed from formula (3.4) with i(0) = i∗k where i∗1 and i∗2 are the two positive

solutions of the equation (3.12), s∗k is determined from formula (3.11), while v∗
k is obtained from formula (3.6).

If inequality (3.14) is not satisfied, then no such equilibria exist for R◦
1(ψ) < 1

12



Backward bifurcation will be feasible if the inequality (3.14) is satisfied for some values of the parameters.

It is not hard to see that the parameter space for which this inequality is true is not empty. If, in particular, we

take Γ◦ = 0.9 (or γ(θ) = 0.9 (time)−1), µ = 0.1 (time)−1, χ = 0.0, δ = 0.1, ψ = 1 (time)−1 then the inequality

will be valid with the left-hand side having value 0.21 while the right-hand side having value 0.235.

Inequality (3.14) is a necessary and sufficient condition for existence of backward bifurcation. It reveals

the mechanisms in the model (2.2) which promote this phenomenon and those which obstruct it. Inspection

of (3.14) shows that if χ = 1, that is if there is no recovery to the susceptible class there will be no backward

bifurcation. Vaccination itself is the chief mechanism responsible for the presence of subcritical bifurcation in

this model ψ 6= 0. Indeed, in the case when ψ = 0 inequality (3.14) becomes

δ(1 − χΓ◦)µ + µ < δµ + µ(1 − χ)Γ◦

which after cancelling µ and rearranging the terms becomes

1 < Γ◦(1 + δχ − χ)

which is clearly impossible since the right-hand side is smaller than one. Some specific components of the

vaccination process are particularly involved. In particular, if δ = 0 the inequality (3.14) cannot be satisfied.

Consequently, if the vaccine is perfect with respect to both strains, the disease will not be able to establish itself

for R◦
1 < 1.

To summarize, vaccination, and particularly, vaccine imperfection is the main mechanism for supporting the

presence of the disease even when the reproduction number is below one.

Finally, we consider the coexistence endemic states. As it turns out, under some conditions on the parameters

there exists a unique state with i∗ > 0 and j∗ > 0. To address the question of coexistence equilibrium we define

several invasion reproduction numbers. First, define the invasion reproduction number of strain one in the case

of no mutation ρ = 0 (see proof of Proposition 4.2 for derivation):

R̂◦
1 =

R◦
1(ψ)

R2(ψ)
(3.15)

The invasion reproduction number of strain one gives the number of secondary cases one infected individual

with strain one can infect in a population where strain two is at equilibrium E∗
2 . We note that the condition

R̂◦
1 > 1 is a condition that strain one can invade the equilibrium of strain two.

Strain two might be invading one of three equilibria of strain one E∗
1k for k=0,1,2. To each of these equilibria

of strain one corresponds one invasion reproduction number of strain two. Define the invasion reproduction

numbers of strain two in the case of no mutation ρ = 0:

R̂◦
2(E

∗
1k) =

R2

R◦
1

δB◦
1 i∗k + µ − χi∗kΓ◦δB◦

1

δB◦
1 i∗k + µ + δψ

(3.16)

where i∗k is i(0) from equation (3.4) which gives the proportion of infected with strain one in the corresponding

equilibrium E∗
1k. We note that the condition R̂◦

2(E
∗
1k) > 1 says that strain two can invade the corresponding

equilibrium of strain one.

The following result establishes the existence of coexistence equilibrium in the case of no mutation. We note

that the conditions in the proposition below are only sufficient and there may be coexistence even if some of

them are not satisfied. Furthermore, as the proof shows there is no coexistence without vaccination ψ = 0 in

the region R◦
1 > R2 > 1. At the same time positive vaccination levels lead to coexistence if each strain can

13



invade the stable equilibrium of the other and R2 > 1. In Figure 2 we illustrate the coexistence in the absence

of mutation. The simulation in Figure 2 suggests that the coexistence equilibrium is stable.

Proposition 3.4 Assume and R2 > 1. There are two cases:

Case 1: R◦
1(ψ) > 1. Assume R̂◦

1 > 1 and R̂◦
2(E

∗
10) > 1. Then there is a unique coexistence equilibrium E◦

∗∗.

Case 2: R◦
1(ψ) < 1. Assume R̂◦

2(E
∗
12) > 1. Then there is a unique coexistence equilibrium E◦

∗∗ if and only

if R̂◦
2(E

∗
11) < 1.

Proof. We denote the coexistence equilibrium by E◦
∗∗ = (ŝ, î(θ), ĵ, v̂) where î(θ) = i(0)π0e

−µθ with i(0) = î.

We show that î exists so that system (3.8) is satisfied. From the third equation in system (3.8) we have

ŝ = 1
R2

< 1. From the second equation in (3.8), after cancelling î we have

1 = ŝB◦
1 + δv̂B◦

1 .

The expression for v̂ from (3.6) becomes

v̂ =
ψŝ + χîΓ◦

δB◦
1 î + µ

Substituting v̂ above we have that ŝ is given by the expression in (3.11) with î in place of i∗. Thus î is a solution

of the following equation
δB◦

1 i + µ − χiΓ◦δB◦
1

B◦
1(δB◦

1 i + µ + δψ)
=

1

R2
(3.17)

The left hand side of this equation is a function of i, denoted as before with f1(i). One can see that f1(i)

is a monotone function of i. Thus, this equation has at most one solution. Consequently, the coexistence

equilibrium, if it exists, is unique.

Case 1: To see the existence in this case, notice that R̂◦
1 > 1 implies that

1

R◦
1(ψ)

<
1

R2(ψ)

which, in turn implies that
µ

B◦
1(µ + δψ)

<
1

R2

that is, f1(0) < 1/R2. This, in particular, leads to the fact that equation (3.17) has no solution if f1(i) is

decreasing. We note here that in case there is no vaccination ψ = 0 it follows that f1(i) is decreasing and there

is no coexistence in the region R◦
1 > R2 > 1.

