
ARTICLE IN PRESS YJMAA:13032
JID:YJMAA AID:13032 /FLA [m3SC+; v 1.87; Prn:10/01/2008; 13:21] P.1 (1-14)
J. Math. Anal. Appl. ••• (••••) •••–•••
www.elsevier.com/locate/jmaa

An epidemic model of a vector-borne disease with direct
transmission and time delay

Hui-Ming Wei a,∗, Xue-Zhi Li b, Maia Martcheva c

a State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b Department of Mathematics, Xin Yang Normal University, Xin Yang 464000, China

c Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA

Received 21 June 2007

Submitted by M.C. Nucci

Abstract

This paper considers an epidemic model of a vector-borne disease which has direct mode of transmission in addition to the
vector-mediated transmission. The incidence term is assumed to be of the bilinear mass-action form. We include both a baseline
ODE version of the model, and, a differential-delay model with a discrete time delay. The ODE model shows that the dynamics
is completely determined by the basic reproduction number R0. If R0 � 1, the disease-free equilibrium is globally stable and the
disease dies out. If R0 > 1, a unique endemic equilibrium exists and is locally asymptotically stable in the interior of the feasible
region. The delay in the differential-delay model accounts for the incubation time the vectors need to become infectious. We
study the effect of that delay on the stability of the equilibria. We show that the introduction of a time delay in the host-to-vector
transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vector-borne diseases are infectious diseases caused by viruses, bacteria, protozoa or rickettsia which are primarily
transmitted by disease transmitting biological agents (anthropoids), called vectors, who carry the disease without get-
ting it themselves. Globally, malaria is the most prevalent vector-borne disease whose vectors are the mosquitoes. The
mosquitoes are vectors of a number of infectious diseases most prominent among which are dengue (the second most
important vector-borne disease), yellow fever, St Louis Encephalitis, Japanese Encephalitic, and West Nile Fever,
caused by the West Nile Virus. Other vectors are the assassin bugs, causing the Chagas disease, fleas transmitting the
plague from its normal host (wild rodents and other small mammals) to humans, or from human to human, and ticks
which transmit the most prevalent vector-borne disease in North America (Harrus and Baneth [1])—the Lyme disease,
but also tick-borne Encephalitis and others. Ample evidences now exist that in the last 20–30 years vector-borne dis-
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eases have emerged in new locations (Marfin and Gubler [2]) or reemerged as a significant health problem after being
put under control for most of the world, except Africa, in the 1950s and 1960s. A number of factors that contribute to
the upsurgence of vector-borne diseases have been repeatedly pointed out and discussed (Molyneux [3], Gubler [4],
Harrus and Baneth [1]). Such factors include (1) the ability of the anthropoids to adapt to new habitats, (2) develop-
ment of insecticide and drug-resistant vectors, (3) global and rapid human movement (by jet airplanes), (4) building
widespread irrigation and water-impoundment, (5) civil unrest and wars which lead to displacement of large masses
of people who live for long periods of time under poor conditions, (6) rapid urbanization which concentrates many
host on small area, (7) change in policies that took away resources for vector-control measures. The impact of climate
change and global warming is a topic of significant debate (Watson et al. [5], Khasnis and Nettleman [6]). Most of the
above factors are a part of the global change linked to human vulnerability in the review by Sutherst [7]. The emer-
gence and reemergence of vector-borne diseases have promoted interest in their mathematical modeling. Rogers [8]
reviews the early modeling efforts and McKenzie [9] discusses what makes mathematical models, in particular those
for malaria, useful. Most of the models are related to a specific vector-borne disease, most often malaria and dengue.
Dynamical models of malaria in the recent years are more often associated with the within-host dynamics of the par-
asite. Rodríguez and Torres-Sorando [10] present a finite-number of localities model based on the Ross–MacDonald
classic model of malaria dynamics. Ishikawa et al. [11] use a mathematical model to evaluate the impact from the
programs of selective mass drug administration (MDA) and vector control through permethrin-treated bednets.

Drug-resistance of malaria in the human host is becoming an increasing problem and has been addressed in Koella
and Antia [12] (see also review by Mackinnon [13]). Convolution between malaria and its host has been well doc-
umented and has been investigated through mathematical models in several articles (Koella and Boete [14], Feng et
al. [15]). Incidence of dengue has increased and dengue is now endemic in more than 100 countries (Calisher [16]).
Furthermore, there is evidence that selection for more virulent dengue viruses occurs (Cologna et al. [17]).

Mathematical models have been used to evaluate the impact of ultra-low volume insecticide on the dengue
epidemic (Newton and Reiter [18], Esteva and Vargas [19]), to study the interaction of the serotype (Feng and
Velasco-Hernandez [20], Esteva and Vargas [21,22], Ferguson et al. [23]), to infer the implication of cross-immunity
enhancement of transmission (Ferguson et al. [24]) or mortality (Kawaguchi et al. [25]) on the dynamics multiple-
strain dengue pathogens, to explore the impact of mechanical transmission of dengue from the mosquito to the human
host and vertical transmission of the virus in the mosquitoes on the dynamics of the dengue disease (Esteva and Var-
gas [26]). The importance of host age-structure for the determination of the transmission rates of dengue has been
pointed out in several articles (Pongsumpun and Tang [27], Ferguson et al. [23]). Vaccine against dengue is not yet
available (see Chaturvedi et al. [28] for overview of current state of vaccine development) but its potential impact
is investigated in Derouich et al. [29]. The spatial dynamics of the transmitting mosquitoes only was investigated in
Takahashi et al. [30]. A recent article discusses control strategies, such as the introduction of sterile mosquitoes, on
the dynamics of the vector (Esteva and Mo Yang [31]).

