
Optimal vaccination and bednet maintenance for the control of

malaria in a region with naturally acquired immunity

Olivia Prosper1∗, Nick Ruktanonchai2

Maia Martcheva3

1Department of Mathematics, Dartmouth College, Hanover, NH, USA,
2Department of Biology, University of Florida, Gainesville, FL, USA,

3Department of Mathematics, University of Florida, Gainesville, FL, USA

January 22, 2014

Abstract

Following over two decades of research, the malaria vaccine candidate RTS,S has reached
the final stages of vaccine trials, demonstrating an efficacy of roughly 50% in young children.
Regions with high malaria prevalence tend to have high levels of naturally acquired immunity
(NAI) to severe malaria; NAI is caused by repeated exposure to infectious bites and results in
large asymptomatic populations. To address concerns about how these vaccines will perform
in regions with existing NAI, we developed a simple malaria model incorporating vaccination
and NAI. Typically, if the basic reproduction number (R0) for malaria is greater than unity, the
disease will persist; otherwise, the disease will become extinct. However, analysis of this model
revealed that NAI, compounded by a subpopulation with only partial protection to malaria, may
render vaccination efforts ineffective and potentially detrimental to malaria control, by increas-
ing R0 and increasing the likelihood of malaria persistence even when R0 < 1. The likelihood
of this scenario increases when non-immune infected individuals are treated disproportionately
compared with partially immune individuals – a plausible scenario since partially immune in-
dividuals are more likely to be asymptomatically infected. Consequently, we argue that active
case-detection of asymptomatic infections is a critical component of an effective malaria control
program. We then investigated optimal vaccination and bed net control programs under two
endemic settings with varying levels of naturally acquired immunity: a typical setting under
which prevalence decays when R0 < 1, and a setting in which subthreshold endemic equilibria
exist. A qualitative comparison of the optimal control results under the first setting revealed
that the optimal policy differs depending on whether the goal is to reduce total morbidity, or to
reduce clinical infections. Furthermore, this comparison dictates that control programs should
place less effort in vaccination as the level of NAI in a population, and as disease prevalence,
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increase. In the second setting, we demonstrated that the optimal policy is able to confer long-
term benefits with a ten-year control program by pushing the system into a new state where the
disease-free equilibrium becomes the attracting equilibrium. While this result suggests that one
can theoretically achieve long-term benefits with a short-term strategy, we illustrate that in this
second setting, a small environmental change, or the introduction of new cases via immigration,
places the population at high risk for a malaria epidemic.

Keywords: mathematical model, differential equations, backward bifurcation, optimal control
theory, leaky vaccines

1 Background

Due in part to the proliferation of artemisinin-resistant malaria, alternative strategies for controlling
and reducing malaria burden have received much attention. Using multiple strategies simultane-
ously has proven remarkably effective at reducing malaria burden [10], and part of the recent
reduction in malaria burden worldwide can be attributed to the integrated use of treatment and
vector control strategies [25]. Vaccination is often cited as a promising tool for augmenting these
integrated malaria control programs [20], though a malaria vaccine has yet to become available
for large-scale use. Some vaccines are nearing certification, such as the RTS,S/AS01 vaccine being
developed by GSK with a multinational consortium of government and non-governmental agencies
[1]. The vaccines in development confer immunity and reduce the likelihood of transmission and
infection through a variety of methods, and can be placed into one of three broad categories [17]:
blood-stage targeting vaccines that increase the recovery rate of infected humans, gametic-stage
targeting vaccines that reduce infectivity of humans to mosquitoes, and sporozoite-targeting vac-
cines (including RTS,S) that decrease susceptibility of humans to infection. Most malaria vaccines
in development do not confer perfect immunity for the duration of immunity, however, and can be
classified as leaky vaccines [18]. While leaky vaccines reduce an individuals infection risk, they do
not prevent transmission entirely. For RTS,S, recent trials have suggested that vaccinated individ-
uals are 40% less likely to become infected over a six month period, and are protected for roughly
two years [23]. As a result, vaccines such as RTS,S alone are unlikely to eliminate malaria from
areas with high malaria transmission. Balancing limited funding between vaccination and other
controls to most efficiently reduce malaria burden is an important policy concern, and previous
models have explored the possibility of using multiple controls concurrently [15]. Optimal control
theory has been useful in addressing similar issues [19], and can be applied to optimize an objective
(for example, reducing malaria deaths or overall malaria burden) by manipulation of controls [22],
including vaccination and bednet usage. In regions of high malaria endemicity, immunity can occur
naturally even in the absence of vaccination [16]. After an individual is exposed to malaria para-
sites repeatedly, infections no longer cause acute malaria and instead result in asymptomatic cases,
though these individuals are still able to transmit parasites to mosquitoes [21]. While multiple
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inoculations are required for this natural immunity to develop, people commonly receive enough
inoculations to develop natural immunity to malaria before age 10 in areas with very high ento-
mological inoculation rates; the exact mechanism for this phenomenon, however, remains unknown
[21, 13]. Mathematical models have previously shown that naturally acquired immunity affects
transmission dynamics, potentially influencing the utility of leaky vaccines [17]. In other disease
systems, natural immunity has been shown to potentially cause a backward bifurcation [26], or a
phenomenon where the disease can persist despite the basic reproductive number being under the
typical critical threshold of unity. Backward bifurcations are important facets of disease systems,
as backward bifurcations can lead to catastrophic reintroduction, and have been shown to be a
property of some malaria models [9, 2]. Catastrophic reintroductions occur in settings where the
introduction of a small number of cases when R0 < 1 would not lead to reintroduction of the
disease, but once R0 increases above unity, a small reintroduction event causes a rapid move to an
equilibrium with a high proportion of people infected [14]. Despite enthusiasm for malaria vaccine
development, there is some skepticism about the ability of these leaky vaccines to reduce malaria
burden, especially in areas with high rates of naturally acquired immunity [17]. If leaky vaccines
reduce the amount of exposure individuals have to malaria, then vaccinated individuals may not
develop natural immunity as quickly as without vaccination. Because infection remains possible for
these vaccinated individuals, it is possible that they will be more likely to exhibit severe malaria
when infected, as vaccination may prevent the development of natural immunity. Some modeling
efforts have examined the impact of leaky vaccines on malaria burden in highly endemic areas, and
previous models have suggested that in areas with very high rates of malaria transmission, using
leaky vaccines may not reduce malaria burden appreciably, and may even cause increased rates of
symptomatic malaria [17].

Because of the potentially complex interactions between immunity, vaccination, and malaria dy-
namics, predicting the outcome of a vaccination program and determining effective vaccination
policy is an important concern. In this study, we determine the optimal vaccination policy in
the presence and absence of naturally acquired immunity. We also determine the effect of natu-
rally acquired immunity on the basic reproductive number and the endemic equilibrium of malaria
prevalence. Under the Methods section, we first present a malaria vaccination model with naturally
acquired immunity, followed by the extension of this model to include vaccination and bednet con-
trol efforts. A thorough analysis of the original model in the Results section reveals that naturally
acquired immunity can render vaccination efforts counter-productive, and moreover, may lead to
backward bifurcation at R0 = 1. Lastly, using the optimal control construction, we present optimal
vaccination and bed-net control strategies in populations with differing levels of naturally acquired
immunity. The analytic and numerical analyses of our malaria vaccination model can help predict
under which circumstances vaccination will be most effective at reducing malaria burden, and under
which circumstances vaccination will be ineffective, or even counterproductive.
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2 Methods

2.1 Model

We consider human and mosquito populations of constant sizes in a closed, homogeneous environ-
ment using a system of differential equations. The human population of size N is divided into five
compartments: susceptible (S), infectious (I), recovered from clinical malaria (R), susceptible but
partially protected (Sp), and individuals with partial protection who are infected and recovering
(Rp). The infected mosquito population is modeled as a proportion z.