Now, by assumption R̂◦
2(E

∗
10) > 1 we have

δB◦
1 i∗0 + µ − χi∗0Γ

◦δB◦
1

B◦
1(δB◦

1 i∗0 + µ + δψ)
>

1

R2

Consequently, there exists î in the interval (0, i∗0) such that equality (3.17) is satisfied. To finish the proof for

Case 1 notice that since î < i∗0 we have f1(̂i) < g1(̂i), where g1 is the function in the proof of Proposition 3.2.

Then from the first equation in (3.8) we have

(β2ŝ − α)ĵ = (B◦
1 î + µ + ψ)(g1(̂i) − ŝ) > (B◦

1 î + µ + ψ)(f1(̂i) − ŝ) = 0.

That establishes the existence of coexistence equilibrium in Case 1, given that β2ŝ − α = µ > 0.
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Figure 2: The left figure illustrates that the number infected with strain one I(t) and the number infected with

strain two J(t) may tend toward a coexistence equilibrium when ρ = 0, and ψ = 0.5. The right figure illustrates

that if ψ = 0 strain two eliminates strain one. The remaining parameters used for these figures are β1 = 6,

β2 = 4.5, γ = 0.8, µ = 0.1, χ = 0.0, δ = 0.04, Λ = 5. The units of Λ are (number of people)/(unit of time),

χ and δ are dimensionless. The remaining parameters have units given by (unit of time)−1. The corresponding

reproduction numbers are dimensionless and are given by R◦
1(ψ) = 1.333 and R2(ψ) = 1.25. The reproduction

numbers in the absence of vaccination are R◦
1 = 6.66667 and R2 = 7.5.

Case 2: In this case assumption R̂◦
2(E

∗
12) > 1 gives

δB◦
1 i∗2 + µ − χi∗2Γ

◦δB◦
1

B◦
1(δB◦

1 i∗2 + µ + δψ)
>

1

R2
.

On the other hand, assumption R̂◦
2(E

∗
11) < 1 gives

δB◦
1 i∗1 + µ − χi∗1Γ

◦δB◦
1

B◦
1(δB◦

1 i∗1 + µ + δψ)
<

1

R2
.

That implies that there exist a solution î of equation (3.17) that lies in the interval (i∗1, i
∗
2) where i∗1 gives

the equilibrium E∗
11 and i∗2 gives the equilibrium E∗

12. Consequently in this case f1(̂i) < g1(̂i) and ĵ > 0. If

R̂◦
2(E

∗
11) > 1 and R̂◦

1 > 1 then î is in the interval (0, i∗1) and f1(̂i) > g1(̂i). Consequently, ĵ < 0. This concludes

the proof.

♦

3.2 Nontrivial equilibria in presence of mutation: the case ρ(θ) 6= 0.

In this case the vaccine-elusive strain mutates into the vaccine-sensitive strain and there are coexistence equilibria

such that the possible ultimate outcomes are either coexistence of the two strains, or competitive dominance

of the second strain. It is interesting that genetic changes alone can give the competitive advantage to the

vaccine-sensitive strain. The existence and stability of nontrivial equilibria again depends on two reproduction

numbers of the strains. The reproduction number of strain 1 in presence of mutation is given by

R1(ψ) =
B1(µ + δψ)

(µ + ψ)

and in the absence of vaccination it is R1 = R1(0) = B1. The interpretation of the reproductive number is

similar to the one before. The quantity R1 = B1 gives the number secondary infections that strain 1 will

generate in a completely susceptible population in the absence of vaccination.
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As before, R1(ψ) is a decreasing function of ψ whose minimal value is

R1(∞) = δB1.

We note that the reproduction number of the second strain remains unchanged and is given by (3.9). Finally, if

in the absence of vaccination the second strain has larger reproduction number than the first, that is R1 < R2,

then there is a vaccination level

ψ∗ =
µ

δ

(

R2

R1
− 1

)

such that we have R1(ψ) < R2(ψ), for ψ < ψ∗ and R2(ψ) < R1(ψ) for ψ > ψ∗. If in the absence of vaccination

the first strain has a larger reproduction number than the second, that is R2 < R1, then this relation is preserved

for all vaccination levels: R2(ψ) < R1(ψ).

Besides the disease-free equilibrium E0, a unique equilibrium corresponding to nonzero levels of infected with

the vaccine-sensitive strain J is also feasible:

Proposition 3.5 If R2(ψ) > 1 then the equilibrium

E∗
2 =

(

1

R2
, 0, 1 −

1

R2(ψ)
,

ψ

µR2

)

exists.

We note that there is no endemic state corresponding to the absence of strain two, but one or more coexistence

equilibria may exist. The existence of coexistence equilibria depends on the invasion reproduction number of

the first strain when ρ(θ) 6= 0:

R̂1 =
R1(ψ)

R2(ψ)

Since in the case ρ(θ) 6= 0 there is only one dominance equilibrium E∗
2 , there is also only one invasion reproduction

number. To find the coexistence equilibria, we consider the system (3.5). From the second equation where we

use the value of v∗ from (3.6) we express s∗ as a function of i∗:

s∗ =
δB1i

∗ + µ − χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
(3.18)

From the third equation in (3.5) we express j∗ in terms of i∗: j∗ = ξ(i∗)i∗ where ξ is a function of i∗

ξ(i∗) =
φ

µ + α − β2s∗
=

φ

(µ + α)[1 − ω(i∗)]
(3.19)

where the function ω(i) is defined as

ω(i) = R2s
∗.

