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Abstract

Vector-borne diseases provide unique challenges to public health because the
epidemiology is so closely tied to external environmental factors such as climate,
landscape, and population migration, as well as the complicated biology of vector-
transmitted pathogens. In particular, this close link between the epidemiology,
the environment, and pathogen biology means that the traditional view that many
vector-borne diseases are relatively stable in numerous regions does not provide a
complete picture of their complexity. In fact, several regions exist with low levels
of endemicity most of the time, punctuated by severe, often explosive, epidemics.
These regions are considered unstable transmission settings. Ordinary differential
equation (ODE) models have thus far dominated the study of vector-borne disease
and have provided considerable insight into our understanding of transmission and
effective control in stable transmission settings. To address the short-comings of
autonomous ODE models, we present a class of models, differential-delay equation
(DDE) models, that have the potential to better describe unstable endemic set-
tings for vector-borne disease. These models develop naturally out of the biology
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of diseases transmitted by vectors because of the extrinsic and intrinsic incuba-
tion periods and vector maturation process necessary for successful transmission
of vector-transmitted pathogens. In this chapter, we introduce five examples of
vector-borne diseases that span the globe, and discuss the clinical implications of
unstable transmission of these diseases. Next, we present the original ODE ver-
sion of the Ross-Macdonald model for vector-borne diseases, modify this model by
introducing different types of naturally occurring delays, then illustrate how these
models can exhibit more complex behavior such as oscillations via Hopf bifurcation
and chaos via period-doubling, that the ODE model cannot produce. Finally, we
explore the possibility for delay-models to contribute to our understanding of un-
stable transmission settings, which in turn will inform the development of effective
control strategies for these epidemic-prone regions.

Keywords: vector-borne diseases, malaria, mathematical models, delay-differential
equations, reproduction number, unstable dynamics, oscillations, chaos.

AMS Subject Classification: 92D30, 92D40

1 Introduction

During the late 19th century, it was discovered that mosquitoes are capable of transmit-

ting diseases. Since then, arthropods have been identified as responsible for the spread

of many other diseases. Although discovering this transmission mechanism led to new

insights into how to better control these vector-borne diseases, more than one hundred

years later, vector-borne diseases continue to pose a significant burden worldwide [16].

The development of vector resistance to insecticides, changes in public health programs,

climate change, changes in agricultural practices, the increased mobility of humans, and

urban growth are all factors that contribute to the difficulty in controlling and eliminat-

ing vector-borne diseases. To further complicate matters, vector-borne diseases typically

occur in developing countries with limited resources and access to health care. Because

controlled epidemiological experiments are usually not possible, mathematical models

have played an important role in developing a better understanding for how to mitigate

the burden of these diseases. This chapter presents several examples of important vector-

borne diseases, illustrating the diversity in this class of infectious diseases and conse-

quently the need for mathematical models to address this diversity. We then discuss the

difference between stable and unstable transmission settings and the implications these

different settings have for public health. In Section 2, we introduce the Ross-Macdonald

model for vector-borne diseases and consider several modifications of this model by intro-

ducing different types of delays relevant to the biology of vector-borne diseases. Finally,

we discuss the contribution that these delay-differential equation models can make to

better understanding unstable vector-borne disease transmission settings.
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1.1 The Diversity of Vector-Borne Diseases

The formulation of mathematical models should take into consideration the epidemi-

ology of each vector-borne disease. Some important vector-borne diseases that remain

prevalent today include malaria, dengue, Chagas disease, leishmaniasis, and St. Louis en-

cephalitis. Dengue, Chagas disease, and leishmaniasis are included in the World Health

Organizations list of neglected tropical diseases [51]. These five diseases are caused by

different types of pathogens, are transmitted by different vectors, have different clinical

manifestations, result in different levels of immunity, and have different geographical

distributions. To add to this complexity, while a disease may be endemic in one re-

gion, the same disease can exhibit an epidemic pattern of transmission in another re-

gion. Understanding how to model unstable transmission as well as stable transmission

of vector-borne diseases is important because of the different implications that these

unique transmission settings have for public health.

1.1.1 Malaria

Malaria, a disease transmitted between Anopheles mosquitoes and mammals, is con-

sidered the most important vector-borne disease [16], causing an estimated 190 - 311

million clinical episodes, and 708,000 - 1,003,000 deaths in 2008 worldwide [3]. Malaria

is responsible for the fifth greatest number of deaths due to infectious diseases and is the

second leading cause of death in Africa behind HIV/AIDS [3]. Four Plasmodium parasite

species are responsible for malaria infection in humans: Plasmodium falciparum, Plas-

modium vivax, Plasmodium ovale, and Plasmodium malariae. Of these, P. falciparum

causes the most severe clinical symptoms and is responsible for the greatest number of

deaths due to malaria infection. However, recent severe clinical cases of P. vivax malaria

have started to change the perception that vivax malaria is relatively benign [23]. In fact,

cases of P. vivax monoinfection have been reported with clinical manifestations similar

to those of severe infection with P. falciparum malaria. These severe manifestations

include cerebral malaria, anemia, respiratory distress syndrome, and acute renal failure

[23]. The widespread distribution of P. vivax, causing roughly 100-300 million clinical

cases each year, is cause for concern [23]. In regions with endemic malaria, the number

of clinical cases can place a significant burden on the social and economic welfare of that

population [29], even if mortality rates are fairly low. People living in regions with mod-

erate P. vivax endemicity experience 10 to 30 or more episodes of malaria throughout

their childhood and working life, each episode resulting in about 5 to 15 days absent

from work or school. Consequently, malaria, which typically afflicts poor, developing

countries, continues the cycle of poverty by hampering the education and productivity

of those at risk [29].
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1.1.2 Leishmaniasis

In contrast to malaria infection in humans, which is caused by four Plasmodium species

and transmitted by mosquitoes, leishmaniasis, another dangerous vector-borne disease,

is caused by over 20 leishmanial parasite species and is transmitted by roughly 30 dif-

ferent species of sandflies. The clinical manifestations of leishmaniases can be divided

into four categories: cutaneous leishmaniasis, muco-cutaneous leishmaniasis, visceral

leishmaniasis (VL) or kala-azar, and post-kala-azar dermal leishmaniasis (PKDL). Cu-

taneous leishmaniasis is characterized by ulcers or nodules in the skin that eventually

heal spontaneously, but slowly, causing disfiguring scars. According to the World Health

Organization, there are roughly 1.5 million new cases of cutaneous leishmaniasis each

year [53]. Several months or years after an initial episode of cutaneous leishmania-

sis, some patients suffer from more severe ulcers that do not spontaneously heal [4]

and can partially or completely destroy the mucous membranes of the nose, mouth,

throat cavities, and surrounding tissues [55]. This more severe clinical manifestation

is called muco-cutaneous leishmaniasis [4, 55]. The most dangerous manifestation of

leishmaniasis is visceral leishmaniasis, which is fatal if untreated [4]. As with malaria,

visceral leishmaniasis primarily affects those in less developed countries and the burden

on these countries is great, with approximately 500,000 new cases arising each year,

90% of which occur in only 5 countries: India, Bangladesh, Nepal, Sudan, and north-

eastern Brazil [19]. 50% of visceral leishmaniasis cases occur in India, Bangladesh, and

Nepal alone [33]. Treatments for VL exist but are expensive and impractical because

treatment either requires a long hospitalization for proper administration of intravenous

treatment, or because patients must self-treat with an oral drug and adhere to that

treatment for four weeks [33]. Another concern is that monotherapies increase selective

pressure, leading to parasite resistance [33]. Olliaro et al. [33] estimated that the 2006

average household cost of an episode of VL in India is US$209 - an enormous expense

considering the median household income was US$49 per month. Even when treatment

is administered, treated visceral leishmaniasis cases are sometimes followed (0-6 months

post-treatment in Sudan and 6 months-3 years post-treatment in India) by PKDL [4].