The recent transfer and invasion of the West Nile virus to the North America have lead to several recent mathemati-
cal models of its epidemiology. Cruz-Pacheco et al. [32] model the dynamics by only taking into account the vector and
the avian population as a host while Bowman et al. also take into account the human host in addition to the vector and
the avian host (Bowman et al. [33]). The complex interaction of the ticks that transmit Lyme disease and possible mul-
tiple hosts was also investigated through mathematical models (Porco [34], Caraco et al. [35]). More general models
of tick-borne diseases are also discussed (Gosh and Pugliese [36], Rosa et al. [37], Mwambi [38]). The impact of more
complex factors as climate and space distribution is addressed through simulative models (Brownstein et al. [39]).

We consider in this article a Ross–MacDonald type model where the population of the vector is described by a
system for the susceptible and infected vector while the dynamics of the host is described by an SIR model. The
ODE version is introduced and analyzed in Section 2. We extend this model to include a fixed delay in the system
for the vector in Section 3. Takeuchi et al. [40] consider a similar differential-delay model for vector-borne diseases
but the main result there is the global stability of the endemic equilibrium under appropriate conditions, while we
are interested in Hopf bifurcation and the presence of sustained oscillations. While the main mode of transmission in
vector-borne diseases is through the vector, and that is the only way of transmission included in Takeuchi et al. [40],
evidence exists that direct transmission is possible through blood transfusion, vertically or through needle stick injury.
Such alternative modes of transmission have been reported in malaria and in Chagas diseases and direct transmission
in addition to vector transmission has been incorporated in a recent age-since-infection structured model of Chagas
diseases (Inaba and Sekine [41]).
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
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2. The ODE model

In this section, we present an ODE version of a model for spread of a vector-transmitted disease in a host popu-
lation. The total host population size at time t , given by N1(t), is partitioned into subclasses of individuals who are
susceptible, infectious and recovered, with sizes denoted by S(t), I (t) and R(t), respectively. Furthermore, the host
population dies at a natural death rate μ1. In addition, the host population is recruited at a rate b1. We assume that
vertical transmission in the host population does not occur so that all newly recruited individuals are susceptible. The
per capita recovery rate of the hosts is given by γ . The recovered individuals are assumed to acquire permanent im-
munity and there is no transfer from the R class back to the S class. Susceptible hosts can get infected via two routes
of transmission—directly, through a contact with an infected individual (possibly as a result of blood transfusion), and
through being bitten by an infectious vector. We denote the rate of direct transmission by λ1 so that the incidence of
new infections via this route is given by the mass action term λ1S(t)I (t). Furthermore, we denote the biting rate that
a pathogen-carrier vector has of susceptible hosts as λ2 and the incidence of new infections transmitted by the vectors
is given again by a mass action term λ2S(t)V (t).

The following differential equations, derived based on the basic assumptions, give the dynamics of the disease in
the host population:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= b1 − λ1S(t)I (t) − λ2S(t)V (t) − μ1S(t),

dI (t)

dt
= λ1S(t)I (t) + λ2S(t)V (t) − γ I (t) − μ1I (t),

dR(t)

dt
= γ I (t) − μ1R(t),

(2.1)

where V (t) is the number of vectors at time t who carry the pathogen. The second component of the vector population
is the number of pathogen-free (susceptible) vectors at time t , given by M(t). The total size of the vector population at
time t , given by N2(t), is subdivided into those two vector-population classes, the susceptible vectors and infectious
vectors. The vector population dies at a natural death rate μ2. In addition, the vector population is recruited at a birth
rate b2. Although evidence exists that the pathogen of several vector-borne diseases (e.g. West Nile fever and yellow
fever and Lyme disease), can be transmitted from (female) parent to offspring in the vector population, we will assume
that all newborn vectors are susceptible and vertical transmission can be neglected. Susceptible vectors start carrying
the pathogen after getting into contact (biting) an infective host at a rate λ3 so that the incidence of newly infected
vectors is given by a mass action term λ3M(t)I (t).

In contrast to the host population, once the vectors become carriers of the microparasite, they carry it for life. The
system that describes the dynamics of the vectors is given by

⎧⎪⎨
⎪⎩

dM(t)

dt
= b2 − λ3M(t)I (t) − μ2M(t),

dV (t)

dt
= λ3M(t)I (t) − μ2V (t).

(2.2)

We make some reasonable technical assumptions on the parameters of the model, namely that γ > 0, μj > 0 and
bj > 0 for j = 1,2. The above systems for the host population and the vector are also equipped with initial conditions
as follows: S(0) = S0, I (0) = I0, R(0) = R̄0, M(0) = M0 and V (0) = V0.

The total host population size N1(t) can be determined by N1(t) = S(t) + I (t) + R(t) or from the differential
equation

N ′
1 = b1 − μ1N1,

which is derived by adding the equations in (2.1). The total number of vectors N2(t) can be determined by N2(t) =
M(t) + V (t) or from the differential equation

N ′
2 = b2 − μ2N2,

which is derived by adding the equations in (2.2).
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
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It is easily seen that both for the host population and for the vector population the corresponding total population
sizes are asymptotically constant: limt→∞ N1(t) = b1

μ1
, and limt→∞ N2(t) = b2

μ2
. This implies that in our model we

assume without loss of generality that N1(t) = b1
μ1

, N2(t) = b2
μ2

for all t � 0, provided that S0 + I0 + R̄0 = b1
μ1

,

M0 + V0 = b2
μ2

.
Previous results (Thieme [42]) imply that the dynamics of systems (2.1) and (2.2) are qualitatively equivalent to

the dynamics of system given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= b1 − λ1S(t)I (t) − λ2S(t)V (t) − μ1S(t),

dI (t)

dt
= λ1S(t)I (t) + λ2S(t)V (t) − γ I (t) − μ1I (t),

dV (t)

dt
= λ3

(
b2

μ2
− V (t)

)
I (t) − μ2V (t).

