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Abstract

Mathematical models developed for studying malaria dynamics often focus on a single, ho-
mogeneous population. However, human movement connects environments with potentially
different malaria transmission characteristics. To address the role of human movement and
spatial heterogeneity in malaria transmission and malaria control, we consider a simple malaria
metapopulation model incorporating two regions, or patches, connected by human movement,
with different degrees of malaria transmission in each patch. Using our two-patch model, we cal-
culate and analyze the basic reproduction number, R0, an epidemiologically important threshold
quantity that indicates whether malaria will persist or go extinct in a population. Although R0

depends on the rates of human movement, we show that R0 is always bounded between the two
quantities R01 and R02 - the reproduction numbers for the two patches if isolated. If without
migration, the disease is endemic in one patch but not in the other, then the addition of human
migration can cause the disease to persist in both patches. This result indicates that regions
with low malaria transmission should have an interest in helping to control or eliminate malaria
in regions with higher malaria endemicity if human movement connects them. Performing a
sensitivity analysis of R0 and the endemic equilibrium to various parameters in the two-patch
model allowed us to determine, under different parameterizations of the model, which patch will
be the better target for control measures, and within that patch, what type of control measure
should be implemented. In the analysis of R0, we found that if the extrinsic incubation period
is shorter than the average mosquito lifespan, the control measures should be targeted towards
reducing the mosquito biting rate. On the other hand, if the extrinsic incubation period is
longer than the average mosquito lifespan, control measures targeting the mosquito death rate
will be more effective. Intuitively, one might think that resources for malaria control should
be allocated to the region with higher malaria transmission. However, our sensitivity analyses
indicated that this is not always the case. In fact, if migration into the lower transmission patch
is much faster than migration into the higher transmission patch, the lower transmission patch
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is potentially the better target for malaria control efforts. While human movement between
regions poses challenges to malaria control and elimination, if estimates of relevant parameters
in the model are known, including migration rates, our results can help inform which region to
target and what type of control measure to implement for the greatest success.

1 Introduction

Malaria continues to pose a substantial public health problem worldwide, particularly in less devel-
oped countries. Malaria control, even in countries with relatively low malaria endemicity, proves
to be a significant challenge [8, 47]. Recently, the international community has increased its focus
on reducing malaria burden worldwide, and malaria elimination has re-entered the lexicon of the
malaria control community [15, 22, 23, 53, 58]. In many countries, however, resources available
towards implementing intervention strategies are extremely limited [21]. Intervention strategies
must be chosen to maximize the use of these limited funds to most efficiently reduce malaria bur-
den. For many diseases, including malaria, human population movement contributes greatly to
the spread and persistence of disease [21], and is therefore an important consideration when imple-
menting intervention strategies [57]. Despite this, little is known about human movement patterns
and their epidemiological consequences [51]. In fact, the failure of the Global Malaria Eradication
Programme in the 1950s and 1960s may be due, in part, to the failure to take into account human
movement [21].

Human movement often links areas with different degrees of malaria transmission capacity [37].
Local transmission dynamics often differs between areas [51] due to characteristics such as topog-
raphy, mosquito species densities, pesticide use, availability of mosquito habitats, or differences in
currently implemented intervention strategies [19, 32]; for example, urban areas typically have much
lower malaria transmission than rural areas [25, 36, 44]. Because human movement commonly links
urban and rural systems that often exhibit dramatically different degrees of malaria transmission
[44], urbanization may be an important driver in malaria dynamics.

Local transmission dynamics may influence the efficacy of intervention strategies. Because these
transmission characteristics may vary between areas connected by human movement, human move-
ment becomes important not only in terms of expected degree of importation, but also in terms of
deciding where to target intervention strategies to most efficiently use resources.

In this study, we develop a mathematical model to address the implications of malaria movement
between areas of potentially heterogeneous transmission characteristics, in order to determine ef-
fective targeted intervention strategies.

Mathematical models are a useful tool often applied to both identify control measures that are
most important to implement, as well as quantify the effectiveness of different control strategies
in controlling or eliminating malaria in endemic regions. For simplicity, most models consider
transmission in one region of interest, with homogeneous transmission throughout the region. One
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of the first malaria models of this kind was the Ross-MacDonald model, which we describe in section
2 [4]. In section 2.1 we describe a modification of the Ross-Macdonald model, which is to be used in
the human movement two patch model. While single-patch malaria models have proven to be very
useful in the study of malaria dynamics, we know from many other systems that spatial structure
can greatly influence the dynamics of interacting species [27, 29, 42], including pathogens and hosts
[41]. Thus, there is a need to explore how malaria dynamics are affected by spatial heterogeneity
and to use this information to inform intervention strategies. To address this need, in section 2.2
we introduce a two-patch malaria metapopulation model based on the modified Ross-Macdonald
model that allows for different local transmission characteristics and variable human migration
rates between patches.

Metapopulation models have been used extensively in other systems to address common ecological
issues, such as the effect of connectivity between areas [27] and the effect of migration on predator-
prey dynamics [1]. Similar models have also been used to investigate the implications these results
might have for disease dynamics. Consequently, metapopulation models have been developed to
explore the effect of migration on disease persistence. Hethcote et al [28] found that migration could
cause a disease to persist where it would otherwise die out if it were isolated using a two-patch SIS
(Susceptible-Infected-Susceptible) model. We show in 2.3 that this result is also possible in our
two-patch malaria model for a range of different immigration and emigration rates.

Metapopulation models of vector-borne disease have been previously studied to some extent as well.
Cosner et al. considered two types of movement, termed Lagrangian and Eulerian, in their vector-
borne disease metapopulation model [13]. In the Lagrangian approach, individuals are considered
residents of a particular patch and spend some fraction of the time visiting other patches. In
the Eulerian approach, individuals are not tracked; while migration occurs between patches, this
approach does not assign a “residence” to individuals in the population. Our two-patch model
incorporates the Eulerian approach to modeling movement. Since it is uncommon for mosquitoes to
move more than a kilometer throughout their lives [14, 24, 38, 40, 46] while humans often move many
kilometers between villages or countries [51], we modeled human movement exclusively. In their
malaria metapopulation model, Cosner et al. studied a special case of a two-patch malaria model
with no transmission in one of the patches [13]. In our study, we are interested in understanding how
human movement affects malaria dynamics when two patches with different, nonzero transmission
characteristics are connected by human migration. In section 4.1, we parameterize our model using
estimates from regions with varying levels of malaria endemicity, to encompass a variety of patch
and human movement characteristics in the field.

In section 2.3, we present an analytic expression derived from the two-patch model for the basic
reproductive number, a threshold quantity determining whether a disease will persist or go extinct
in a population. To assess the relative efficacy of different control measures and to determine where
to target these control measures, we perform a sensitivity analysis of the basic reproductive number
to different parameters in the model in section 3. In section 5, we perform a sensitivity analysis
of the endemic equilibrium and compare these results to those of the analysis of the reproduction
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number. Chitnis et al. [9] perform a similar sensitivity analysis using their single-patch malaria
model. They found that under both high and low transmission settings, the basic reproductive
number was most sensitive to the mosquito biting rate, and the equilibrium proportion of humans
was most sensitive to the human recovery rate [9]. However, our sensitivity analysis yielded a
different result, likely due to different assumptions in the model formulation: the parameter the
basic reproductive number is most sensitive to depends on the relative duration of the extrinsic
incubation period and mosquito lifespan, and the human recovery rate was not the most important
factor in the analysis of the endemic equilibrium. We also show that our intuition about where
control measures should be implemented for the greatest success may not always be correct and
that having an idea of the relative sizes of the migration rates between the two patches can provide
insight into which patch should be the target of malaria control.