PKDL is characterized by highly infectious nodular lesions on the skin. These parasite-

containing lesions act as a reservoir for anthroponotic (vector-to-human) VL between

epidemics [4]. While the global distribution of visceral leishmaniasis is not as expansive

as the distribution of malaria, it places second (behind malaria) for the highest mor-

tality caused by parasitic disease, resulting in more than 50,000 deaths each year, and

subsequently placing an unfortunate strain on the health and well-being of the people

in a few developing countries.

1.1.3 Chagas disease

Chagas disease is another parasitic infection caused by the protozoan Trypanosoma cruzi

[39]. This vector-borne disease is transmitted by the reduviid bugs of the subfamily Tri-
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atominae to humans and over 150 species of domestic animals and wild animals [39].

T. cruzi is an enzootic disease, which only leads to infection in humans if the vector

has adapted to human dwellings. The T. cruzi parasites reside in the feces of infected

reduviid bugs. When one of these bugs takes a blood-meal from a human, it defecates on

the host, allowing infected fecal matter to enter the host through the mucosa of the eye,

nose, or mouth [38]. Transmission of Chagas disease can also occur through blood trans-

fusion and vertically from mother to child [39, 38]. Unlike malaria and leishmaniasis,

roughly 10% of all Chagas cases are a result of transfusions and is the primary transmis-

sion mechanism in urban areas [38, 39]. 5000 to 18,000 cases per year are congenitally

transmitted, and occasionally cases are a result of the consumption of contaminated

food [38, 39]. Most cases of Chagas disease occur in Latin America, where T. cruzi

is endemic. However, more recently, the immigration of people from Latin America to

the US, Canada, parts of Europe and the western Pacific, has led to an increase in the

number of cases in these non-endemic regions [39]. Chagas disease manifests in different

stages. The initial phase lasts 4 to 8 weeks and is often asymptomatic. If symptoms do

occur, the onset is roughly 1 to 2 weeks after acquiring the infection vectorially. Other

transmission mechanisms have different incubation periods. During this acute phase, the

T. cruzi parasite along with the host’s immunoinflammatory response can cause tissue

and organ damage. 5-10% of vectorially infected patients with acute symptoms do not

survive the acute phase. However, in 90% of infected individuals, the acute phase will

end spontaneously, even without treatment, and approximately 30-40% of those indi-

viduals will develop a chronic form of the disease usually 10-30 years later presenting as

cardiac, digestive, or cardiodigestive disease. This chronic phase, called the determinate

form of chronic disease, lasts for the remainder of the patient’s life and can be fatal if

the patient develops Chagas heart disease. The remaining 60-70% who recover from the

acute phase but never develop clinical symptoms thereafter, have the intermediate form

of chronic Chagas disease. These individuals have developed the antibodies against T.

cruzi, but show none of the ailments characteristic of the determinate form. Although

progress has been made to control Chagas disease in Latin America, the various mech-

anisms of transmission compounded with human movement continues to place several

countries, including non-endemic areas, at risk [39].

1.1.4 Dengue

Not all vector-borne diseases are caused by protozoan parasites. Dengue and dengue

hemorrhagic fever (DHF), a complication of Dengue, are examples of tropical vector-

borne diseases caused by four serotypes (DEN-1, DEN-2, DEN-3, DEN-4) of the dengue

virus [15]. The principal vector of dengue virus is the Aedes aegypti mosquito [15]. This

mosquito prefers taking blood-meals from humans and typically bites during the day.

Because of the A. aegypti mosquito’s preference for biting humans [15] and its ability to

breed in containers holding rainwater (such as tires and cisterns) [50], it is considered
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a predominantly urban vector. In 1981, the America’s experienced its first major DHF

outbreak resulting from importation of a new strain of DEN-2 from Southeast Asia,

and by 1995, DHF spread to 14 countries in the Americas, several of which experienced

endemic DHF [15]. The geographic distribution of dengue continues to grow, resulting

in roughly 50 million dengue cases worldwide each year [50], spanning more than 100

countries [18]. One of the difficulties posed by dengue is the circulation of the 4 different

serotypes, which do not confer immunity to one another. Consequently, an individual

may become infected up to 4 times during his/her lifetime [15]. Furthermore, a secondary

dengue infection can increase the likelihood of developing DHF, a potentially lethal

complication of dengue [17].

1.1.5 St. Louis encephalitis

St. Louis encephalitis (SLE) is another example of a vector-borne disease caused by

a virus. Unlike malaria, leishmaniasis, Chagas disease, and dengue, the St. Louis en-

cephalitis virus (SLEV) is endemic to North America [11]. The first known SLE epidemic

occurred in 1933 and there have been at least 41 SLE outbreaks in North America since

spanning from as far south as Tampa, Florida, to as north as Toronto, Canada. Dif-

ferent species of Culex mosquito are responsible for transmission in different regions of

the US and southern Canada. SLEV is an enzootic disease, requiring transmission be-

tween vertebrate hosts (usually wild birds) and mosquitoes, before it becomes prevalent

enough in the mosquito population to spill-over to humans. This pre-epidemic period

where the number of SLEV-infected mosquitoes increases dramatically is referred to as

amplification. This amplification period might coincide with seasons when there are

a lot of nestling birds that are more susceptible to infection and more vulnerable to

being bitten. Some nestling birds also have higher-titer viremias and remain infectious

longer because of their less-developed immune systems. Symptoms of SLE infection in

humans, which are most common in people over age 59, include sustained fever above

100◦F, altered consciousness, or neurologic disfunction. Most infections, however, are

asymptomatic. SLE epidemics do not occur yearly, but may last for months at a time,

interfering with the economy of the affected region as well as the daily lives of the peo-

ple. Unfortunately, outbreaks of SLE are difficult to predict. The right combination

of SLEV in the environment, climatic conditions for adequate mosquito breeding and

shortening of the extrinsic incubation period, and sufficient amplification hosts such as

nestling birds is necessary for spillover to the human population to occur. Some stud-

ies indicate that freezes prime south Florida for SLE epidemics [11]. Another study

using a hydrodynamic model to predict mosquito abundance and SLEV transmission

dynamics in Florida suggests that drought can facilitate the amplification of SLEV, and

consequently the spillover to humans [44].

While the burden of epidemics in North America caused by SLEV is small relative

to the burden tropical vector-borne diseases place on developing countries, the complex
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interactions leading to these outbreaks makes the disease very unpredictable, and con-

sequently a system to better predict the occurrence of outbreaks is of interest [11]. This

disease also highlights that North America, while better equipped to handle epidemics,

is not immune to the problems caused by vector-borne diseases that developing coun-

tries are all too familiar with. To a lesser degree, vector-borne diseases can burden the

health-care system and hinder a state’s economy as they do in the developing world,

meaning that constant surveillance is still necessary even in developed countries.

1.2 Stable versus Unstable Transmission and their relative im-
pact on Public Health

Malaria provides an ideal backdrop for understanding the differences between stable

and unstable transmission settings and the implications each has for public health. In

many countries, malaria transmission is stable, with perhaps some peaks and valleys

in prevalence throughout the year as a result of seasonality. However, within these

countries, some regions may provide less than ideal conditions for the transmission of

malaria, and hence experience relatively low prevalences of the disease. These low-

endemicity regions are called “unstable” if long periods of low prevalence are disrupted

by epidemics [22].

In regions with stable malaria, the likelihood of acquiring multiple infections is higher

than in regions with unstable malaria. As a result, many individuals become clinically

immune to malaria in stable transmission regions [22, 14]. In these regions, children

are the age-group at greatest risk for symptomatic malaria since they lack sufficient

exposures to malaria to acquire clinical immunity. In contrast, individuals of all ages

in unstable transmission settings do not have the immune response that adults acquire

in stable transmission regions [22, 14]. Unfortunately, this lack of acquired clinical

immunity can result in violent outbreaks of malaria when conditions in the region change

to favor disease transmission [22]. In fact, case fatality rates are up to 10 times greater

during an epidemic in an unstable transmission region than in a stable region for the

most part because the clinical manifestations of the disease are much more severe in

individuals who have not developed immunity. Transmission intensity is negatively

correlated with the severity of disease in children. Children are still at greatest risk in

unstable regions as they are in stable regions, however when severe malaria does occur

in slightly older individuals (8-15 year-olds), these patients are more likely to develop

cerebral malaria. The lack of acquired immunity in epidemic-prone areas results in a

more even distribution of clinical cases across age groups [22].

