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Abstract Spatial heterogeneity plays an important role in the distion and persistence of infectious
diseases. In this article, a vector-host epidemic modetapgsed to explore the effect of spatial het-
erogeneity on the evolution of vector-borne diseases. Toeems a Ross-McDonald type model with
multiple competing strains on a number of patches conndxtéubst migration. The multi-patch basic re-
production numberRé,j =1,2,---,[ are respectively derived for the model witktrains om discrete
patches. Analytical results show thaﬂ@% < 1, then strairny cannot invade the patchy environment and
dies out. The invasion reproduction numb@éi,j = 1,2, # j are also derived for the model with two
strains om discrete patches. It is shown that the invasion reprodlum:tiﬂnbers%’f,z‘,j =1,2,i # j pro-
vide threshold conditions that determine the competitivie@mes for the two strains. Under the condition
that both invasion reproduction numbers are lager than theecoexistence of two competing strains is
rigorously proved. However, the two competing strains cammoexist for the corresponding model with
no host migration. This implies that host migration can leathe coexistence of two competing strains
and enhancement of pathogen genetic diversity. Globalrdigzais determined for the model with two
competing strains on two patches. The results are basededdbry of type-K monotone dynamical

systems.
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1 Introduction

Two characteristics that are main drivers behind the 8istion and persistence of infections diseases,
are host migration and pathogen variability. Host migratdlows the pathogen to invade new areas, and
maintains the disease in areas where it would disappeae itba were isolated. Pathogen variability
allows the pathogen to persist despite building host imigumide-spread treatment and vaccination.
These two heterogeneities of transmission have been exipéaparately in multiple studies. In this article

we study them together to gain insight on the impact of splagirogeneity on pathogen genetic diversity.

On the one hand, understanding the transmission mechafismseases with multiple strains or
serotypes is critical for predicting the persistence ara@ution of diseases. Mathematical models have
provided a powerful tool to broaden our knowledge into thema@isms [1, 2] that lead to coexistence
or competitive exclusion of multiple strains. The competitexclusion principle is a classic result in this
field, which states that no two species can indefinitely ogdhe same ecological niche [3]. Using a
multi-strain ODE model, Bremermann and Thieme [4] proveat the principle of competitive exclusion
is valid with the strain with the highest reproduction numpersisting, while all remaining strains are
being eliminated. Castillo-Chavez et al. [5, 6] formulagedimple two-sex epidemiological model that
considers the competitive interactions of two strains. yTélgowed that coexistence of two competing

strains is not possible except in special and unrealistauoistances.

However, it is a common phenomenon that multiple strainxisbé nature. For instance, dengue
fever has four different serotypes, often coexisting indame geographical region [1]. The competitive
exclusion principle leads to the conclusion that perststeaxistence may only occur if some heterogene-
ity in the ecological niche is present. ldentifying the @astthat allow multiple strains to coexist is an
important topic in theoretical biology that has been ocaugysignificant attention in the last 20 years.
Recent studies have shown that mechanisms, such as sepganf[2, 7], co-infection [8, 9], partial
cross-immunity [10], density dependent host mortality][different modes of transmission [12], can
lead to coexistence of strains. In this paper, we will shoat #nother mechanism, spatial heterogeneity,

can also generate the coexistence of multiple competiagnstm the same geographical domain.

On the other hand, spatial heterogeneities are believethyogm important role in the distribution



and dynamics of infectious diseases [14]. Spatial heteriggecan be incorporated in epidemic models
as a continuous characteristic, in the form of epidemic rsodéh diffusion, or as a discrete character-
istic where migration of individuals between discrete gapdical regions is considered. The discrete
geographical regions can be cities, towns, states, cesnbri other appropriate community devisions. In
recent years, several studies have focused on the tram@mgamics of infectious diseases in patchy
environments by using deterministic meta-population epiid models [15]. Castillo-Chavez and Yakubu
[16] discussed a two-patch SIS epidemic model with dispargoverned by discrete equations. Wang and
Zhao [17] and Wang and Mulone [18] proposed an epidemic moidblpopulation dispersal to describe
the dynamics of disease spread between two patches gatches. Wang and Zhao [19] formulated a
time-delayed epidemic model to describe the dynamics efdis spread among patches, an age structure
is incorporated in order to simulate the phenomenon thatsgiseases only occur in the adult popu-
lation, sufficient conditions are established for globairetion and uniform persistence of the disease.
Arino and van den Driessche [20] developed a multi-city epitt model to analyze the spatial spread of
infectious diseases. Dhirasakdanon, Thieme and Drieg2dhestablished sharp persistence results for

multi-city models. All the previous articles consider ditlg transmitted diseases.

Vector-borne diseases, such as West Nile virus (WNV) anarigahave reemerged after being nearly
eliminated in the 1950s and 1960s [13]. Migration patterithe hosts, birds and humans, is one of the
important reasons that cause the worldwide spread of tHereorne diseases. Wonham et al. [22] have
suggested that the WNV model should be extended biologitaltonsider bird migration. Rappoé.
al. [23] have provided some factors supporting the hypothésisthe migrant bird is an introductory host
for the spread of WNV. Owen et al. [24] have demonstrated iigtating passerine birds are potential
dispersal vehicles for WNV. These studies show that the itapoe of migration on the distribution and
maintainance of infectious diseases can hardly be undeegstd. Few articles have considered the effect
of host migration among multiple patches on the dynamicsesfar-borne diseases. Augetlr al. [25]
formulate a Ross-MacDonald model arpatches to describe the transmission dynamics of malamia. |
a recent study Cosnet. al. [26] consider the impact of both short term host movementlang-term
host migration on the dynamics of vector-borne diseases.niddels in [25, 26] discuss only vector-host

diseases represented by a single strain. In this paperd lmeséhe model in [25] we formulate Ross-



MacDonald type model with multiple competing strainsropatches. Competitive exclusion of the strains
is the only outcome on a single patch. The main question teaddress is whether spatial heterogeneity

can generate the coexistence of multiple competing stmiasommon heterogenous geographical area.

The remaining parts of this paper are organized as follow#he next section we formulate the Ross-
MacDonald model with multiple competing strainsoipatches. In Section 3, we derive the reproduction
numbers and investigate the local stability of the modeBéuation 4, we consider the threshold dynamics
of a two-strain multi-patch version of the model. Sectiors Siévoted to the global analysis of the two-
strain two-patch version of the model. The paper ends withief discussion of the results in section

6.
2 Mode description

In this section we formulate a Ross-MacDonald type modeksxdbe the transmission dynamics of
a vector borne disease. Vector and host populations oceuigcrete patches linked by host migration.

The model also incorporatégompeting strains.

To introduce the model leV;(¢) denote the total host population in théh patch which is partitioned
into [ 4+ 1 distinct epidemiological subclasses: susceptible angctefl with strainj,j = 1,2,--- 1.
The size of the susceptible host population on patishdenoted byS;(¢). The size of the infected host
population with strairy on patchi is denoted b)Hﬁ(t),j =1,2,---,l. LetT;(¢t) denote the total vector
population in thei-th patch. The vector population is also divided into susb&pand infected with
strainj,j = 1,2,--- ,1 subclasses. The size of the susceptible vector populdtairotcupies patchis
denoted byM;(¢). The size of the infected with strajnvector population that occupies patcis denoted

by Vij(t),j =1,2,---,1. We assume that the system which describes the spread dfoa keme disease



with [ strains in the-th patch is governed by the following differential equaso

dSi(t) = y;N, Zale —l—nyHf

dH (t
() —ba]V]i—’y]H] —VZH]

dMZ( ] j:1727
= Z@H M,

dvi (¢ Hﬂ
élt( ) = blﬁj /’LZVJ

N; = S; + H;

(2.1)

Here,b; is the per capita biting rate of vectors on hosts inithie patch;a;, 5; are the disease transmission

probabilities from infected vectors with strajrto uninfected hosts and from infected hosts with strain

to uninfected vectors, respectively;is the birth and death rate of the hogisjs the natural death rate of

the vectorsnﬁ is the recovery rate of infected hosts with strain thei-th patch, and\; is the recruitment

rate of the uninfected vectors (by birth) in théh patch.

When then patches are connected, we assume that only hosts can nmagnateg the patches since

vectors are usually arthropods who typically move only $dfiatances during their lifetime. Let;; > 0

denote the per capita rate that susceptible and infectes bbpatchi leave for patchj, wherei # j.