2 Ross-Macdonald Model

In the Ross-Macdonald model, the rates at which the proportion of humans infected (x) and
the proportion of mosquitoes infected (z) change over time are given by the following system of
equations:

dz

dt
= acx(1− z)− gz

dx

dt
= mabz(1− x)− rx, (1)

where 1 − z and 1 − x are the proportion of mosquitoes and the proportion of humans that are
susceptible, respectively [4]. We can rewrite these equations in terms of the number of humans
infected, rather than the proportion infected:

dz

dt
= ac

I

N
(1− z)− gz

dI

dt
= mabz(N − I)− rI, (2)

whereN is the total size of the human population, and I is the number of humans in that population
who are infected with malaria.

The parameter a is the human-biting rate (the rate at which mosquitoes bite humans). c is the
human-to-mosquito transmission efficiency, that is, the probability, given a susceptible mosquito
has bitten an infectious human, that the mosquito becomes infected. Similarly, b is the mosquito-to-
human transmission efficiency - the probability, given an infectious mosquito has bitten a susceptible
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human, that the human becomes infected. The mosquito death rate is denoted by g. Finally, m
denotes the ratio of the number of mosquitoes to humans, and r denotes the human recovery rate
without treatment. Once a human recovers from malaria infection, they do not gain immunity, but
instead are susceptible to re-infection.

Susceptible humans become infected at a rate mabz, and susceptible mosquitoes become infected
at a rate acx. Infected humans are lost through recovery, and infected mosquitoes are lost through
death. Because humans live much longer than the duration of a malaria infection and the lifespan
of a mosquito, the human death rate is much smaller than any of the other parameters in this
model, and hence is negligible. Similarly, we ignore human births.

2.1 Modifications to Ross-Macdonald Model

Infected mosquitoes that do not survive the extrinsic incubation period of malaria never have the
chance to transmit the disease. Depending on mosquito daily survival probabilities and duration
of the extrinsic incubation period (which is dependent upon factors such as temperature), as many
as half of infected mosquitoes may not survive to become infectious and able to transmit malaria
[19, 20]. To account for mosquito survival, the Ross-Macdonald model has been modified by
replacing (1− z) in the original model with e−gn − z (see Appendix 1 in [49]). In other words, the
pool of mosquitoes is reduced from one to the proportion of individuals expected to survive the
extrinsic incubation period, which has length n, if their death rate is g. As a final modification, we
eliminate the mosquito equation by assuming that the infected mosquito population equilibrates
much faster than the infected human population. This assumption is commonly used in malaria
models because the mosquito dynamics (such as incubation period and death rate) operate on a
much quicker timescale than human dynamics (such as the natural recovery rate) [31, 49, 33, 10].
Thus, by assuming that the mosquito population dynamics is at equilibrium, the equations in (1)
can be reduced to the single equation:

dI

dt
=

ma2bcIe−gn

acI + gN
(N − I)− rI. (3)

To simplify the notation, we let α
.
= mabe−gn and β

.
= ac so that equation (3) can be written

as

dI

dt
=

αβI

βI + gN
(N − I)− rI. (4)
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2.2 Two-patch malaria model

Equation (4) is used in our two-patch model to describe the disease dynamics within each patch.
Each patch contains a human population of size Ni composed of Si susceptible humans and Ii
infected humans, with migration from patch j to patch i occurring at a rate kij , regardless of the
health status of an individual.

Figure 1: Disease Dynamics in a Human Population. Solid bold arrows indicate the acquisition
of a new infection; dashed arrows indicate recovery; solid thin arrows indicate migration between
patches.

In this model, transmission occurs only between individuals within a patch; individuals in a given
patch cannot directly infect individuals in other patches. Movement from patch j to patch i
occurs at a per capita rate kij , and individuals are identified simply as being in a given patch
at a given time; individuals do not have a home patch. This approach to modeling movement is
related to the Eulerian approach in fluid dynamics, and can be contrasted with movement models
related to the Lagrangian approach in fluid dynamics, which has also been used to model human
movement in disease metapopulation models [13]. While the Eulerian approach does not track
individuals and individuals cannot infect across patches without changing their resident patch,
the Lagrangian approach assigns an unchanging resident patch to individuals [13]. Individuals
then spend a proportion of time in other patches, transmitting disease to individuals in other
patches.

The choice between Lagrangian and Eulerian movement models depends upon spatial scale and
types of population movement modeled. Movement on smaller spatial scales tends to occur more
frequently, between multiple patches in rapid succession (such as the daily commute to work or
school, or seasonal movements) [51]. These movements are termed circulation in classical population
movement typology [43] and involve no change of residence [37]. In these cases, the Lagrangian
approach is generally more appropriate. Rarer, more permanent movement (termed migration
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[37, 43]), which is more appropriately modeled using the Eulerian approach, tends to occur on
much larger spatial scales (for example, due to individuals changing residence due to urbanization
or displacement [51]).

Although most human movement consists of short-term visits, our objective was to study the
effect of longterm migration on decisions concerning malaria control. Migration due to processes
that occur on large spatial scales, such as urbanization and transborder migration, is an important
component of malaria systems. The degree of transborder movement between two countries requires
that any elimination campaign be highly coordinated [30]. By using an Eulerian approach to
movement, we may examine the effect of transborder migration on malaria dynamics, which has
implications for international malaria control efforts [52].

Combining the conceptualization of the model in Figure 1 and the Eulerian framework for movement
with the disease-dynamics given by the modified Ross-Macdonald model, we arrive at the following
system of differential equations to describe the malaria dynamics of a human population distributed
between two patches:

dS1

dt
= − α1β1I1

β1I1 + g1N1

S1 + r1I1 − k21S1 + k12S2

dS2

dt
= − α2β1I2

β2I2 + g2N2

S2 + r2I2 − k12S2 + k21S1

dI1
dt

=
α1β1I1

β1I1 + g1N1

S1 − r1I1 − k21I1 + k12I2

dI2
dt

=
α2β1I2

β2I2 + g2N2

S2 − r2I2 − k12I2 + k21I1.

In the system above, the population size of patch i is Ni = Si + Ii, and the total population size is
N = N1 +N2. Note that dN

dt
= 0, hence N is constant. A description of the model parameters can

be found in Table 1.

Since N ′
1 = −k21N1 + k12N2 implies that N

∗

2 = k21
k12

N
∗

1 , where N
∗

1 and N
∗

2 denote the equilibrium

values of N1 and N2, respectively, and N
∗

1 + N
∗

2 = N , we have that N∗
1 = k12

k12+k21
N and N∗

2 =
k21

k12+k21
N at equilibrium. Thus, since S1 = N1 and S2 = N2 when there is no disease, the disease-free

equilibrium (DFE) of the above system is (S
∗

1 , I
∗

1 , S
∗

2 , I
∗

2 )DFE
=
(

k12
k12+k21

N, 0, k21
k12+k21

N, 0
)

.