(2.3)

The values of R and M can be determined correspondingly by R = b1
μ1

− S − I and M = b2
μ2

− V or from R′ =
γ I − μ1R and M ′ = b2 − λ3MI − μ2M, respectively.

For biological reasons we need the solutions non-negative. Mathematical properties of the solutions lead us to
study the system (2.3) in the closed set

Γ =
{
(S, I,V ) ∈ R3+

∣∣∣ 0 � S + I � b1

μ1
, 0 � V � b2

μ2
, S � 0, I � 0

}
,

where R3+ denotes the non-negative cone of R3 including its lower dimensional faces. It can be verified that Γ

is positively invariant with respect to (2.3). We denote by ∂Γ and Γ o the boundary and the interior of Γ in R3,
respectively. Direct calculation shows that system (2.3) has the disease-free equilibrium E0 = ( b1

μ1
,0,0) ∈ ∂Γ, in the

non-negative cone R3+.
The dynamics of the disease is described by the quantity

R0 = b1

μ1

(
λ2

(γ + μ1)

λ3

μ2

b2

μ2
+ λ1

(γ + μ1)

)
.

The quantity R0 is called the basic reproduction number [43] or the contact number [44]. It represents the average
number of secondary infections that single infectious host can generate in a totally susceptible population of hosts
and vectors. The reproduction number consists of two terms. The first term gives the number of secondary infections
that one infectious host can generate only through vector transmission. To see this notice that there are b2

μ2
suscep-

tible vectors, and λ3
b2
μ2

will become infected per unit of time and will stay infected for 1
μ2

time units, so that the

total number of infected vectors from one infectious host will be λ3
μ2

b2
μ2

. Since there are b1
μ1

susceptible hosts, these

infectious vectors will bite and transmit the pathogen to λ2
b1
μ1

of them per unit of time. The total time spent as in-

fectious individual is 1
γ+μ1

so that the total number of secondary infected hosts through the vector-transmission is
λ2

(γ+μ1)
b1
μ1

λ3
μ2

b2
μ2

. The second term of the reproduction number gives the number of secondary infections that one in-
fectious individual can generate in a susceptible population only through direct transmission. To see that we notice
that since there are b1

μ1
susceptible hosts, one infectious host can infect through direct transmission only λ1

b1
μ1

of

them per unit of time, and since they spend 1
γ+μ1

time units infectious, the total number of secondary infections

is λ1
γ+μ1

b1
μ1

.
The reproduction number R0 controls the number of equilibria of the system (2.3). If R0 � 1, then the disease-free

equilibrium E0 is the only equilibrium in Γ . If R0 > 1, the disease-free equilibrium E0 is still present, but there is
also a unique endemic equilibrium E∗ which exists in Γ o.

2.1. The disease-free equilibrium and its stability

In this section we study the local stability of the disease-free equilibrium E0 in the two cases when the reproduction
number R0 < 1 and when R0 > 1.
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
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Theorem 2.1.1. The disease-free equilibrium E0 of (2.3) is locally asymptotically stable in Γ if R0 < 1. The disease-
free equilibrium E0 of (2.3) is unstable if R0 > 1.

Proof. Linearizing the system (2.3) at the equilibrium E0, we obtain the corresponding characteristic equation. Ac-
cording to the Hurwitz criterion, if R0 < 1 it has only roots with negative real parts and the disease-free equilibrium
E0 is locally asymptotically stable. Otherwise, it has one positive root and E0 is unstable if R0 > 1. This completes
the proof. �
Theorem 2.1.2. If R0 � 1, then the disease-free equilibrium E0 of (2.3) is globally asymptotically stable in Γ .

Proof. To see the global stability of the disease-free equilibrium we introduce a new dependent variable L = μ1I +
λ2b1
μ2

V . Clearly, L � 0 along the solutions of the system (2.3) and is zero if and only if both I and V are zero. The
derivative of L along the solutions of (2.3) is

L′ = μ1λ1SI + μ1λ2SV − μ1(γ + μ1)I + λ2λ3b1b2

μ2
2

I − λ2λ3b1

μ2
V I − λ2b1V

� I

[
λ1b1 − μ1(γ + μ1) + λ2λ3b1b2

μ2
2

− λ2λ3b1

μ2
V

]
= I

[
b1

(
λ2λ3b2

μ2
2

+ λ1

)
− μ1(γ + μ1) − λ2λ3b1

μ2
V

]

= I

[
μ1(γ + μ1)(R0 − 1) − λ2λ3b1

μ2
V

]
� 0,

where in the first inequality we have used the fact that μ1λ2SV −λ2b1V < 0 in Γ and, therefore, we have neglected it.
In addition, the last inequality follows from the assumption that R0 � 1. Furthermore, in the case R0 < 1 the derivative
L′ = 0 if and only if I = 0, while in the case R0 = 1 the derivative L′ = 0 if and only if I = 0 or V = 0. Consequently,
the largest compact invariant set in {(S, I,V ) ∈ Γ : L′ = 0}, when R0 � 1, is the singleton {E0}. LaSalle’s invariance
principle [45] then implies that E0 is globally asymptotically stable in Γ . This proves the theorem. �
2.2. Existence of an endemic equilibrium and its stability

Throughout this subsection, we will assume R0 > 1. We obtain the unique positive endemic equilibrium E∗ =
(S∗, I ∗,V ∗) ∈ Γ o in the non-negative cone R3+ by using the Mean Value Theorem:

S∗ = b1 − (γ + μ1)I
∗

μ1
,

V ∗ = λ3b2I
∗

μ2(μ2 + λ3I ∗)
,

where I ∗ is uniquely determined by the following equation

b1 − (γ + μ1)I

μ1

[
λ1

γ + μ1
+ λ2λ3b2

μ2(γ + μ1)(λ3I + μ2)

]
= 1. (2.4)

Next, we study the stability of the endemic equilibrium.