Then the dynamics of the hosts and the vectors with migrasigoverned by the following model:

wherei =1,2,--- ,n,j=1,2,--- 1.
Adding the firstl 4+ 1 equations of the system (2.1) gives

dN;(t)
dt

=0,

ds;(t) i) e

o =;N; Za]V —+Zvﬂ

+ Z migSy — Z My S; — ViSi,
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J
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and it follows that the total population siZg;(t) = N? is a constant. Similarly, adding the last- 1

equations of the system (2.1) gives

dT;(t)
= A — i Ty
dt a
The asymptotic equilibrium values for tfié¢ areT;(t) — Ai.— W, ast — 4.

=

(3

By adding the first + 1 equations of the system (2.2), we have

dN;(t - -
£L227%M—§:WM-
i=Lj#i i=Lj#i

This system can be rewritten as

dN(t
AN _ ey, (2.3)
dt
where N is the column vectof Ny, Na, --- , N,,)T and the superscrigf denotes transpose. The move-

ment matrix M is defined by (i, j) = m;; for i # j and
M(i,i) = — z": mjj.
j=1,5#i

We assume that the matri is irreducible, that is, the graph of the patches is stronglynected through
the movement of hosts. If that is not the case, it follows f{@6] that the system (2.2) can be divided into
some decoupled subsystems. From article [25] it follows &émy trajectory of the system (2.3) remains
in the affine hyperplane orthogonal to the vedtarl, - - - , 1) and containing the initial conditiofv (0).
In the affine hyperplane the system (2.3) has a positiveibguiin denoted byV = (N, No,--- , N,,)7.
Moreover, the positive equilibriun¥ is globally asymptotically stable on the affine hyperplane.

Noting that the total host and vector populations for systgrh) and (2.2) tend to the the asymptotic

states ag — +oo, in this paper we always assume that the system (2.1) angtstens (2.2) have reached

the asymptotic states. Thus system (2.1) is equivalenttéallowing system

l .

| NO— S HI
dH (t) = - ;
i = p VI —— () ) HY,

J7 NZO (’YZ ) 7 (24)
AV (¢ NI ¢l -
O -,
L j=1 i



and system (2.2) can be reduced to the system as follows

! .
. N, — S H/
e _, A
a7 N;
n n
—~! H] + Z m Hj — Z my H] — v H}, (2.5)
k=1,k+#i k=1,k+#i
dvy(t o H .
2O - v,
j=1 ‘

\

wherei =1,2,--- ,n,j=1,2,--- 1.
In the remainder of this article we will analyze the dynanu€she system (2.4) and (2.5) instead of
(2.1) and (2.2), respectively, and we will further inveatgghow spatial heterogeneity affects the dynamics

and outbreaks of the vector borne diseases with multipdénstion multiple patches.
3 Thereproduction numbersand thelocal stability

One of the important critical threshold quantities in epidogical modeling studies is the reproduc-
tion number. Epidemiologically, this quantity is definedias average number of secondary cases (infec-
tions) produced by a typical infected individual during geire period of infection when this infectious
individual is introduced into a completely susceptible glagion [30]. Mathematically, the reproduction
number serves as a threshold quantity that often deterrtieegersistence or eradication of the disease
[11, 31, 32]. Generally, if the basic reproduction numbeless than one, the disease can not establish
itself in the population, If the reproduction number is gezdhan one the disease will be endemic. In this
section we derive the reproduction numbers for stjajn= 1,2, --- , I, and then we investigate the local

stabilities of the boundary equilibria using these repobidm numbers.

We begin by introducing certain notations that will be usaoaghout this paper. Let
RAn = (I, 1%, 1Y) H >0,V) >0,i=1,2,--- ,n,j =1,2,--- 1}

We define a subsét of R%"™ by

l l
Q={I" 17 I eRIM: Y "HI <N, VI <Wii=12-,n},
j=1 j=1

where

[ =(H,H),-- JH, V] Vi, - V). (3.2)

n
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Let (11, 12,--- ,I') denote the solution flow generated by (2.5). It is not diffitalsee that the flow is
positively invariant in2. For two vectorse = (x1, 2, -+ ,T2,), 2 = (21,22, -+ , 22,) € R*® we define

an order between them as follows:

r<zifx; <z,i=1,2,---,2n.

We can easily derive the reproduction number of system (g¢h gives the isolated reproduction

number for strairy in patchi:

b?ajﬂjWi

: - (3.2)
(%’ + Vi)ﬂiNi

Similar argument as in the proof of Theorem 3.2 and Theoré#[5], we can obtain the following

theorem.

Theorem 3.1. Foragiveni € {1,2,--- ,n}, the systenf2.4) has
1) if Rff < 1forall 1 < j < [, then the disease for all strains will eventually die oug,,ithe
disease-free equilibrium of the syste?j is globally asymptotically stable;

2) if R/ > 1 for somel < j < I and assume that there exigtse {1,2,--- ,i} such thatk!" > R’

forall j =1,2,--- 1,5 # 5, then

. 2By — (] + vi)]NY . [bFa- B4 — (] + )N}
lim H) (t) = — =, lim V7(t) = - ,
fmrtoo biBj (7] + vi + biays Nf)) frtee bicije(bifij + i)
and

lim H/(t)=0, lim V/(t)=0

t——4o00 t——4o00

forall j =1,2,--- 1,5 # j*.
The proof of Theorems 3.1 is provided in Appendix A.

Theorem 3.1 implies that if the system (2.5) has no host riggramong patches then no more than
one strain will persist in the population of patgmamely the strain with the largest reproduction number
in patchi. All strains which have lower basic reproductive rates ditio patchi. In what follows we will
prove that coexistence of two competing strains in a commea & possible if the system incorporates
host migration among patches. This suggests that host tioigrdhat is spatial heterogeneity, is one of

the mechanisms which can lead to the coexistence of mutigotgpeting strains.
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We now derive the basic reproduction numbers for systen).(R&c € {1,2--- ,1} and
re={(I4L1% -, 1HYeQ:F=0,j#c}, (3.3)

thenI'“ is invariant for system (2.5). The system (2.5]This

dHE(t N, — H¢ ~ "
C;t( ) bioeViE———t = fH + Y maHE— ) myH = viHY,
¢ k=1,k=#i k=1 ki (3.4)
dVE(t) H¢

:bicm_‘/icTi_ iv;c’ =1,2,--- ,n.
8-V e, n

dt i
It is clear thatE§(1¢ = 0) is the disease-free equilibrium (DFE) of the subsystem)(3\Wting that
the model has 2n infected populations, nam@fyandV,i = 1,2,--- , n, it follows that, in the notation

of [33], the matrix.# ¢ and 7 “ for the new infection terms and the remaining transfer tamspectively,

are given by
7= (o 0 ) (8 )
where
bae 0 0 biBAE 0
Flp = b O  Fo = " bﬁ? %2 0 )
0 0 bacic 0 0 b5, i,
¢ —Mig —Min 1 0 0
e e B (7 B
_Wllnl _7T.ln2 ’)/chz 0 0 Hn

andyf =~f+ v+ > mp
k=1,k#i

Results in [33] imply that the basic reproduction numbethef subsystem (3.4) is given by
Rg: = plZ°(r)h i 1
. Wi Wo W, —1 . brae baor b 2
= d b1Be—.bofBe—=, -+, bpBe—"H(¥S) " Nd , o
{p(diagioi s baegh o b ORR) diag (70, 22 })}(35)

wherep(M ) represents the spectral radius of the matdix

Following Smith [34] one can establish that the subsysted) (8 strongly concave. Results in [34]
also imply that that either the origin of system (2.5) is gty asymptotically stable in'¢ defined in

(3.3), or system (2.5) has a unique equilibriufp-(1¢ = I¢ > 0,1 = 0,j # c¢) such that it is globally



asymptotically stable ii¢ \ {O}, wherel¢, I’ are defined in (3.1). This conclusion is based on the

observation that’;- is linearly stable i, that is

m mip o omin aeQ 0 e 0
may n2 e Moy 0 Q- 0
c mn1 mn2 c Tin 0 0 c QCQE
Av={ g0 0 o 0 @ o . o | (3.6)
0 BQY - 00 Q@ 0
0 0 e BQY 0 0 .. Qﬁ
is a stable matrix, where
bi(W; — V) bi(N; — HY) biBHE
v _ 2\ V) H _ YVl — ) g _ _, . _ ZiPcldy
Qz N ) Q NZ ) QZ Hi NZ )
b .
i = — NV Z Mmp; — Vi, Z:172>"'7n
k=1,k#i

Simple algebraic calculations imply that system (3.4) hasquilibrium if and only ifR5 > 1. Thus we

have

Theorem 3.2. If R < 1, then the disease-free equilibrium (DFE), of the system2(5) is globally
asymptotically stable ific. If RS > 1, then syster2.5) has a unique equilibriunt;c (1¢ = I¢ > 0, [/ =
0,7 # ¢) which is globally asymptotically stable Iy \ {O}.