Public health facilities in regions with unstable malaria are not prepared for the surge

in cases during epidemics. Instead, these facilities tend to adapt to a patient load typical

of an inter-epidemic period when transmission is fairly low. Once an outbreak erupts,

the patient load strains the capacity of health facilities and depletes health facilities of

the resources necessary to properly care for the clinically ill. The combination of low-
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immunity to malaria in patients and inadequate care creates a recipe for high mortality

rates during epidemics in regions with unstable malaria. Overwhelmed health care

facilities also result in underreporting of cases, and subsequently the true burden of

these outbreaks in unstable transmission regions is unknown [22].

Epidemics of leishmaniasis, Chagas, dengue, and St. Louis encephalitis also occur.

The mechanisms that are thought to stimulate these outbreaks are similar for these

different diseases. Migrations of people from non-endemic regions to endemic regions

often result in outbreaks of malaria because lack of exposure to malaria in these in-

dividuals makes them highly susceptible to clinical manifestations of the disease [22].

Similarly, movement of non-immune individuals in southern Sudan as a consequence of

civil war contributed to a series of devastating epidemics of visceral leishmaniasis from

1984 to 1994 [43]. Changes in the environment that enhance transmission potential,

such as changes in climate and landscape, as well as the pullback of control programs

and increased vector and pathogen resistance, can also prime a region for malaria epi-

demics [22]. The same mechanisms produce epidemics in several other vector-borne

diseases, including those discussed here with the possible exception of Chagas disease

[16]. Microepidemics of Chagas disease are thought to be due to orally transmitted

Chagas resulting from contaminated food [38]. Population growth and unplanned ur-

banization have also contributed to epidemic disease as humans continue to encroach

on environments where vector-borne diseases are more readily transmitted [16, 18, 21].

While each vector-borne disease confers different immunities in their hosts, it is likely

that outbreaks of these diseases pose a similar burden on public health systems to that

of epidemic malaria in unstable transmission regions. Consequently, finding means to

better understand various vector-borne diseases in unstable settings is an important

issue.

Autonomous ordinary differential equations are frequently used for endemic vector-

borne diseases, however, other types of differential equation models may be more appro-

priate for modeling disease in unstable transmission settings. In particular, incorporat-

ing delays which occur naturally in vector-borne diseases by expressing the problem as a

system of delay-differential equations (DDEs) can result in solutions to the system that

exhibit sustained or transient oscillations, as well as more complicated chaotic behavior.

Mathematicians have included seasonality in ordinary differential equation models for

disease to reflect intra-annual fluctuations that are common in diseases spread by vec-

tors. However, case data for malaria indicates that transmission can show inter-annual

fluctuations with a relatively stable period, suggesting that there may be an intrin-

sic mechanism driving these oscillations. In the following section, we present a simple

model for vector-borne disease transmission and extend this model to include different

delays that arise naturally in vector-borne disease transmission and give rise to complex

dynamics.
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2 Models of Vector-Borne Diseases with Delays

Ordinary differential equation (ODE) models of vector-borne diseases have a long his-

tory. Following his discovery in the late 19th century that female Anopheles mosquitoes

are the vector responsible for malaria transmission [28], Ronald Ross developed the first

model of malaria in 1911 [40]. This model was later improved on by G. Macdonald in

the 1950s. Ever since, the Ross-Macdonald type models have been successfully used to

guide health officials in choosing and implementing control strategies to restrict the im-

pact of many vector-borne diseases. Analysis of the Ross-Macdonald model for malaria

transmission suggested that imagicides would be a more effective means of vector con-

trol than larvicides [24], the vector population does not need to be exterminated but

simply reduced below a key threshold, and a multi-faceted approach to malaria control

would be more effective than any single type of intervention [28]. People began to build

upon the original Ross-Macdonald model, introducing additional complexities such as

human immunity. Such a model was developed and confronted with data in the Garki

project in Nigeria [28], a project devoted to understanding the epidemiology of malaria

and determining effective control interventions in West Africa [31]. Just as introducing

human immunity into the Ross-Macdonald model was a natural extension in the Garki

project, incorporating delays is another intuitive way to extend the original model. In

the following section, we first introduce a simple Ross-Macdonald type ODE model of

a vector-borne disease without immunity. We reduce the model to a classical two equa-

tion model. Then, we consider several modifications of the vector-borne ODE models by

introducing delay into them. Although the epidemiology of each vector-borne disease is

unique, the models presented in the following section provide a framework that captures

the features common across many vector-borne diseases as well as a framework from

which we can build models tailored to a particular disease.

2.1 ODE Models of Vector-Borne Diseases

Transmission in vector-borne diseases involves at least two species, the vector and the

host, as we saw in our five examples. Since most vectors once infected do not recover,

the simplest model for the vector is an SI model. Let us denote the susceptible vectors

by Sv and the infected vectors by Iv. A susceptible vector becomes infected upon biting

an infected human IH with a biting rate a and probability of transmission of the disease

given by p. The dynamical system that describes the vector is given by the following

differential equations:
S ′

v = Λv − paSvIH − νSv

I ′

v = paSvIH − νIv
(2.1)

Here, Λv is the birth rate of the vectors, and µ is the death rate of the vectors. Since the

vectors, such as the mosquito, usually have a very short life-cycle, demography should be

included. The total vector population size Nv = Sv + Iv is then given by the constrained
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logistic equation N ′

v = Λv − µNv whose solution can be obtained in explicit form. Since

Nv(t) is essentially a given function of t, we may express the number of susceptible

vectors in terms of infected vectors Sv = Nv − Iv and replace it in the second equation

of system (2.1), thus reducing the two-dimensional vector system to one equation

I ′

v = pa(Nv(t) − Iv)IH − µIv (2.2)

Now, we turn to the system for the humans. Although humans usually recover from

an infection, for most vector-borne diseases recovery is not permanent and the recovered

individual can become re-infected. As a starting point, we model the transmission of a

vector-borne disease in humans with an SIS model. Some of the vector-borne diseases,

such as chikungunya, occur as outbreaks, and in this case, omitting births and deaths

for humans is acceptable. Other vector-borne diseases, such as malaria, are endemic and

inclusion of demography in the human portion of the model is necessary. We begin with

the simplest host model – an SIS model without demography. However, involving host’s

demography will result in the same limiting system that we will study, so we lose no

generality by assuming that there is no demography in the host population. Susceptible

hosts in class SH become infected when bitten by an infectious vector. If we assume that

infected vectors bite at the same rate as susceptible vectors, namely a, with q denoting

the probability of transmission, then the model takes the form.

S ′

H = −qaSHIv + αIH

I ′

H = qaSHIv − αIH
(2.3)

where α is the recovery rate. The total host population size NH is constant. We can

reduce the host system by replacing the susceptible hosts SH with SH = NH − IH in the

second equation. The system above (2.3) reduces to the following equation

I ′

H = qa(NH − IH)Iv − αIH (2.4)

The system for the infected vectors and infected humans becomes

I ′

v = pa(Nv(t) − Iv)IH − µIv

I ′

H = qa(NH − IH)Iv − αIH
(2.5)

The right-hand side of this system depends on the unknown dependent variables Iv and

IH , and the known function of time Nv(t). This makes the right-hand side explicitly

dependent on time, and the model non-autonomous. However, system (2.5) depends

on time only through the function Nv(t) which has a limit as time goes to infinity,

namely,

Nv(t) →
Λv

µv

= Nv.

Since all solutions of the original system are bounded, results on asymptotically au-

tonomous systems [48] allow us to replace system (2.5) with the following limiting sys-

tem
I ′

v = pa(Nv − Iv)IH − µIv

I ′

H = qa(NH − IH)Iv − αIH
(2.6)
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The limiting system (2.6) is an autonomous system, which is easier to work with. It

only contains as dynamic variables the number of infected humans and the number of

infected mosquitos. Sometimes a rescaled version of the system is considered where the

proportions of infected humans and the proportion of infected mosquitoes are incorpo-

rated. In malaria, for instance, it is known from studies that only a small proportion of

the mosquitoes are actually infected. The fraction of infected mosquitoes varies around

1% [2].