Theorem 2.2.1. If R0 > 1, then the endemic equilibrium E∗ of (2.3) is locally asymptotically stable in Γ .

Similar to the proof of Theorem 2.1.1, Theorem 2.2.1 can also be obtained easily. This proof is omitted.

3. The delay model

In this section, we introduce a time delay into the systems (2.1) and (2.2) to represent the incubation time that the
vectors need to become infectious. The model for the host population is exactly as before:
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007.12.058



ARTICLE IN PRESS YJMAA:13032
JID:YJMAA AID:13032 /FLA [m3SC+; v 1.87; Prn:10/01/2008; 13:21] P.6 (1-14)

6 H.-M. Wei et al. / J. Math. Anal. Appl. ••• (••••) •••–•••

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= b1 − λ1S(t)I (t) − λ2S(t)V (t) − μ1S(t),

dI (t)

dt
= λ1S(t)I (t) + λ2S(t)V (t) − γ I (t) − μ1I (t),

dR(t)

dt
= γ I (t) − μ1R(t).

(3.1)

The time delay is introduced in the system describing the dynamics of the vector. At time t only susceptible vectors
that have bitten an infectious host τ time units ago, that is at time t − τ , become infectious, provided that they have
survived the incubation period of τ units, given that they were alive at time t − τ when they bit the infectious host.
Thus the incidence term of infectious vectors changes from λ3M(t)I (t) to λ3M(t − τ)I (t − τ). The system for the
dynamics of the vector takes the form:⎧⎪⎨

⎪⎩
dM(t)

dt
= b2 − λ3M(t − τ)I (t − τ) − μ2M(t),

dV (t)

dt
= λ3M(t − τ)I (t − τ) − μ2V (t).

(3.2)

The systems (3.1) and (3.2) satisfy also the initial conditions: S(θ) = S0, I (θ) = I0, R(θ) = R̄0, M(θ) = M0,
V (θ) = V0, θ ∈ [−τ,0]. All the parameters are the same as in the systems (2.1) and (2.2) except for the positive
constant τ which represents the length of the delay. As before, the total host population size N1(t) can be determined
by N1(t) = S(t) + I (t) + R(t) or from the differential equation

N ′
1 = b1 − μ1N1,

which is derived by adding the equations in (3.1). Similarly, the total number of vectors N2(t) can be determined by
N2(t) = M(t) + V (t) or from the differential equation

N ′
2 = b2 − μ2N2,

which is derived by adding the equations in (3.2). As before, the total population sizes of both host and vector popula-
tions are asymptotically constant, that is, limt→∞ N1(t) = b1

μ1
and limt→∞ N2(t) = b2

μ2
. Then in our model we assume,

without loss of generality, that N1(t) = b1
μ1

, N2(t) = b2
μ2

for all t � 0 provided that S0 + I0 + R̄0 = b1
μ1

, M0 + V0 = b2
μ2

.

The dynamics of systems (3.1) and (3.2) are qualitatively equivalent to the dynamics of the following system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= b1 − λ1S(t)I (t) − λ2S(t)V (t) − μ1S(t),

dI (t)

dt
= λ1S(t)I (t) + λ2S(t)V (t) − γ I (t) − μ1I (t),

dV (t)

dt
= λ3

(
b2

μ2
− V (t − τ)

)
I (t − τ) − μ2V (t).

(3.3)

The values of R, M can be determined correspondingly by R = b1
μ1

− S − I and M = b2
μ2

− V or from R′ = γ I (t) −
μ1R(t) and M ′ = b2 − λ3M(t − τ)I (t − τ) − μ2M(t).

With the same motivation as before, we study the system (3.3) in the same closed set Γ . It can be verified that
Γ is positively invariant with respect to the system (3.3). As before, we denote by ∂Γ and Γ o the boundary and the
interior of Γ in R3, respectively. Direct calculation shows that system (3.3) has the same disease-free equilibrium
E0 = ( b1

μ1
,0,0) ∈ ∂Γ , as the system (2.3) which is also in the non-negative cone R3+.

We introduce the reproduction number of the differential-delay model (3.3) which is given by a similar expression:

R0 = b1

μ1

(
λ2

(γ + μ1)

λ3

μ2

b2

μ2
+ λ1

(γ + μ1)

)
.

The interpretation of the reproduction number is similar to the one before. The only difference consists in the obser-
vation that if one infectious host is introduced in a population of susceptible hosts and vectors, it will transmit the
pathogen to λ3

μ2

b2
μ2

susceptible vectors but they will survive the incubation period to infect other susceptible hosts. As
in the ODE model, if R0 � 1, the only equilibrium in Γ is the disease-free equilibrium E0. If R0 > 1, the disease-free
equilibrium still exists and we will show in the next subsection that there is a unique endemic equilibrium E∗ which
exists in the interior of Γ .
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
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3.1. Existence and uniqueness of the endemic equilibrium

Assuming R0 > 1, first we turn our attention to the existence and uniqueness of an endemic equilibrium. The
derivation of this results largely parallels the one for the ODE model so we will only sketch it. An endemic equilibrium
has components E∗ = (S∗, I ∗,V ∗) such that I ∗ �= 0 and V ∗ �= 0 and is a time-independent solution of the system (3.3).
Since a time-independent solution has the same values at time t as at time t − τ , the system satisfied by the endemic
equilibrium of the system (3.3) is the same as the system (2.3). We apply the same techniques as before to obtain the
unique positive endemic equilibrium E∗ = (S∗, I ∗,V ∗) ∈ Γ o in the non-negative cone R3+. Analogously to the ODE
case we conclude that there exists a unique positive endemic equilibrium if and only if R0 > 1.