The system of ordinary differential equations in System (1) describes the disease dynamics in hu-
mans and mosquitoes. Initially, humans are susceptible (S). These susceptible individuals can
either become vaccinated at a rate v and progress to Sp, or they can become infected at the rate
βz, where β is the product of the ratio of mosquitoes to humans, the mosquito biting rate, and
the mosquito-to-human-transmission efficiency. Once infected, the S-individual progresses to the
infectious stage, I, and displays clinical symptoms. Individuals ultimately leave the I stage of the
infection and enter R at a rate α, at which point they are no longer clinically ill, cannot move
back to the clinical infection stage I, and are less infectious to mosquitoes. These asymptomatic,
temporarily immune, partially infectious individuals have been previously incorporated into math-
ematical models of malaria [4, 8]. Recovering (R) individuals clear the infection at a rate r and
either return to the susceptible, non-immune stage, S, or acquire partial immunity with probabil-
ity q and become susceptible immune individuals (Sp). For simplicity, we assume that those who
acquire partial temporary immunity through vaccination have the same protection as those who
acquire it naturally. Subsequently, all individuals who acquire temporary immunity progress to
the Sp stage regardless of the mechanism causing immunity. Vaccinated (or equivalently, partially
immune), susceptible individuals will eventually either lose their immunity at a rate ω and return to
the susceptible/non-immune class, or can become infected at a rate βpz, where βp is the transmis-
sion rate from mosquitoes to partially protected humans. Since immunity offers partial protection
against malaria, we assume the inequality βp < β. Individuals who become infected despite their
acquired partial immunity progress to the Rp stage, where they are infectious with malaria, but
are less infective to mosquitoes than individuals in the I stage. Eventually Rp infected individuals
clear the infection and return to the Sp stage at a rate rp.

The fraction of mosquitoes that are infected is denoted by z. As a result, (1 − z) denotes the
fraction of mosquitoes that are susceptible. The “I”-human-to-mosquito transmission rate is de-
noted by ηi, the “R”-human-to-mosquito transmission rate by ηr, and the “Rp”-human-to-mosquito
transmission rate is denoted by ηp.

Finally, the human and mosquito natural mortality rates are denoted by µ and g respectively. To
maintain a constant human population size, individuals are born into the susceptible class S at a
rate µN , where N = S + I +R+Sp+Rp. Adding the first five equations in System (1), we indeed
have that N ′ = S′ + I ′ + R′ + S′

p + R′
p = 0. This shows that N is constant, and in particular,
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N = S(0)+I(0)+R(0)+Sp(0)+Rp(0). Mosquito-borne disease models have mass action incidence
terms when the human and mosquito states are both modeled as proportions of the total human
and mosquito population, respectively, and when the transmission rate β (as described above) is
the product of the ratio of mosquitoes to humans, biting-rate, and mosquito-to-human transmission
efficiency [3, 6]. Consequently, modeling the human states in units of number of individuals and
the mosquito states as proportions of the mosquito population yields incidence terms of the form

βzS for the rate of new human infections and

(

ηiI + ηrR+ ηpRp

N

)

(1− z) for the rate at which

new mosquito infections arise. All model state variables and parameters are summarized in Tables
1 and 2, respectively.

Sp

Rp

S

I

R

βpz rp

v

ω

βz

α

(1− q)r

qr

µN

Figure 1: Human Dynamics Diagram

The description of the model can also be described mathematically as follows:

S′ = µN − βzS + ωSp + (1− q)rR− (v + µ)S

I ′ = βzS − (α+ µ)I

R′ = αI − (r + µ)R (1)

S′
p = rpRp + vS + qrR− (βpz + ω + µ)Sp

R′
p = βpzSp − (rp + µ)Rp

z
′

=

(

ηiI + ηrR+ ηpRp

N

)

(1− z)− gz,
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where βp = (1− e)β, and e denotes the vaccine efficacy.

2.2 Optimal control of vaccination model

Malaria incurs significant economic costs for endemic regions, both incurring direct financial costs
to the health system and costs associated with the reduced productivity of infected individuals.
Resources for malaria control are also costly and limited. We used optimal control theory to
determine how vaccination efforts and bed net distribution efforts may best be used to reduce
disease burden, while simultaneously considering the cost of disease burden and implementation
costs of the control program.

To determine the optimal control strategy, we reformulated System (1) to include vaccination and
bednet usage. We redefine v to be the maximum possible vaccination rate and β, βp, ηi, ηr, and
ηp represent transmission parameters in the absence of bed-net efforts. The new variable u1(t)
controls the vaccination rate, while the variable u2(t) controls the biting rate (and subsequently
the transmission rates). These control variables are proportions, varying between zero and one. In
this formulation of the model, v is replaced by u1v and p is replaced by (1 − u2)p, where p is a
transmission parameter (p ∈ {βp, ηi, ηr, ηp}). When u1 = 0, no vaccination occurs and when u1 = 1,
vaccination occurs at the maximum possible rate. Similarly, when u2 = 0, there is no reduction
in the transmission rates resulting from bed net efforts, while u2 = 1 represents perfect protection
from bed net use. Although several species of mosquito blood feed primarily at night, 100% bed
net coverage will not eliminate malaria transmissions. To reflect the fact that bed nets are only
effective at certain times of day, we restricted the range of u2 to the interval [0,0.95]. Furthermore,
if bed nets are not replaced or properly maintained, over time they deteriorate and begin to lose
their efficacy as a result of repeated washing and natural wear-and-tear [5]. Thus, even if everyone
in the population owns and uses a bed net, these nets may not be 100% effective; there is some
effort required to maintain or replace bed nets over time. Subsequently, one may think of u2(t) as
the effort placed into bed net maintenance at time t.

The modified model is as follows:

S′ = µN − (1− u2)βzS + ωSp + (1− q)rR− (u1v + µ)S

I ′ = (1− u2)βzS − (α+ µ)I

R′ = αI − (r + µ)R (2)

S′
p = rpRp + u1vS + qrR− ((1 − u2)βpz + ω + µ)Sp

R′
p = (1− u2)βpzSp − (rp + µ)Rp

z
′

= (1− u2)
ηiI + ηrR+ ηpRp

N
(1− z)− gz.
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Let the vector f = (fi)
6

i=1
denote the right-hand side of the state system (2) and let x = (xi)

6

i=1

denote the vector of state variables so that system (2) in vector notation is simply dx
dt

= f(x), with

x1 = S, x2 = I, x3 = R,x4 = Sp, x5 = Rp, x6 = z and dxi

dt
= fi(x).

As previously mentioned, implementing control measures incurs a cost. Our goal in applying
optimal control theory to the malaria vaccination model was to determine a control strategy (using
vaccines and bed net maintenance), that jointly minimizes the number of human infections and the
cost of the program. Mathematically, the goal was to determine an optimal control pair (u∗

1
(t), u∗

2
(t))

that minimizes the cost functional

J =

∫ T

0

(

w1I + w2R+w3Rp + w4u1vS + w5u
2

1 + w6u
2

2

)

dt,

where the interval [0,T ] represents the time interval over which the control program is conducted,
and the wi’s are weights representing the relative costs of I, R, Rp and the control measures.
Because there is always a limited stockpile of any vaccine, we wish to find a successful control
strategy that aims to minimize the number of vaccines used over the duration of the program. The
integral

∫ T

0
u1vSdt quantifies the total number of vaccines used during the program and has some

relative cost w4 associated with it. Thus, including this term in the objective function allowed
us to take the limited availability of vaccines into consideration. To study the scenario where the
quantity of vaccines is not a limitation imposed on the malaria control program, we may set w4

to zero. Apart from limitations in vaccine availability, a control program should also take into
consideration costs, including personnel and transportation, to distribute and maintain bed nets
and administer vaccines. The term w5u

2

1
+ w6u

2

2
in the objective function J incorporated these

implementation costs to the control program.

Well known results from optimal control theory [27] allowed us to reformulate the problem of finding
time-dependent control variables u∗

1
(t) and u∗

2
(t) that minimize J into the equivalent problem of

minimizing the Hamiltonian

H = F +

6
∑

i=1

λifi,

where F denotes the integrand of the objective functional J , and λ := (λi)
6

i=1
is the solution vector

to the system of equations dλi

dt
= − dH

dxi
with the terminal condition λ(T ) = ~0. For our malaria

model modified for vaccination and bednet usage (2), this system of differential equations, called
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the adjoint system is the following:

λ′1 = −w4u1v + λ1[(1 − u2)βz + u1v + µ]− λ2(1− u2)βz − λ4u1v

λ′2 = −w1 + λ2(α + µ)− λ3α− λ6(1− u2)
ηi
N

(1− z)

λ′3 = −w2 − λ1(1 − q)r + λ3(r + µ)− λ4qr − λ6(1− u2)
ηr
N

(1− z)

λ′4 = λ1ω + λ4[(1− u2)βpz + ω + µ]− λ5(1− u2)βpz

λ′5 = −ω3 − λ4rp + λ5(rp + µ)− λ6(1− u2)
ηp
N

(1− z)

λ′6 = (λ1 − λ2)(1− u2)βS + (λ4 − λ5)(1− u2)βpSp + λ6

[

(1− u2)
ηiI + ηrR+ ηpRp

N
+ g

]

,

with λ(T ) = ~0. The optimal control pair (u∗
1
(t), u∗

2
(t)) that solves the control problem is the pair

of time-dependent functions that minimizes H. In other words, the pair must satisfy ∂H
∂ui

= 0 and
∂2H
∂ui

> 0, for i = 1, 2. Differentiating H with respect to the controls and solving for the ui’s, we
obtain

u∗1 = min

(

max

(

0,
λ∗
1
− λ∗

4
− w4

2w5

vS∗

)

, 1

)

u∗2 = min

(

max

(

0,
(λ∗

2
− λ∗

1
)βS∗ + (λ∗

5
− λ∗

4
)βpS

∗
p

2w6

z∗ +
λ∗
6

2w6

ηiI
∗ + ηrR

∗ + ηpR
∗
p

N
(1− z∗)

)

, 0.95

)

,

(3)

and ∂2H
∂u2

1

= 2w5 > 0 and ∂2H
∂u2

= 2w6 > 0. The notation x∗ = (S∗, I∗, R∗, S∗
p , R

∗
p, z

∗) is used to

denote the solution to the state system corresponding to the optimal control pair (u∗
1
, u∗

2
).