If dI1
dt

= 0 and malaria is absent in patch 1 (I1 = 0), then I∗2 = 0 when k12 > 0. Likewise, if dI2
dt

= 0
and malaria is absent in patch 2 (I2 = 0), then I∗1 must be zero when k21 > 0. Thus, at equilibrium,
malaria cannot be present in one patch and absent in the other, provided that the migration rates
are nonzero.
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Table 1: Description of model parameters in patch i

Parameters Description

mi Ratio of the number of mosquitoes
to the number of humans

ai Human biting rate

miai Number of mosquito bites
on a human per unit of time

bi Transmission efficiency
from mosquito to human

ci Transmission efficiency
from human to mosquito

gi Natural death rate of mosquitoes

ni Length of mosquito incubation period

αi miaibie
−gin

βi aici
ri Natural human recovery rate

kij Migration rate from patch j to patch i

2.3 The Basic Reproductive Number R0

The basic reproductive number, R0, is traditionally defined to be the number of secondary cases
resulting from one infectious individual in an otherwise fully susceptible population. In a model
without acquired immunity, R0 provides a threshold criteria for persistence of the disease in a
population. If R0 < 1, the disease will become extinct. If R0 > 1, the disease will persist in
the population. The basic reproductive number for the modified Ross-Macdonald model (3) is αβ

gr

where α = mabe−gn and β = ac. Thus without migration, patch i in the two-patch model will have
its own isolated-patch reproduction number R0i =

αiβi

giri
, where αi = miaibie

−gini and βi = aici for
i = 1, 2. Using the next-generation approach [17, 54], we find that the basic reproductive number
(the dominant eigenvalue of the next generation matrix) for our two-patch model with migration
is given by the expression

R0 =
1

2σ

[

s1t2 + s2t1 +
√

(s1t2 + s2t1)2 − 4s1s2σ
]

(5)

=
1

2σ

[

s1t2 + s2t1 +
√

(s1t2 − s2t1)2 + 4s1s2k12k21

]

(6)
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where

σ = k12r1 + k21r2 + r1r2

si =
αiβi
gi

= ri ∗R0i

ti = ri + kji

for i = 1, 2. Although this expression for R0 does not possess the biological interpretation of the tra-
ditional definition, it still provides the same useful persistence-extinction threshold criterion.

Observe that when there is no migration between patches, k12 = k21 = 0, then R0

= max
{

α1β1

r1g1
, α2β2

r2g2

}

= max {R01, R02}, the larger of the two isolated-patch reproductive numbers.

Moreover, the value of the global reproductive number R0 for this two-patch model is always
between the two isolated-patch reproductive numbers R01 and R02 when migration between the
two patches is present. In one parameterization of their two-patch malaria model with Lagrangian
movement, Cosner et al. found that it was possible to have a scenario in which each isolated
patch reproduction number (R01 and R02) is less than 1, yet the global reproduction number R0

is larger than one [13]. This finding illustrates that some models predict that it may be possible
to have a system where without migration, the disease goes extinct in both patches, but once
a certain level of migration is introduced, the disease becomes endemic. However, as is stated
in the following Theorem, our two-patch model, which assumes Eulerian rather than Lagrangian
movement, predicts that R0 will always be bounded by the isolated patch reproduction numbers.
A similar result has been derived for direct transmission epidemic models with Lagrangian-type
movement [2, 3, 48].

Theorem 2.3.1 If R01 > R02, then for all pairs of migration rates (k12, k21) ∈ [0,∞) × [0,∞),
max{ R01

1+
k21
r1

, R02} ≤ R0 ≤ R01.

Proof. R01 > R02 implies that s1
r1

> s2
r2
. Thus, by assumption we have that s1r2 > s2r1. We first

evaluate R0 at certain points on the boundary of the domain [0,∞) × [0,∞). From equation (6),
we have

R0(k12, 0) =
1

2r1t2
(s1t2 + s2r1 + |s1t2 − s2r1|) . (7)

Since by assumption s1r2 > s2r1, and because t2 = r2 + k12 ≥ r2, we know that s1t2 − s2r1 > 0,
and so |s1t2 − s2r1| = s1t2 − s2r1. Thus, equation (7) simplifies to R0(k12, 0) = R01 for all
k12 ∈ [0,∞).

Similarly,
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R0(0, k21) =
1

2r2t1
(s1r2 + s2t1 + |s1r2 − s2t1|)

=
1

r2t1
·max {s1r2, s2t1}

= max

{

s1
t1
,
s2
r2

}

= max

{

R01

1 + k21
r1

, R02

}

. (8)

Thus, R02 ≤ R0(0, k21) ≤ R01, for all k21 in the interval [0,∞).

Consider the function
f(x) = σx2 − (s1t2 + s2t1)x+ s1s2. (9)

f is precisely the characteristic polynomial of the next-generation matrix used to derive R0 in
equation (5). R0 is the larger of the two roots of the concave-up parabola f(x). Consequently,
f(R0) = 0 and f ′(R0) > 0. From this we know that for any real number x∗ satisfying the inequality
f(x∗) < 0, then x∗ must be less than R0. On the other hand, if x∗ is such that f(x∗) > 0 and
f ′(x∗) > 0, then x∗ is greater than R0.

Suppose k12 and k21 are positive. Then,

f(R01) = f

(

s1
r1

)

= σ

(

s1
r1

)2

− (s1t2 + s2t1)
s1
r1

+ s1s2

=
s1
r1

[

(k12r1 + k21r2 + r1r2)
s1
r1

− (s1t2 + s2t1) + s2r1

]

=
s1
r1

[

s1k12 + s1
k21r2
r1

+ s1r2 − (s1t2 + s2t1) + s2r1

]

=
s1
r1

[

s1t2 + s1
k21r2
r1

− (s1t2 + s2t1) + s2r1

]

=
s1
r1

(

s1r2
r1

k21 − s2k21

)

=
s1k21
r2
1

(s1r2 − s2r1).

By assumption, s1r2 − s2r1 > 0, hence f(R01) > 0. Similarly, we can show that
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f(R02) = f

(

s2
r2

)

=
s2k12
r2
2

(s2r1 − s1r2) (10)

f

(

R01

1 + k21
r1

)

= −
(

s1
t1

)2

k12k21. (11)

Clearly f

(

R01

1+
k21
r1

)

< 0 and since s1r2 − s2r1 > 0, we also have that f(R02) < 0.

Now, f ′(x) = 2σx− (s1t2 + s2t1). So,

f ′(R01) = f ′
(

s1
r1

)

= 2σ
s1
r1

− (s1t2 + s2t1) (12)

= 2(r1r2 + r1k12 + r2k21)
s1
r1

− s1r2 − s1k12 − s2r1 − s2k21 (13)

= (s1r2 − s2r1) + s1k12 + (2s1r2 − s2r1)
k21
r1

. (14)

Again, since s1r2 − s2r1 > 0, f ′(R01) > 0.

Thus, for k12 and k21 positive, f(R02) < 0 and f

(

R01

1+
k21
r1

)

< 0 implies that R0 > max

(

R02,
R01

1+
k21
r1

)

.

Also, f(R01) > 0 and f ′(R01) > 0 implies that R0 < R01. We have already shown that R0(k12, 0) =

R01 andR0(0, k21) = max

{

R01

1+
k21
r1

, R02

}

. Therefore, for all non-negative k12 and k21, max

{

R01

1+
k21
r1

, R02

}

≤
R0 ≤ R01.

Theorem 2.3.2 Suppose R01 > R02. Consider R0(k12, k21) to be a function of both migration
rates k12 and k21, where k12, k21 ∈ [0,∞). For a fixed κ in the interval [0,∞), R0(k12, κ) is an
increasing function of k12 and R0(κ, k21) is a decreasing function of k21.

Proof. We have shown in the proof of Theorem 2.3.1 that R0(0, κ) = max

{

R01

1+
κ
r1

, R02

}

and

R0(k12, κ) > max

{

R01

1+
κ
r1

, R02

}

for k12 > 0. Thus R0(k12, κ) ≥ R0(0, κ) for all k12 ≥ 0. So, we

need only show that R0(k12, κ) is monotonic in k12 to show that it is an increasing function in k12.
Similarly, from Theorem 2.3.1 we also know that R0(κ, 0) = R01 ≥ R0(κ, k21) for all non-negative
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k21. So again, we need only show that R0(κ, k21) is monotonic in k21 to show that it is a decreasing
function in k21.

First, we show that R0(k12, κ) is monotonic in k12.

Since R0(k12, κ) is continuous in k12, it is monotonic with respect to k12 if for every C ∈ (0,∞) such
that R0(k12, κ) = C has a non-negative solution k12 ∈ [0,∞), then this solution is unique.