We notice that ξ(i) is a monotone function of i but it could be increasing or decreasing. We have

ξ(0) =
φR1(ψ)

(µ + α)[R1(ψ) −R2(ψ)]
(3.20)

The function ξ(i) is defined and positive at i∗ (and therefore j∗ is defined and nonnegative) if and only if

ω(i∗) < 1, that is, if and only if the following inequality is satisfied:

δB1i
∗ + µ − χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
<

1

R2
(3.21)

for the corresponding i∗. From here a condition for the absence of coexistence equilibria can be derived:
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Proposition 3.6 If δψ > χΓ(µ + δψ) and R̂1 ≤ 1 then there are no coexistence equilibria.

Proof. Denote by f(i∗) the left-hand side of inequality (3.21). Condition R1(ψ) ≤ R2(ψ) means

B1(µ + δψ)

µ
≤

β2

µ + α

and, consequently that 1/R2 ≤ f(0). In addition, inequality δψ > χΓ(µ + δψ) implies that f(i) is increasing.

Hence, (3.21) is not satisfied by any i∗.

♦

On the other hand we note that if R2 ≤ R1 the inequality (3.21) is satisfied for all i∗ (we recall that B1 = R1)

so that the function ξ(i) is defined and positive at any i∗. Another sufficient condition for inequality (3.21) to

be satisfied is given by the following hypothesis







R̂1 > 1 if δψ ≤ χΓ(µ + δψ)
R1

R2
> 1 − χΓ if δψ > χΓ(µ + δψ)

(3.22)

In fact, by a similar argument as in Proposition 3.6, if this condition is satisfied then inequality (3.21) is

valid for every i.

From (3.7) we get a second expression for s∗ in terms of i∗, using the fact that j∗ = ξ(i∗)i∗:

s∗ =
µ + (1 − χ)Γi∗ + αξ(i∗)i∗

B1i∗ + β2ξ(i∗)i∗ + µ + ψ
(3.23)

We determine i∗ so that the two expressions for s∗ are equal. Thus, the equilibrium value for i is a solution

for the equation
δB1i

∗ + µ − χi∗ΓδB1

B1(δB1i∗ + µ + δψ)
=

µ + (1 − χ)Γi∗ + αξ(i∗)i∗

B1i∗ + β2ξ(i∗)i∗ + µ + ψ
(3.24)

Establishing the existence of coexistence equilibria can be done under weaker and more natural conditions than

(3.22). In the proposition below we assume that the invasion reproduction number of the first strain R̂1 > 1.

We notice that if we know that (3.22) is satisfied that implies that R̂1 > 1 and the proposition is still valid.

Proposition 3.7 If R1(ψ) > 1 and R̂1 > 1 are satisfied then there exists at least one and up to three coexistence

equilibria

E∗∗
k = (sk, ik(θ), jk, vk)

where each ik, a positive solution of the equation (3.24), gives i(0) in ik(θ) determined by (3.4), sk is determined

from formula (3.18), jk = ξ(ik)ik, and vk is determined from (3.6) with i∗ = ik. If, in addition, all equilibria

are simple, that is f ′
2(ik) 6= g′2(ik), then there is an odd number of them.

Proof. To see the existence of equilibria denote by

f2(i) =
δB1i + µ − χiΓδB1

B1(δB1i + µ + δψ)

and

g2(i) =
µ + (1 − χ)Γi + αξ(i)i

B1i + β2ξ(i)i + µ + ψ
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Since f2(0) = µ
B1(µ+ψ) and g2(0) = µ

µ+ψ
then R1(ψ) > 1 implies that f2(0) < g2(0). If we rewrite the equation

f2(i) = g2(i) in the powers of i we will obtain a cubic equation in i which has at most three solutions. We

consider the following cases:

Case 1: R2(1 − χΓ) > R1. This inequality implies that

lim
i→∞

f2(i) =
1 − χΓ

B1
>

1

R2

On the other hand R̂1 > 1 implies that f2(0) < 1/R2. Consequently, the equation f2(i) = 1/R2 has a solution.

Denote that solution by î∗. We have f2(î∗) = 1/R2. Then both functions f2 and g2 are defined and continuous

on the interval (0, î∗). We note that R̂1 > 1 implies that ξ(0) > 0. In addition, limi→î∗−

g2(i) = α
β2

=: g2(î∗).

Thus, f2(î∗) > g2(î∗). Consequently, there is a solution of the equation f2(i) = g2(i) in the interval (0, î∗).

Case 2: R2(1 − χΓ) ≤ R1. This inequality implies that

lim
i→∞

f2(i) =
1 − χΓ

B1
≤

1

R2

Consequently, inequality (3.21) is satisfied for all i since f2(i) is a monotone function and f2(0) < 1
R2

. This

implies that both functions f2 and g2 are defined and continuous on the interval (0,∞). We have again that

f2(0) < g2(0). So we show that as i → ∞ the limits of the two functions satisfy the opposite inequality. First,

we note that

lim
i→∞

w(i) =
R2(1 − χΓ)

R1
= w(∞)

Then,

lim
i→∞

ξ(i) =
φR1

(α + µ)[R1 −R2(1 − χΓ)]
= ξ(∞).