State variables for
Description

resident of patch i

S Susceptible, non-immune individuals
I Infectious, potentially clinically ill, non-immunes
R Infectious asymptomatic non-immunes, with reduced infectivity
Sp Susceptible, partially protected
Rp Infected, partially-protected
z Proportion of mosquitoes infected

Table 1
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Parameter Description

β mosquito - to - S human transmission rate
βp mosquito - to - Sp human transmission rate
ηi I - to - mosquito transmission rate
ηr R - to - mosquito transmission rate
ηp Rp - to - mosquito transmission rate
1/α Duration of initial infectious stage I
µ Human natural mortality rate
r R-stage human’s parasite clearance rate
rp Rp-stage human’s parasite clearance rate
q Probability that an R individual acquires partial

temporary immunity following parasite clearance
ω Rate of loss of acquired immunity
v Vaccination rate
m ratio of mosquitoes to humans
a biting rate
b vector-to-human transmission efficiency
c human-to-vector transmission efficiency
n extrinsic incubation period

Table 2

3 Results and Discussion

3.1 Analytic results

To begin the study of the malaria vaccination model and the effects of partial, waning immunity,
we present and analyze the basic reproduction number and equilibria of system (1).

3.1.1 The Basic Reproduction Number, R0

The disease-free equilibrium (DFE) of the model is (S∗
0
, I∗

0
, R∗

0
, S∗

p0
, R∗

p0
, z∗

0
) =

(

N(ω + µ)

ω + v + µ
, 0, 0,

Nv

ω + v + µ
, 0, 0

)

, where N ≡ N(0) is constant. Following the Next Generation

Approach (NGA) [12, 11], we arrive at the following expression for the basic reproduction num-
ber:

R0 =

√

(

ηi
α+ µ

+
ηrα

(α+ µ)(r + µ)

)

β

g
·

ω + µ

ω + v + µ
+

ηp
rp + µ

·
βp
g

·
v

ω + v + µ
.
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In epidemiology, the basic reproduction number is defined as the number of new infections arising
from a single infected individual, in an otherwise fully susceptible population, during their lifespan
as infectious. The square of our mathematically derived reproduction number can similarly be
interpreted as the number of new mosquito infections arising from a single infectious mosquito.
An intermediate host (humans, in our case) is needed to produce a new mosquito infection, and
the contribution to new mosquito infections will depend on whether an infected mosquito takes
a blood meal from a vaccinated human, or an unvaccinated human (note that at the disease-free
equilibrium, there are no naturally immune individuals in the population). In fact, the first term
under the square root represents the contribution to the reproduction number by a mosquito that
takes a blood-meal from an unvaccinated individual; likewise, the second term represents the con-
tribution by a mosquito that takes a blood-meal from a vaccinated individual. This interpretation

is revealed by first noting that the fraction
ω + µ

ω + v + µ
is the probability that a susceptible indi-

vidual is not vaccinated, and
v

ω + v + µ
is the probability a susceptible individual is vaccinated.

Thus
β

γ
·

ω + µ

ω + v + µ
is the number of new infections arising in unvaccinated humans during the

mosquito’s lifespan as infectious, and
βp
γ

·
v

ω + v + µ
is the number of new infections arising in vac-

cinated humans. To generate new mosquito infections, a non-vaccinated individual must transmit
the infection to a healthy mosquito during his/her lifetime as infectious in stage I or stage R, or,
a vaccinated individual must transmit the disease to a mosquito during their time as infectious in

state Rp. Subsequently,
β

g
·

ω + µ

ω + v + µ
·

ηi
α+ µ

is the contribution to the reproduction number by a

mosquito that takes a blood-meal from an unvaccinated individual, who then transmits malaria to a

mosquito during their time as infectious in stage I. Similarly,
β

g
·

ω + µ

ω + v + µ
·

ηrα

(α+ µ)(r + µ)
is the

contribution by a mosquito that takes a blood-meal from an unvaccinated individual who progresses
to stage R, and transmits malaria to a mosquito during the time spent in the R stage. Finally,
βp
g

·
v

ω + v + µ
·

ηp
rp + µ

is the contribution to new mosquito infections arising from a mosquito that

infects a vaccinated human, who then infects a mosquito during their time spent as infectious in
stage Rp.

Typically, if R0 < 1, the DFE is locally asymptotically stable (l.a.s.), and if R0 > 1, the DFE
is unstable. We will show, however, that this is not always the case for our malaria vaccination
model. In this model, vaccination does not always reduce disease transmission metrics, as one

might assume. Defining A =
ηi

(α+ µ)
+

ηrα

(α+ µ)(r + µ)
and B =

ηp(1− e)

rp + µ
, if

(a) A > B, then R0 is a decreasing function of v;

(b) A = B, then R0 is constant in v;

(c) A < B, then R0 is an increasing function of v.
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This result (proved in Appendix A.1) has important implications for malaria control. In particular,
it highlights that if A < B, introducing vaccination or increasing vaccination efforts may actually
intensify disease transmission. When A and B are very close in value, increasing vaccination ef-
forts may have little added benefit for a significant cost. Because of the formulation of A and B,
knowledge about the human-to-mosquito transmission rates (ηi, ηr, ηp), the human disease progres-
sion and recovery rates (α, r, rp), and the vaccine efficacy (e), in a given region, are necessary in
our vaccination model to determine whether vaccination efforts will reduce the basic reproductive
number.

These equations also allow us to consider ways of increasing the benefit of a vaccination program.
For example, increasing the vaccine efficacy and decreasing the likelihood of transmission from
vaccinated (but infected) humans (i.e. some portion of Rp-stage humans) to mosquitoes reduces B.
On the other-hand, increasing recovery rates (r) of non-immune individuals, for example through
improved treatment of asymptomatic individuals, decreases A, which may have negative effects on
vaccination efforts.

3.1.2 Equilibria: multiplicity and stability

The equilibrium dynamics of the malaria vaccination model differed with and without NAI. A
thorough analyses of these two cases reveals that in the absence of NAI (q = 0), the system
exhibits a forward bifurcation at R0 = 1, while a backward (subcritical) bifurcation at R0 = 1
may occur in the case where q 6= 0. The result that when q = 0, the model has a unique endemic
equilibrium when it exists, along with its proof (see Appendix A.2), implies that when R0 < 1, the
DFE is globally asymptotically stable (g.a.s.) if no R-stage individual gains temporary immunity
to malaria, i.e. if q = 0. In other words, when q = 0, the model exhibits a forward transcritical
bifurcation at R0 = 1.

A useful result from center-manifold theory [7] allowed us to explore the dynamics of the model
when q 6= 0 and establish the existence of more complicated dynamics. In particular, when q 6= 0,
the model exhibits backward bifurcation if and only if

(

ηi
α+ µ

+
ηrα

(α+ µ)(r + µ)

)

(r1 − S∗
0r6) +

ηp(1− e)

rp + µ
(r2 − S∗

p0
r6) > 0, (4)

where r6 is some positive constant, r1 and r2 are the solutions to the following system

−(v + µ)r1 + ωr2 +

[

(1− q)rα

(α+ µ)(r + µ)
− 1

]

φ∗S∗
0r6 = 0

vr1 − (ω + µ)r2 +

[(

rp
rp + µ

− 1

)

(1− e)S∗
p0

+
qrαS∗

0

(α+ µ)(r + µ)

]

φ∗r6 = 0, (5)
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and φ∗ =
g(α + µ)(r + µ)(rp + µ)(ω + v + µ)

ηi(r + µ)(rp + µ)(ω + µ) + ηrα(ω + µ)(rp + µ) + ηp(1− e)v(α + µ)(r + µ)
.