Now we are able to state the main result in this section.

Theorem 3.3. 1) If RI <1forall1< j <, then the DFEFE), of the system2(5) is globally asymptoti-
cally stable inf2.

2) If there existse € {1,2,---,1} such thatR§ > 1 and R{) <1forl1 < j <I,j# ¢ then
the boundary equilibriumE;.(I¢ = I¢ > 0,17 = 0,j # c) is globally asymptotically stable if® \

{(1' 1%, 1Y) : I¢ = 0}.

Proof. For a givenj € {1,2,--- ,1}, it follows from the system (2.5) that

dH] (1)
dt

dW(t) Wi ; .
dt SblﬁjNTZHZJ_M’L‘/;Ja 121727”'777’

n
< b; ozjVJ — 'y]HJ + Z mZkH Z mk,Hf — v, H!
k=1,k+#i k=1,k+i (3.7)
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Let us consider the following differential equations

I (t) 7 79 - 77 n 7] v
G =iV =l Y maH] =y mwH] — v,
' k=1,k#i k=1,k#i (3.8)
avy (t) Wi -, - :
élt :biﬁjNT;Hij_ﬂiVija i=1,2,---n.

Since the system (3.8) is a linear system, the global stabilithe origin of the system (3.8) is determined
by the stability of the matrix// = .77 — ¥7. If R}, < 1, Theorem 2 in [33] implies that the matri¥ is
stable. Then we havelim H(t) = 0, lim_ VZ(t) = 0forall 1 < i < n. By the comparison principle
it then follows thatH? (t) — 0,V (t) — 0 ast — 4oo forall 1 < i < n.

If R} < 1foralll < j <1, then we havelim H/(t)) = 0, lim V/(t) = 0forall1 < i <
t—+o00 t—+o00
n,1 < j < [. We can easily see thd, is locally asymptotically stable if2. This fact implies that the

disease-free equilibriurfy is globally asymptotically stable if? if R% <lforalll<j<lI.

If there existsc € {1,2,--- ,n} such thatR§ > 1 andRé <1lforl < j <n,j+# c then we
have that lim H7(t)) = 0, lim V/(t) = 0forall1 <i < n,1 < j < 1,j # c. Furthermore, if
t——4o00 t——+oo
(I'(0), 12(0),--- ,1(0)) € Q\ {(1',I?,--- ,I') : I° = 0}, by using the comparison principle, we can

easily prove that there exists> 0 such that
Hi(t) > <, VE(t) > (3.9)

for ¢ sufficiently large and all < ¢ < n. In this case the limiting system of system (2.5) is subsgyste
(3.4). SinceR§ > 1, Theorem 3.2 implies thak;.(I¢ > 0,1 = 0,j # c) is globally asymptotically
stable in*“ \ {O}. Denote the flows generated by systems (2.5)Upy, X'). Since for anyX € Q\
{(1Y, 12,--- 1Y) : I¢ = 0}, the orbit{¥(¢t,X) : t > 0} is precompactwy(X)the limit set of X,
exists. Letw?, be the projection ofoy (X ) ontoI™. then (3.9) implies thavy € I'“\ {0}. By Theorem
2.3 in [27] we can conclude that the equilibriuBy.(I¢ > 0,17 = 0,5 # c) is a global attractor in

Q\ {(I, 1%,--- 1) : I° = 0}. This completes the proof of Theorem 3.3. O

11



4 Coexistence of two strainson n patches

In this section we consider the case of two strainsmguatches. When system (2.5) has only two

strains, strain 1 and strain 2, then it can be rewritten as

AN N i H
dt ! N;
n n
—yi H} + Z m Hj, — Z my H — viHj,
) k=1,k#i | Lk
dvi(t - H!
;lt( U Vi) & — mVi,
2 N 1 22 221,2,’)7, (41)
dH:(t) N;, —H; — H;
7 _ b‘OéQVZ 0 1
dt e N;
n n
—y2H? + Z miHE — Z myH? — v HZ,
k=1,k#i k=1,k#i
dV2(t) . H?
| @ = bis Wi Vi V) — V7

In the case when at least one of the reproduction numbersaesrthan one, that is, eithéa(l) <1lor
RZ < 1, Theorem 3.3 gives the global behavior of system (4.1). &foee, we only need to consider the
case when botR} > 1 andR3 > 1. WhenR} > 1,R2 > 1, the system (4.1) has the disease-free equi-
librium Ey(0,0), which is unstable, as well as the two boundary equilii#ja(I*,0), E;2 (0, I?), where
[ = (H,H), - H, V{ Vi V), j = 1,2. In what follows we investigate the local stability of

the boundary equilibrid;: (I*,0), E12 (0, I?). To this effect we define two important quantitie, %,

as follows
L 1
B = (p(MD))3 Y = (p( )3,
where
. Wl -V WQ — Vi W, — V1
n: - {d b —W —Vi Ly g Wa Vi
1 iag{b1 B2 N, 252 ~ By N }
N, — H} No — L N, — Al
X(%Zl)ildiag{lHOQ#,anQ#’... ’bna2_7n}};
N Napia Nppin
. Wl —V? WQ — V2 W, — V2
n - {d b —Y —VE g g Wa Vi
2 iag{b151 N, 261 ~ b1 N }
N, — H? No — H. Nn — {2
X(%ﬁ)ildiag{blalgalbal 2— 27 o —= n}}
N Napia Nppin

and?¥/,,j = 1,2 are defined in Section 3.

Theorem 4.1. 1) If #? > 1 (#? < 1) the boundary equilibriun;: (I, 0) is unstable (locally stable).

12



2) If %3 > 1 (%2 < 1) the boundary equilibriun®;2 (0, I?) is unstable (locally stable).

Proof. We only prove the first point above, since the second poinbegoroved in a similar way.

The Jacobian matri¥ (E;: (I1,0)) at E;1 (11, 0) takes the form
- Al Al
1 _ 11 12
a0y = (4 4R ),
where A}, has the same form as (3.6) and

1 _ 1 1
A22 - F22 - V227

0 0 0 mQff o 0
0 0 0 0 Qi 0
o 0 0 0 0 0 aQH
22 507 0 0 0 0 0 ’
0 BQY 0 0 0 0
0 0 B2Qy 0 0 0
G —-mg2 - -my, 00 - 0
—may Co e =M, 0 0 - 0
Vl — —Mp1 —Mp2 - Cn 0 0 e 0
22 0 0o - 0 m O 0o |’
0 0o - 0 0 o 0
0 0 0 0 0 Lo,
and
= bl _i__‘l = bl NZ—.HI -
Qyzw’ Qﬁ:%’ T]Z:’YzQ—’_ Z M + Vi, i:1727"'7n°

k=1 ki

The stability of the boundary equilibriud;: (11, 0) is determined by the stability of the matricds,
and AL, . It follows from (3.6) that the matrixi], is stable. We only need to investigate the stability of
the matrixAJ,.

SinceVs}, has theZ pattern and it is a strictly row diagonally dominant matxie conclude thatz),

is non-singular M-matrix. It is easy to see tha}, is non-negative, then AL, = Vi, — FJ, has theZ

13



pattern [33]. Thus,

5(Ady) < 0 <= —Al, is a non-singular M-matrix

wheres(AL,) denotes the maximum real part of all the eigenvalues of thexnal,. By results in article

[33], we have
—Al, is a non-singular M-matrix—=- I — F,(V55) ! is a non-singular M-matrix

Since Fi, (V4,) ! is non-negative, all eigenvalues 68, (V5,) ! have magnitude less than or equal to
p(F3y(Vay) ™). So
I — F),(Vsh)~tis anon-singular M-matrix <= p(F(Veh) ™) < 1
= (p(A2)z < 1.
Hence,s(Al,) < 0if and only if #? < 1. We conclude that the boundary equilibriuiy, (13, 0) is
locally stable wher#? < 1.
Similarly, we haves(Al,) = 0 if and only if 27 = 1. In addition,s(A,) > 0if and only if 27 > 1.