This gives the following limit for g2:

lim
i→∞

g2(i) =
(1 − χ)Γ + αξ(∞)

B1 + β2ξ(∞)

Consequently, in order to show that limi→∞ f2(i) > limi→∞ g2(i) we have to show the inequality:

(1 − χ)Γ + αξ(∞)

B1 + β2ξ(∞)
<

1 − χΓ

B1
(3.25)

Replacing ξ(∞), cancelling B1 from both sides and rearranging terms we arrive at the following inequality, that

has to be established:

(1 − χ)Γ(α + µ)[R1 −R2(1 − χΓ)] + αφR1 < (1 − χΓ)(α + µ)[R1 −R2(1 − χΓ)] + (1 − χΓ)β2φ

Adding µφR1 to left-hand side we get a stricter inequality

(1 − χ)Γ(α + µ)[R1 −R2(1 − χΓ)] + (α + µ)φR1 < (1 − χΓ)(α + µ)[R1 −R2(1 − χΓ)] + (1 − χΓ)β2φ

Cancelling a common term from both sides

Γ(α + µ)[R1 −R2(1 − χΓ)] + (α + µ)φR1 < (α + µ)[R1 −R2(1 − χΓ)] + (1 − χΓ)β2φ

Moving the αφ-term inside the brackets and using identity (2.7) in the left-hand side, it becomes

(α + µ)[R1 − µ∆R1 −R2(1 − χΓ)Γ] < (α + µ)[R1 −R2(1 − χΓ)] + (1 − χΓ)β2φ
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Cancelling (α + µ)R1 term and moving the remaining term to the left-hand side while moving the µ∆-term to

the right-hand side we obtain

(α + µ)(1 − χΓ)R2(1 − Γ) < (1 − χΓ)β2φ + (α + µ)µ∆R1

Dividing by (α + µ) and moving the first term from the right-hand side to the left-hand side we have

(1 − χΓ)R2(1 − Γ − φ) < µ∆R1

Again by (2.7)

(1 − χΓ)R2µ∆ < µ∆R1

Dividing by µ∆ we arrive at a true inequality (compare with the inequality in Case 2)

(1 − χΓ)R2 < R1

Therefore, the initial inequality (3.25) is also true.

In both cases the number of the intersections of the two functions is odd. This completes the proof.

♦
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Figure 3: This figure shows that the number infected with strain one I(t) and the number infected with strain two

J(t) tend towards coexistence equilibrium even though both vaccine-dependent reproduction numbers are below

one. The parameters used for this figure are ρ = 0.01, γ = 0.8, µ = 0.1, χ = 0.0, δ = 0.1, ψ = 1, Λ = 5,

β1 = 5 and β2 = 9. Again Λ has units (number of people)/(unit of time), χ and δ are dimensionless, and the

remaining parameters have units (unit of time)−1. The corresponding reproduction numbers are R1(ψ) = 0.999

and R2(ψ) = 0.7438. We note that for ψ = 0 and all other parameters held the same, R1 = 5.4945 and

R2 = 8.1818. In this case strain two eliminates strain one.

If R1(ψ) < 1 there may be no coexistence equilibria or, under some additional condition on the parameters

of the model, there may be two coexistence equilibria. The existence of these two coexistence equilibria depends

on the occurrence of backward (subcritical) bifurcation at the critical value i = 0 (R1(ψ) = 1). We again choose

for a bifurcation parameter B1. As before, we cross-multiply in equation (3.24) to obtain:

[δB1i + µ − χiΓδB1][B1i + β2ξ(i)i + µ + ψ] = [µ + (1 − χ)Γi + αξ(i)i][B1(δB1i + µ + δψ)]
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This equation defines B1 as a function of i, that is, B1 = B1(i). The bifurcation in B1 at the critical value i = 0

is backward if and only if B′
1(0) < 0. Using implicit differentiation in equation above, setting i = 0 and solving

for B′
1(0) we obtain

B′
1(0) =

B◦
1 [(1 − χΓ)δ(µ + ψ) + µ(1 + β2η(0)) − (µ + δψ)[(1 − χ)Γ + αη(0)B◦

1 ] − B◦
1µδ]

µ(µ + δψ)

where B◦
1 is the value of B1 at the critical value i = 0:

B◦
1 =

µ + ψ

µ + δψ

and

η(0) =
φ(µ + δψ)

(µ + α)(µ + ψ)[1 −R2(ψ)]
.

We have the following proposition for the existence of the two subthreshold equilibria:

Proposition 3.8 If

(1 − χΓ)δ(µ + ψ) + µ(1 + β2η(0)) < (µ + δψ)[(1 − χ)Γ + αη(0)B◦
1 ] + B◦

1µδ (3.26)

then there exists a parameter Rinf ∈ [0, 1) such that, if

Rinf < R1(ψ) < 1 and R̂1 > 1,

then the equilibria

E∗∗
21 = (s∗1, i

∗
1(θ), j

∗
1 , v∗

1) and E∗∗
22 = (s∗2, i

∗
2(θ), j

∗
2 , v∗

2)

exist. The values of i∗1(θ) and i∗2(θ) in E∗∗
21 and E∗∗

22 are given by (3.4) with i(0) given respectively by the the two

positive solutions i∗1 and i∗2 of equation (3.24), s∗k is determined from formula (3.18), and v∗
k are given by (3.6)

with i∗ given by i∗1 or i∗2.

If (3.26) is not satisfied then there are no such equilibria for R1(ψ) < 1.

Inequality (3.26) is nontrivial. In particular, it is satisfied for the parameters in Figure 3. The presence of

stable subthreshold coexistence equilibria is illustrated in Figure 3 where coexistence is possible when both

reproduction numbers are below one.

In the next section we investigate the local stability of equilibria.

4 Local stability of equilibria

To investigate the local stability behavior of equilibria we look at the linearized right-hand side of system (2.2).

This operation is the analogue of taking the Jacobian in ordinary differential equation models. In particular,

we consider an equilibrium (S∗, i∗(θ), J∗, V ∗) of system (2.2) and we set

S = S∗ + x̄, i(θ, t) = i∗(θ) + ȳ(θ, t), J = J∗ + z̄, V = V ∗ + w̄, N = N∗ + n̄

where we denote by (x̄, ȳ(θ), z̄, w̄) the deviations from such an equilibrium, and by n̄ the deviation for the total

population size. Then we can linearize the nonlinear terms and determine the eigenvalues of the linearized

problem by looking for solutions of the form

x̄ = eλtx, ȳ = eλty(θ), z̄ = eλtz, w̄ = eλtw, n̄ = eλtn.
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We note that (2.1) implies that

n = x +

∫ ∞

0

y(θ) dθ + z + w.