This result is proved in Appendix A.3. We can demonstrate numerically that there does, in fact,
exist a region of parameter space for which inequality (4) holds. Thus, under certain parameteriza-
tions of model (1), the model exhibits backward bifurcation. An example of a backward bifurcation
for our malaria vaccination model, using the parameter values in Table 5, is illustrated in Figure
2.

From the proof of equation (5) in Appendix A.3, we find that r1 < 0. If q = 0, r2 must also be
negative, and consequently, inequality (4) is reversed, implying that backward bifurcation does not
occur at R0 = 1 when q = 0. Thus, the role of acquired immunity plays a critical role in the disease
dynamics exhibited by this malaria vaccination model. Moreover, if e = 1, that is, immunity
is perfect, then the left-hand side of equation (4) is negative and the bifurcation at R0 = 1 is
necessarily a forward bifurcation. This loss of backward bifurcation when either q = 0 or e = 1
indicates that naturally acquiring partial immunity to malaria is the driver of backward bifurcation.
In the absence of vaccination (v = 0), we have that r2 > 0, and moreover, it is still possible for
backward bifurcation to occur. Thus, vaccination is not a driver of sub-threshold endemic equilibria
in this model. However, ψ > 0 (where ψ denotes the left-hand side of 4) implies B > A, where A,B
are defined as in equation (3.1.1); that is, R0 an increasing function of the vaccination rate v is
a necessary (although not sufficient) condition for backward bifurcation to occur. This suggests a
potentially dangerous scenario when R0 < 1 but malaria is still present in the population: increasing
vaccination efforts, (which increases the reproduction number in this case), could push the disease
dynamics from the region where the DFE is the local attractor into one where the larger endemic
equilibrium (EE) is the attractor. This finding stresses that when R0 is an increasing function of
vaccination, other control measures (bednets, treatment, etc.) are necessary to bring R0 below the
critical threshold RC . Another potentially dangerous scenario is one in which RC < R0 < 1 and
a small fraction of the mosquito population is infected. Introducing new infected humans to the
system, via migration for example, could again, push the system from a state where the DFE is the
attractor, to one in which the EE is the attractor. This change arises from moving vertically in the
bifurcation diagram. Likewise, environmental changes, such as land-use changes that are favorable
for mosquito production, could push the system from a state where the DFE is locally stable to
one where a positive EE is locally stable by increasing the reproduction number; in this scenario,
the switch occurs by moving horizontally and to the right on the bifurcation diagram.

3.2 Numerical Analysis of backward bifurcation

In the previous section, we illustrated that the proportion of individuals who gain partial immunity
(q) plays a critical role in the dynamics of the malaria model. In particular, if q = 0, the bifurcation
at R0 = 1 will be a forward bifurcation, and reducing R0 below one is sufficient to stabilize the
DFE; if q 6= 0, the possibility of sub-threshold endemic equilibria emerges, in which case reducing R0
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Figure 2: Illustration of Backward Bifurcation by plotting the equilibrium proportion of infected
mosquitoes z∗ as a function of R0. The solid red curves denote the locally asymptotically stable
equilibria; the dashed blue curves denote unstable equilibria. Parameter values in this simulation
correspond to those in Table 5, and v = 0.

below unity may not be sufficient to eliminate malaria from the population. We also alluded to the
fact that vaccination is not necessary for a backward bifurcation, despite the occurrence of backward
bifurcation in many simple directly transmitted disease models with vaccination. Figure 2 illustrates
the bifurcation diagram using the parameters in Table 5 in which there is no vaccination (v = 0).
In this section, we explore potential consequences of partial temporary immunity, i.e. q 6= 0,
with and without vaccination. Then, we illustrate numerically the relationship between B − A,
ψ, and parameters that play important roles in determining the signs of these quantites to better
understand the transmission characteristics most likely to lead to a subcritical equilbrium.

3.2.1 Existence of sub-threshold equilibria in the absence of vaccination

The presence of vaccination in our model is not necessary for the existence of backward bifurcation.
This fact, which we demonstrated analytically in the previous section, can also be illustrated
numerically by varying other parameters in the model and plotting the corresponding equilibria as
a function of that parameter, or R0. We first consider what happens as we vary ω, the waning

immunity rate. Note that when v = 0, R2

0
=

(

ηi
α+ µ

+
ηrα

(α+ µ)(r + µ)

)

β

g
, and so the reproduction

number no longer depends on parameters ηp, e, rp, and ω. Despite the fact that R0 is constant for
any value of ω, we see in Figure 3, that multiple endemic equilibria exist for a particular R0
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Figure 3: Backward Bifurcation with v = 0, varying ω. R0 = 0.9216 for all ω in this example.
The red solid curve denotes l.a.s. equilibria, the blue dashed curve denotes unstable equilibria.
Parameter values in this simulation correspond to those in Table 5, except where otherwise stated.

value, and furthermore, for R0 less than unity. In fact, two sub-threshold endemic equilibria
appear when ω is small. For this parameterization of the model, the locally stable sub-threshold
endemic equilibrium is largest when the naturally acquired partial immunity is permanent (ω = 0).
The same value of R0 (R0 = 0.9216 in Figure 3) is associated with wildly different equilibrium
dynamics, depending on the value of ω. If ω ≥ 0.0195 the only equilibrium that exists is the disease
free equilibrium. Otherwise, there exists a locally stable endemic equilibrium, an unstable positive
equilibrium, and a locally stable DFE. When multiple equilibria exist, the disease outcome depends
on the initial conditions of the system. This example, for which the same reproduction number can
lead to very different long-term outcomes, stresses the limitations of using R0 as the only measure
of disease burden in a population.

3.3 ψ versus B − A

The numerical simulations support our conclusion in Section 3.1.2 that model parameterizations
leading to backward bifurcation are a subset of parameterizations where R0 increases with v. In
other words, R0 increasing with v is a necessary but not sufficient condition for a backwards
bifurcation. Figure 4(a) illustrates that the region where ψ > 0 is a subset of the region where
B − A > 0; Figures 4(b)-4(d) illlustrate how the bifurcation diagram changes as e increases. In
particular, these figures demonstrate that backward bifurcation occurs for e = 0.25 and e = 0.40,
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Figure 4: Subfigure (a) is a graph of B − A and ψ as a function of the partial immunity efficacy
e. The vertical dotted lines indicate where e = 0.25, 0.40, 0.55. Subfigures (b)-(d) illustrate three
bifurcation diagrams corresponding to these different values of e. Red solid lines indicate locally
asymptotically stable equilibria, blue-dashed lines indicate unstable equilibria, and green denotes
biologically irrelevant equilibria. Parameter values in this simulation correspond to those in Table
5, except where otherwise stated.
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that is, values of e for which ψ > 0. On the other hand, when e = 0.55, we have that B − A > 0,
but ψ < 0, and therefore, the bifurcation at R0 = 1 is in the forward direction. Furthermore, the
critical threshold under which only the DFE exists, increases with increasing values of e.

Both the backward bifurcation and the cases where R0 increased with v were more likely with
changes to certain parameters. In particular, the numerical simulations showed that these phenom-
ena are more likely to occur if immunity efficacy e is low. This result suggests that the presence
of a backward bifurcation and the relationship between R0 and v are dependent upon the relative
contributions of each class of infectious individuals to transmission. If rV is small relative to r,
then temporarily immune individuals are infectious for a long period of time relative to nonim-
mune individuals. If the value of e is also low, then immune individuals are not significantly less
susceptible than nonimmune individuals, and though immune individuals do not transmit malaria
as easily as nonimmune individuals, they yield more new infections per infected individual than
nonimmune individuals. Because naturally acquired immunity occurs when q > 0, then the in-
troduction of malaria into a system increases the number of immune individuals ultimately, which
reduces the threshold level of transmission necessary to drive the system to an endemic equilibrium.
These results suggest that the presence of backward bifurcation depends, in part, on the relative
contributions of immune and non-immune individuals to transmission, a hypothesis supported by
Dushoff et al [14].