Suppose R0(k12, κ) = C. Then, by the definition of R0 (eqn 5), we have that

1

2σ

(

q +
√

q2 − 4s1s2σ
)

= C, (15)

where q = s1t2 + s2t1 = s1(r2 + k12) + s2(r1 + κ) and σ = r1r2 + r1k12 + r2κ.

Equation (15) implies that

σC2 − qC + s1s2 = 0. (16)

Observe that both σ and q are linear in k12. Thus, equation (16) is linear in k12, implying that if
there exists a k12 ∈ [0,∞) that is a solution to equation (16), then this solution is unique. Hence,
R0(k12, κ) is monotonic for each κ ∈ [0,∞). By the same argument, R0(κ, k21) is monotonic for
each κ ∈ [0,∞).

Since R0(k12, κ) is monotonic for non-negative k12 and R0(0, κ) ≤ R0(k12, κ), for each fixed k21 =
κ ∈ [0,∞), R0 is an increasing function of k12. Likewise, since R0(κ, 0) ≥ R0(κ, k21) for non-
negative k21, for each fixed k12 = κ ∈ [0,∞), R0 is a decreasing function of k21.

The proof of Theorem 2.3.1, assuming that R01 > R02, also shows that the minimum value of

R0(k12, k21) on the domain [0,∞) × [0, κ) is max

{

R01

1+
κ
r1

, R02

}

and the maximum value is R01.

Thus, if R02 < 1 and R01

1+
κ
r1

> 1 for some κ > 0 (and hence R01 > 1), then R0(k12, k21) > 1 for all

migration pairs (k12, k21) in [0,∞)× [0, κ). This indicates that it is possible to have a situation in
which without migration, the disease dies out in one patch but not the other, yet with migration
the disease persists in both patches for all k12 ≥ 0 and for 0 ≤ k21 ≤ κ.

If R02 and R01

1+
κ
r1

are less than one but R01 > 1, then for some migration rate pairs (k12, k21), R0

will be larger than one, and for other pairs, R0 will be less than one. Furthermore, there exists a
value κ∗ < κ such that R0 > 1 for all (k12, k21) in [0,∞) × [0, κ∗).
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Finally, if R02 and R01 are both less than one, then R0 will always be less than one, regardless of
the migration rates between patches.

3 Sensitivity Analysis

An elasticity analysis of the basic reproduction number and endemic equilibrium provides a means
of determining which parameters are the best targets for malaria control for elimination strategies
and reduction of prevalence, respectively. The parameters that serve as the best targets can then be
used to inform which control strategies should be used, through selection of malaria interventions
that target those parameters.

Population biologists make use of sensitivity and elasticity analyses to evaluate the effect of per-
turbations in a population fecundity, growth, and survival on the overall growth of the population,
and to determine which life stage a population’s growth is most sensitive to [26, 55]. The sensitivity
of a quantity λ to a parameter p is calculated as s = ∂λ

∂p
, and is used to determine the amount of

change that occurs in λ in response to changes in elements p; sensitivity can then be used to com-
pare how absolute changes in various parameters affect λ [16]. However, we cannot easily compare
sensitivities with respect to parameters of different scales. For example, the effect of a .5 increase in
transmission efficiency (measured from 0−1) in this model is not easily comparable to the effect of
a .5 increase in mosquito incubation period; a .5 increase in transmission represents a much larger
change to the system. Therefore, an alternate measure that allows for comparison of parameters
with different scales is preferable; in this study, elasticity is used. Elasticity is the proportional
change in λ resulting from a proportional change in a. Because elasticity is determined using the
proportion rather than absolute change in a parameter p, the effect of parameters on λ, or in this
case, R0, can be compared, even if the parameters are very different in scale. Thus, we compute
the elasticity of R0 to a parameter p, rather than the sensitivity, to compare parameters of different
orders of magnitude and different units:

εp =
∂R0

∂p

p

R0

. (17)

The value εp describes how much, and in what way (positively or negatively), the reproduction
number will be affected by a small change in a parameter value p. More precisely, we can interpret
the elasticity as follows: if the elasticity of a quantity λ with respect to a parameter p is εp,
then a 1% change in p will result in an εp% change in λ. We compute the analytic expressions
of the elasticities for each parameter in both the single patch model without migration and the
two-patch model so that we may draw some general conclusions about the relative importance of
each parameter in these two scenarios.
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3.1 Elasticities for a single patch without migration

From equation (17) and the single-patch expression for R0,
ma2bce−gn

rg
, we find that

εm = εb = εc = 1

εr = −1

εa = 2

εg = −(gn+ 1)

εn = −gn.

Thus, we have (for p = m, b, c) that |εn| < 1 = |εr| = εp < |εg| < εa if n < 1

g
, where n is the

incubation period and 1

g
is the expected mosquito lifespan. If 1

g
< n < 2

g
, in other words if the

incubation period is longer than the expected mosquito lifespan but shorter than twice this lifespan,
then 1 = |εr| = εp < |εn| < εa < |εg|. Finally, if n > 2

g
, then 1 = |εr| = εp < εa < |εn| < |εg|.

Generally, theoretical studies have found that the basic reproduction number in malaria models is
most elastic to the human biting rate, which plays a major role as it influences both transmission to
mosquitoes as well as transmission to humans; this is reflected in the fact that the elasticity of R0 to
a is double that of m, b, or c [9]. Using the interpretation of elasticity in terms of percentages, since
εa = 2, a 1% increase in a will result in a 2% increase in R0. On the other hand, εm = 1 implies
that the same 1% increase in m will result in only a 1% increase in R0. In our model, however, R0

is most sensitive to g when n > 1/g; i.e. when the incubation period is longer than the average
mosquito lifespan. Unlike the elasticities related to the parameters m,a, b, c, and r, the elasticities
of R0 with respect to the mosquito death rate g and incubation period n are linear functions of
both g and n. Thus, increasing mosquito death rate or lengthening the extrinsic incubation period
enhances the effect of such control measures on R0.

3.2 Elasticities for the two-patch metapopulation model

The analytic expressions for the elasticities in the two-patch model with migration, while more
complicated in form than those of the single-patch model, provide some insight into the relative
importance of the model parameters.

For pi = mi, ai, bi, ci, gi, ni, we have that

∂R0

∂p1
=

∂s1
∂p1

· 1

2σ

[

t2

(

1 +
s1t2 − s2t1√

τ

)

+
2s2k12k21√

τ

]

(18)

∂R0

∂p2
=

∂s2
∂p2

· 1

2σ

[

t1

(

1− s1t2 − s2t1√
τ

)

+
2s1k12k21√

τ

]

(19)
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where τ = (s1t2 − s2t1)
2 + 4s1s2k12k21,

∂si
∂pi

= si
pi

for pi = mi, bi, ci,
∂si
∂ai

= 2 si
ai
, ∂si
∂gi

= −si
gini+1

gi
, and

∂si
∂ni

= −gisi.

Thus, the elasticities for pi = mi, bi, ci are given by the expressions

εp1 =
s1

2σR0

·
[

t2

(

1 +
s1t2 − s2t1√

τ

)

+
2s2k12k21√

τ

]

(20)

εp2 =
s2

2σR0

·
[

t1

(

1− s1t2 − s2t1√
τ

)

+
2s1k12k21√

τ

]

, (21)

and

εai = 2εpi (22)

εgi = −εpi(gini + 1) (23)

εni
= −giniεpi (24)

For k12, k21 6= 0, because
√
τ ≥ |s1t2 − s2t1|,

(

1 + s1t2−s2t1√
τ

)

and
(

1− s1t2−s2t1√
τ

)

, which appear

in the expressions for εp1 and εp2 , respectively, lie in the interval (0, 2). Thus, εpi is positive for
pi = mi, ai, bi, ci and negative for pi = gi, ni. Since gini + 1 > 1, εpi < εai < |εgi | if ni >

1

gi
, and

εpi < |εgi | < εai if ni <
1

gi
.