Thus, if %7 > 1 then the boundary equilibriur;: (11, 0) is unstable. This concludes the proof. [

Theorem 4.2. If Z} > 1 and%? > 1, then there exists an > 0 such that for every/'(0), I?(0)) €

Int R4™ the solution(11(t), I?(t)) of systen{4.1) satisfies that

lim inf H7 (t) > e,liminf V7 (t) > ¢

t——+o0 t——+o0

foralli=1,2,--- ,n,j = 1,2. Moreover, the systefd.1) admits at least one (component-wise) positive

equilibrium.
Proof. Define
X ={(UIY1?:H >0,V/ >0,i=1,2--- ,n,j =1,2},
XO={(I"1?):H >0,V]>0,i=1,2,--- ,n,j=1,2},
0x% =X\ x°.
To prove the theorem, it suffices to show that (4.1) is unitgmpersistent with respect taX°, 0.X°) (see

[17]).
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First, from system (4.1), we get that bakhand X ° are positively invariant. Clearly) X ? is relatively
closed inX and the system (4.1) is point dissipative.(If(t), I%(t)) are solutions of system (4.1), we
define

My = {(1'(0),1%(0)) : (I'(t), I%(t)) € X ¥t > 0}.

We can show that

My = B1 U By, (4.2)

where By = {(I',1?) : I? = 0} and By, = {(I',I?) : I' = 0}. Let (I'(0),1%(0)) € My. To
show that (4.2) holds, it suffices to show tha(t) = 0 or I%(t) = 0 for all t > 0. We establish this
result by contradiction. Suppose the result is not true.nTthere exists @, > 0 such that, without loss
of generality, H.(t;) > 0, HZ(t;) > 0 andH/(t;) = 0,i = 2,3,--- ,n,j = 1,2,V (t;) = 0,i =

1,2--- ,n,j = 1,2 (the other cases can be discussed in the same way). Since

dH? (¢ : " :
ét( ) > (v + Z my; +vi)H},
. k=1k#i
av?(t) ;
7 > J
dt P MZ‘/;

foralli =1,2--- ,n,7 = 1,2, we can easily see that if there existg,a> 0 such thatHij(to) > 0or
VI (to) > 0 thenH/ (t) > 0 or V7 (t) > Oforall t > t,. Letk € {2,3,--- ,n}. The irreducibility of M
implies that there exists a chain frotto k, i.e., a sequencg, iy, -+ ,is € {1,2,--- ,n} withi; =1

andis = k such thatn >0forl <p<s—1.System (4.1) implies that we have

Z‘pierl

dH}2 (t)
dt l1=to

> 0.

Then there exists®@, (> ¢1) such thatd, (¢) > 0 forall ¢ > t;,. Similarly, there exists g, (> ¢;,_,),p =
3,4,--- ,s such thatHZi(t) > 0 forallt > t;,. Sincek is arbitrary, we can conclude that there exists
at! > 0such thatd}(t) > 0foralli = 1,2,--- ,n andt > t'. From the second equation of system
(4.1) we can easily see that there existg'd> t!) such thatV;}(t) > 0 foralli = 1,2--- ,n and

t > T'. As in the previous proof it is also easy to show thalfif(0) > 0 there exists &2 > 0 such that
H2(t) > 0,V2(t) > 0foralli = 1,2,--- ,n andt > T2. Clearly, we have thal? (t) > 0,V/(t) >

0,i = 1,2,---,n,j = 1,2 forall t > max{T",T?} . This means that/'(t), I*(t)) ¢ 09X, for all
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t > max{T*, T?}, which contradicts the assumpti¢i'(0), 72(0)) € My. The contradiction implies
that (4.2) holds.
It is clear that there are three equilibdia, £;1 andE ;- in My. Since%#? > 1, we can choosé, > 0

small enough such that

W, —V5—25 Wy — VL — 26 W, —V1I_9§
2 . 1 1 1 2 2 1 n - 1
= diagib = b - e by n T 0
71 (P( iag{b1 52 A ,bo 3o N , b Bo = }
Ny — H{ — 26 Ny — HY — 2§ N, — H! — 92 1
< (V2) M diag{by o — e i L byag—2 N2 Lo ’bnOQN—nl}))z
1M1 2H2 nlbn

> 1.

Let us consider the arbitrary positive solutift (¢), ?(¢)) of system (4.1). Now we can claim that

lim sup max{HZ?(t), V2(t)} > 6.

t—+o00

Suppose, for the sake of contradiction, that there 1§ a> 0 such thatH?(t) < &1, V2(t) < 61,i =

1,2,--- ,n, forallt > T;. Noting that

dH(t N; — H! & -
20 cha P ot Y il = Y ! -
v k=1,k#i k=1,k#i
dVii(t _ H}
th() szﬁl(vvz_v;l)ﬁz_:ulv?? 221727 ;1.
1

Since the equilibrium&;: (I' = I') of system (3.4), where = 1, is globally asymptotically stable, by
comparison principle there is& > 0 such thati} (t) < H} + &, V' (t) < V' + 61,0 = 1,2--- ,n, for

all ¢ > T5. Then, fort > max{77, 7>}, we have
H}t) < H} + 61, VH(t) < VP 4+61,0 < H2(t) < 61,0 < Vi (1) < &,

fori=1,2,--- ,n. Hence, from the third and fourth equations of system (4 d hewve

dHA(t N;— (H} +26 . .
ét( ) > b Vi — ( & ) _ (FHvi+ Y me)H A+ Y mgpHy,
g k=1,k#i k=1,k#i (4.3)
dV2(t) ;

i > b, V. — (71 V2 = .
dt sl bZ/BQ(VI/Z (‘/Z +251)) NZ HZ‘/Z ’ ? 172 1

for sufficiently larget. We consider the following auxiliary system

dH?(t -, N; — (H} +26 " . n 3
ét( ) _ bV (]\; T20) (v +vi + Z my)H + Z miH,
R v k=1,k=i k=1,k=i (4.4)
dV2(t _ _ H? -
&t( ) o (7 4 200) N VS i=12n
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The coefficient matrixfl2 of system (4.4) is given by

Q'ly T Min aCQ{{ 0 C. 0
ma1 Q; S Moy, 0 aQf - 0
| e w2 Q0 0 a.Ql
L= 9 )
0 0 e BQY 0 0 o —p
where B o
oV — bi(W; — V' —261) Of — bi(N; — H} —267)
! N; o N; ’
n
Q;:_’Y‘;_MZ_ Z M, ’L:17277n’ j:1’27.’n'

k=1,k#j

Similar discussion as for the matricdé implies that the matriced? are also unstable and their prin-
cipal eigenvalue is either positive or has a positive real pa > 0 when r? > 1. Using the linear
systems theory, we can establish that all positive solstiminsystem (4.4) tend to infinity as— oo.
Then, applying the standard comparison principle, we haseH?(t) — +o0o and V2(t) — 4oo as

t — +oo foralli = 1,2--- ,n. This is a contradiction with the assumption t&(t) — 0 and
V2(t) — 0ast — +ooforalli = 1,2--- ,n, which leads a contradiction. The contradiction impliest th

lim sup max{H?(t), V;2(t)} > 6. Similarly, sinceZs > 1, we can choosé, small enough such that
t—+o00 ?

lim sup max{H;} (t), Vi (t)} > .

t—4o00

By Theorem 3.2F;:1 is global attractor inB; \ {0} and E- is global attractor inB, \ {0} for (4.1).
By the afore-mentioned arguments, it then follows that &tg £y, £, F2 } is isolated invariant set in
X,andW?(Ey) N XY = 0, W(Ep) N X% = 0, Ws(Ep2) N X% = (. Clearly, the se{Ey, Ej1, Ep2}
is acyclic indX", then Theorem 4.6 in [35] leads to the conclusion that théesyg4.1) is uniformly
persistent with respect (0¥, 9X°). Using Theorem 1.3.7 in [36], as applied to the solution femiof
system (4.1), we can infer that the system has a positivdileduin. This completes the proof of Theorem

4.2. O
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Theorem 3.1 implies that if the system (4.1) has no host riggramong patches then no more than
one strain will persist in the population of patckxcept in special and unrealistic circumstances. However,
it follows from Theorem 4.2 that the coexistence of two cotimgestrains is possible if the system has
host migration among dispersal patches. The coexisterm@on alln patches. This indicates that the

host migration, i.e., the spatial heterogeneity, can ledtlé coexistence of multiple competing strains.
5 Global behavior of two strains on two patches

Global results for multi-strain or multi-patch systems eaee, so it is of particular interest to further
study the asymptotic behavior of the system (4.1). The higtedsion of system (4.1) with genera)
however, increases the difficulty in obtaining informatmmthe global behavior of the system. To show
the main idea and obtain results on the global behavior, whigght be obscured by the complicated
computation for the higher dimensional case, in this seaiie will focus on the case = 2. We shall see
that the minimum dimension choice for patchy environmeiatégs us to do some more detailed rigorous

analysis.