3.2. Local and global stability of the disease-free equilibrium

In this section we turn to the study of the local and global stability of the disease-free equilibrium E0 of the
differential-delay model (3.3). We consider the local stability in two cases, namely when R0 < 1 and when R0 > 1.

Theorem 3.2.1. The disease-free equilibrium E0 of (3.3) is locally asymptotically stable in Γ if R0 < 1. The disease-
free equilibrium is unstable if R0 > 1.

Proof. Linearizing the system (3.3) around the disease-free equilibrium E0 = ( b1
μ1

,0,0) we obtain one negative
characteristic solution λ = −μ1 and the following transcendental characteristic equation for the disease-free equi-
librium E0 whose solutions (real and complex) give the remaining eigenvalues:

λ2 +
(

μ1 + γ + μ2 − λ1b1

μ1

)
λ + μ2

(
μ1 + γ − λ1b1

μ1

)
− λ2λ3b1b2

μ1μ2
e−λτ = 0. (3.4)

For τ = 0, we obtain the same quadratic equation as in the ODE case. In that case we know from before that all
eigenvalues of the characteristic equation (3.4) have negative real part. According to Hurwitz criterion, when τ = 0,
the disease-free equilibrium E0 of (3.3) is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

To see the claim for the general non-zero delay τ �= 0, we first consider the case when R0 > 1. We expect that in
this case Eq. (3.4) has a positive root and the disease-free equilibrium is unstable. Indeed, to see this we rearrange
Eq. (3.4) in the form

λ2 + a1λ = μ2(μ1 + γ )

[
λ1b1

(γ + μ1)μ1
+ λ2λ3b1b2

μ1μ
2
2(γ + μ1)

e−λτ − 1

]
, (3.5)

where a1 is the coefficient of λ in (3.4). Suppose λ is real. Denote the left-hand side of Eq. (3.5) as F(λ) and
the right-hand side as G(λ). We have that F(0) = 0 and limλ→∞ F(λ) = ∞. In contrast, the function G(λ) is a
decreasing function of λ and G(0) = μ2(γ + μ1)[R0 − 1] > 0. Thus, the two functions must intersect for some
λ∗ > 0. Consequently, Eq. (3.4) has a positive real solution and the disease-free equilibrium is unstable.

Now, we turn to the case R0 < 1. First, we notice that Eq. (3.5) does not have non-negative real roots since in this
case F(λ) is increasing for λ � 0 while G(λ) is still decreasing function of λ but G(0) = μ2(γ + μ1)[R0 − 1] < 0.
Thus, if Eq. (3.4) has roots with non-negative real parts they must be complex and should have been obtained from a
pair of complex conjugate roots which cross the imaginary axis. Consequently, Eq. (3.4) must have a pair of purely
imaginary solutions for some τ > 0. Assume that λ = iω, and without loss of generality we may assume that ω > 0 is
a root of Eq. (3.4). That is the case if and only if ω satisfies the equation

−ω2 + a1ωi + μ2

(
γ + μ1 − λ1b1

μ1

)
− λ2λ3b1b2

μ1μ2

(
cos(ωτ) − i sin(ωτ)

) = 0, (3.6)

where a1 again denotes the same coefficient in front λ. Separating the real and imaginary parts, we have the following
system, satisfied by ω:

−ω2 + μ2

(
γ + μ1 − λ1b1

μ1

)
= λ2λ3b1b2

μ1μ2
cos(ωτ), (3.7)

(
γ + μ1 + μ2 − λ1b1

)
ω = −λ2λ3b1b2 sin(ωτ). (3.8)
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To eliminate the trigonometric functions we square both sides of each equation above and we add the squared
equations (3.7) and (3.8) to obtain the following forth order equation in ω:

ω4 + μ2
2

(
γ + μ1 − λ1b1

μ1

)2

− 2μ2

(
γ + μ1 − λ1b1

μ1

)
ω2 +

(
γ + μ1 + μ2 − λ1b1

μ1

)2

ω2 − λ2
2λ

2
3b

2
1b

2
2

μ2
1μ

2
2

= 0.

(3.9)

To reduce this fourth order equation in ω to a quadratic equation we let z = ω2 and denote the coefficients as

a10 =
(

γ + μ1 + μ2 − λ1b1

μ1

)2

− 2μ2

(
γ + μ1 − λ1b1

μ1

)
,

a20 = μ2
2

(
γ + μ1 − λ1b1

μ1

)2

− λ2
2λ

2
3b

2
1b

2
2

μ2
1μ

2
2

.

We can rewrite Eq. (3.9) as a quadratic equation in z:

z2 + a10z + a20 = 0. (3.10)

Looking back at the coefficients of this quadratic equation, we see that we can expand the square in a10 and then
completed again using the term outside it, while applying the formula for the difference of squares to a20 we obtain

a10 =
(

γ + μ1 − μ2 − λ1b1

μ1

)2

+ 2μ2

(
γ + μ1 − λ1b1

μ1

)
> 0,

a20 = μ2(γ + μ1)(1 − R0)

[
μ2

(
γ + μ1 − λ1b1

μ1

)
+ λ2λ3b1b2

μ1μ2

]
> 0.

Both inequalities above follow since R0 < 1 which, in particular, implies that γ + μ1 − λ1b1
μ1

> 0. Thus, the two roots
of Eq. (3.10) have positive product which means that they are complex or they are real but they have the same sign.
In addition, they have negative sum which implies that they are either real and negative or complex conjugate with
negative real parts. Consequently, Eq. (3.10) does not have positive real roots which lead to the conclusion that there
is no ω such that iω is a solution of Eq. (3.4). Therefore, it follows from Rouché’s theorem [46, Theorem 9.17.4]) that
the real parts of all the eigenvalues of the characteristic equation (3.4) are negative for all values of the delay τ � 0.
This implies that E0 is locally asymptotically stable in Γ if R0 < 1. This proves the theorem. �

In the next theorem we establish the global stability of the disease-free equilibrium.