The elasticity for the remaining model parameters ri, kij , and n are given by

εr1 =
r1

2σR0

[

s2

(

1− s1t2 − s2t1√
τ

)]

− r1t2
σ

εr2 =
r2

2σR0

[

s1

(

1 +
s1t2 − s2t1√

τ

)]

− r2t1
σ

εk21 =
k21
2σR0

[

s2

(

1− s1t2 − s2t1√
τ

)

+
2s1s2k12

τ

]

− r2k21
σ

εk12 =
k12
2σR0

[

s2

(

1 +
s1t2 − s2t1√

τ

)

+
2s1s2k21

τ

]

− r1k12
σ

εn1
= −s1g1n1

2σR0

[

t2

(

1 +
s1t2 − s2t1√

τ

)

+ 2s2k12k21

]

εn2
= −s2g2n2

2σR0

[

t1

(

1− s1t2 − s2t1√
τ

)

+ 2s1k12k21

]

If ri < kji, then εri < εkji .
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Finally, we found that the elasticities of R0 with respect to a pair of parameters (p1, p2) sum to the
corresponding isolated-patch elasticity εp, for the parameters p = m,a, b, c. This result is given in
the following theorem.

Theorem 3.2.1 For pi = mi, bi, ci, εp1 + εp2 = 1.

Proof.

2σR0(εp1 + εp2) = s1t2 + s2t1 +
(s1t2 − s2t1)

2 + 4s1s2k12k21√
τ

(25)

= s1t2 + s2t1 +
τ√
τ

(26)

= s1t2 + s2t1 +
√
τ (27)

= 2σR0. (28)

Thus, dividing both sides of the above equation by 2σR0 yields εp1 + εp2 = 1.

Since for pi = mi, bi, ci, εai = 2εpi , εgi = (gini + 1)εpi , and εni
= (gini)εpi , Theorem 3.2.1 implies

that εa1 + εa2 = 2, min{g1n1, g2n2}+1 ≤ εg1 + εg2 ≤ max{g1n1, g2n2}+1, and min{g1n1, g2n2} ≤
εn1

+ εn2
≤ max{g1n1, g2n2}.

While the relationship between the elasticities for parameters mi, ai, bi, ci and gi in patch i are
clear, the relationship between the remaining parameters (ri and kji) and the relationship between
parameters of different patches, are not obvious from the analytic expressions presented in this
section. In the following sections we will estimate parameter values and use these estimates to
derive elasticities for all model parameter values under various scenarios, which we will define using
combinations of different parameter sets corresponding to high transmission, low transmission, fast
migration, and slow migration.

4 Numerical Results

4.1 Parameter Estimates

Realistic parameter values were needed to gain an understanding of how spatial heterogeneity in
malaria transmission affects the prevalence of malaria, malaria transmission, and malaria control in
our two-patch model. We compiled baseline parameter values for four different situations, estimated
from published studies. First, we compiled values for high transmission areas, and low transmission
areas. High transmission parameters were gathered from studies in sub-Saharan Africa. Low
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transmission parameters were taken from studies in the Americas, especially South America, where
the number of cases is generally low.

Among regions that are considered high transmission, there is still a lot of variability in their levels
of malaria transmission. Thus, to encompass some of this variability, we compiled parameters as-
sociated with the dry season in a high transmission region and parameters associated with the wet
season in a high transmission region. Similarly, not all low transmission regions can be described by
the same set of transmission parameters. So, we again compiled dry season and wet season param-
eters for a low transmission region. Using these estimates from different seasons in both high and
low transmission areas, we obtained four parameter sets representative of a high-transmission/wet-
conditions patch, high-transmission/dry-conditions patch, low-transmission/wet-conditions patch,
and low-transmission/dry-conditions patch (Table 2).

Table 2: Wet and dry condition estimates of model parameters for low and high transmission
settings. Note: m was not directly determined from field studies. m ∗ a for dry conditions is known
from [18]. We assume for wet conditions the value to be 10 times greater according to [50].

Low High

Parameters Wet Dry Reference Wet Dry Reference

mi 176.19 17.619 395.45 60.81 [39]

ai 0.105 0.105 [35] 0.41 0.265 [34], [39]

miai 18.5 1.85 [18] 161.1477 16.114 [34]

bi 0.1 0.1 [5] 0.097 0.097 [39]

ci 0.214 0.214 0.214 0.214 [12],[7]

gi 0.167 0.167 [20],[45] 0.181 0.26 [34]

ni 10 days 10 days 10 days 10 days [39]

ri 1/150 days 1/150 days [11],[6] 1/150 days 1/150 days

The ratio of mosquitoes to humans m was not directly calculated for the wet and dry conditions.
Instead, the value ma was measured in various field studies by estimating the average number of
bites on a human per night. The proportion of bites on humans out of all bites from the vector
species was divided by the average time between blood meals to calculate a, the human biting rate.
By knowing ma and a, we calculated m.

The difference in ma between wet and dry conditions was not directly found for the high transmis-
sion scenario; however, field studies have shown that the biting rate on humans in the wet season
is tenfold that of the dry season [50]; we assumed ma for the dry season was 1/10 that of the wet
season, and determined m from the resultant ma value.

For each of our four baseline parameter sets, we calculated the basic reproductive number for an
isolated patch with those parameter values (see Table 3).
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Table 3: R0 for the four scenarios

High transmission Low transmission

Wet 187.15 7.03

Dry 3.80 0.70

These four parameter sets were used to describe the within-patch malaria transmission parameters
in our two-patch model. Using the four parameter sets and the analytic expressions derived for R01

and R02, we calculated and used these isolated-patch reproductive number estimates as a baseline to
compare the global R0 value to in different parameterizations of the two-patch model. We present
results for three scenarios: in the first two scenarios patch one is high transmission and patch two
is low transmission. In the first scenario, both patches have dry conditions. In the second scenario,
both patches experience wet conditions. Finally, both patches are identical low transmission, dry
condition patches in the third scenario.

4.2 Effect of Migration on R0

We first calculated the global R0 according to Equation (5), with each patch using parameters from
one of the parameter sets in Table 2. We varied k12 and k21 to examine the patterns of global R0

with varying migration rates. Assuming for simplicity that R01 > R02, from section 2.3, we know

that min(R0) = max

{

R01

1+
κ
r1

, R02

}

for (k12, k21) ∈ [0,∞) × [0, κ), and max(R0) = R01. Using this

fact about the maximum and minimum values of R0 along with our estimates of the isolated-patch
reproductive numbers under the four patch characteristics identified in Table 3 (High-Wet, High-
Dry, Low-Wet, Low-Dry), we can determine what the range of R0 will be with migration under
each scenario.

Numerical simulation of the global R0 (Figure 2) as a function of the migration rates suggests that
if the migration terms k12, k21 are zero, the global R0 is equal to R01 (assuming R01 > R02). For
k21 > 0, as k12 increases, the global R0 gets closer to the value of R01. This is likely because as k12
increases, a higher proportion of individuals expose themselves to the transmission characteristics
of patch 1, causing that patch to contribute more to the global R0. Similarly, as k21 increases, the
global R0 becomes closer to the minimum R0 value, R02. These numerical findings are in agreement
with the proof of Theorem 2.3.1. So, if patch 2 has R02 < 1, but R01 > 1 and k12 >> k21, more
people will be exposed to the transmission characteristics of patch 1 than of patch 2, making it
more likely that the disease will persist in both patches. The opposite is also true; if many more
individuals are moving into patch 2 than patch 1 (k21 >> k12), the disease is likely to go extinct,
since more people are exposed to the transmission characteristics of the low transmission patch
than to those of the high transmission patch.
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Figure 2: R0 plotted as a function of the migration rates k21 and k12. The top and bottom planes
represent R01 and R02, respectively. In this graph, patch 1 is a high transmission patch, patch two
is a low transmission patch, and conditions are dry in both patches (R01 = 3.80, R02 = .70).