System (2.6) has been thoroughly analyzed. To state the results on the global be-

havior we define the reproduction number of the vector-borne disease. Transmission of

vector-borne diseases involves two transmission cycles, namely host to vector and vec-

tor to host, and each of these transmission processes may be characterized by its own

disease reproduction number. These two numbers may be combined to form a single

dimensionless number that indicates whether or not, and to some extent how seriously,

the vector-host system is open to invasion by the parasite. The Kermack-McKendrick-

Macdonald approach places one infected human in a population of susceptible vectors;

this will result in RH secondary infected vectors. Similarly, placing one infected vector

in a population of susceptible humans, will produce RM infected humans, where

RH =
paNH

α
, RM =

qaNv

µ
.

To connect these definitions to the mathematical expressions for RH and RM , consider

the incidence term in the equation for the vectors pa(Nv −Iv)IH which gives the number

of secondary infections of vectors IH infected hosts will produce per unit of time. Then,

one infected host will produce paNv infected vectors in an entirely susceptible vector

population per unit of time. One infected host is infectious for 1/α time units, hence

we obtain RH . Similar reasoning leads to the expression for RM . To account for the

secondary host infections that one infected host will produce, we notice that one infected

host will produce RH infected vectors, each of which will produce RM infected hosts,

giving

R0 = RHRM

secondary host infections. This expression gives the classical reproduction number of

vector-borne diseases. The reproduction numbers of some of the vector-borne diseases

with human host are given in Table 1. These reproduction numbers are defined as the

number of secondary infections that one infected individual will produce in an entirely

susceptible population.

The model (2.6) has two equilibria: a disease free equilibrium E0 = (0, 0), and an

endemic equilibrium, E∗ = (I∗

v , I∗

H) where

I∗

H = NH

R0 − 1
paNH

µ
+ R0

, I∗

v = Nv

R0 − 1
qaNv

α
+ R0

. (2.7)
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Table 1: Vector-borne diseases and their reproduction numbers

Disease R0 Region Years References

Malaria 1-3000 Africa - [46]
Dengue 2.0-3.09 Colima, Mexico 2002 [7]
Dengue 8.0 Bandung, Indonesia 2003-2007 [47]
Chagas disease 1.25 Brazil 2006 [26]
Yellow Fever 2.38-3.59 New Orleans 1878 [10]
Chikungunya 0.35-2.3 Reunion Island 2005-2006 [12]
CCHFa 2.18 - - [27]
TBEb 1.58 - - [27]

a Crimean-Congo hemorrhagic fever (CCHF)
b Tick-borne encephalitis (TBE)

From these expressions it is clear that the endemic equilibrium exists and is positive if

and only if R0 > 1. Furthermore, it can be established that the disease-free equilibrium

is globally asymptotically stable if R0 < 1 and unstable if R0 > 1. In addition, the

endemic equilibrium is locally and globally stable, whenever it exists. This means that all

solutions that start from positive initial conditions converge to the endemic equilibrium.

2.2 Models of Vector-Borne Diseases with Delays

Delay differential equations differ from ordinary differential equations in that the deriva-

tive at any time depends on the solution at prior times. The simplest constant delay

equations have the form

x′(t) = F (t, x(t), x(t − τ1), x(t − τ2), . . . , x(t − τk))

where the time delays τj are positive constants. Additional information is required to

specify a system of delay differential equations. Because the derivative in the equation

above depends on the solution at the previous time t − τj , it is necessary to provide

an initial history function, or a vector of functions, to specify the value of the solution

before time t = 0.

Interest in such systems arises when traditional pointwise modeling assumptions are

replaced by dependence of the rate of change on the prior population numbers.

As mentioned in the introduction, delays occur naturally in vector-borne diseases be-

cause steps in the development of the vector and the pathogen take a significant amount

of time, particularly compared to the lifespan of the vector. This makes delay differential

equations a natural choice for modeling vector-borne diseases. Three typical time delays

have so far been incorporated in mathematical models of vector-borne diseases. These

are:
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2.2.1 Delays related to the extrinsic incubation period

When the pathogen enters the body of the vector, some time elapses before the vector

becomes infectious. This time period is called the extrinsic incubation period. In-

clusion of the extrinsic incubation period in the dynamics of the vector is particularly

important as the length of that period is often of duration comparable to the mean lifes-

pan of the vector. For instance, the extrinsic incubation period of Plasmodium species

that cause malaria is about two weeks, while on average, a female mosquito is known to

live anywhere between 15 to 100 days. These incubation periods tend to be shorter at

higher temperatures and longer at lower temperatures for several pathogens, including

Plasmodium parasites, dengue viruses, and the St. Louis encephalitis virus [41, 35]. The

fact that vectors may or may not survive the extrinsic incubation period affects signifi-

cantly the dynamics of the infectious disease. This makes imperative the inclusion of the

extrinsic incubation period as a delay in the vector-host epidemic models. Furthermore,

delay models of this type include the probability that the vector survives the extrinsic

incubation period.

To incorporate the delay caused by the extrinsic incubation period, we modify equa-

tions (2.6). We include the delay in the incidence term, as well as the probability that

the vector survives that delay. The vectors that become infectious at time t were in-

fected at time t− τ where τ is the delay induced by the extrinsic incubation period. In

practical terms τ is, in fact, given by the length of the extrinsic period. For instance,

in malaria, since the length of the extrinsic incubation period is about two weeks, then

τ ≈ 0.5 months. The number of vectors becoming infectious is given by the number of

vectors infected t − τ units ago: pa(Nv − Iv(t − τ))IH(t − τ) discounted by the prob-

ability of survival of the vector, given by e−µτ . Including the probability of survival of

the vector is important. In malaria, for instance, only 40% of the vectors survive the

intrinsic incubation period [9], even in optimal environmental conditions.

With the inclusion of the delay corresponding to the extrinsic incubation period,

model (2.6) becomes:

I ′

v = pae−µτ (Nv − Iv(t − τ))IH(t − τ) − µIv

I ′

H = qa(NH − IH)Iv − αIH
(2.8)

The first equation in the system above is a differential-delay equation where the unknown

functions depend on the delay. In order to solve the system above, we need to know

Iv(θ) and IH(θ) for θ ∈ [−τ, 0].

2.2.2 Delays related to the intrinsic incubation period

Besides the incubation period in the vector, vector-borne pathogens also have an incuba-

tion period within the host. This incubation period is called the intrinsic incubation

period. Although the intrinsic incubation period is much shorter relative to the host

lifespan, it is often customary to include it as a delay in the vector-host model. For
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instance, the intrinsic incubation period of malaria is 6 to 25 days, while the average

lifespan of humans is roughly 70 years. Although the probability that the host sur-

vives the intrinsic incubation period is very large, this probability is still included in

vector-borne disease models.

To incorporate the delay caused by the intrinsic incubation period, we modify again

equations (2.6). We include the delay in the incidence term, as well as the probability

the host survives that delay. Hosts that become infectious at time t were infected at

time t− τ , where τ is the delay induced by the intrinsic incubation period. The number

of those becoming infectious is given by the number of those infected t − τ units ago:

qa(NH − IH(t − τ))Iv(t − τ), discounted by the probability of survival of the host as

infectious, given by e−ατ .

The model (2.6), modified by incorporating delay within the host, becomes:

I ′

v = pa(Nv − Iv)IH − µIv

I ′

H = qae−ατ (NH − IH(t − τ))Iv(t − τ) − αIH
(2.9)

The second equation in the system above is a differential-delay equation where the

unknown functions depend on the delay. We need to know Iv(θ) and IH(θ) where

θ ∈ [−τ, 0] in order to solve the system above.