We obtain the following linear eigenvalue problem:

λx = −s∗
∫ ∞

0

β1(θ)y(θ) dθ − B1i
∗x − β2s

∗z − β2j
∗x − (µ + ψ)x + (1 − χ)

∫ ∞

0

γ(θ)y(θ)dθ + αz

λy + yθ = −(γ(θ) + ρ(θ) + µ)y

y(0) = s∗
∫ ∞

0

β1(θ)y(θ) dθ + B1i
∗x + v∗δ

∫ ∞

0

β1(θ)y(θ) dθ + δB1i
∗w

λz = β2s
∗z + β2j

∗x − (µ + α)z +

∫ ∞

0

ρ(θ)y(θ)dθ

λw = ψx − v∗δ

∫ ∞

0

β1(θ)y(θ) dθ − δB1i
∗w + χ

∫ ∞

0

γ(θ)y(θ)dθ − µw

(4.1)

where i∗ above is i(0) from (3.4) in the corresponding equilibrium. We introduce the following notation which

will be useful in this section:

B̂1(λ) =

∫ ∞

0

β1(θ)e
−(λ+µ)θπ(θ)dθ Γ̂(λ) =

∫ ∞

0

γ(θ)e−(λ+µ)θπ(θ)dθ

and

φ̂(λ) =

∫ ∞

0

ρ(θ)e−(λ+µ)θπ(θ)dθ ∆̂(λ) =

∫ ∞

0

e−(λ+µ)θπ(θ)dθ.

These two quantities satisfy a relation similar to the relation between φ, Γ and ∆:

Γ̂(λ) + φ̂(λ) + (λ + µ)∆̂(λ) = 1 (4.2)

This equality can be established through integration by parts. Then, solving the ordinary differential equation

y(θ) = y(0)e−(λ+µ)θπ(θ)

and substituting it in the remaining equations we obtain the following linear eigenvalue system for the real

variables x, y, z, and w, where y is a shorthand notation for y(0):

λx = −s∗yB̂1(λ) − B1i
∗x − β2s

∗z − β2j
∗x − (µ + ψ)x + (1 − χ)yΓ̂(λ) + αz

y = s∗yB̂1(λ) + B1i
∗x + δv∗yB̂1(λ) + δB1i

∗w

λz = β2s
∗z + β2j

∗x − (µ + α)z + yφ̂(λ)

λw = ψx − δv∗yB̂1(λ) − δB1i
∗w + χyΓ̂(λ) − µw.

(4.3)

Our aim in the following subsections is to examine the eigenvalues of this problem in correspondence with

each equilibrium that has been proved to exist in the previous sections.

4.1 Local stability of the disease-free equilibrium.

When the infection-free equilibrium is concerned, we have i∗(θ) = 0, j∗ = 0. Since the existence of this

equilibrium is not influenced by the presence or the absence of mutation we consider both cases simultaneously,

that is for a general ρ. In this case, the linear eigenvalue problem (4.3) above takes the form
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λx = −s0yB̂1(λ) − β2s
0z − (µ + ψ)x + (1 − χ)yΓ̂(λ) + αz

y = s0yB̂1(λ) + δv0yB̂1(λ)

λz = β2s
0z − (µ + α)z + yφ̂(λ)

λw = ψx − δv0yB̂1(λ) + χyΓ̂(λ) − µw.

(4.4)

This system has a nonzero solution if the determinant is zero. Such a condition soon gives the eigenvalues

λ = −(µ + ψ) and λ = −µ which are clearly negative. Moreover the remaining eigenvalues of this problem are

the roots either of the following characteristic equation

1 = (s0 + δv0)B̂1(λ) (4.5)

or of the following one

λ + µ + α = β2s
0. (4.6)

Thus we have

Proposition 4.1 If R1(ψ) < 1 and R2(ψ) < 1 then the disease-free equilibrium E0 is locally asymptotically

stable. If R1(ψ) > 1 or R2(ψ) > 1 then the disease-free equilibrium E0 is unstable.

Proof. We can rewrite the first characteristic equation (4.5) as

G1(λ) = 1 where G1(λ) =
(µ + δψ)B̂1(λ)

µ + ψ
(4.7)

We first note that G1(0) = R1(ψ). Hence, G1(0) > 1 if R1(ψ) > 1. In addition, G1(λ) is a decreasing function

of λ for λ real with G1(λ) → 0 as λ → ∞. Hence there is a positive real λ∗ which solves equation (4.7) and the

disease-free equilibrium E0 is unstable. If R1(ψ) < 1, then for λ with ℜλ ≥ 0 we have

|G1(λ)| ≤ G1(ℜλ) ≤ G1(0) = R1(ψ) < 1

Thus equation (4.7) has no solutions with nonnegative real part. The second characteristic equation can be

explicitly solved for λ:

λ = (µ + α)(R2(ψ) − 1)

The corresponding eigenvalue is clearly negative if and only if R2(ψ) < 1. Consequently, if R1(ψ) < 1 and

R2(ψ) < 1 then the eigenvalue problem (4.4) has eigenvalues with only negative real part and the disease-free

equilibrium is locally asymptotically stable. If R1(ψ) > 1 the first characteristic equation (4.5) has a positive

real solution. If R2(ψ) > 1 the corresponding solution of the second characteristic equation is positive. In these

two cases the disease-free equilibrium is unstable.