As shown in section 2.3, if the two patches have R0i > 1, then the disease always persists. For
example, suppose both patches are in the rainy season but patch one is a high-transmission patch
and patch two is a low transmission patch so that R01 = 187.15 and R02 = 7.03. Then, we know
that 7.03 ≤ R0 ≤ 187.15. Thus, it is clear in this scenario that no matter what the rate of migration
is between the two patches, the disease will persist. Our numerical simulations of scenarios where
both isolated patch reproduction numbers are greater than one (Figure 3) suggest that migration
causes the system to reach equilibrium sooner than if the two patches were isolated. Note that
in each model simulation, we set the initial patch population sizes equal to the equilibrium patch
population sizes so that each patch’s population remains constant over time; that is Ni(t) = N∗

i

for all time t > 0.

If the two patches have R0i < 1, then the disease always goes to extinction. This scenario is
illustrated in Figure 4 with two low-transmission, dry-condition patches with the same isolated
patch reproduction numbers, R01 = R02 = 0.70. Without migration, the dynamics within each
patch are identical. Under the influence of human movement the disease still goes extinct in both
patches, however, the number of cases decreases more sharply in patch 1, since migration into this
patch is five times faster than migration into patch 2.

If both patches are dry with patch 1 being the high-transmission patch and patch 2 the low-
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Figure 3: Number of infected individuals in two wet condition patches. Patch 1 is high transmission
(R01 = 187.15), patch 2 is low transmission (R02=7.03). (a) Patches are isolated, (b) patches
are connected via human movement with migration rates k12 = .001, k21 = .005, resulting in
R0 = 113.66.
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Figure 4: Number of infected individuals in two low transmission, dry condition patches (R01 =
R02 = 0.70). (a) Patches are isolated, (b) patches are connected via human movement with
migration rates k12 = .001, k21 = .005, resulting in R0 = 0.70.

transmission patch, then R01 = 3.80 and R02 = 0.7021. The continuity of R0 with respect to the
migration parameters indicates that there exists a rate κ such that min(R0) > 1 for all (k12, k21) ∈
[0,∞) × [0, κ). In fact, if κ < r1(R01 − 1), then R0 > 1 for all (k12, k21) ∈ [0,∞) × [0, κ). Since
r1 = 1/150, R0 > 1 if (k12, k21) ∈ [0,∞) × [0, 0.0187). This example illustrates that although the
disease would become extinct in patch 2 if the two patches were isolated, the presence of sufficiently
slow migration from patch 1 to patch 2 in our two-patch model allows the disease to persist in both
patches. This result is also demonstrated in Figure 5, which plots the number of infected humans
over time for this High-Dry/Low-Dry scenario. Subfigure 5(a) shows that if the two patches are
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isolated, the disease dies out in patch 2 but persists in patch 1. However, if the two patches are
connected by human movement (as in subfigure 5(b)), although the prevalence of malaria in patch
1 at steady state decreases, there is now persistence of the disease in both patches and the total
prevalence is higher than when the patches are isolated. Conversely, Figure 6 illustrates how simply
changing the migration rates so that k21 >> k12 can bring the reproduction number below one,
resulting in eventual extinction of the disease in both patches.
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Figure 5: Number of infected individuals in two dry condition patches. Patch 1 is high transmission
(R01 = 3.80), patch 2 is low transmission (R02=0.70). (a) Patches are isolated, (b) patches are
connected via human movement with migration rates k12 = .001, k21 = .005, resulting in R0 = 2.35.
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Figure 6: Number of infected individuals in two dry condition patches. Patch conditions are
identical to those in Figure 5 with the exception of the migration rates. Patch 1 is high transmission
(R01 = 3.80), patch 2 is low transmission (R02=0.70). Patches are connected via human movement
with migration rates k12 = .0001, k21 = .02, resulting in R0 = 0.99.
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4.3 Effect of Migration on Elasticity

The elasticity of the global R0 to most of a particular patch’s parameters is entirely dependent
upon two factors: the difference in the parameter values between the two patches, and migration.
Similar to the effect of migration on R0, the faster the movement from patch j to patch i is (in
other words, the larger kij is), the more influence the parameters in patch i have on the system. For
example, if a parameter, such as biting rate, has the same value in both patches, then the relative
size of the migration rates and the relative values of R01 and R02 determine whether the basic
reproductive number is more elastic to the parameter associated with patch 1 or the parameter
associated with patch 2. On the other hand, if biting rate a1 > a2, (k12 = k21), and (R01 = R01),
then the elasticity of R0 to a1 is larger than the elasticity of R0 to a2.

If a1 > a2, then if k21 is chosen appropriately and satisfies the inequality k21 > k12 and R01

and R02 are not very different in value, then the elasticities related to these two parameters may
become equal, or the elasticity of R0 to a1 may become smaller than the elasticity of R0 to a2.
In other words, whether control measures should target patch 1 or patch 2 depends on the rate of
human movement between the patches. In section 3.2, we proved that εp1 + εp2 is constant and
equal to the elasticities in the isolated-patch case for pi = mi, bi, ci, and ai. This result, which we
demonstrate via numerical simulation in Figure 7(b), suggests that it may be possible to divide
resources, such as insecticide treated bed nets, between two connected patches in such a way that
the control measures are as efficient as if the two patches were a single homogeneous patch. Still,
numerical simulations are needed to identify which patch should be the primary target for malaria
control.

Intuitively, we might choose to always target the higher transmission patch, however our numerical
simulations indicate that this is not always the best strategy for reducing malaria transmission.
Figure 7 illustrates, using the dry season parameterizations, how the elasticity of R0 with respect
to the model parameters changes for different rates of migration between a high transmission patch
and a low transmission patch. In this example, k12 = .001 and the elasticities are plotted as a
function of k21. For this High-Dry/Low-Dry scenario, if k21 is close to zero (i.e. no migration into
patch 2), then any resources used to control malaria in the second patch will essentially be wasted.
In particular, when k21 is small, R0 is most elastic to mosquito death rate in patch 1 (g1). As k21 is
increased, R0 becomes less sensitive to g1 and eventually reaches a point where R0 is equally elastic
to g1 and to g2. Hence, at this intermediate k21 (approximately k21 = .04), resources targeting
mosquito death rate should be evenly divided between the two patches. If k21 increases further, R0

is most sensitive to mosquito death rate in patch 2 (g2). The elasticities with respect to parameters
in patch 1 approach zero as k21 increases, suggesting that if migration into patch 2 is very fast,
resources used for control in patch 1 will be wasted.

Because R0 will be less than one for large enough k21 in the high-dry/low-dry scenario, the result
that we should target the lower transmission patch when k21 exceeds a certain rate may not be
surprising in a system where R01 > 1 and R02 < 1. However, a similar result holds even when both
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Figure 7: (a) Elasticity of R0 to all parameters, with k12 = 0.001, plotted as functions of k21.
Patch 1 is a high transmission, dry conditions patch (R01 = 3.80); patch 2 is a low transmission,
dry conditions patch (R02 = 0.70). Blue lines are elasticities with respect to patch 1 parameters;
red lines are elasticities with respect to patch 2 parameters. (b) Sum of the elasticities εp1 and εp2
for each parameter p.

isolated-patch reproductive numbers are greater than one. Suppose, for example, that patch 1 has
low-wet transmission characteristics and patch 2 has high-dry transmission characteristics so that
R01 > R02 > 1. The elasticities of R0 to the model parameters are plotted in Figure 8. As with the
previous example where R01 > 1 > R02, if migration into patch 2 is slow, control measures should
target mosquito death rate in patch 1. However, if the migration rate k21 exceeds a certain value
(approximately k21 = .007), control efforts should target the patch with the lower reproductive
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number (patch 2).
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Figure 8: Elasticity of R0 to all parameters, with k12 = 0.001, plotted as functions of k21. Patch
1 is a low transmission, wet conditions patch (R01 = 7.03); patch 2 is a high transmission, dry
conditions patch (R02 = 3.80). Blue lines are elasticities with respect to patch 1 parameters; red
lines are elasticities with respect to patch 2 parameters.