Inclusion of delay in response to the intrinsic incubation period is of less importance

as the host has a relatively high probability of surviving the incubation period once

infected, and subsequently becoming infectious. For this reason, models as the one

above are typically not considered. However, models that involve two delays, one to

include the extrinsic incubation period, and another to include the intrinsic incubation

period, are of particular interest. We include here the Ross-Macdonald model with two

delays, introduced by [41]. If τ1 > 0 is the delay caused by the extrinsic incubation period

and τ2 is the delay caused by the intrinsic incubation period, then the combination of

model (2.8) and model (2.9) results in the following differential-delay model with two

delays:
I ′

v = pae−µτ1(Nv − Iv(t − τ1))IH(t − τ1) − µIv

I ′

H = qae−ατ2(NH − IH(t − τ2))Iv(t − τ2) − αIH
(2.10)

The above model was considered by Ruan et al. [41] who established the following

results. The reproduction number of the model (2.10) is given by

R0 =
pqa2NvNHe−µτ1e−ατ2

µα
,

which can also be interpreted as the product of the human and vector reproduction

numbers. When R0 < 1, then the system has a unique disease-free equilibrium E0 =

(0, 0) which is locally stable. If R0 > 1, then the system also has an endemic equilibrium

R∗ = (I∗

v , I∗

H) and the disease-free equilibrium is unstable. Furthermore, when τ1 = 0,

there exists τ ∗

2 such that the endemic equilibrium is locally asymptotically stable for

τ2 ∈ [0, τ ∗

2 ). Finally, for τ2 ∈ [0, τ ∗

2 ) there exists τ ∗

1 (τ ∗

2 ) such that the endemic equilibrium
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is locally asymptotically stable for τ1 ∈ [0, τ ∗

1 ) and τ2 ∈ [0, τ ∗

2 ). Ruan et al. do not

consider the special but important case when the extrinsic incubation period is taken

into account (τ1 6= 0) while the intrinsic incubation period is not (τ2 = 0).

It is important to note that delay equations can be simulated just as the ordinary

differential equations using computer algebra systems such as MATLAB, Mathematica

and others. In particular, using such computer systems delay differential equations can

be fitted to data – both prevalence and incidence data. When fitted to human incidence

data, the human incidence term qae−ατ2(NH − IH(t − τ2))Iv(t − τ2) has to be fitted to

the given data at time t.

2.2.3 Delays related to the maturation period of the vector

The last source of delays in vector-borne models comes from the adaptive maturation

delays of the vector. Many vectors, which are arthropods, undergo several life stages

before they reach adulthood and are able to transmit the disease. For instance, a

mosquito’s life-cycle consists of three successive juvenile phases (egg, larva, pupa) before

reaching the adult phase. It usually takes about 1-2 weeks before mosquitoes mature to

adulthood, a time frame which is large relative to the average lifespan of the mosquito.

To account for this delay, delay-differential equation models with delay in recruitment

are composed. Such models have been previously considered by Fan et al. [13] in

the discussion of the impact on dynamics of the mosquito-borne pathogen West Nile

Virus, and by Ngwa et al. [32] in the discussion of a model, focused on the vector,

with maturation delays. Prolonged developmental times are also experienced by other

vectors, such as triatomines (Triatominae, Reduviidae), the vectors of Chagas disease

[30].

To develop a vector-borne disease model with maturation delays, we need to use a

baseline ODE model that incorporates recruitment of the vector. Hence, model (2.6) is

not appropriate. We need to go back to model (2.1). Development of juvenile stages

of vectors is density dependent and it is best modeled through a Ricker’s type function

as a recruitment rate into the population of adult vectors. If we denote the maturation

delay by τ , then the total number of vectors that produce offsprings at time t − τ is

NV (t − τ). Suppose dv is the death rate of juvenile vectors. Then, the probability of a

juvenile vector surviving the juvenile stages and becoming an adult is e−dvτ . The Ricker

density dependent model assumes that the per capita birth rate declines exponentially

with population size, so a term of the form e−ρNv(t−τ) is included, where 1/ρ is the size of

the vector population at which progeny production is maximized for a given total adult

population size. Finally, r is the maximum per capita per unit of time vector progeny

production rate. We replace the constant recruitment rate of the vector in model (2.1)

with the recruitment rate rNV (t− τ)e−ρNv(t−τ)e−dvτ . The model with maturation delay
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of the vector becomes

S ′

v = rNV (t − τ)e−ρNv(t−τ)e−dvτ − paSvIH − νSv

I ′

v = paSvIH − νIv

S ′

H = −qaSHIv + αIH

I ′

H = qaSHIv − αIH

(2.11)

The total population size of the vector in this model is given by the following delay-

differential equation:

N ′

v = rNV (t − τ)e−ρNv(t−τ)e−dvτ − νNv. (2.12)

The equation for the total vector population size (2.12) has been completely analyzed

[8], and oscillations in that model have been found. Because the total population size

of the vector is not necessarily asymptotically constant, the equation for the susceptible

vectors cannot be eliminated from the above model. However, since the total population

size for the human host remains constant, the susceptible human host population can

still be removed.

3 Unstable Dynamics of Vector-Borne Diseases and

Delay Differential Equation Models

Vector-borne diseases exhibit different patterns of occurrence. Parasitic and bacterial

diseases, such as malaria and Lyme disease, tend to produce a high disease incidence that

is not typically confounded with major epidemics. An exception to this rule is plague,

a bacterial disease that does cause outbreaks. In contrast, many vector viral diseases,

such as Yellow fever, dengue, Japanese encephalitis, and chikungunya commonly cause

major epidemics.

3.1 Unstable Dynamics of Vector-Borne Diseases: Malaria as

a Case Study

Even though the dynamics of malaria, one of the most prominent and deadly vector-

borne diseases, is typically stable and persistent, exceptions to this observation exist as

we illustrated in section 1.2. These exceptions have serious implications for modeling,

response, and control of malaria. Unstable dynamics of malaria can occur in two distinct

regimes:

1. relatively low baseline prevalence with occasional major outbreaks;

2. nearly oscillatory behavior where high prevalence follows low prevalence in consec-

utive years.
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Figure 1: Number of malaria cases in Egypt for the years 1990-2003. The data exhibit
background oscillatory dynamics with an outbreak in 1994. Data taken from [52].

The disease dynamics of several countries, including Botswana, Egypt, Iraq, Kyrgyzstan

and Turkmenistan, have exhibited the first type of instability since 1990. The case of

Egypt is illustrated in Figure 1 where a major outbreak occurred in 1994 and resulted in

nearly 10 times the usual number of cases. Brazil, and particularly Haiti in the period

1990-2000, are examples of the second type of dynamics where the malaria prevalence

oscillates between high and low with a relatively stable median. The number of cases in

Haiti is given in Figure 2.

Major outbreaks or epidemics of malaria occur primarily in regions where the overall

transmissibility of the disease is low. The unstable nature of malaria in such regions,

and of other vector-borne diseases, present serious clinical threat to the populations of

the affected areas. Inter-epidemic periods of very low transmissibility, particularly when

long, allow for the immunity in the population to wane. Thus, during an outbreak or epi-

demic, young children are at higher risk of contracting malaria, while older children and

adults are much more vulnerable to serious complications of the disease compared with

stable transmission settings. The randomness of the outbreaks has a serious detrimental

impact on the ability to predict, prepare for, and control the outbreak. Consequently,

the outbreaks present a burden to the health care system of epidemic-prone countries.

Nearly oscillatory behavior, although more predictable, requires significant flexibility

and adaptability of the response network. Similar difficulties arise in the control of

malaria in such areas. The reasons for the inter-annual cycles of malaria, exhibited in

such areas, are not completely understood, which complicates the efficient control of the

disease in years of higher prevalence.
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Figure 2: Number of P. falciparum cases in Haiti for the years 1990-2001. The data
exhibit clear oscillatory dynamics. Data taken from [54].