Whenn = 2, the model (4.1) becomes
dH; (t)

N; — H! — H?
@ = biOﬂVilTl— i Hif A+ mHj, — myi i — viH{,
AV (t _ H]
L0 51— v v v,
dﬁlg(t) N; — H} Hév (5.1)
: = biOéQ‘/iQ; ’YZQHZQ + mika msz H2
dt N; ,
AV2A(t _ H;
&t( ) _ biBa(W; — Vi — V2)F S\ i,k=121i#k.

Straight forward computation yields that the basic repotidn number for straip, 7 = 1, 2 over the

whole domain can be expressed as

Ry = V2B~ 30) + (BP0 G0)+ (R~ 9) — (RSP(L— )+ (R BPc

and the invasion reproduction number for straion patchi can be expressed as

: \/_ . Ny . . . R N3
] = L2020 )+ (3200 - )+ ()21~ xd) — (B,2(0— 602 + AR 20 ¢)
where o -
j_ v+t i Vot .
XT = 1 4+ —ma21 mig (= 14 1 4 a2
Avr e YAvr o vt
1 2 1 2
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 [RasB (R = B =V
mﬁi:\/kajﬁj( | UL k)vi7jak=172,i7éj.

1 (], + vi) (Vg )2

We recall that reproduction numbers of straion patchi, R{,z’,j = 1,2, are defined in (3.2). From the

proof of Theorem 4.1, we have

R) < 1Ry =1,R) >1) < s(J]) <0(s(J]) = 0,5(J]) > 0),

where ,
—(v] + 1+ ma) mi2 biaj 0
, ma1 —(’yg +rva+miz) 0 by
J = .
Wy _
blﬁj Ny 0 H1 0
0 b3 2 0 —pe

ands(.J}) is the maximum real part of the eigenvalues of the malfix Since.J] is irreducible and has
non-negative off-diagonal elements, it follows form ThearA.5 in [37] thats(Jg) is a simple eigenvalue
of Jg with a positive eigenvector. Furthermore, since the diagjetements of-.J are positive and its
off-diagonal elements are non-positive, it follows fram—matrix theory [38] that

ng = _(’Y{ +v1 +ma1) <0,

Tgo = (4] + v1 + ma1) (9 + v + mi2) — mizmay > 0,

' ' / j mao1 mio - .
Mtrvi mte
' ' ‘ ma1 mi2
Joa = (1 + 1) (9 + v pa(l + — + = )
i 2 W e o 2

(1= (R)*(1 = x) = (B3)*(1 = &) + (R)P(R))* (1 = X = ¢7)) > 0,

where JJ, |k = 1,2,3,4 are the leading principal minors of, with k rows. Consequently, a simple

calculation yields that
’ (bi)?aj/@jm
Ry <14 wiNi(y! + vi +my)
(RD(1 =) + (Ry)*(1 = ¢) — (R)*(RY)*(1 — ) = ¢) < 1.

Using a similar approach, we have

<1, ik=1,2,i+#k,

' (bi)Qaa’?j(Wi — VWi — H)) 1 k=124
(9%]102(1 - Xj) + (9%2)2(1 - Cj) - (5%]1@)2(5%&)2(1 - Xj - Cj) <L

It follows from Theorem 3.3 that the global behavior of syst¢s.1) is clear in the case when both

reproduction numbers are less than one, or at most one regiod number is greater than one, that is
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eitherR} > 1 or RZ > 1. Hence, in this section we only need to investigate the gldpaamics of the

model in the case wheR} > 1 andR3 > 1. WhenR} > 1 andR3 > 1, the system (5.1) has three

boundary equilibriaksy, E;1 (I1,0), B2 (0, 1%), wherel' = (H{, HY, V', V), I? = (H?, H2, V2, V3).
We begin by investigating the local dynamics of system (5&k)y positive equilibrium must satisfy

the following algebraic equations

. N, — H — g2
Fg(HllvH21>V117V21>H127H227V12?V22) = biajvf%
(2
— (] + mp + i) H + "7”Lzch;jc =0, (5-3)
. _ HI .
O] (Hi, Hy, Vi, Vy  HY HY, VEVE) = i3 (Wi = Vi = V)7 — Vi =0,

wherei, j, k = 1,2,i # k. From the second equation in (5.3), we have

V-l _ bzﬂlmH} _

" b H} + b HE 4+ Nip
Ve biBoW; H? )

" biSH} + b HE + Nipi

(5.4)

Then, by substituting (5.4) into the first equation in (5v8¢ have

352(]{117[{12’]{21,]{22) = Hilwi(HilvHiQ) +mik’Hli =0,
(5.5)
%(HllvH%?H21>H22) = Hgl/)Z(HzlszQ) +mikng =0, k=121 7& k,

where

©i(H}, H?) — (% + Vi + m);

(2

_ (b))% BLWi(N; — Hil__ Hi2_)

(bip1H} + b;BoH? + Nipi)N;

¢'(H1 Hg) o (bi)2a2ﬁ2Wi(Ni - Hzl - HZQ)
7 7 1 - (

2 , '
— - Z+V+m7 Z,k:172,’l/ k
biB H} + b;BoH? + Nipi) N; (v i ki) #

From (5.5) it follows that
1
Hi = _m—HQISOQ(HQIa H3),
21 (5.6)

1
H? = ——— Ho(HY, H?).
maq

Substituting (5.6) into (5.5) yields:

1
P(H}, H}) = ¢a(H}, H)or (= - Hio (3, HY)
1
—m—H§¢2(H%>H§)) — migmay = 0,
21 ) (5.7)
G(HS, H) = a(H}, H3 ) ( — - Hiipo (3, HY)
1

_—H221/)2(H21,H22)) —miama1 = 0.
ma1
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Clearly, F(H2,0) = 0,G(0,H2) = 0. Equations (5.7) give a>22 system which only depends
on Hi, H2. From (5.4) and (5.6) we can easily see that the system (Zd)ahpositive equilibrium
EF(HT Hy v v B HF vE# v2#) ifand only if (5.7) has a positive solutigii 7, Hy ™)

satisfyingps (Hy ™, Hy?) < 0,49 (Hy ", H3?) < 0, i.e.,

1 N 1 N _ 1 N
[(72 + vy + my2) 2+1}H21#+[(72 + vy + my2) 262+1]H§# - N2[1_ (V2 + v2 + ma2) e 2]7

oy Wo boay S1 W (b2)%an 1 W2
1 N 1 N. _ 1 N.
[(72 + v9 + le)/Bl 2 —1—1] H21#+ [(’Yg + 19 +zm2) 2 —1—1] HS# > N, [1_ (v + V22+ m12_)M2 2]
baca BoWo bacoWs (b2)2 a3 Wo
After extensive algebraic calculations, we can verify that
OF oF oG 0G -0
8H21 (H21#7H22#) ’ 8H22 (H21#7H22#) ’ 8H21 (H21#7H22#) ’ 8H22 (H21#7H22#)

To obtain results on the local stability of the endemic eqtilm, we assume the following non-degeneracy

assumption (H)
H) Frg (M7 HYP) G (HF H37)
Fiyy (Hy7 HYP) - Gya (H 7 HY7)

Then we have the following result.

£,

Theorem 5.1. LetE# (H| ", Hy* V!'* V)'* H* H2* Vv V%) be apositive equilibrium of system
FHS(HQI#J—IQQ#) GH% (H21#7H22#)
Fyy (7 %) G (7 HY)

(5.1)and let (H) hold. EquilibriumE7 is locally stable if < 1,anditis

CFoa(H# HI#Y Gy (HyP HYP)
unstable |fFH2 b

. > 1.
T 2 T 2
H21(H2#7H2#) GHg(Hz#sz#)

Proof. The Jacobian matri (E7#) at E# takes the form

A A
#y 1 A
J(E )_<A21 A22>’

where
Vit 1 G pl# 2%
— A& Ni—HY¥ [
(blal Ny +71 mM1o bla11—1N—1 0
+V1 + mgl) !
—(bsaz V' N Ny HY# _ 2%
mao1 Na 2 0 b20{1# )
An = +mig + v2) : ’
Wy -V v H#
by = 0 (i1 + by ) 0
W27V21#7V22# H21#
0 bafr ——5—— 0 —(p2 + b2f13-)
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1#