Migration rates are often difficult to estimate. However, having an idea of the relative sizes of
the migration parameters k12 and k21 might be sufficient to provide insight into where control
measures should be implemented. In general, we found that in scenarios where R01 > R02 > 1, or
when R01 > 1 > R02, control measures should target patch 2 if k21 >> k12, and patch 1 should
be targeted otherwise. Moreover, the larger k12 is, the smaller the ratio of k21 to k12 needs to be
in order for patch 2 to be the more appropriate target for malaria control. For example, if patch
1 has low transmission, wet conditions and patch 2 has high transmission, dry conditions, so that
R01 > R02 > 1, then for k12 = 0.0001, k21 must be more than 50 times greater than k12 in order
for patch 2 to be the more important target for malaria control. If k12 = 0.001, k21 need only be
roughly 6.5 times greater than k12, and if k12 = 0.01, k21 must only be twice as big as k12 to warrant
targeting patch 2. Consequently, being able to classify movement into the high transmission patch
as either ”fast” or ”slow” provides additional insight into how resources for malaria control can be
best allocated. In fact, if both migration rates are large and equal, then placing control measures
in patch 1 will only be slightly more effective at reducing transmission than targeting patch 2 in
the R01 > R02 > 1 case, whereas if both migration rates are small and equal, targeting patch 1
should yield substantially better results than targeting patch 2. While decisions regarding where to
allocate resources in the R01 > 1 > R02 case follow the same general rules as in the R01 > R02 > 1
case, the most significant qualitative difference between the two transmission scenarios occurs when
both migration rates are large and equal: unlike with the R01 > R02 > 1 case, patch 1 is a much
better target for control than patch 2. We summarize these “rules of thumb” for where to target

24



control measures in Tables 4 and 5.

Table 4: Target patch for malaria control in the R01 > R02 > 1 case

ratio k12 slow k12 fast
k21
k12

>> 1 patch 2 patch 2
k21
k12

= 1 patch 1 patch 1 slightly better target
k21
k12

<< 1 patch 1 patch 1

Table 5: Target patch for malaria control in the R01 > 1 > R02 case

ratio k12 slow k12 fast
k21
k12

>> 1 patch 2 patch 2
k21
k12

= 1 patch 1 patch 1
k21
k12

<< 1 patch 1 patch 1

5 Elasticity Analysis of Endemic Equilibrium

The elasticity analysis of the basic reproduction number provided insight into appropriate malaria
interventions for reducing transmission intensity. We now turn to the study of the endemic equilib-
rium to determine whether the goal of reducing malaria prevalence requires a qualitatively different
approach to malaria control.

Consider our equilibrium equation dIi
dt

= αiβiIi
βiIi+giNi

(Ni − Ii)− (ri + kji)Ii + kijIj = 0.

Multiplying throughout by βiIi + giNi yields

fi(I1, I2) := αiβiIi(Ni − Ii)− (ri + kji)Ii(βiIi + giNi) + kijIj(βiIi + giNi) = 0. (29)

We find the elasticity of the endemic equilibrium by differentiating system (29) implicitly, first with
respect to the parameters αi, βi, ri, gi. From these elasticities, we can derive the elasticities for
mi and ai since αi = miaibie

−gini and βi = aici. Implicit differentiation of f1(I
∗
1 , I

∗
2 ) = 0 and

f2(I
∗
1 , I

∗
2 ) = 0 with respect to a parameter p1 leads to the following system of two equations:

A1

∂I∗1
∂p1

+B1

∂I∗2
∂p1

+ Cp1 = 0 (30)

B2

∂I∗1
∂p1

+A2

∂I∗2
∂p1

= 0
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where

Ai = αiβi(N
∗
i − 2I∗i )− (ri + kji)(2βiI

∗
i + giN

∗
i ) + kijβiI

∗
j

Bi = kij(βiI
∗
i + giN

∗
i )

and

Cα1
= β1I

∗
1 (N

∗
1 − I∗1 )

Cβ1
= α1I

∗
1 (N

∗
1 − I∗1 ) + k12I

∗
1I

∗
2 − I∗

2

1 (r1 + k21)

Cr1 = −I∗1 (β1I
∗
1 + g1N

∗
1 )

Cg1 = −n1α1β1I
∗
1 (N

∗
1 − I∗1 )− (r1 + k21)I

∗
1N

∗
1 + k12I

∗
2N

∗
1

Proposition 5.0.1 A1A2 −B1B2 6= 0. Furthermore, A1A2 −B1B2 > 0.

Proof.

From system (30), we have that

(A1A2 −B1B2)
∂I∗1
∂p1

+ Cp1A2 = 0. (31)

Observe that fi(I1, I2) = AiIi+hi, where hi := αiβiI
2
i +(ri+kji)βiI

2
i +kijIjgiNi is strictly positive.

Thus, f(I∗1 , I
∗
2 ) = 0 and h∗i , I

∗
i > 0 imply that Ai < 0.

Hence, equation (31) implies that A1A2 − B1B2 and
∂I∗

1

∂p1
are nonzero as long as Cp1 6= 0. Clearly

Cα1
> 0 and Cr1 < 0. We must verify that Cβ1

and Cg1 are also nonzero.

Note that fi(I
∗
1 , I

∗
2 ) = 0 implies

(ri + kji)I
∗
i − kijI

∗
j =

αiβiI
∗
i

βiI∗i + giN∗
i

(N∗
i − I∗i ) > 0. (32)

Using equation (32), we find that

Cβ1
= α1I

∗
1 (N

∗
1 − I∗1 )

(

1− β1I
∗
1

β1I∗1 + g1N∗
1

)

> 0

Cg1 = −n1α1β1I
∗
1 (N

∗
1 − I∗1 )− ((r1 + k21)I

∗
1 − k12I

∗
2 )N

∗
1 < 0.

So, Cp1A2 6= 0 implies A1A2 −B1B2 and
∂I∗

1

∂p1
are nonzero.

Now, A1A2 − B1B2 nonzero and continuous in all parameters implies that it must have a definite
sign: either strictly positive or strictly negative. Consider k12 = k21 = 0. Then A1A2 − B1B2 =
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A1A2 > 0 implies that A1A2 − B1B2 is strictly positive for all positive disease-related parameters
and for all nonnegative migration rates k12, k21.

Solving system (30) for the sensitivities ∂I∗1/∂p1 and ∂I∗2/∂p1 with p1 = α1, β1, r1, g1, we have

∂I∗1
∂p1

= − Cp1A2

A1A2 −B1B2

(33)

∂I∗2
∂p1

=
Cp1B2

A1A2 −B1B2

(34)

We obtained analogous equations for the sensitivities with respect to patch 2 parameters. The

elasticity of I∗i with respect to a parameter pj is E i
pj

=
pj
I∗
i

∂I∗i
∂pj

for i, j ∈ {1, 2}. Moreover, the

elasticity of the total malaria prevalence (I∗ = I∗1 + I∗2 ) with respect to parameter pi is given

by Epi =
I∗
1

I∗
1
+I∗

2

E1
pi
+

I∗
2

I∗
1
+I∗

2

E2
pi
. From our analytic expressions, we can determine the sign of each

elasticity. As we would expect, elasticities with respect to parameters m,a, b, c are positive and
elasticities with respect to parameters r, g, and n are negative.