♦

4.2 Local stability of the vaccine-sensitive strain equilibrium E∗
2 .

Now we consider the stability of the vaccine-sensitive strain equilibrium E∗
2 . In this case also the existence

of the equilibrium is not depending on the mutation parameter and we can treat the cases ρ = 0 and ρ 6= 0

simultaneously. We recall that in either case the equilibrium with only the vaccine-sensitive strain present E∗
2

exists whenever R2(ψ) > 1. Next we show that it is locally stable whenever it exists and R1(ψ) < R2(ψ), i. e.

when the invasion number R̂1 is less than 1.
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Proposition 4.2 Let R2(ψ) > 1. Then the equilibrium E∗
2 is locally asymptotically stable if R̂1 < 1 and

unstable if R̂1 > 1.

Proof. We consider the linear eigenvalue problem (4.3) with i∗ = 0 and with s∗, j∗, v∗ given by the

coordinates of E∗
2 . The system becomes

λx = −s∗yB̂1(λ) − β2s
∗z − β2j

∗x − (µ + ψ)x + (1 − χ)yΓ̂(λ) + αz

y = s∗yB̂1(λ) + δv∗yB̂1(λ)

λz = β2s
∗z + β2j

∗x − (µ + α)z + yφ̂(λ)

λw = ψx − δv∗yB̂1(λ) + χyΓ̂(λ) − µw.

(4.8)

In order for this system to have a nonzero solution we need the determinant to be zero. From that condition we

get that one eigenvalue is λ = −µ and all remaining eigenvalues of the problem are provided by the following

two characteristic equations

(λ + β2j
∗ + µ + ψ)(λ + µ + α) = β2s

∗(λ + µ + ψ) + αβ2j
∗ (4.9)

(s∗ + δv∗)B̂1(λ) = 1 (4.10)

We consider first (4.9). We notice that we can cancel αβ2j
∗ from both sides of this equation thus obtaining

(λ + µ + ψ)(λ + µ + α) + β2j
∗(λ + µ) = β2s

∗(λ + µ + ψ)

Furthermore, observing that β2s
∗ = µ + α we can simplify this equation to the following quadratic equation in

λ:

λ2 + (µ + ψ + β2j
∗)λ + µβ2j

∗ = 0

whose solutions have negative real parts or are negative numbers.

Consequently, the equation (4.9) has no solutions with ℜλ ≥ 0. Now we turn our attention to equation

(4.10). We rewrite it in the form

G3(λ) = 1 where G3(λ) = (s∗ + δv∗)B̂1(λ)

First, we notice that

G3(0) =

(

1

R2
+

δψ

µR2

)

B̂1(0) =
µ + δψ

µR2
B1 =

R1(ψ)

R2(ψ)
.

Second, G3(λ) is a decreasing function of λ for λ real and positive. In addition, G3(λ) → 0 as λ → ∞.

Consequently, if

G3(0) =
R1(ψ)

R2(ψ)
> 1

there exists a real positive solution of the equation and the equilibrium E∗
2 is unstable. Third, if R1(ψ) < R2(ψ),

for λ with ℜλ ≥ 0 we have

|G3(λ)| ≤ G3(ℜλ) ≤ G3(0) =
R1(ψ)

R2(ψ)
< 1

and, therefore the equation G3(λ) = 1 has no solutions with ℜλ ≥ 0. It follows that the vaccine-sensitive strain

equilibrium is locally stable.

♦
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4.3 Local stability of the vaccine-elusive strain equilibria E∗
1k

with k = 0, 1, 2 in the

absence of mutation.

In this subsection we consider the topic of stability of equilibria which have solely the vaccine-elusive strain

present and no vaccine-sensitive strain. These equilibria exist only when there is no mutation (ρ = 0). From

the previous subsection it follows that in this case there is also an E∗
2 equilibrium which exists when R2(ψ) > 1

and is stable if R◦
1(ψ) < R2(ψ). The first step in analyzing the stability of an E∗

1k equilibrium is to compose

the characteristic equation. We set j∗ = 0 in the system getting

λx = −s∗yB̂◦
1(λ) − B◦

1 i∗x − β2s
∗z − (µ + ψ)x + (1 − χ)yΓ̂◦(λ) + αz

y = s∗yB̂◦
1(λ) + B◦

1 i∗x + δv∗yB̂◦
1(λ) + δB◦

1 i∗w

λz = β2s
∗z − (µ + α)z

λw = ψx − δv∗yB̂◦
1(λ) − δB◦

1 i∗w + χyΓ̂◦(λ) − µw.

(4.11)

where s∗, i∗, v∗ are the coordinates of any equilibrium E∗
1k (k = 0, 1, 2). For sake of simplicity we actually omit

the subscript k, and will introduce it again whenever necessary. For the same reason, we will call E∗ any one

of the equilibria E∗
1k, if it is not necessary to specify further. One of the eigenvalues of this linear eigenvalue

problem is obtained from the third equation, using (3.11):

λ = (µ + α)

(

R2
δB◦

1 i∗ + µ − χΓ◦δB◦
1 i∗

B◦
1(δB◦

1 i∗ + µ + δψ)
− 1

)

which is negative if and only if
R2

R◦
1

δB◦
1 i∗ + µ − χΓ◦δB◦

1 i∗

(δB◦
1 i∗ + µ + δψ)

< 1 (4.12)

or equivalently, if and only if R̂◦
2(E

∗) < 1 (see (3.16)), i. e. if and only if strain two cannot invade the equilibrium

in question of strain one. Thus we have a sufficient condition for instability:

Proposition 4.3 If the equilibrium E∗
1k exists and R̂◦

2(E
∗
1k) > 1, then it is unstable.