3.4 Results of optimal control

3.4.1 Optimal strategy in ‘realistic’ environment

We first present optimal solutions to the control problem over a time period of 120 months for a set
of model parameters collected from the literature, largely from the Garki project [24]. These values
have been used previously in studies of vaccine efficacy [17]. This set of parameters, listed in Table
3, leads to a forward bifurcation. In this section, we compare optimal malaria control strategies
for four sets of weights, summarized in Table 4. We chose small values for the weights because we
were interested in how the relative values of the weights affect the results rather than changes in
their absolute value; using small values for the weights ensured convergence of the optimal control
algorithm. The four weight sets reflect different goals that a malaria control program might have.
Weight sets 2 and 4 weight only clinical infections (and therefore minimize only numbers of clinical
infections), while weight sets 1 and 3 equally weight clinically infected individuals, recovering
nonimmune individuals, and recovering immune individuals, seeking to minimize all infections.
Weight sets 1 and 2 and weight sets 3 and 4 differ in that weight sets 3 and 4 much more heavily
weigh the cost of infected individuals relative to the cost of bednets and vaccines.

Using the optimization method outlined in Appendix A.4, we optimized vaccination and bednet
usage for m ∈ {2.5, 10, 30, 50, 70} and q ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, where m is the ratio of the
mosquito population size to the human population size in the region. Figure 6 summarizes the
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Figure 5: Bifurcation diagram for three different values of the natural immunity proportion q. The
red curves represent the endemic equilibria as a function of R0 and the blue line illustrates the
disease-free equilibrium, which is stable for R0 < 1 and unstable for R0 > 1. Parameter values in
this simulation correspond to those in Table 3, except where otherwise stated.

percent reduction in the number of human malaria infections, the number of vaccines administered,
and the reduction in cost, respectively, resulting from the optimal control policy over a period of 10
years for these 120 settings with different weight sets. These bar charts illustrate that the optimal
strategy when m ∈ {30, 50, 70}, is essentially to do nothing, as increasing vaccination or bednet
coverage to a degree large enough to appreciably reduce malaria burden is prohibitively expensive.
As vaccination and bednets do not greatly reduce malaria burden at high values of m, the optimal
policy becomes significantly less advantageous when m is increased from 2.5 to 10. For example,
for weight set 3, the percent reduction in malaria cases when the optimal strategy is employed
decreases from roughly 11% to 2% when m increases from 2.5 to 10 (see row 3 in Figure 6(a)).
This suggests that bednets and vaccines are most beneficial when the endemic equilibrium is small.
Furthermore, it supports the result shown in the corresponding bifurcation diagram (see Figure 5):
the equilibrium proportion of infected mosquitoes changes most dramatically when R0 is close to
one. In other words, the equilibrium of the proportion of infectious mosquitoes z is most sensitive
to changes in R0 when R0 is close to (and greater than) 1. Thus, as m increases (and subsequently
as R0 increases), the equilibrium of the system becomes less sensitive to changes in the control
variables. Similarly, for a fixed value of m, the efficacy of the optimal control program decreases as
the natural immunity proportion q increases.

Figure 6 compares the reduction in the number of malaria cases (column 6(a)), the number of
vaccines used (column 6(b)), and the reduction in cost (column 6(c)) under the optimal control
policy for the 4 sets of weights, and for the different values of m and q. The first row of figures in
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parameter value parameter value

a 13.6875 ω 0.0833
b 0.0860 e 0.5200
c 0.470 µ 0.0011
g 6.0742 β mabe−gn

α 0.3285 βp (1− e)β
r 0.0359 ηi ac
rp 0.4076 ηr σηi
n 0.3288 ηp σηi
σ 0.5200 N 10,000

Table 3: Parameter set (in time unit of months) for optimal control problem in the forward bifur-
cating scenario. Values (with the exception of N) are taken from [17, 24]. The ratio of mosquitoes
to humans m is varied in the numerical simulations.

set w1 w2 w3

1 10−7 10−7 10−7

2 10−7 0 0
3 3 · 10−7 3 · 10−7 3 · 10−7

4 3 · 10−7 0 0

Table 4: Four sets of weights used to numerically compute the optimal control solution (u∗
1
(t), u∗

2
(t)).

In all sets of weights, the control variable weights are set to w4 = 10−7 and w5 = w6 = 10−2.

Figure 6 presents the results for weight set 1, the second for weight set 2, and so on. Comparing
the number of vaccines used to achieve a given percent cost reduction (Figure 6(c)), revealed that
when the ratio of mosquitoes to humans m is 2.5, although many more vaccines (Figure 6(b)) are
administered under this policy (roughly 9000 versus 2000 under weight set 3), the cost savings
of the program is substantially more than when m = 10 (a 9% reduction versus a 2% reduction,
roughly). As expected, increasing three-fold the cost associated with an infected individual yielded
the greatest return in terms of both percent reduction in cases and relative reduction in cost.

A comparison of the qualitative dynamics of the optimal controls u1(t) and u2(t) for m ∈ {2.5, 10},
q ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, and for each of the four weight sets, allowed us to develop rules of thumb
for how to implement bednets and vaccines in different environments, and to achieve different goals.
The results for a subset of these scenarios are given in Figure 7. This figure illustrates the optimal
control functions u∗

1
(t) and u∗

2
(t) over the 120 month control period and compares the disease

dynamics without any malaria control to the disease dynamics under the optimal policies. In
Figure 7 we present the results for weight sets 1 and 4 since these are the most directly comparable
sets of weights, since w1 + w2 + w3 = 3 · 10−7 in both cases. The general trend in the optimal
vaccination strategy is to decrease efforts as the naturally acquired immunity proportion q increases.
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(b) Number of vaccines used
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Figure 6: Barcharts illustrating the percent reduction in cases, vaccines used, and cost over a 10
year period as a result of the optimal control policy. The first row used weight set 1, the second
row weight set 2, and so on. The percent reduction in cases is presented in column (a), the number
of vaccines used in column (b), and the percent reduction in cost in column (c), for each of the four
sets of weights. Parameter values in this simulation correspond to those in Table 3, except where
otherwise stated.
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Likewise, both controls decrease as m increases, across all scenarios. However, a comparison of the
control strategies within each weight set and between weight sets does reveal some qualitatively
different patterns.

First, we observed that the optimal control strategies across the 10 year period for weight sets
1 and 3, where the goal is to reduce total number of infections, are qualitatively very different
from the optimal policies under weight sets 2 and 4, where the goal is to reduce the number of
clinical infections. When the goal is to reduce the total number of infected individuals, the optimal
vaccination strategy is a non-increasing function of time, decreasing to zero before the end of the
control period (Figures 7(a)–7(b)). When m = 10, the optimal bednet control policy is one that is
relatively constant during most of the control period, followed by a later increase in bed-net efforts
to compensate for the decline in vaccination efforts. The level of compensation increases as q
increases. This compensation phenomenon does not occur when m = 2.5. Perhaps more strikingly,
when m = 2.5, the effort in bednet effort declines as q increases, whereas the opposite happens
when m = 10. On the other hand, when the goal is to reduce the number of clinical infections, the
optimal strategy for both controls is to ramp up efforts during the latter half of the control period
(Figures 7(c)–7(d)). Vaccination and bednet efforts remain fairly constant during the first half of
the control period, followed first by an increase in vaccination efforts, then by an increase in bednet
efforts as the vaccination efforts begin decreasing to zero. The timing of these increases in effort
is delayed as q and m increase. Thus, once again, we observed that bednet maintenance efforts
should be increased to compensate for reductions in vaccination efforts. Unlike the results for the
weight 1 and 3 scenarios, the optimal bednet efforts decreased not only with increasing m, but also
with increasing q. To explore how a shorter control period may affect our results, we repeated the
optimization for a two year period with m = 2.5 and for weight sets 1 and 4. For these select trials,
we observed some similar qualitative patterns. However, to determine optimal control strategies
for different time intervals, the numerical simulations should be repeated.