3.2 Capturing Oscillatory Dynamics and Chaos with Delay
Models

Traditionally, vector borne diseases have been modeled by ordinary differential equa-

tions. The delays introduced by the incubation and maturation periods can be included

in ODE models by incorporating additional stages in the model. For instance, the incu-

bation periods can be modeled via exposed compartments in the vector and/or the host

systems. Such models have been considered in [6]. However, these compartmental ODE

systems are only an adequate modeling tool when the disease exhibits stable dynamics

as they typically predict convergence to an equilibrium. Ordinary differential equations

in general display a low potential for complex dynamics. Oscillatory dynamics in ODEs

occurs in two or higher dimensional systems. Chaos can only be obtained from three

or higher dimensional systems. Yet, even high dimensional ODE models tend to have

globally stable equilibria. In contrast, delay-differential equations can exhibit complex

dynamics – oscillations and chaos – even in one dimensional models. Moreover, delay-

differential models of vector-borne diseases, unlike their ODE counterparts, are capable

of showing such complex dynamics. This makes them a better modeling tool for unstably

transmitted vector-borne diseases. The idea that vector-borne disease models with delay

can model oscillatory dynamics is not new. Several articles suggest that delay models

of vector-borne diseases can exhibit oscillatory behavior. Wei et al. consider a model

of a vector-borne disease with permanent immunity and delay. They show that the

endemic equilibrium can be destabilized via Hopf bifurcation. More recently Saker [42]

established the presence of Hopf bifurcation in the vector-host model with two delays

(2.10). Other authors have also found oscillations in delay-differential equation models

of vector-borne diseases [20, 36, 49].
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In what follows we show that delay equations, even a simple single delay equation,

are capable of displaying oscillations and chaos. To obtain this single equation, we begin

from the delay model with two delays (2.10). The single delay equation that we derive

is suitable to model malaria, and other vector borne diseases, where the extrinsic and

intrinsic incubation periods are nearly equal in duration.

3.2.1 Reducing the Delay Model to a Single Equation

Biologists often use various methods to reduce the dimension of a system describing

vector-borne disease. The newly obtained system does not necessarily have the same

dynamical behavior as the original one but it is still useful in obtaining initial insights

into the disease dynamics.

Justification for the reduction in dimension is typically based on the assumption

that the lifespan of the vector is much shorter than the duration of infectiousness of the

humans, that is, we assume that µ >> α and this leads to much faster equilibration of the

dynamics of the vector population compared with the host population. This assumption

is common for vector- borne diseases transmitted by mosquitoes, such as malaria [5].

Furthermore, we assume that the intrinsic incubation period is approximately equal to

the extrinsic incubation period, that is τ1 = τ2 = τ . This is certainly the case in malaria

where the incubation period in the humans typically lasts between 10 days and four

weeks. The extrinsic period is often temperature-dependent but lasts 10-18 days. If we

assume that the two incubation periods are the same, the model with two delays (2.10)

becomes:
I ′

v = pae−µτ (Nv − Iv(t − τ))IH(t − τ) − µIv

I ′

H = qae−ατ (NH − IH(t − τ))Iv(t − τ) − αIH
(3.1)

Furthermore, since the vector dynamics has reached equilibrium, we have I ′

v = 0. At

equilibrium, the population numbers at time t and t − τ are approximately the same.

Hence, from the first equation we have

Iv(t − τ) =
pae−µτNvIH(t − τ)

pae−µτIH(t − τ) + µ
.

Substituting Iv in the second equation, we obtain the following single delay equation for

the dynamics of the humans:

I ′

H =
pa2qe−ατe−µτNvIH(t − τ)

pae−µτIH(t − τ) + µ
(NH − IH(t − τ)) − αIH (3.2)

It is helpful to normalize this equation by setting x = IH/NH. The equation for the

proportion of humans infected becomes:

x′ =
pa2qme−ατe−µτx(t − τ)

pae−µτx(t − τ) + µ
(1 − x(t − τ)) − αx(t) (3.3)
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where m = Nv/NH is the ratio of the number of vectors to the number of humans and

aNH has been replaced again by a.

Delay equations, just like ODEs, have equilibria. The value x∗ is an equilibrium of

model (3.3) if it satisfies the equation

pa2qme−ατe−µτx∗

pae−µτx∗ + µ
(1 − x∗) − αx∗ = 0. (3.4)

This equation clearly has the solution x∗ = 0 which gives the disease-free equilibrium.

To investigate the stability of the disease-free equilibrium, we linearize the equation. We

look for a solution x(t) = x∗+y(t) where y(t) is the perturbation around the equilibrium,

and x∗ = 0. This means that we have to replace x with y and linearize the nonlinear

term. Notice that

1

pae−µτx(t − τ) + µ
=

1

µ(pa/µe−µτy(t − τ) + 1)
≈

1

µ

[

1 − pa/µe−µτy(t − τ)
]

.

Hence, the linearization around the disease-free equilibrium is given by:

y′ =
pa2qme−ατe−µτy(t− τ)

µ
− αy(t).

Because we now have a linear system, we look for a solution of the form y(t) = ȳeλt,

and subsequently obtain the following characteristic equation

λ + α =
pa2qme−ατe−µτe−λτ

µ
.

The above equation is a transcendental equation, that is an equation containing a

transcendental function of λ, namely eλτ . λ can be a real or complex variable. If we

think of λ as a real variable, the left-hand side of the above equation is an increasing

linear function of λ while the right-hand side is a decreasing function of λ. This equation

always has a unique real solution which is positive if and only if R0 > 1 where we define

the reproduction number R0 to be

R0 =
pa2qme−ατe−µτ

µα
. (3.5)

So if R0 > 1, the disease-free equilibrium is unstable. If R0 < 1, the unique real

eigenvalue is negative. We show that all other eigenvalues, which are complex, have

negative real parts. Assume we have an eigenvalue λ = b + ci, where i is the imaginary

unit, that has a nonnegative real part, that is b ≥ 0. Then |λ + α| =
√

(b + α)2 + c2 ≥
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b + α ≥ α. At the same time

∣

∣

∣

∣

pa2qme−ατe−µτe−λτ

µ

∣

∣

∣

∣

=
pa2qme−ατe−µτ |e−λτ |

µ

=
pa2qme−ατe−µτe−bτ

µ

≤
pa2qme−ατe−µτ

µ

(3.6)

which contradicts the fact that R0 < 1, that is α > pa2qme−ατ e−µτ

µ
. Hence, because all the

eigenvalues have negative real parts, the disease-free equilibrium is locally asymptotically

stable if R0 < 1. We note that if R0 = 1, then λ = 0 is an eigenvalue and we cannot use

this argument to make conclusions. We consider again the equation for the equilibria.

Canceling x∗, the non-trivial endemic equilibria satisfy the equation

pa2qme−ατe−µτ

pae−µτx∗ + µ
(1 − x∗) − α = 0. (3.7)

Multiplying by the denominator, we obtain a linear equation in x∗ which can be solved

to give the unique endemic equilibrium.

x∗ =
R0 − 1

pa/µe−µτ + R0

. (3.8)

It is clear from this expression that the endemic equilibrium exists and is positive if

and only if R0 > 1. To investigate the stability of the endemic equilibrium, we linearize

around it. Set x(t) = x∗+y(t), where y(t) is the perturbation of the endemic equilibrium.

The perturbation y can take positive and negative values. Furthermore, to simplify the

notation, we will denote Q = pa2qme−ατe−µτ and P = pae−µτ . Substituting in the delay

equation (3.3) we obtain the following equation for the perturbation

y′(t) =
Q(x∗ + y(t− τ))

P (x∗ + y(t− τ)) + µ
[1 − x∗ − y(t − τ)] − α(x∗ + y(t)). (3.9)

Taking into account the equation for the equilibrium

Qx∗(1 − x∗)

Px∗ + µ
= αx∗ (3.10)

and linearizing as in the case of the disease-free equilibrium, we obtain the following

equation for the perturbation y:

y′(t) =
Q(1 − x∗)y(t− τ)

Px∗ + µ
−

Qx∗

Px∗ + µ

[

P (1 − x∗)y(t − τ)

Px∗ + µ
+ y(t− τ)

]

− αy(t). (3.11)
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This equation can be simplified as follows:

y′(t) =
Q(1 − x∗)y(t − τ)

Px∗ + µ

[

1 −
Px∗

Px∗ + µ

]

−
Qx∗y(t− τ)

Px∗ + µ
− αy(t). (3.12)

Using the equation for the equilibrium (3.10) and the fact that R0 = Q/(αµ), we obtain

the following simplified linearized equation

y′(t) =
αµ

Px∗ + µ
(1 −R0x

∗)y(t − τ) − αy(t). (3.13)

Looking for the exponential solution y(t) = ȳeλt, we obtain the following characteristic

equation

λ + α =
αµ

Px∗ + µ
(1 −R0x

∗)e−λτ . (3.14)

If R0x
∗ < 1, the coefficient in front of the term e−λτ is positive and smaller than α, which

corresponds to the case when R0 < 1 in the characteristic equation for the disease-free

equilibrium. A similar argument can show that all roots of the equation (3.14) have

negative real parts, and the endemic equilibrium is locally asymptotically stable. We

summarize these results in the following Theorem:

Theorem 1 If R0 < 1 the differential delay equation (3.3) has only the disease-free

equilibrium x∗ = 0 which is locally asymptotically stable. If R0 > 1 the differential

delay equation (3.3) has the disease-free equilibrium and a unique endemic equilibrium

x∗. If R0 > 1 the disease-free equilibrium is unstable. The endemic equilibrium is locally

asymptotically stable, if in addition R0x
∗ < 1.