—byo - 0 0 0
1#
0 —byon 2 0 0
Ag = )
0 0 —hst 0
1601
Hl
0 0 0 by 2
24
~bras k- 0 0 0
24
0 —byosE 0 0
Ao = ;
0 0 by By Y 0
102 Ny
HZ#
0 0 0 b
V2# 2 _
_(bla21i7—1 T mio brov 7N1_H}1;_H12# 0
+l/1 + mgl) !
24
) )
ma1 —(b202 % + 72 0 bacva —-—NTH%\;#_HS#
A22 = +m12 + VQ) 2
W _Vl#_VQ# H2#
b1y ——T—— 0 —(p1 + 012 ) 0
S A# o 2# 24
0 52[32% 0 —(p2 + 0232 }5%2 )
Let
01 0 0 O 0 0 0
00 1 0 O 0 0 0
0001 0 0 0 0
T— 00 00 O 0 0 -1
10000 O 0 -1 0 ’
1 0 0 0 O 0 0 0
0000 O -1 0 0
00 00 -1 0 0 0

and consider the matrix

5 Apr A > -1
J=T T .
< Agr Ago

It is easy to see that if all eigenvalues.bhave negative real parts then so do thosé (@#). Note that

all off-diagonal elements of are non-negative. Lé¥;,i = 1,2-- - , 8 be the leading principal minors of
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J with i rows. Then straight forward algebraic calculations give
1

v
(—1)1W1 = 7%+V2+m12+b2a1]i7? > 0;
2
2 | H*
(=1)"Wy = (52611]\72 +v5 + v 4+ ma2) (1 +b15171) > 0;
i Vi# i
—1)°Ws = b1 81 —2—) (nabacy —2— + by B —2—x
(—=1)"Ws (1 + 0151 N ) (pabaary N, + b2 1 N
v,
(bgoq]iTQ + s 4 g + va) — papa(HyT HIF))
> 0
2 i Vi# o
N by o —2— b1 B1 —L1—) (pobyr; —2— + boff] —2— X
(=1)*Wy (p2 + b2 32 N, )(p1 + 0154 N, ) (p2baory N + bo 1 Ny
|7
H2 s (b2 —2— 4 73 s 4+ va) — papa(Hy*, HYF))
M2+b252H2 N
2
> 0
2 i Vi
(CWs = (2 by ) (1 + —— iy ) (oo E—t
p1 0182
HY v, #
bo B —2 = 7 (bao =2 s+ maa + ve) — papa (Hy HYP))
2 M2+b2ﬁ2f§%}2 N
> 0.

Furthermore, we apply tricky calculations to conclude that)’Ws > 0 and(—1)"W; > 0. The
proofs for (—1)5Ws > 0 and (—1)"W; > 0 are given in Appendices B and C, respectively. Since
(-1)W; > 0,i = 1,2,---,7, it follows from the well-known M-matrix theory that the &itity of
the matrix.J is determined by the sign of the determinantJof In particular, ifdet(J) > 0 then the
matrix .J is stable, and iflet(J) < 0 then the matrixJ is unstable. In what follows we prove that

det(J(E#)) = det(J) > 0if and only if
FHQQ(H%#7H22#) GH%(H%#v‘HQZ#)

: <1
1 2 1 2
H2#>H2#) GH%(H2#7H2#)

) = det(J) < 0if and only if

> 1.

We begin by observing that from the equations (5.3), we have
le(H117 H217 V117 V217 H127 H227 V127 ‘/22) =0,

@g(Hll7H217V117V217H127H227V127V22) = Ov
D2(H{, HY, VE Vi B2 HZ VA V) =0, 4,j=1,2.
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Furthermore, we verify that

o(I'}, 01,03, -03,-03%,I'1, -I'3)
OH3, VYV, —V2 —VE Hi,—H3)

det =W, < 0.
( |(Hg#,vll#,v;#,vlz#,v;#,H}#,Hi#)) 7

The implicit function theorem then implies that there egisttinuously differentiable functions; (H?),
V7 (H?), H3(H?),i,j = 1,2 defined on a neighborhoal of H;* such that
O 7 (H") = B VI(HT) = VI H}HT) = HyY i j =12

(2) ForH} € A, the functionsH ! (H?), V/ (H?}), H3 (H?),i,5 = 1,2 satisfy the equations

( F%(Hllv H21(H11¢H127H22)? Vll(Hllv H127H22)7 V21(H117 H127H22)>

H127H227V12(H117H12vH22)7V22(H117H127H22)) Ou

Ol (H{, H3(H}, H}, H3), V! (H, HE, H3),Vy (H, H?, H3),

H127H227V12(H117H12vH22)7‘/22(H117H127H22)) =0, 4j5=12

\
(3) ForH} € A, we have
8(F%, 6%? 657 _63? _@%v F%» _F%)

det
8‘/12(H12) _ i (8(H217V11’V217_V227_H12’H117_H22))
oEL, VL VL, —V2, —VE, HE, —HZ)
2: V15 Va, 2 141> 2
- _8
Wy’
det ori el el —-e2 -e2 i -13) )
_8H11(H12) _ a(H217V117V217_V227_‘/127_H127_H22)
8f"l2 det( 8(F%’®%’®%v_®%>_@%>F%>_F%) )
a(H%’Vllv‘/Ql’_V22>_V12>H11>_H22)
_ D
wWo’
det( 8(F%7@%7@%>_@§7_G%F%a_rg) )
81¥22(I{12) _ 8(H21>V11>V217_V227_‘/127H117_H12)
a(H217V117V217_V227_‘/127H11’_H22)
_ e
we’

whereD;; is the complement minor of ord&robtained by removing theth row andj-th column from

the matrix.J.
On the one hand, substituting the functidi$(H?), V/ (H?), H3(H?),4,j = 1,2 for the expression
3(H{, H}, VE V3 HE H V2 VP) yields:
T(H}) = DH(HL(HD), BY(H?), Vi (HR), V3 (H?), H3, H3(HR), V2(HD), V2(H3)).
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By differentiating the functiorl' (H?) with respect ta#, we have
oY (H7)
o2 \Hi=n*

N — Hi — H} OV Vi oH{ OH2 %5

= [biag N, OH? blaQﬁﬁ—H% + leO—H% - (bla2ﬁll + 91 + mo1 + Vl)”Hf:Hf#
B det(J)
=

(5.8)
On the other hand, in Appendix C we have obtained continyaliflerentiable functiondi| (H?Z, H3),
H}(H2, H2) from the first equation (5.5). These functions are definedr@ighborhood\’ of (H;# | H2™)
and satisfy:
AL ) = 1P B 13 =
By substitutingH4 = H3(H?, H3) into the second equation in (5.5), we obtain

Y'(Hi,H3) = H3wo(Hy(HY, H3), H3) + moy Hi = 0.

From Appendix C we can see that

OY'(HF, H3)
omg ittt <0
The implicit function theorem then implies that there exstontinuously differentiable functidﬁg(Hf)

defined on a neighborhoall of Hf# such that

and

forall H? € A. Moreover, from Appendix C we have
. 2 2
8H22| T/Hf(H1#aH2#)
Ao g 2H = >
8H12 Hi=H; T/H (Hf#,HQZ#)

2
2

0.

SinceFH%(HQI#,HS#) > 0 then by the implicit function theorem there exists a cordimly dif-
ferentiable functionf(H2) defined on a neighborhood’ of H" such thatd}(H;") = H," and
F(H}(H3),H3) = 0 for H3 € A’. Moreover, we have

8ﬁ1 FHQQ(H%#VHQQ#)

5l _pzr =~ e
OHy "2=" FH;(Hz , Hy™)
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By substituting (5.6) andi = H1(H3), H? = H3(H?) into the second equation in (5.5), we obtain

T(H}) = ——— H3(HD) G (B3 (H7)), HE(HD)).

ma1

Differentiating the functioril (H?) with respect ta7, we have

oY (HY)
OH? D
~ 2 2 2 2 5.9
1 2#8H22 2 24 GHZ}(H1#7H2#) FHg(H1#>H2#) (-9)
m21 OHy Hi=h H2(H* H3?) FH%(H1 Hy™)
Hence, we see that
oY (HY)
TI{%|H12:HE# >0 (510)
if and only if
Fy (Hy™ HYY) Gy (Hy™ H3Y) -
Fpy (Hy" HY) Gy (Hy™ HY?
Moreover,
O (HY)
TH12|H%=H5# <0 (5.11)
if and only if

1 2 1 2
FHQQ(H2#7H2#) ) GH%(HQ#aHQ#) <1

1 2 1 2 )
FHQI(H2#7H2#) GHg(H2#=H2#)

From equations (5.8), (5.10) and (5.11) we can easily segeltha/(E#)) = det(.J) > 0 if and only

1 2 1 2
FHg(H2#>H2#) GH;(H2#7H2#)

<
1 2 1 2
Fyy (Hy ™ HYY) Gz (Hy™ H3Y)

L

anddet(.J(E#)) = det(J) < 0if and only if

1 2 1 2
FHQQ(HQ#?HZ#) GHZ}(H2#=H2#)

> 1.
1 2 1 2
Fyy (Hy ™ HYY) Gz (Hy™ H3Y)

This completes the proof of Theorem 5.1. O

We now proceed to investigate the global stability of theesys(5.1). Let
A ={(H3, H3) € R? : py(Hy, H3) < 0,4(Hy, H3) <0,
Hy + HF < No, —Hypa(Hy, HY) — H3va(Hy, HY) < mo1 N1}
and

Q={((I",1?)eRS : P 2 (H],H), V], V§),H} + H? < N;, V} + VZ <W,,i=1,2}.
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The Jacobian matrix of system (5.1) at each poift I2) € Q has the form
AT T2 —Ao(IN,12)
( —A3(I',1%) A1, 1?) )
where A;(I',1?),i = 1,2,3,4 are all4 x 4 matrices One can verify that all off-diagonal entries of
Ay (1Y, I?) and A4 (11, I?) are non-negative, andy(I', 1?) and A3 (I, I?) are non-negative matrices. It

follows from Smith [39] that the flowb,; (1!, I?) generated by (5.1) is type-K monotone in the sense that
O, (1Y, I?) > (I, I?) whenever (I', I?) > (I', %) and t > 0.