3.4.2 Optimal strategy in presence of sub-threshold endemic equilibrium

As discussed in Section 3.1, the possibility of backward bifurcation in our malaria model underscores
the potential pitfalls of implementing a vaccination program without evaluating the current status
of a particular population and environment: (1) reducing the reproduction number below unity may
not be sufficient to eliminate malaria in the region, (2) vaccination may increase the reproduction
number. However, importantly, the presence of backward bifurcation also opens up the opportunity
to send the system towards the disease-free equilibrium with a control program of finite duration.
If the bifurcation is forward at R0 = 1, the only way to continue moving towards the disease-free
equilibrium is to maintain R0 below unity indefinitely by means of some control measure. If the
bifurcation at R0 = 1 is backwards, it becomes possible to “switch off” the control after some finite
time, and still send the system towards the DFE. The goal of applying optimal control theory to the
backward bifurcation setting was to determine whether the optimal vaccination and bednet coverage
policy under a model parameterization leading to backward bifurcation is one that achieves this goal
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(a) Weight set 1, m = 2.5
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(c) Weight set 4, m = 2.5
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(d) Weight set 4, m = 10

Figure 7: Optimal control results in forward bifurcating scenario for weight sets 1 and 4, and q = 0.2.
The figures illustrate the optimal control policies u∗

1
(t) and u∗

2
(t) and the infection dynamics with

and without these optimal controls. The time scale along the horizontal axes of all figures is in
months. The red dashed curves illustrate the endemic equilibrium in the absence of vaccination
and bednet use. The blue curves in the infection dynamics illustrate the disease dynamics under
the optimal control policy. The vertical dashed line indicates the end of the 10 year control period
(120 months). In the left column, the ratio of mosquitoes to humans m is 2.5, in the right column,
m = 10. The first row of figures illustrates results for weight set 1; the second row corresponds
to weight set 4. Parameter values in this simulation correspond to those in Table 3, except where
otherwise stated.
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Figure 8: (a) Optimal control policy under a backward bifurcation scenario. Under the optimal
policy, the control function u∗

1
(t), which controls the vaccination rate, is constantly zero; the initial

bednet coverage u∗
2
(t) is 12%, gradually decreasing over the 120 month period to 0% coverage. (b)

Disease dynamics in humans under the optimal control policy. The vertical dashed line indicates
the end of the 120 month control period. The red dashed line is the total equilibrium number
of infected in the absence of control (u1(t) = u2(t) = 0). The solid blue lines illustrate the total
number of infected individuals over time with the optimal policy up to month 120 and with no
control thereafter. Parameter values in this simulation correspond to those in Table 5, except where
otherwise stated.

of stabilizing the DFE even after the control period ends. Using the parameter values listed in Table
5, which led to backward bifurcation, and using weight set 1, we numerically computed the optimal
control solution. Consistent with our previous analyses that the presence of backward bifurcation
implies that R0 is an increasing function of the vaccination rate, the numerically computed optimal
solution dictates that we should not vaccinate at any time; that is, u∗

1
(t) = 0 for all t. Meanwhile,

the optimal bednet coverage u∗
2
(t) is initially 12% and decreases gradually to 0% coverage by the

end of the 120 month control period (Figure 8).

Figure 8(b) compares the disease dynamics when u1(t) = u2(t) = 0 (red-dashed line) to the
disease dynamics under the optimal control policy (blue solid line). The vertical black dotted
line designates the end of the control period. Although bednet coverage is 0% from month 120
onwards, we can see in Figure 8(b) that the number of malaria infections still tends towards zero.
Thus, the optimal policy not only minimizes infections and cost during the control period, but
also has long-term benefits. Figure 9 superimposes the trajectory of the proportion of infected
mosquitoes z under the optimal policy onto the bifurcation diagram for the system under this
parameterization. The proportion of infected mosquitoes at equilibrium in the absence of any
bednet efforts is indicated with a solid black circle; the start of the trajectory of z under the
optimal policy is indicated with a solid black square. From this figure, we can see that the optimal
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control policy instantaneously moves the system from the black circle horizontally to the black
square by reducing R0 to approximately 0.85. This reduction in R0 (by means of increasing u2)
causes the proportion of infected mosquitoes z to decrease. The optimal policy gradually decreases
bednet coverage u∗

2
(t) in such a way that although R0 increases, z(t) decreases sufficiently so as

to stay in the region where the DFE is the attracting equilibrium. This makes it possible to
stop controls completely after a finite period of time, while still sending the system towards the
disease-free equilibrium.

4 Conclusions

Vaccines have played a fundamental role in the control, and, in some cases, eradication of infectious
disease. Most vaccines are considered leaky vaccines and do not provide perfect protection, but are
effective enough to provide herd immunity for a population. These successes give hope that malaria
vaccines, such as RTS,S, will be an effective way to combat this dangerous disease that has eluded
control efforts for so long. Our malaria vaccination model presented here, however, emphasizes
the importance of obtaining high vaccine efficacy and prudent vaccination policy, particularly in
populations with an existing level of naturally acquired immunity. Analysis of the model basic
reproduction number revealed that certain environments and control policies may in fact render the
vaccine harmful to the goal of reducing overall disease burden. In particular, if non-immune, infected
individuals are treated more readily than partially immune infected individuals, the likelihood that
malaria transmission will rise with increased vaccination efforts increases. This scenario is plausible,
as partially immune individuals tend to have less severe symptoms when infected with malaria, and
are therefore less likely to be treated. These results, then, suggest that we may be able to increase
the efficacy of a vaccination program at the population level by actively searching for, and treating,
asymptomatic infections.

Subsequently, our result that backward bifurcation can only occur if R0 is an increasing function
of vaccination indicates that active case detection may help to avoid the potentially dangerous
scenario of backward bifurcation. By treating asymptomatic infected individuals, the infectious
period for immune individuals will be reduced, making a backward bifurcation less likely. The
presence of backward bifurcation at R0 = 1 is problematic in part because the usual goal of reducing
the reproduction number below unity is insufficient in this setting. Instead, to guarantee that the
disease-free equilibrium is the only equilibrium, control programs must strive to pushR0 below some
smaller critical threshold RC . Perhaps more importantly, however, backward bifurcation can give
rise to large-scale malaria epidemics as a result of small changes in the environment and migration.
For example, a small change in climate, or slight reduction in existing control efforts, can increase
the reproduction number by making the environment more suitable for mosquito production or
parasite development, causing the potential for a catastrophic reintroduction of malaria [14]. Both
of these changes, that is, small changes in R0 and small changes in prevalence, can move the
system from the disease-free equilibrium region of attraction, to a large endemic equilibrium region
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of attraction, causing devastating outbreaks.

Investigating optimal vaccination and bed net maintenance strategies over a 10-year period allowed
us to gain a qualitative understanding of how these two controls should be used in tandem, and how
they should be used in different malaria endemic settings. First, we considered the more common
scenario where the bifurcation at R0 = 1 is a forward bifurcation. In general, we found that as the
ratio of mosquitoes to humans increases, which in turn increases overall prevalence, implementing
a vaccination and bed net control policy becomes much costlier and less effective. In regions of
very high malaria prevalence, other methods of malaria control may be necessary; once prevalence
is sufficiently reduced, vaccination may become a viable option for malaria control. We also found
that as the proportion of the population with NAI is increased, less effort should be placed in
vaccination efforts.

The optimal policies were qualitatively different depending on whether the goal was to reduce
clinical infections or reduce total disease prevalence. To reduce total prevalence, the best vaccination
strategy is to begin the control period with a higher rate of vaccination and gradually decrease
this effort over time. When initial burden is high, bed net efforts should increase as vaccination
efforts begin decreasing. On the other hand, if the goal is to reduce clinical cases of malaria, both
vaccination and bed net efforts remain at some constant level for the first half of the control period,
followed by a surge in vaccination efforts; as vaccination efforts decline to zero following this surge,
bed net efforts should increase to compensate.

If a backward bifurcation exists, we found that vaccination should not be part of the control
program; this result is consistent with our conclusions that R0 increasing with vaccination is a
necessary, although not sufficient, condition for backward bifurcation to arise. The optimal solution
instead consists of steadily decreasing bed net efforts over time. The optimal policy takes advantage
of the backward bifurcation at R0 = 1 by moving the system from the larger endemic equilibrium to
the region where the disease-free equilibrium is the attractor within the ten-year control period. By
pushing the system to this region of the bifurcation diagram, the system is able to move towards
the disease-free equilibrium even after control measures have been lifted - a result that is not
possible in the forward bifurcation scenario. Although theoretically it is possible to take advantage
of the backward bifurcation to impart long-term benefits from a short-term control strategy, it
is important to always keep in mind the caveat that a small environmental change or a small
reintroduction event could easily move the system back into the endemic equilibrium attracting
region. This means that although the system is tending towards elimination beyond the control
period, the likelihood of an epidemic event is high.