We use the system (4.11) to derive the explicit form the the characteristic equation

Q(λ; i∗) = 1

in the Appendix. The proof of the stability or instability of the equilibria E∗
1k has several steps. An important

role in that proof is played by equality (3.13). We consider the left hand side and the right hand side as functions

of i. Define

f3(i) = [δB◦
1 i + µ − χΓ◦δB◦

1 i][B◦
1 i + µ + ψ]

and

g3(i) = B◦
1(δB◦

1 i + µ + δψ)[µ + (1 − χ)Γ◦i].

The first one is establishing a connection between the value of Q at λ = 0 and the relationship between the

slopes of f3 and g3 at a solution of the equation (3.13). This result is stated in Theorem 4.1 below.

Theorem 4.1 Let i∗ be a solution of (3.13). The following are valid.

1. If f ′
3(i

∗) > g′3(i
∗) then Q(0; i∗) < 1.

2. If f ′
3(i

∗) = g′3(i
∗) then Q(0; i∗) = 1.
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3. If f ′
3(i

∗) < g′3(i
∗) then Q(0; i∗) > 1.

We give the proof of Theorem 4.1 in the Appendix.

The second important observation is that if we consider Q as a function of λ with λ being real, then

Q(λ; i∗) → 0 as λ → ∞.

This observation indicates that if E∗ is an equilibrium for which Q(0; i∗) > 1 then E∗ is unstable because its

characteristic equation Q(λ; i∗) = 1 has a real positive solution. The implications of this result on the stability

of equilibrium E∗
11 is stated rigorously below.

Proposition 4.4 Let R◦
1(ψ) < 1. Then E∗

11 is unstable whenever it exists.

Proof. If R◦
1(ψ) < 1 then f3(0) > g3(0). Consequently, since i∗1 is the first intersection point of the functions

f3 and g3, we have f ′
3(i

∗
1) < g′3(i

∗
1) and part three of Theorem 4.1 implies that Q(0, i∗1) > 1.

♦

Third, equilibria E∗ for which Q(0; i∗) < 1 have the potential to be stable. They are indeed stable for some

parameter values but for others they may lose stability and sustained oscillations may be possible. These are a

result of recovery [21] or presence of time-since-infection structure in the infectious class [32].

5 Discussion.

We formulate an epidemic model to investigate the complexities of the impact of vaccination on a multistrain

disease in the presence of mutation. The model discussed in this article includes vaccination which is applied

after recruitment into the population and the vaccine protection is assumed not to wane.

Disease control measures, such as partially effective vaccines, have been associated with existence of endemic

equilibria when the vaccine-dependent reproduction number R(ψ) < 1 and ψ > 0 which, however, do not

persist when R(0) < 1. Although such measures do not make the disease more likely to persist, they make

the disease eradication more complicated then merely reducing R(ψ) below one. Another drawback, associated

with vaccination observed in mathematical models and medical practice, is strain (serotype) replacement in

multistrain diseases (see [21] and the references therein).

In this paper we focus on the ability of vaccination to generate subthreshold persistence of the disease and

the consequences that this has when multiple strains are present. It is known from one strain models [18] that

the vaccine imperfection as a result of which some vaccinated individuals can get infected with the disease serves

as the main mechanism which causes subthreshold endemic equilibria. In our case here vaccine imperfection

with respect to the vaccine-evasive strain also leads to suthreshold endemic equilibria of this strain in the case

with no mutation (ρ(θ) = 0). At the same time since the vaccine is assumed perfect with respect to the vaccine

strain, the vaccine strain should be possible to be eliminated if its reproduction number R2(ψ) is reduced below

one, and the vaccine-evasive strain is not present. In the case of no mutation we also find a unique coexistence

equilibrium which occurs superthreshold (R◦
1(ψ) > 1 and R2(ψ) > 1) or when exactly one of the reproduction

numbers is below one, that is, when R◦
1(ψ) < 1 and R2(ψ) > 1 or when R◦

1(ψ) > 1 and R2(ψ) < 1. We call the

last two types of coexistence equilibria weakly subthreshold coexistence equilibria.

In the case when the vaccine-evasive strain mutates (ρ(θ) 6= 0) into the vaccine strain we observe that

the weakly subthreshold endemic equilibria are preserved (see Figure 4). Furthermore, there are multiple
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coexistence equilibria, some of which occur when both reproduction numbers are below one: R1(ψ) < 1 and

even if R2(ψ) < 1. We call such equilibria strongly subthreshold equilibria. Thus, although the vaccine is

designed to provide 100% protection with the respect to the second strain, the second strain will persist if

R1(ψ) < 1 and even if R2(ψ) < 1 (see Figure 3). The presence of strongly subthreshold coexistence equilibria

has significant implications for the disease control as reducing both reproduction numbers below one will not

eradicate either strain or the disease. Thus, a vaccine that is specific and perfect to the vaccine-strain, and has

the potential to eliminate it by reducing its reproduction number below one if the vaccine-elusive strain is not

present, may not necessarily do so if the vaccine strain is a mutant of another strain to which the vaccine is

only partially effective. Thus, in summary, the partial effectiveness of the vaccine enables (in some cases) the

backward bifurcation, which in turn enables the vaccine-evasive strain to persist when R1(ψ) < 1, which in turn

enables the vaccine target strain to persist when it shouldn’t. Actually, we suspect that mutation is only one

of a whole range of mechanisms generating coexistence which leads to reducing the effectiveness of the vaccine

with respect to the second strain as a results of its partial effectiveness with respect to the first strain. Many of

the well known coexistence mechanisms, e.g. cross-immunity, coinfection, super-infection and others, may have

similar consequences.
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Figure 4: This figure shows that the number infected with strain one I(t) and the number infected with strain

two J(t) tend toward a coexistence equilibrium even though vaccine-dependent reproduction number of the first

strain is above one while the vaccine-dependent reproduction number of the second strain is below one. The

parameters used for this figure are ρ = 0.1, γ = 0.8, µ = 0.1, χ = 0.0, δ = 0.1, ψ = 1.0, Λ = 5, β1 = 6.5 and

β2 = 9. The unites for Λ are (number of people)/(unit of time), δ and χ are dimensionless, and the units for

the remaining parameters are (unit of time)−1. The corresponding reproduction numbers are R1(ψ) = 1.1818

and R2(ψ) = 0.7438.