This Theorem suggests a rather curious conclusion – the endemic equilibrium is stable

if x∗ < 1/R0. Since the reproduction number of malaria R0 is often large, then the

equilibrium is stable if the fraction of infected individuals is rather small. This suggests

that in countries, like Egypt, where the year to year prevalence is typically very low,

outbreaks such as the one that occurred in 1994 may not be possible to capture with

this simple single-equation model of malaria and may be a result of stochastic events.

3.2.2 Oscillations and Chaos in the Delay Differential Equation

If R0x
∗ > 1, then the coefficient on the right-hand side of the characteristic equation

(3.14) is negative, and the equation can have as principal eigenvalues (eigenvalues with

the largest real part) a pair of complex conjugate eigenvalues. However, as a parameter

changes, this pair of principal eigenvalues may cross the imaginary axis giving rise to

a stable oscillatory solution. At the same time, the principal eigenvalues start having

positive real part and the endemic equilibrium becomes unstable. This process that

gives rise to a stable oscillatory solution is called Hopf bifurcation. The result is valid

for ODEs and delay-differential equations. For differential delay equations, it is given in

the Hopf bifurcation Theorem below:
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Theorem 2 Consider the differential delay equation

x′(t) = F (x(t), x(t − τ1), . . . , x(t − τn−1), µ) (3.15)

where µ is a parameter. If:

a. F is analytic in x and µ in a neighborhood of (0, 0) in ℜn × ℜ.

b. F (0, µ) = 0 for µ in an open interval containing 0, and x(t) = 0 is an isolated

stationary solution of (3.15).

c. The characteristic equation of (3.15) has a pair of complex conjugate eigenvalues λ

and λ̄ such that λ(µ) = b(µ) + iω(µ) where ω(0) = ω0 > 0, b(0) = 0 and b′(0) 6= 0.

d. The remaining eigenvalues of the characteristic equation have strictly negative real

parts.

Then, the differential delay equation (3.15) has a family of Hopf periodic solutions.

One can apply Theorem 2 to show rigorously that Hopf bifurcation occurs in equation

(3.3). Instead, we will build a specific numerical example of such an oscillatory solution.

To find sustained oscillations in equation (3.3), we need to find values of the parameters

for which such oscillations occur. We begin from the characteristic equation (3.14),

which we simplify further, and write as

λ + α = ρe−λτ (3.16)

where ρ = αµ

Px∗+µ
(1−R0x

∗). We recall that we have assumed that ρ < 0. Let λ = b+ iω.

We separate the real and the imaginary part:

b + α = ρe−bτ cos[ωτ ]
ω = ρe−bτ sin[ωτ ].

(3.17)

Now we ask the question: Can we find parameters α > 0 and ρ < 0 such that the system

above has positive solution b > 0 and ω > 0? We solve in terms of α and ρ

α = −b + ω cot[ωτ ]
ρ = ωebτ csc[ωτ ].

(3.18)

As we have seen earlier, some of the parameters that have physical meaning can be

pre-estimated, or at least reasonable biological ranges can be determined for them. In

the equations above, we assume values for b and τ and interpret α and ρ as functions of

ω. Using a computer algebra system we can make a parametric plot of α and ρ in the

(α, ρ)-plane. This plot is shown in Figure 3.

We pick a value for ω, say ω = 5.2. From system (3.18) we obtain the values

α = 2.74768 and ρ = −5.94514. The value of α corresponds to an infectious period
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Figure 3: Parametric plot of α and ρ in the (α, ρ)-plane as given by equations (3.18).
The values of b and τ are taken as follow: b = 0.01, τ = 1. The value of τ which is
equal to one year is rather high for Plasmodium falciparum malaria. The plot is made
for 4.5 ≤ ω ≤ 6.

of 1/2.74768 = 0.3639 years which is a reasonable duration for Plasmodium falciparum

malaria. Now we have to assume values for the remaining parameters, so that the

combined value of ρ is as given. We assume the value µ = 12, which gives a vector

lifespan of one month. This duration is a realistic estimate for a mosquito’s lifespan.

Furthermore, we have to find Q and P so that the following system holds

Q(1 − x∗)

Px∗ + µ
= α

µα(1 −R0x
∗)

Px∗ + µ
= ρ.

(3.19)

Dividing these two equations we have

R0(1 − x∗)

1 −R0x∗
=

α

ρ
.

From here, assuming a value of R0x
∗, we can compute R0 as

R0 = R0x
∗ +

α

ρ
(1 −R0x

∗).

If we take R0x
∗ = 5, then R0 = 6.84869. From here we can compute x∗ = 0.73.

Finally, Q = R0αµ = 225.816. From the second equation in system (3.19) we determine

P = 13.9498. With these parameters we plot the solution of equation (3.3) in Figure 4.

The trajectory in Figure 4 suggests that the endemic equilibrium is indeed unstable.

However, the trajectory is not periodic. It is aperiodic, suggesting the presence of chaos

in the model (3.3). What is chaos? There are many definitions of chaos. Perhaps the

most useful in biology is the following:



Vector-Borne Disease Models with Delay 25

10 20 30 40 50 60
tim e0.2

0.4

0.6

0.8

1.0
xH t L

Figure 4: Plot of the solution of equation (3.3) with P = pae−µτ = 13.9498, Q =
Pqame−ατ = 225.816, τ = 1, α = 2.74768, µ = 12 and initial condition x(0) = 0.73.
The resulting trajectory is aperiodic suggesting presence of chaotic behavior.

Definition 3.1 Chaos is aperiodic long-term behavior in a deterministic system that

exhibits sensitive dependence on initial conditions.

This definition has several components:

1. Aperiodic long-term behavior means that there are trajectories which do not settle

down to fixed points, periodic orbits, or quasi-periodic orbits as t → ∞. For

practical purposes we require that these aperiodic orbits are not too rare.

2. Deterministic means that the system has no random or noisy inputs.

3. Sensitive dependence on initial conditions means that nearby trajectories separate

exponentially fast.

From Figure 4 we see that the delay malaria model (3.3) has solutions that are aperiodic,

that is their trajectory does not repeat even when we run for a long time. Furthermore,

the trajectories exhibit sensitive dependence on initial data. If we start very close to the

trajectory above, the two trajectories “coincide” for a certain amount of time, called the

time horizon, after which the two trajectories completely diverge and one doesn’t look

like the other. The sensitive dependence is illustrated in Figure 5.

The existence of sensitive dependence on initial conditions in simple but chaotic

models means that we have lost the ability to make long-term predictions. We can still

make short-term predictions based on chaotic models which are valid for the duration of

the time horizon. Chaotic behavior emerges from periodic behavior through a process

called period doubling. This sequence of period doubling leading to chaos is often

demonstrated on a chaos bifurcation diagram which plots the long-term behavior of the
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Figure 5: Plot of two solutions of equation (3.3) with P = pae−µτ = 13.9498, Q =
Pqame−ατ = 225.816, τ = 1, α = 2.74768, µ = 12 and initial conditions x1(0) = 0.73
and x2(0) = 0.730001. The two close trajectories coincide for a while and then diverge
suggesting sensitive dependence on the initial conditions.

solution with respect to some parameter. Such a chaos bifurcation diagram is plotted in

Figure 6. Because chaos emerge from a periodic solution as a result of increase in the

delay parameter, this suggests that if we decrease the bifurcation parameter τ , we will

obtain a regular periodic solution. This is indeed the case. Figure 7 shows a periodic

trajectory produced with the same parameters as above and τ = 0.6.