Theorem 3.2.2. If R0 � 1, then the disease-free equilibrium E0 of system (3.3) is globally asymptotically stable in Γ .

Proof. We denote by xt the translation of the solution of the system (3.3), that is, xt = (S(t + θ), I (t + θ),V (t + θ))

where θ ∈ [−τ,0]. We introduce as before a new variable

L(xt ) = μ1I (t) + λ2b1

μ2
V (t) + λ2λ3b1

μ2

t∫
t−τ

(
b2

μ2
− V (θ)

)
I (θ) dθ.

We note that L � 0 along the solutions of the system (3.3). This is because the solutions belong to Γ and therefore
V � b2/μ2. In addition L = 0 if and only if both I and V are equal to zero. The derivative of L along the solutions
of (3.3) is given by

L′(xt ) = μ1λ1S(t)I (t) + μ1λ2S(t)V (t) − μ1(γ + μ1)I (t) + λ2λ3b1

μ2

(
b2

μ2
− V (t − τ)

)
I (t − τ) − λ2b1V (t)

+ λ2λ3b1

μ2

(
b2

μ2
− V (t)

)
I (t) − λ2λ3b1

μ2

(
b2

μ2
− V (t − τ)

)
I (t − τ)

= μ1λ1S(t)I (t) + μ1λ2S(t)V (t) − μ1(γ + μ1)I (t) − λ2b1V (t) + λ2λ3b1b2

μ2
I (t) − λ2λ3b1

μ
I (t)V (t)
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� λ1b1I (t) − μ1(γ + μ1)I (t) + λ2λ3b1b2

μ2
2

I (t) − λ2λ3b1

μ2
I (t)V (t)

= I (t)

[
λ1b1 − μ1(γ + μ1) + λ2λ3b1b2

μ2
2

− λ2λ3b1

μ2
V (t)

]

= I (t)

[
μ1(γ + μ1)(R0 − 1) − λ2λ3b1

μ2
V (t)

]
� 0,

where the first inequality follows from the same argument as in Theorem 2.1.2 and the last inequality follows from
the assumption that R0 � 1. Furthermore, in the case R0 < 1 the derivative L′ = 0 if and only if I = 0, while in
the case R0 = 1 the derivative L′ = 0 if and only if I = 0 or V = 0. Therefore, the largest compact invariant set in
{(S, I,V ) ∈ Γ : L′ = 0}, when R0 � 1, is the singleton {E0}. As before, LaSalle’s invariance principle [45] implies
that E0 is globally asymptotically stable in Γ . This proves the theorem. �
3.3. Hopf bifurcation analysis

In this section we determine criteria for Hopf bifurcation to occur using the time delay τ as the bifurcation pa-
rameter. Throughout this subsection we will assume that R0 > 1, that is, that the endemic equilibrium E∗ exists. To
study the stability of the endemic equilibrium E∗, we consider the linearization of system (3.3) at the point E∗. The
following transcendental characteristic equation is obtained

λ3 + a1λ
2 + a2λ + a3 = e−λτ

(
T1λ

2 + T2λ + T3
)
, (3.11)

where the coefficients in this equation are expressed as follows:

a1 = λ1I
∗ + λ2V

∗ − λ1S
∗ + 2μ1 + μ2 + γ,

a2 = (μ1 + γ )
(
λ1I

∗ + λ2V
∗) + μ1

(
μ1 + γ − λ1S

∗) + μ2
(
μ1 + γ − λ1S

∗ + λ1I
∗ + λ2V

∗ + μ1
)
,

a3 = μ2(μ1 + γ )
(
λ1I

∗ + λ2V
∗) + μ1μ2

(
μ1 + γ − λ1S

∗),
T1 = −λ3I

∗,
T2 = μ2

(
μ1 + γ − λ1S

∗) − (
λ1I

∗ + λ2V
∗ − λ1S

∗ + 2μ1 + γ
)
λ3I

∗,
T3 = μ1μ2

(
μ1 + γ − λ1S

∗) − (μ1 + γ )
(
λ1I

∗ + λ2V
∗)λ3I

∗ − λ3μ1I
∗(γ + μ1 − λ1S

∗).
When τ = 0, we obtain the same characteristic equation as in the ODE case. Consequently, all eigenvalues of the
characteristic equation (3.11) have negative real parts as has been proved in Theorem 2.2.1. As a result of Hurwitz
criterion, the endemic equilibrium E∗ of (3.3) is locally asymptotically stable when τ = 0. Furthermore, observe
again that Eq. (3.11) does not have non-negative real solutions for any τ > 0. First, we notice that once again we have
γ + μ1 − λ1S

∗ > 0. This implies that a1 > 0, a2 > 0 and a3 > 0. We rewrite Eq. (3.11) by moving the positive terms
from the right-hand side to the left-hand side. The rewritten Eq. (3.11) takes the form

λ3 + a1λ
2 + ã2λ + ã3 = e−λτ

(
T1λ

2 + T̃2λ + T̃3
)
, (3.12)

where ã2 = a2 − e−λτμ2(μ1 + γ − λ1S
∗) and ã3 = a3 − e−λτμ1μ2(μ1 + γ − λ1S

∗). Therefore, ã2 > 0 and ã3 > 0
for all λ � 0 and τ > 0. On the other hand T1 < 0, T̃2 < 0 and T̃3 < 0. Consequently, the left-hand side in Eq. (3.12)
is positive for all λ � 0 while the right-hand side is negative for all λ � 0 and the two cannot be equal for any λ � 0.
We conclude that Eq. (3.11) cannot have real non-negative solutions. To rule out complex conjugate solutions with
non-negative real parts we once again assume that λ = iω with ω > 0 is a root of Eq. (3.11). This is the case if and
only if ω satisfies the following equation:

−iω3 − a1ω
2 + a2ωi + a3 = iT2ω cos(ωτ) + (

T3 − T1ω
2) cos(ωτ) + T2ω sin(ωτ) − i

(
T3 − T1ω

2) sin(ωτ).