The main implication of this work is that through mutation (ρ(θ) 6= 0) the subthreshold existence of strain

one, generated by the vaccine’s partial effectiveness to this strain, translates into subthreshold existence of strain

two to which the vaccine is fully effective. Another effect of vaccination that we observe in this paper is its

ability to lead and enhance pathogen polymorphysm in multistrain diseases. In particular we establish that in

the absence of mutation ρ(θ) = 0, nonzero vaccination levels ψ > 0 lead to coexistence of the two strains under

certain conditions while coexistence is ruled out for that region of the parameter space when ψ = 0. Thus

effectively vaccination leads to coexistence. In fact the role of vaccination as a coexistence mechanism can be

derived from the considerations of the first model in [37].
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A Appendix

Derivation of the characteristic equation: Here we use elimination to compose the characteristic equation.

First, we express x from the first equation in (4.11) (with z = 0):

x =
−s∗B̂◦

1(λ)y + (1 − χ)Γ̂◦(λ)y

D3(λ; i∗)
(A.1)

where

D3(λ; i∗) = λ + B◦
1 i∗ + µ + ψ (A.2)

We can write equation (A.1) in the form x = H(λ; i∗)y with H given as

H(λ; i∗) =
−s∗B̂◦

1(λ) + (1 − χ)Γ̂◦(λ)

D3(λ; i∗)

From the last equation in (4.11) we express w in terms of x and y

w =
ψx − δv∗B̂◦

1(λ)y + χΓ̂◦(λ)y

D1(λ; i∗)
(A.3)

where

D1(λ; i∗) = λ + B◦
1δi∗ + µ.

We replace x with H(λ; i∗)y to express w in terms of y only. Thus, we obtain w = P (λ; i∗)y where

P (λ; i∗) =
ψH(λ; i∗) − δv∗B̂◦

1(λ) + χΓ̂◦(λ)

D1(λ; i∗)

Substituting into the equation for y and cancelling y we obtain the characteristic equation

Q(λ; i∗) = 1

where

Q(λ; i∗) = s∗B̂◦
1(λ) + δv∗B̂◦

1(λ) + B◦
1 i∗H(λ; i∗) + δB◦

1 i∗P (λ; i∗) (A.4)

We note that, in the expression for Q(λ; i∗), i∗ is a solution of equation (3.12), s∗ is given by (3.11) and v∗ by

(3.6).

Proof of Theorem 4.1. We will prove the first point. The remaining items are established in identical

way. We begin by making some useful observations.

Q(0; i∗) = s∗B◦
1 + δv∗B◦

1 + B◦
1 i∗H(0; i∗) + δB◦

1 i∗P (0; i∗) (A.5)

From the second equation in system (3.8) we have that

s∗B◦
1 + δv∗B◦

1 = 1.
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It remains to be shown that f ′
3(i

∗) > g′3(i
∗) implies that

H(0; i∗) + δP (0; i∗) < 0.

Substituting the expression for P (0; i∗) we have

H(0; i∗) + δP (0; i∗) =
δB◦

1 i∗ + µ + δψ

δB◦
1 i∗ + µ

H(0; i∗) +
−δ2v∗B◦

1 + δχΓ◦

δB◦
1 i∗ + µ.

Multiplying this expression by δB◦
1 i∗ + µ, a positive term, we obtain an expression of the same sign. Replacing

H(0; i∗) we have

(δB◦
1 i∗ + µ + δψ)

−s∗B◦
1 + (1 − χ)Γ◦

B◦
1 i∗ + µ + ψ

− δ2v∗B◦
1 + δχΓ◦.

Dividing through in the fraction and replacing s∗ from (3.11) as well as v∗ from (3.6) we get

−
(1 − χΓ◦)B◦

1 i∗ + µ

B◦
1 i∗ + µ + ψ

+
(δB◦

1 i∗ + µ + δψ)(1 − χ)Γ◦

B◦
1 i∗ + µ + ψ

− δ2B◦
1

ψs∗ + χΓ◦i∗

δB◦
1 i∗ + µ

+ δχΓ◦ (A.6)

Inequality f ′
3(i

∗) > g′3(i
∗) is in fact equivalent to the following inequality

(1 − χ)Γ◦(δB◦
1 i∗ + µ + δψ) − [(1 − χΓ◦)δB◦

1 i∗ + µ] < δ(1 − χΓ◦)(B◦
1 i∗ + µ + ψ) − δB◦

1(µ + (1 − χ)Γ◦i∗)

The left-hand side of this inequality is exactly the numerator of the first two fractions in expression (A.6).

Consequently, it can be replaced with the right-hand side of the inequality above. In addition, dividing through

and replacing the second fraction with s∗ given by (3.10) the expression (A.6) becomes smaller than

< (1 − χΓ◦)δ − δB◦
1s∗

(

1 +
δψ

δB◦
1 i∗ + µ

)

− δ2B◦
1

χΓ◦i∗

δB◦
1 i∗ + µ

+ δχΓ◦

Collecting the first, third and fourth term above, and replacing s∗ with the corresponding expression from (3.11)

in the second term we get

δ

(

1 −
δB◦

1χΓ◦i∗

δB◦
1 i∗ + µ

)

− δ
(1 − χΓ◦)B◦

1 i∗ + µ

δB◦
1 i∗ + µ

= 0.

This completes the proof.
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