Theorem 4.1.2 in [39] implies that almost all solutions ofteyn (5.1) are convergent to the equilibria,
and thus the global dynamics of the system (5.1) is complekelermined by the equations (5.7). Since
the algebraic equations (5.7) are difficult to solve explicin what follows we only consider a special
case to show the global stability. We further assume thevafig hypothesis:

(H) {(H3, H3) : F(Hy, H3) = 0,Hy > 0, H3 > 0} C Aand{(H;, H3) : G(H;, H3) = 0, Hy >
0,H >0} C A.

Straight forward, but tedious algebraic calculationsd/iblat
FH21 (H21> H22) > 07 F‘HQ2 (H21> H22) > 07 GH% (H21> H22) > 07 GH% (H21> H22) > 0.
Using the implicit function theorem, from the equation&/§ave can infer that there exist positive, contin-
uously differentiable function&l3 = f(HJ), Hy,= g(H3) defined on the interval®, H3] and[0, H3],
respectively, such that
(1) f(H3) = 0, g(H3) = 0;
(2) ForHj € [0, HY] andH2 € [0, H3], H3 = f(H3) andHj = g(H2) satisfy F(H2, f(H})) =0

andG(g(H3), H3) = 0;

(3) df(HQI) _ FH21(H217122) <0 dg(HQQ) . _GHS(Héng) <0
a7} Fp (LAY = Y ~anj Gy (3,173)

The last property above says thi&$ = f(H.), Hi = g(H3) are both monotonically decreasing functions
on the intervalg0, /1] and[0, H3] respectively.
Let #(H3) = g(f(H2)), Hi € [x, H3], where

_{ 7Y (HZ) if f(0) > HE;
Y~ o if £(0)< I3
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In view of the properties of andg, #(H.) satisfies’#”(Hs) > 0 for Hi € [x, Hi]. Suppose the
equation#’(H3}) = Hj hasl positive roots in the intervaly, H3), which we label ag1j, < Hi, <
.-+ < HJ,. Since each root gives a positive equilibrium of system)(3Hen system (5.1) hdspositive

equilibria. The corresponding positive equilib@([}*,ff*),j =1,2,---,10of (5.1) are given by

(Ijl*u IJQ*) = (Hllj*u H21]*7 Vvllj*v Vv21j*7 H12j*7 H22j*7 V12]*7 V22]*)7] =1, 7l7 (512)
where
1 1
2k 2% 1x 1% 1% 2% 2k 2% 1% 2%
H2j = f(Hlj)aHU = _m—mH2j902(H2jaH2j)7H1j = _m—mH2j1/’2(H2j7H2j)7
Vl.* _ blﬁlWlﬂllj _ Vl-* _ b2/61W2H21; _
Y b B H + biBoHE + Ny P boBiHY + bafoHEL + Nopi
V2 b152W1H12; 9% b2ﬁ2W2H§;

. p— — ’V . pr— — 5
Y b B HE + biBoHE + Nipn P boBiHYY + bafoHEL + Napig

respectively. Moreover, we have
(0,%) <k (1", IF) <gc -+ <ic (I I7) < (11, 0).

For convenience, l68(E 1), B(E;2), B(E}),j = 1,2--- 1, denote the basin of attraction bY:, E;2, E
in R% , andC1 U denote the closure d@f. Note that the flowp, (1!, I?) generated by the system (4.1) is
type-K strongly monotone. The following Theorem summagitee results on existence and stability of

the positive equilibria.

Theorem 5.2. LetR} > 1, R3 > 1. Let (H) and (H’) hold.

1) If %? > 1,%3 > 1, then systenB(1) has an odd numbeérof positive equilibria given byg;12). The
odd indexed positive equilibri&’, j = 1,3, --- , [ are asymptotically stable andl U; 44 B(E;f) =R§.
The boundary equilibria’1, Er2 and the even indexed positive equilibdg, j = 2,4,--- ,1 — 1 are
unstable. Moreover, if = 1 thenEj is globally asymptotically stable iR% \ (I'' UT?).

2) If %% < 1,%} < 1, then system5(1) has an odd numbérof positive equilibria given by(12.
The boundary equilibriak;1, E72 and the even indexed positive equilibdg, j = 2,4,--- ,1 — 1, are
asymptotically stable, an@l((U; cven B(E}) U B(Ep) U B(Ep2)) = R}. The odd indexed positive

equilibria EY,j =13, lare unstable. Moreover, if= 1 then there exists an unordered separatfix
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containing £y and the unique positive equilibriufa*, and the unordered separatri% the separates the

basins of attraction of thé/;: and Fj-.

3) If %? > 1,%} < 1, then system5(1) has an even numbérof positive equilibria given by(12).
The boundary equilibriunt;> and the even indexed positive equilibdg, j = 2,4,--- [, are asymp-
totically stable, andCl((Uj cven B(E}) U B(E}2)) = R%. The boundary equilibriunE: and the odd
indexed positive equilibri&’;, j = 1,3,--- ,1 — 1 are unstable. Moreover, if= 0, i.e., systemd.1) has
no positive equilibrium, thet; is globally asymptotically stable RS \ I'".

a4 If %2 < 1,%3 > 1, then the systenb(1) has an even numbeérof positive equilibria given by
(5.19. The boundary equilibriunt’;: and the odd indexed positive equilibrig;, j = 1,3,--- .1 — 1,
are asymptotically stable, an@l((U; ,aaB(E}) U B(Ep)) = R%. The boundary equilibriun&;- and
the even indexed positive equilibrg}, j = 2,4, --- , [, are unstable. Moreover, if= 0, i.e., system.1)

has no positive equilibrium, theh. is globally asymptotically stable iR \ I'.

In order to prove Theorem 5.2, we need to prove the followargrhas.

Lemmab5.3. Let assumption (H’) hold. Then we have

Ry > 1(%y < 1)< F(0,H3) < 0(F(0,H3) > 0).

Proof. From the expression afy(H4, H2), we have

_ ba)?c1 1 Wa(Ny — H3)
0.3 - ! L (1t m
902( 2) (b252H22 + NQ[LQ)NQ (72 2 12)

(b2)?n1 1 (Wa — V2)(Ny — H3)

- (’Ygl + %] + mlg).

2

pr2(N2)?
Thus,
7 ba)?a1 81 (Wa — V) (Ny — H3)
0,H3) <0< ( Z 2 2) o1,
©2(0, H3) 12 (N2)2(7h + v2 + m12)
2 = ooy &
pa0.183) > 0. LA TR - T )

M2(N2 721 + v9 + my2)

29



SubstitutingH3 = 0, H3 = H3 into the expression foF (H3, H3) gives

_ _ 1 _ _
F(0,H3) = 902(07H22)801(0,—m—mHQQ%(O,HS))—m12m21

(b2)? a1 B1(Wo — Vi) (Na — H3)
p2(No)?

[(b1)2a1ﬁ1(Wl - VP) (N, — HY)
p1(N1)?

= [(v3 +r2) (9 +v1) + maa(y] + 1) +ma (g + v2)]x

[1— (,)2(1 — x9) — (93,)°(1 — ¢I) + (RI)2(FR)2(1 — 7 — ).