Separating again the real and imaginary parts, we have the following system that must be satisfied by ω:

a2ω − ω3 = T2ω cos(ωτ) − (
T3 − T1ω

2) sin(ωτ), (3.13)

a3 − a1ω
2 = (

T3 − T1ω
2) cos(ωτ) + T2ω sin(ωτ). (3.14)
Please cite this article in press as: H.-M. Wei et al., An epidemic model of a vector-borne disease with direct transmission and time delay, J.
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We eliminate the trigonometric functions by squaring both sides of each equation above and adding the resulting
equations. We obtain the following sixth degree equation for ω:

ω6 + (
a2

1 − 2a2 − T 2
1

)
ω4 + (

a2
2 − 2a1a3 + 2T1T3 − T 2

2

)
ω2 + a2

3 − T 2
3 = 0. (3.15)

Since this equation contains only even powers of ω we can reduce the order by letting once again z = ω2. Then
Eq. (3.15) becomes a third order equation in z:

z3 + αz2 + βz + ϑ = 0, (3.16)

where we have used the following notation for the coefficients of Eq. (3.16):

α = a2
1 − 2a2 − T 2

1 ,

β = a2
2 − 2a1a3 + 2T1T3 − T 2

2 ,

ϑ = a2
3 − T 2

3 .

In order to show that the endemic equilibrium E∗ is locally stable we have to show that Eq. (3.16) does not have a
positive real solution which might give the square of ω, that is, that Eq. (3.11) cannot have purely imaginary solutions.
The lemma below establishes conditions leading to that result.

Lemma 3.3.1. If α � 0, ϑ � 0 and β > 0, then Eq. (3.16) has no positive real roots.

Proof. We denote the left-hand side of Eq. (3.16) as h(z) = z3 + αz2 + βz + ϑ . We take the derivative of h(z) with
respect to z, h′(z) = 3z2 + 2αz + β . We notice that for z � 0 the derivative h′(z) > 0, and therefore, the function
h(z) is an increasing function of z � 0. Since h(0) = ϑ � 0, it follows that Eq. (3.16) has no positive real roots. This
completes the proof of the lemma. �

Lemma 3.3.1 implies that there is no ω such that iω is an eigenvalue of the characteristic equation (3.11). Therefore,
by Rouché’s theorem [46, Theorem 9.17.4], the real parts of all the eigenvalues of Eq. (3.11) are negative for all values
of the delay τ � 0. Summarizing the above analysis, we have the following theorem:

Theorem 3.3.1. Assume that

(i) R0 > 1;
(ii) α � 0, ϑ � 0 and β > 0.

Then the endemic equilibrium E∗ of (3.3) is absolutely stable, that is, E∗ is asymptotically stable for all values of the
delay τ � 0.

Remark. Theorem 3.3.1 indicates that if the parameters satisfy conditions (i) and (ii), then the endemic equilibrium
E∗ of the system (3.3) is asymptotically stable for all values of the delay, that is, the endemic equilibrium E∗ of the
system (3.3) is asymptotically stable independently of the delay. However, we should point out that if the conditions in
Theorem 3.3.1, particularly any of the inequalities in (ii), are not satisfied, then the stability of the endemic equilibrium
depends on the delay value and as the delay varies the endemic equilibrium can lose stability which can lead to
oscillations.

For example, if ϑ < 0, then we have h(0) < 0 and limz→∞ h(z) = ∞. Thus Eq. (3.16) has at least one positive
root, say z0. Consequently, Eq. (3.15) has at least one positive root, denoted by ω0 = √

z0.
Now, we turn to the bifurcation analysis. We use the delay τ as bifurcation parameter. We view the solutions

of Eq. (3.11) as functions of the bifurcation parameter τ . Let λ(τ) = η(τ) + iω(τ) be the eigenvalue of Eq. (3.19)
such that for some initial value of the bifurcation parameter τ0 we have η(τ0) = 0, and ω(τ0) = ω0 (without loss of
generality we may assume ω0 > 0). From Eqs. (3.13) and (3.14) we have

τj = 1

ω0
arccos

(
(a1T1 − T2)ω

4
0 + (a2T2 − a3T1 − a1T3)ω

2
0 + a3T3

T 2ω2 + (
T − T ω2

)2

)
+ 2jπ

ω0
, j = 0,1,2, . . . .
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Also, we can verify that the following transversal condition

d Reλ(τ)

dτ

∣∣∣
τ=τ0

> 0

holds. By continuity, the real part of λ(τ) becomes positive when τ > τ0 and the steady state becomes unstable.
Moreover, a Hopf bifurcation occurs when τ passes through the critical value τ0 (see [47]).

To apply the Hopf bifurcation theorem as stated in Marsden and McCracken [48] we state and prove the following
theorem:

Theorem 3.3.2. Suppose that ω0 is the largest positive simple root of Eq. (3.15). Then iω(τ0) = iω0 is a simple root
of Eq. (3.11) and η(τ) + iω(τ) is differentiable with respect to τ in a neighborhood of τ = τ0.

After computation we get that iω0 is a simple root of Eq. (3.11), which is an analytic equation, and so, using the
analytic version of the Implicit Function Theorem (Chow and Hale [49]), η(τ) + iω(τ) is defined and analytic in a
neighborhood of τ = τ0.