The natural step in furthering our understanding of the interaction between leaky vaccines and
NAI is to extend our current model to allow the level of naturally acquired immunity to change
with changes in malaria prevalence. Our model as is does not consider that vaccines are likely to,
over time, reduce NAI levels in a population. According to our analyses, if the time scale on which
NAI changes as a result of vaccine use is fast, this should have a dramatic impact on the optimal
control results; vaccines would become more effective at the population level as NAI decreases as a
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Figure 9: The black, dashed curve illustrates the trajectory of the proportion of mosquitoes in-
fected z(t) during, and several months beyond, the control period, superimposed on the bifurcation
diagram for the system. The beginning of the trajectory is marked with a black square. The
equilibria of the bifurcation diagram are illustrated in red and blue. The red, solid curves represent
the locally asymptotically stable equilibria, while the blue, dashed curves represent the unstable
equilibria as a function of R0. The bifurcation parameter used in this illustration was β. The
black dot represents the location of the equilibrium value z∗ prior to any control policy (that is,
u1 = u2 = 0). Parameter values in this simulation correspond to those in Table 5, except where
otherwise stated.

consequence of vaccination. If on the other hand, levels of NAI change relatively slowly, our model
may be a reasonable approximation over short time intervals.

With a relatively simple malaria model, we have demonstrated the importance of understanding the
impact of NAI and leaky vaccines on the efficacy of a malaria vaccination program and highlighted
that such a program is unlikely to be “one size fits all”. How leaky vaccines are distributed should be
region specific, depending not only on environmental characteristics that lead to different malaria-
relevant parameters, but also on the underlying level of natural immunity in the population.
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parameter value parameter value

a 3.1938 ω 0.0563
b 0.1000 e 0.3000
c 0.2140 µ 0.0013
g 5.0796 β mabe−gn

α 4.3452 βp (1− e)β
r 0.6083 ηi ac
rp 0.2028 ηr σηi
n 0.3288 ηp σηi
σ 0.5000 N 10,000

Table 5: Parameter set (in time unit of months) for optimal control problem in the backward
bifurcating scenario. Note: parameter values for backward bifurcation setting are not taken from
the literature.
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A Appendix

A.1 Proof that R0 can be decreasing, constant, or increasing with v

First, R2

0 = A
ω + µ

ω + v + µ
·
β

g
+B

v

ω + v + µ
·
β

g
. Thinking of R0 as a function of v and differentiating

R2
0
with respect to v, we have

2R0

dR0

dv
=

ω + µ

(ω + v + µ)2
·
β

g
(B −A),
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and the conclusion is straightforward.

A.2 Proof that there is a unique endemic equilibrium when q = 0, R0 > 1.

Suppose z∗ 6= 0. From our system of differential equations , we find that

S∗ =
µN + ωS∗

p + rR∗

βz∗ + v + µ
(6)

I∗ =
βz∗S∗

α+ µ
(7)

R∗ =
αβz∗S∗

(α+ µ)(r + µ)
(8)

S∗
p =

rpR
∗
p + vS∗

(1− e)βz∗ + ω + µ
(9)

R∗
p =

(1− e)βz∗S∗
p

rp + µ
(10)

Substituting Equation (9) into Equation (10) and solving for R∗
p, we obtain

R∗
p =

(1− e)βvz∗S∗

(rp + µ) [(1− e)βz∗ + ω + µ]− rp(1− e)βz∗
.

Let f1(z
∗) =

rp(1− e)βz∗

(rp + µ) [(1− e)βz∗ + ω + µ]
. From Equations (9-10), we can rewrite S∗

p :

S∗
p =

vS∗

(1− f1(z∗))((1 − e)βz∗ + ω + µ)
. (11)

Using Equations (6), (8), and (11), we can now write S∗ in terms of z∗ alone:

S∗ =
µN

(1− f2(z∗))(βz∗ + v + µ)
,

where f2(z
∗) =

ωv

(1− f1(z∗)) [(1− e)βz∗ + ω + µ] (βz∗ + v + µ)
+

rαβz∗

(α+ µ)(r + µ)(βz∗ + v + µ)
. Sub-

stituting this expression into the equation for z′ = 0, we obtain an equation in z∗:

βµ(1− z∗)

(1− f2(z∗))(βz∗ + v + µ)

[

ηi
α+ µ

+
ηrα

(α+ µ)(r + µ)

+
ηp(1− e)v

(rp + µ) [(1− e)βz∗ + ω + µ− rp(1− e)βz∗]

]

= g (12)
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Let F (z∗) denote the left-hand side of Equation (12). F (0) = R0g. So, R0 > 1 implies F (0) > g.
On the other hand, F (1) = 0 < g. Thus, a solution to Equation (12) exists. To show that
Equation (12) has, in fact, a unique solution, we will show that F (z∗) is a monotonically decreasing
function.

The term in brackets in Equation (12) is clearly a decreasing function of z∗. Furthermore, (1 −

f1(z
∗)) [(1− e)βz∗ + ω + µ] = ω + µ+

µ(1− e)βz∗

rp + µ
implies that

(1− f2(z
∗))(βz∗ + v + µ) = βz∗ + v + µ−

ωv

(1− f1(z∗)) [(1− e)βz∗ + ω + µ]
−

rαβz∗

(α+ µ)(r + µ)

= βz∗ + v + µ−
ωv(rp + µ)

(ω + µ)(rp + µ) + µ(1− e)βz∗
−

rαβz∗

(α+ µ)(r + µ)

= βz∗
(

1−
rα

(α+ µ)(r + µ)

)

+ v + µ−
ωv(rp + µ)

(ω + µ)(rp + µ) + µ(1− e)βz∗
.

Thus, (1− f2(z
∗))(βz∗ + v + µ) is an increasing function of z∗, and so we have that

βµ(1− z∗)

(1− f2(z∗))(βz∗ + v + µ)
is monotonically decreasing in z∗. So, F (z∗) is a monotonically decreas-

ing function, while the right hand side is constant in z∗. Therefore, Equation (12) has a unique
solution z∗ = ẑ.

A.3 Proof of conditions for backward bifurcation

We first refer to the following useful result based on general center manifold theory, and the remark
that follows:

Theorem A.3.1. (Castillo-Chavez and Song)

Let dx
dt

= f(x, φ) refer to a general system of ordinary differential equations, where f : Rn×R → Rn,
f ∈ C2(Rn ×R), and φ is a parameter. Without loss of generality, let 0 be an equilibrium of the
system so that f(0, φ) = 0 for all φ. Assume

(1) A = Dxf(0, 0), i.e. the Jacobian of the system evaluated at the zero equilibrium, with φ = 0.
Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;

(2) Matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue.

Let fk be the kth component of f and
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a =

n
∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) (13)

b =
n
∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (14)

Then, the local dynamics of the system are completely determined by the signs of a and b. In par-
ticular, if a, b > 0, the bifurcation at φ = 0 is subcritical (i.e. backward).

Remark A.3.2. The condition in assumption (2) of Theorem A.3.1 that the right eigenvector w
be positive is not necessary. In fact, if x0 denotes the equilibrium, we only need that w(j) > 0
whenever x0(j) = 0. If x0(j) > 0, then w(j) need not be positive.

Proof. Denote the vector of state variables in our model by x = (S, Sp, I, Rp, R, z)
T Let x0 denote

the DFE of system (1) with the ordering designated by the vector x.

Let φ = β. Then,

Dxf(U0, φ) =

(

A1 A2(φ)
0 A3(φ)

)

, (15)

where

A1 =

(

−(v + µ) ω
v −(ω + µ)

)

, A2(φ) =

(

0 0 (1− q)r −φS∗
0
)

0 rp qr −(1− e)φS∗
p0

)

, and

A3(φ) =









−(α+ µ) 0 0 φS∗
0

0 −(rp + µ) 0 (1− e)φS∗
p0

α 0 −(r + µ) 0
ηi
N∗

0

ηp
N∗

0

ηr
N∗

0

−g









.

The eigenvalues of the block triangular matrix Dxf(U0, φ) are precisely the eigenvalues of A1 and
A3(φ). A1 has negative trace and positive determinant (det(A1) = µ(ω + v + µ) > 0), hence all
eigenvalues of A1 have negative real part. det(A3 − λI) is of the form p(λ) = a0 + a1λ + a2λ

2 +
a3λ

3 + λ4.

p(λ) =−
ηi
N

(rp + µ+ λ)(r + µ+ λ)φ∗S∗
0 −

ηp
N

(r + µ+ λ)(α + µ+ λ)(1 − e)φ∗S∗
p0

−
ηrα

N
(rp + µ+ λ)φ∗S∗

0 + (g + λ)(α+ µ+ λ)(rp + µ+ λ)(r + µ+ λ)
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A little algebra reveals that a0 = 0 when φ = φ∗, and so, zero is an eigenvalue of A3(φ
∗). Note that

it is clear that zero must be an eigenvalue because φ = φ∗ precisely when R0 = 1. Furthermore, a1
can be written as follows, and easily seen to be positive:

a1 =g(α + µ)(rp + µ)

[

1−

(

ηiS
∗
0

N(α+ µ)
+
ηp(1− e)(S∗

p)0

N(rp + µ)

)

φ∗

g

]

+ g(α + µ)(r + µ)

[

1−
ηiS

∗
0

N(α+ µ)

φ∗

g

]

+ g(rp + µ)(r + µ)

[

1−
ηp(1− e)S∗

p0

N(rp + µ)

φ∗

g

]

+ (α+ µ)(r + µ)(rp + µ)

> (g(α+ µ)(rp + µ) + g(α + µ)(r + µ) + g(rp + µ)(r + µ)) (1−R2

0(φ
∗))

+ (α+ µ)(r + µ)(rp + µ)

=(α+ µ)(r + µ)(rp + µ) > 0.