We see that even first order deterministic delay models can exhibit chaotic behavior

and sustained oscillations. This suggests that delay-differential equation models are a

suitable tool to produce unstable, oscillatory, nearly oscillatory or chaotic dynamics in

vector-borne diseases.

3.3 Delay-Differential Equations as a Modeling Tool for Intrin-

sic Drivers of Instabilities in Vector-Borne Diseases

The main question that needs to be addressed is: How should we model malaria and

other vector-borne diseases so that we can capture the instabilities in the dynamics?

There are three possibilities that may be used to model and explain unstable outbreak

dynamics or inter-annual oscillations in malaria. These are:

1. The inter-annual cycles are driven by climate, and thus should be modeled by

external forcing dependent on rainfall, temperature and other climatic covariates.

This hypothesis has been investigated on numerous occasions and a number of

articles address the impact of El Nino oscillation, and other climatic variables on

the dynamics of malaria [37, 25, 34].
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Figure 6: Plot of the chaos bifurcation diagram with P = pae−µτ = 13.9498, Q =
Pqame−ατ = 225.816, α = 2.74768, µ = 12 and initial condition x(0) = 0.73. The delay
parameter τ is a bifurcation parameter. Long-term behavior of x is plotted on the y
axis.

2. The inter-annual cycles are generated by the intrinsic dynamics of the disease. In

this case they presumably should be obtained from autonomous differential equa-

tion models. Few studies have been carried out that investigate the possibility

that intrinsic reasons are responsible for the inter-annual oscillation and unstable

outbreak dynamics of vector-borne diseases. The relatively stable dynamics of

even multi-dimensional ODE models, and the relatively recent realization that de-

lay models have the potential to produce oscillations have obstructed more serious

studies into the possibility the unstable dynamics may be produced by autonomous

deterministic differential equation models. Here, we suggest that, if autonomous,

non-stochastic differential equation models have the potential to produce the com-

plex dynamics of vector-borne diseases in nature, these should be differential-delay

models.

3. The inter-annual cycles are a result of the joint action of climatic and internal

mechanisms. In this case, the baseline autonomous differential equation model on
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Figure 7: Plot of a periodic solution of equation (3.3) with P = pae−µτ = 13.9498, Q =
Pqame−ατ = 225.816, τ = 0.6, α = 2.74768, µ = 12 and initial condition x(0) = 0.73.

which the stochastic and/or externally forced version is built, should also be able to

produce oscillations itself. Hence, this baseline model should be a differential-delay

model, rather than an ODE model.

In a recent article Laneri et al. [25] compare the three options based on an ODE

model with external forcing and stochasticity. The results in that article suggested

that “the nonlinear dynamics of the disease itself plays a role at the seasonal, but

not the inter-annual, time scales.” The article seems to settle the question in favor of

climatic drivers, but that conclusion is reached in the absence of any understanding in the

literature regarding what particular intrinsic mechanisms could cause such an unstable,

oscillatory or chaotic dynamics. Here, we argue that delay-differential equations are a

good modeling tool on which investigation of the intrinsic mechanisms can be built.

4 Discussion

Vector-borne diseases are stable in many regions; however, a closer look reveals that

there is diversity in how these diseases manifest in different areas. The mechanisms

producing this diversity in disease dynamics are still not well understood. Seasonality in

weather is a reasonable mechanism for intra-annual fluctuations in vector-borne disease

prevalence because of the dependence of arthropod abundance on rainfall and tempera-

ture. However, it is unlikely that climate alone can explain inter-annual oscillations like

those observed in Haiti (Figure 2), particularly when the period of these oscillations ap-

pears predictable. Because delay-differential equation models are capable of producing

inter-annual oscillations, this class of deterministic models appears to be an appropri-

ate choice for exploring the mechanisms behind these less intuitive patterns in disease
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prevalence. Such exploration could lead to different insights: either intrinsic aspects of

vector-borne diseases can cause inter-annual oscillations, seasonality and intrinsic mech-

anisms may work together to produce inter-annual oscillations, or perhaps neither of

these hypotheses is supported and further research is required to find other possible

causes of these unstable disease patterns. Regardless of the outcome, it is likely that

studying delay-differential equation models for vector-borne disease will contribute to

our understanding of unstable transmission, particularly if these models are confronted

with data.

Many of the vector-borne diseases have a more complex biology than the models in-

cluded in this chapter. For instance, individuals infected with Plasmodium vivax malaria

who have been treated and have recovered from clinical symptoms may relapse [1]. Fur-

thermore, a malaria infected individual may become bitten by an infectious mosquito

and become super-infected with a different strain – a scenario modeled by the concept

of multiplicity of infection [45]. One individual can become infected by more than one

Plasmodium species (co-infection). All these scenarios have been captured by ordinary

differential equation models [5]. These ordinary differential equation models with super-

infection, co-infection and relapse can be recast to incorporate delays in the same way

discussed in this chapter, although if the different strains have different delay times, it

may not be possible to eliminate the dynamic equation for the vector. Still, the result-

ing delay-differential equations will exhibit competition and coexistence of strains in the

context of oscillatory behavior and chaos.

Ruan et al.’s [41] study of malaria transmission using a delayed Ross-Macdonald

model provided the insight that increasing the duration of either the intrinsic or extrin-

sic incubation periods would result in reducing the basic reproduction number. This

finding has important implications for the future of malaria and malaria control. Cli-

mate change, for example, could result in prolonging the extrinsic incubation period

in some regions, potentially changing the distribution of malaria, or further increasing

malaria prevalence in already endemic countries. More optimistically, it also suggests

that there is an opportunity for a different approach to malaria control. The current

control measures include larvicides, insecticides, bed nets, and treatment. However, a

less traditional approach, such as the use of drugs that prolong incubation periods, may

also be an effective means of control.

Another concern that arises from our current knowledge about delay-differential

equation models for vector-borne diseases, such as the possibility of Hopf bifurcation, is

that changes in the incubation periods may alter the dynamics of the disease, causing

a stable transmission region to become unstable, or vice versa. Consequently, under-

standing if and when these transitions are likely to occur may be very important in

determining the effects of climate change, or intervention strategies that prolong incu-

bation periods. Ruan et al. [41] also suggest that long incubation periods may play an

important role in “nonlocal” disease transmission since longer incubation periods means
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that humans and mosquitoes are more likely to travel long distances prior to becoming

infectious or symptomatic. Thus, delays in vector-borne diseases may play a critical role

in understanding the spatial spread of these diseases in addition to understanding unsta-

ble transmission. The combination of delays and human migration also could potentially

contribute to epidemic patterns of transmission.

The indirect transmission between vector and host, the vector’s and pathogen’s

climate-dependent survival, and the relationship between the pathogen’s extrinsic in-

cubation period and temperature contribute to the complexity of vector-borne diseases,

challenging our understanding of their dynamic and varied behavior in different regions

around the world. Stochastic events such as natural disasters or human migrations

further complicate and cloud the picture. Understanding the mechanisms producing

unstable transmission patterns in order to improve current control efforts seems like a

daunting task. However, history has demonstrated the utility of developing mathemati-

cal models to understand complicated phenomena such as disease transmission. Conse-

quently, we should feel encouraged that pursuing the study of delay-differential equations

in epidemiology may provide similar insight into the mechanisms driving vector-borne

disease dynamics in unstable transmission settings. A better understanding of unsta-

ble transmission will then allow public health officials to develop intervention strategies

more appropriate for these epidemic-prone regions, alleviating the burden on health fa-

cilities during outbreaks and mitigating the risk of high morbidity and mortality within

a population.
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