Lemma 3.3.2. Supposed that x1, x2, x3 are the roots of equation

g(x) = x3 + αx2 + βx + ϑ = 0 (β < 0),

and x3 is the largest positive simple root, then

dg(x)

dx

∣∣∣
x=x3

> 0.

This proof is omitted.
To establish the Hopf bifurcation at τ = τ0, we need to show that d Reλ(τ)

dτ
|τ=τ0 > 0. From (3.11) differentiating

with respect to τ , we get

(
3λ2 + 2a1λ + a2

)dλ

dτ
= [−τe−λτ

(
T1λ

2 + T2λ + T3
) + e−λτ (2T1λ + T2)

]dλ

dτ
− λe−λτ

(
T1λ

2 + T2λ + T3
)
.

This gives

(
dλ

dτ

)−1

= 3λ2 + 2a1λ + a2 + τe−λτ (T1λ
2 + T2λ + T3) − e−λτ (2T1λ + T2)

−λe−λτ (T1λ2 + T2λ + T3)

= 3λ2 + 2a1λ + a2

−λe−λτ (T1λ2 + T2λ + T3)
+ 2T1λ + T2

λ(T1λ2 + T2λ + T3)
− τ

λ

= 2λ3 + a1λ
2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)
+ T1λ

2 − T3

λ2(T1λ2 + T2λ + T3)
− τ

λ
.

Thus,

Sign

{
d(Reλ)

dτ

}
λ=iω0

= Sign

{
Re

(
dλ

dτ

)−1}
λ=iω0

= Sign

{
Re

[
2λ3 + a1λ

2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)

]
λ=iω0

+ Re

[
T1λ

2 − T3

λ2(T1λ2 + T2λ + T3)

]
λ=iω0

}

= Sign

{
Re

[ −2ω3
0i − a1ω

2
0 − a3

ω2
0(−ω3

0i − a1ω
2
0 + a2ω0i + a3)

]
+ Re

[ −T1ω
2
0 − T3

−ω2
0(−T1ω

2
0 + T2ω0i + T3)

]}

= Sign

{
2ω6

0 + (a2
1 − 2a2)ω

4
0 − a2

3

ω2[(a ω2 − a )2 + (ω3 − a ω )2] + T 2
3 − T 2

1 ω4
0

ω2[(T − T ω2)2 + T 2ω2]
}
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= Sign

{
2ω6

0 + (a2
1 − 2a2 − T 2

1 )ω4
0 + T 2

3 − a2
3

ω2
0[(a1ω

2
0 − a3)2 + (ω3

0 − a2ω0)2]
}

= Sign

{
3ω4

0 + 2(a2
1 − 2a2 − T 2

1 )ω2
0 + (a2

2 − 2a1a3 + 2T1T3 − T 2
2 )

(a1ω
2
0 − a3)2 + (ω3

0 − a2ω0)2

}
.

Since

h(z) = z3 + αz2 + βz + ϑ.

Thus,

dh(z)

dz
= 3z2 + 2αz + β = 3z2 + 2

(
a2

1 − 2a2 − T 2
1

)
z + (

a2
2 − 2a1a3 + 2T1T3 − T 2

2

)
.

As ω0 is the largest positive simple root of Eq. (3.15), from Lemma 3.3.2 we have

dh(z)

dz

∣∣∣
z=ω2

0

> 0.

Hence

d Reλ

dτ

∣∣∣
ω=ω0,τ=τ0

=
dh(ω2

0)

dz

(a1ω
2
0 − a3)2 + (

ω3
0 − a2ω0

)2
> 0.

The above analysis can be summarized into the following theorem:

Theorem 3.3.3. Suppose that

(i) R0 > 1.

If either

(ii) ϑ < 0

or

(iii) ϑ � 0 and β < 0

is satisfied, and ω0 is the largest positive simple of Eq. (3.15), then the endemic equilibrium E∗ of the delay model (3.3)
is asymptotically stable when τ < τ0 and unstable when τ > τ0, where

τ0 = 1

ω0
arccos

(
(a1T1 − T2)ω

4
0 + (a2T2 − a3T1 − a1T3)ω

2
0 + a3T3

T 2
2 ω2

0 + (T3 − T1ω
2
0)

2

)
,

when τ = τ0, a Hopf bifurcation occurs; that is a family of periodic solutions bifurcates from E∗ as τ passes through
the critical value τ0.

In this way, using time delay as a bifurcation parameter, Theorem 3.3.3 indicates that the delay model could exhibit
Hopf bifurcation at a certain value τ0 of the delay if the parameters satisfy the conditions (ii) or (iii). They show
that the introduction of a time delay in the host-to-vector transmission term can destabilize the system and periodic
solutions can arise through Hopf bifurcation.

4. Conclusion

We consider in this article a Ross–MacDonald type model where the population of the vector is described by a
system for the susceptible and infected vector while the dynamics of the host is described by an SIR model. Mathe-
matical analyzes of the model equations with regard to invariance of non-negativity, boundedness of solutions, nature
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of equilibria, permanence and global stability are analyzed. The basic reproduction number is obtained and it com-
pletely determines the dynamics of the ODE model. If R0 � 1, the disease-free equilibrium is globally stable and the
disease dies out. If R0 > 1, a unique endemic equilibrium exists and is locally asymptotically stable in the interior of
the feasible region. We determine criteria for Hopf bifurcation using the time delay as the bifurcation parameter based
on the differential-delay model. They show that positive equilibrium is locally asymptotically stable when time delay
is suitably small, while a loss of stability by a Hopf bifurcation can occur as the delay increases. Hopf bifurcation has
helped us in finding the existence of a region of instability in the neighborhood of a non-zero endemic equilibrium
where the population will survive undergoing regular fluctuations.
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