Because a0 = 0 and a1 is positive, p(λ) has precisely one zero root; in other words, A3(φ
∗) has a

simple zero root. The remaining coefficients a2 and a3 are also positive, and so by Descartes’ Rule
of Signs, p(λ) has no positive real roots.

To show that p(λ) has no complex roots with positive real part, we assume, by way of contradiction,
that there exists s ≥ 0 and t 6= 0 (both real) such that λ = s + it is a root of p(λ). Note that
p(λ) = (g + λ− L(λ))(α + µ+ λ)(rp + µ+ λ)(r + µ+ λ), where

L(λ) =
ηiφ

∗S∗
0

N(α+ µ+ λ)
+
ηp(1− e)φ∗S∗

p0

N(rp + µ+ λ)
+

ηrαφ
∗S∗

0

N(α+ µ+ λ)(r + µ+ λ)
.

Then, p(s+ it) = 0 if and only if L(s+ it) = g+ s+ it. Note that |x+ s+ it| > x+ s for any x > 0.
Thus,

|L(s+ it)| ≤
ηiφ

∗S∗
0

N |α+ µ+ λ|
+
ηp(1− e)φ∗S∗

p0

N |rp + µ+ λ|
+

ηrαφ
∗S∗

0

N |α+ µ+ λ||r + µ+ λ|

<
ηiφ

∗S∗
0

N(α+ µ+ s)
+
ηp(1− e)φ∗S∗

p0

N(rp + µ+ s)
+

ηrαφ
∗S∗

0

N(α+ µ+ s)(r + µ+ s)

= L(s) = g + s.

So, |L(s+ it)| < g + s. On the other hand, |L(s+ it)| = |g + s+ it| > g + s, which contradicts the
previous inequality. Therefore, if λ = s+ it for some t 6= 0, then s < 0. That is, any complex roots
of p(λ) have negative real part.

To summarize these conclusions, A3(φ
∗) has a simple zero eigenvalue and all other eigenvalues have

negative real part. Therefore, assumption (1) in Theorem A.3.1 holds for our system.
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We denote the left and right eigenvectors associated with the zero eigenvalue by l and r, respectively.
The component r6 is arbitrary and may be chosen positive. The first and second components of r
are the solutions to system (5). The remaining components of the right eigenvector are given by

r3 =
φ∗S∗

0

α+ µ
r6

r4 =
φ∗(1− e)S∗

p0

rp + µ
r6

r5 =
αφ∗S∗

0

(α+ µ)(r + µ)
r6.

Solving for r2 in the second equation (in terms of r1) of system (5) and plugging into the first
equation, we obtain

µ(ω + v + µ)

ω + µ
r1 =

ω

ω + µ

(

rp
rp + µ

− 1

)

(1− e)S∗
p0
φ∗r6

+

[

ω

ω + µ
·

qrα

(α+ µ)(r + µ)
+

(1− q)rα

(α+ µ)(r + µ)
− 1

]

φ∗S∗
0r6. (16)

Each term on the right hand side of (16) is negative, and so r1 must also be negative. According to
Remark A.3.2, because x∗

1
> 0, r1 need not be nonnegative as is stated in assumption 2 of Theorem

A.3.1. Similarly, x∗
2
> 0 implies that r2 need not be nonnegative. With r6 assumed positive, the

remaining components of the right eigenvector are positive. Thus, the assumption imposed on the
right eigenvector is not violated.

The components of the left eigenvector are given by

l1 = l2 = 0

l3 =

(

ηrα

N(r + µ)(α + µ)
+

ηi
N(α+ µ)

)

l6

l4 =
ηp

N(rp + µ)
l6

l5 =
ηr

N(r + µ)
l6,

where l6 must satisfy l · r = 1.

For convenience, we rewrite system (1) using the change of variables x1 = S, x2 = Sp, x3 = I, x4 =
Rp, x5 = R,x6 = z, letting x = (x1, ..., x6)

T , and dx
dt

= f(x, φ). Since l1 = l2 = 0, we in fact only
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need dxk

dt
= fk(x, φ) for k ≥ 3 to compute a and b in Theorem A.3.1:

f3 = φ∗x6x1 − (α+ µ)x3

f4 = φ∗(1− e)x6x2 − (rp + µ)x4

f5 = αx3 − (r + µ)x5

f6 =
ηix3 + ηpx4 + ηrx5

N
(1− x6)− gx6.

Remembering that x∗k = 0 for k ≥ 3, we have

∂f3
∂x6∂x1

= φ∗ =
∂f3

∂x1∂x6
∂f4

∂x6∂x2
= φ∗(1− e) =

∂f3
∂x2∂x6

∂f6
∂x6∂x3

= −
ηi
N

=
∂f6

∂x3∂x6
∂f6

∂x6∂x4
= −

ηp
N

=
∂f6

∂x4∂x6
∂f6

∂x6∂x5
= −

ηr
N

=
∂f6

∂x5∂x6

and

∂f3
∂x6∂φ

= x∗1

∂f4
∂x6∂φ

= (1− e)x∗2.

The remaining second partial derivatives are zero. From our calculation of the left and right
eigenvectors and second partial derivatives, we obtain

a = 2l3r6r1φ
∗ + 2sl4r6r2φ

∗(1− e)− 2l6r6

(

ηir3 + ηpr4 + ηrr5
N

)

(17)

b = l3l6x
∗
1 + l4r6(1− e)x∗2

From the requirement that l6 satisfy l · r = 1, we obtain that l6 has the same sign as r6, and
consequently b > 0. Thus, backward bifurcation occurs if a > 0. Rewriting the inequality a > 0 in
an equivalent form, we find that backward bifurcation occurs only if inequality (4) holds.
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A.4 Numerical analysis of optimal control system

The complexity of the optimal control problem required that we obtain solutions to the problem
numerically. To this end, we implemented the forward-backward sweep method in which one begins
the algorithm by making an initial guess at the optimal control pair (u∗

1
, u∗

2
) and uses this initial

guess to solve the state system in forward time. The solution to the state system along with the
guessed optimal control pair are then used as inputs to the adjoint system, which must be solved
numerically in backwards time using the terminal condition λ(T ) = ~0. The description of the
optimal control pair is then updated using the equations in (3) and the state and adjoint systems
are integrated using the updated controls. We implemented the fourth-order Runge-Kutta method
to perform all numerical integrations with a step size of dt = .1 months over a time interval of
T = 120 months (10 years). At this stage in the algorithm, we calculated the error between the
updated control pair and the previous estimate of the control pair along with the error between the
new and old solutions to the state and adjoint systems. More precisely, if we denote the updated
values of the controls, the solutions to the states system, and the solutions to the adjoint system
by ui, xi, λi, respectively, we calculate the errors

ǫ1 = min
i∈{1,2}

δ
∑

|ui| −
∑

|uiold − ui|

ǫ2 = min
i∈{1,...,6}

δ
∑

|xi| −
∑

|xiold − xi|

ǫ3 = min
i∈{1,...,6}

δ
∑

|λi| −
∑

|λiold − λi|.

The sums above are taken over the length of the vectors (T/dt+ 1 = 1201), and in our implemen-
tation of the algorithm we set δ = .0001. The calculation of the errors completes one iteration of
the algorithm. If ǫ := min{ǫ1, ǫ2, ǫ3} < 0, the algorithm continues to the next iteration, using the
updated control pair as the new inputs to the state and adjoint systems and the steps described
above are repeated. The algorithm is said to converge when ǫ ≥ 0. Note that ǫ1 ≥ 0 is equivalent

to
∑

|uiold
−ui|∑

|ui|
≤ δ as long as ui 6= ~0; thus, we required that the relative errors between old and new

values be small, and rewrote the desired inequalities to avoid division by zero.
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