To visualize the elasticities, we first solve for the endemic equilibrium (I∗1 , I
∗
2 ) numerically for a

range of migration rates. Next, we substitute these values into our analytic expressions for the
elasticities and, as we did for the elasticities of R0, we plot the endemic equilibrium elasticities (in
absolute value) as a function of k21, with k12 = 0.001 fixed (see Figure 9).

Figure 9(a) illustrates the elasticities of the endemic equilibrium in the High-Dry/Low-Dry setting,
plotted for the range of migration rates for which the endemic equilibrium exists. For k21 ≥ 0.028,
R0 < 1, and hence the disease-free equilibrium is the only equilibrium.

Figure 9 reveals that studying the endemic equilibrium yields results that are qualitatively similar to
those obtained in our study of R0. In particular, the within patch rankings of elasticities for a given
transmission setting are essentially the same in the analysis of R0 and the analysis of the endemic
equilibrium (EE). In the High-Dry/Low-Dry setting (R01 > 1 > R02), the ordering of both the R0

elasticities (Figure 7(a)) and the EE elasticities (Figure 9(a)) is |Eg1 | > |En1
| > Ea1 > Ep1 for patch

1 parameters and |Eg2 | > Ea2 > |En2
| > Ep2 for patch 2 parameters. We do not include |Er2 | in this

ordering because the position this elasticity takes in the ranking changes as the migration rate k21
changes. In the Low-Wet/High-Dry setting (R01 > R02 > 1), the elasticities of the EE (Figure 9(b))
also retain the same ordering as the elasticities of R0 (Figure 4.3): |Eg1 | > Ea1 > |En1

| > Ep1 > |Er1 |
and |Eg2 | > |En2

| > Ea2 > |Er2 | > Ep2 .
The elasticities of the endemic equilibrium also retain some of the qualitative behavior as the
elasticities of R0 with respect to which patch is the better target for control. In the Low-Wet/High-
Dry setting, for very small values of k21, analysis of the EE reveals patch 1 is the better target
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Figure 9: Elasticity of endemic equilibrium to all parameters, with k12 = 0.001, plotted as functions
of k21. Blue lines are elasticities with respect to patch 1 parameters; red lines are elasticities with
respect to patch 2 parameters. (a) Patch 1 is a high transmission, dry conditions patch (R01 = 3.80);
patch 2 is a low transmission, dry conditions patch (R02 = 0.70). Note that for k21 ≥ 0.028, R0 < 1.
(b) Patch 1 is a low transmission, wet conditions patch (R01 = 7.03); patch 2 is a high transmission,
dry conditions patch (R02 = 3.80).

for control; beyond a certain migration rate, patch 2 becomes the better target. Similarly, patch
1 is the best target for control in the High-Dry/Low-Dry setting. However, since the endemic
equilibrium only exists for a constrained set of migration rates k21, there is no migration rate for
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which patch 2 becomes the better target for control under this parameterization. Perhaps if R02

were larger, but still less than one, we might see that patch 2 does become a better target for
control before the global reproduction number falls below one.

The differences between the analysis of the endemic equilibrium and the reproduction number are
quantitative in nature. The most striking difference is the value of k21 for which we should switch
from targeting patch 1 to targeting patch 2. This switch in strategy occurs for much smaller values
of the migration rate k21 in our study of the EE than in our study of R0. This indicates that
determining an appropriate intervention strategy will depend, in part, on whether the goal is to
reduce transmission potential or whether the goal is to reduce the overall prevalence of malaria.
The qualitative similarities of within-patch elasticities, on the other hand, suggest that the best
type of intervention (bed nets, treatment, insecticides, etc.) will be the same with either goal in
mind.

6 Conclusion

Simple malaria models, such as the Ross-Macdonald model, that assume populations are isolated
and homogeneous have made a large contribution to the area of malaria research over the last
several decades. However, the diversity inherent to this disease requires models that incorporate
heterogeneity so that they may provide greater insight into how we should approach malaria control.
Our study of a two-patch malaria model suggests that using intuition to guide decision making in
malaria control may not be sufficient. For example, targeting regions with the highest transmission
rates may not be the most effective use of resources if they are strongly connected to lower trans-
mission regions via emigration. Furthermore, using single-patch models to estimate parameters
relevant to malaria dynamics and malaria control, such as the basic reproduction number, may
provide an inaccurate assessment of transmission potential in a region. This discrepancy became
clear in our exploration of the scenario where R01 > 1 > R02. The two-patch malaria model indi-
cates that human movement can result in the persistence of malaria in regions where malaria would
die out if isolated, whereas a single-patch malaria model would inaccurately predict extinction of
malaria in such situations.

Our results are similar to those found by Cosner, et al [13], as our results also show that human
movement can cause malaria to be endemic in an area with a reproduction number below 1. How-
ever, unlike Cosner’s two-patch malaria model with Lagrangian movement, it is not possible for
malaria to persist in our model if both regions have an isolated reproduction number below one.
Whereas Cosner’s exploration of a two-patch system assumes zero transmission in one patch, our
results allow for an additional level of resolution. Because we assume each patch is capable of
supporting malaria transmission, we are able to compare the elasticity of the global R0 to reduc-
tions in transmission in both the high and low transmission patches. This allowed us to investigate
how implementing control measures in different, but connected, regions impacts the overall level of
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transmission.

The results from our elasticity analysis of the two-patch model R0 are also fundamentally different
from elasticity analyses performed on single-patch malaria models. This is especially true for the
parameters 1/g and n, which represent the mosquito lifespan and the extrinsic incubation period;
many other models that have assessed elasticities did not include the extrinsic incubation period,
and consequently reported biting rate a to be the most important parameter to target [9]. In all four
of our parameter sets, the average lifespan of a mosquito was shorter than the extrinsic incubation
period. From our elasticity analysis, this implied that R0 was more sensitive to mosquito death
rate than to biting rate in all scenarios. We expect this relationship between mosquito lifespan
and extrinsic incubation period to be true in the field under situations where less than half of the
mosquito population that gets infected actually becomes infectious [38]. This is not uncommon,
as average daily survivorship of female mosquitoes ranges from .95 [38] to .68 [45], yielding a
probability of becoming infectious from 60% to under 2%, respectively, given a 10 day extrinsic
period [56].

These results suggest that using multi-patch malaria models can help inform intervention strategy
usage in areas of heterogeneous malaria transmission connected by human movement. For example,
in Hispaniola, while conventional wisdom may suggest that resources should be focused on Haiti,
which has higher malaria transmission, our results suggest this is not necessarily the case; efficient
application of intervention strategies will depend also on human movement patterns between the
two countries.

Comparing the endemic equilibrium elasticity results to the R0 elasticity results suggests that it
may be necessary to develop different control strategies depending on whether the goal is to reduce
the transmission potential, or whether the goal is to reduce disease prevalence in a malaria endemic
setting. Once a goal is established, knowledge about human migration rates will be essential to
identifying an effective control strategy that makes efficient use of available resources.

Although this exploration of malaria dynamics and malaria control in the context of a two-patch
model is still an oversimplification of reality, it highlights the need for more complex mathematical
models incorporating both spatial heterogeneity and human movement to guide public health of-
ficials in the process of making decisions that will make the best use of the limited resources they
have. Our study also stresses the importance of collecting malaria prevalence data and human
movement data in malaria endemic regions so that these more sophisticated models can provide
reasonable, region-specific answers about how to best allocate resources.
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