— (73 + v + m12)]x

= |

- (V% + 1 + mao1)] — miamay

Here, we have used the falitt = — - H2¢»»(0, H3). We can then conclude that

_m21
F(0,H3) > 0 (9,)*(1 = x7) + (4, (1 = ¢) = () (R)*(1 =¥ = ) < 1,
F(0,H3) <0 (R)2(1 = x7) + (R)2(1 = ¢9) = (R],)?(R)°(1 — X7 — ¢) > L.
Assumption (H’) implies thai» (0, H3) < 0. Hence, the conclusions follow immediately from (5.2)1
Similarly, we can establish the following lemma whose prisaimitted.
Lemma5.4. Let the assumption (H’) hold. Then we have

H? > 1(# < 1) < G(H;,0) < 0(G(Hj,0) > 0).

Now we are able to prove Theorem 5.2.

Proof of Theorenb.2 Here we only prove part 1) of the Theorem The other parts caaskablished
similarly except the last conclusion in part 2) which is aotiary of Theorem 1 in paper [40]. We consider
the roots of the equatios’(H3) = Hj in the interval[y, H3]. If #7 > 1 and%3 > 1 hold, Lemma 5.3
and Lemma 5.4 imply thak'(0, H3) < 0, G(H1,0) < 0, i.e.,f(0) > H3,g(0) > H1. Hence, we can
easily see thay = f~1(H3) > 0,9(f(x)) = 0,9(f(H3)) > Hi. The non-degeneracy assumption (H)
implies that the numberof the roots of the equatios#”’( H3) = H; in the interval[y, H3] is odd. Let the
roots of the equation?’(H; ) = Hj in the interval[x, Hy] be Hyj < H}; < --- < H,;. This means that

system (5.1) has exactlypositive equilibria given by (5.12) and three boundary Boua Eo, E7, , E7, .
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Moreover, the non-degeneracy assumption (H) also imm'm;t(f(H;;‘))f’(H%;) >1,l.e.,

" o <1
Fpy (Hyj H3) - Gya (HY, HYY)

25
in the case wheyj is odd andy'(f(Hy})) f/(Hy;) < 1, that s,

Fyz(Hy H3)) - Gy (Hy), H3))

230 25
Fpy(Hy) H3)) G e (HY, HYY)

> 1

in the case wherj is even. By Theorem 5.1 the odd indexed positive equililifjaare locally asymp-
totically stable and the even indexed positive equilibfia are unstable. Note that the flop (11, I2)
generated by (5.1) is type-K strongly monotone. Sifge <y Ef <k --- <k E <g Er, andE}, Ef
are both asymptotically stable, it follows from Theorem.2.ix [39] thatEy,, £, are both unstable. By
Theorem 4.1.2 in [39] we obtain that almost all solutionsysftem (5.1) are convergent to the equilibria

andCl U; a0 B(E}) = R% . This completes the proof of Theorem 5.2. O
6 Discussion

In this article we study the effect of spatial heterogeneitythe transmission dynamics of a vector-
borne diseases with multiple strains and on multiple patcBased on the Ross-MacDonald multi-patch
model analyzed by Auger et al. [25], we formulate an extensmlti-patch multi-strain model. Vector-
borne diseases, such as malaria, often display heterogerig¢ransmission in different locations. High
transmission areas neighbor low transmission areas ase tire connected by host migration. Vector-
borne disease have reemerged as a major public health imtbatlast 30-40 years. The reasons for the
re-emergence are complex but they involve the evolutioh@fpiathogens to more resilient drug-resistant
strains, often persisting in different isolated region%][4This suggests that studying the evolution of
pathogens in a spatial context (on multiple patches) is gormant topic of particular interest. We be-
lieve our model here is the first one that studies the impaspafial heterogeneities on the evolution of

pathogens.

We focus on investigating the dynamics of the multi-patchtrstrain Ross-McDonald type model.
We define the multi-patch basic reproduction numtﬂé{;a‘or each strain. Theorem 3.3 shows that if the

reproduction number for straijis less than one then strajrcan not invade the patchy environment and
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dies out over the entire domain. Theorem 3.3 also impliesitti@e multi-patch basic reproduction num-
bers for all strains are less than one the disease freelaquifi is globally asymptotically stable and the
disease is eliminated from the host and the vector popuakatigvhen the multi-patch basic reproduction
numbers for all strains are greater than one, each straiingade into the population when alone, and

thus all strains compete for the same resource, the suslkeepidividuals.

In order to obtain further theoretical results, we systéraly analyze the multi-patch multi-strain
model onn discrete patches but restricting the number of strains ¢o By analyzing the local stability of
the single-strain equilibria, we derive the invasion reforction number%’f,z’,j =1,2,i # j for strainj.
Applying the theory of uniform persistence of dynamicalteyss the uniform persistence of two compet-
ing strains on the entire domain is rigorously proved in Thao4.2 under the condition that both invasion
reproduction numbers are lager than one. However, thetsesulTheorem 3.1 show that if the system
has no host migration no more than one strain will persighiéngopulation on a single patch, namely the
strain with the largest reproduction number on that patchitipe strains may persist, each on a sepa-
rate patch, but essentially a divide and conquer strategglopted. When the patches are linked through
migration, the divide and conquer strategy is not an optiwhall strains whose reproduction number is
greater than one are competing. However, Theorem 4.2 anmdichte that spatial heterogeneity can
lead to the coexistence of multiple competing strains oretitee domain. Hence, spatial heterogeneity

supports pathogen genetic diversity. This is the main te$uhis article.

Finally, we examine the global behavior of the model with teampeting strains on two patches.
Applying the well-known M-matrix theory and the implicitriation theorem a complete classification for
the local stabilities of positive equilibria is given in Tdrem 5.1. We determine that the flaiy (1, %)
generated by the two-strain two-patch model (5.1) is typsdhotone. By applying the theory of type-
K monotone dynamical systems, we provide the global behadfidthe two-strain two-patch model in
Theorem 5.2 which is completely determined by the algel@giations (5.7). These results follow from
the conditions on the invasion reproduction numbers as agethe non-degeneracy assumption (H) and

assumption (H).

There are still many interesting and challenging mathesaktjuestions which need to be studied for
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the system (2.5). For example, we could not present the aimplassification for the dynamics of the
system (2.5). The main difficulty stems from the high dimenspf the multi-patch multi-strain model.

Additionally, the model discussed here can also be extetml@utcorporate the other ingredients, such
as the different incidences and/or different compartmesttactures. It is worth noting that the methods
applied to study model (5.1) are not applicable to the otlesregal models because the monotonicity of

the model (5.1) plays an essential role in our analysis. \Akel¢hese investigations for the future.
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Appendix A: Proof of Theorem 3.1.

For anyl < p,q < n, we consider the system

d]ag:f(t) = bz‘OépVip Nio - (]H\fjZ - ﬁzq) B ('Yf + Vi)]:[f’
dVé‘;(t) = 0B, (W; — (VP + ng))ﬁ—? — wVE,
dlii(t) = bia V! N (ﬁﬁ HH) (v + i) HY,
d‘glt(t) = biB(W; — (VI + %q))ﬁ—; - mV.

If we let Y and R? be the reproduction numbers for strairand g, then R? = R? and R = R.
Since R} < 1 for all j (which implies? < 1 and R? < 1) it follows from Theorem 4.1.2 in [6] that
HP(t) = 0, H(t) — 0andV?(t) — 0, V%(t) — 0, ast — +oo. Onthe other hand, from the comparison
principle, it follows thatH”(t) < HP(t), H!(t) < HI(t) andVP(t) < VF(t), Vi(t) < VI(t) for all

t > 0. Thus, the the disease-free equilibrium of the system (&.4)obally asymptotically stable. This

completes the proof of part (1).
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2) For anyj # j*, consider the system

( dﬁé;( ) bV <N (1;; +Hj? — (v ) HT
dv;‘;t( ) = biB; ( (VJ + VJ))f]{;o 'uif/ij*’
%_baﬂ/ﬂv (111\720 +Hj)'_ (v +vi) HY,
d‘;]t( ) by, (s — (V" +VJ))§) V7.

Let R and i/ be the reproduction numbers for strainand, then?/ = R/ and 2/ = RJ. Hence
R > R and it follows from Theorem 4.1.2 in [6] tha/ (t) — OV/(t) — 0, ast — +oc. Again,
from the comparison principle, it follows thﬂg(t) < 2Hij(t) andv;j(t) < Vij(t) forall ¢ > 0. Thus,

lim H(t) = 0, lim V7 (t) = 0. Sincej is arbitrary, we have
—+00

t——+o00
B2evie Box Wi ) (A3" NNO B2euse Bax Wiy (~3" NNO
. [Zaj*ﬂj*N_O ,Uz(’)/l +l/z)] i . [Za]*ﬂj*N_O Mz(% +Vz)] i
lim HI (t) = < —, lim V/ () = . )
t—-o0 biBj (v + vi + biouje X[VO) t—-Foo bicvj= (bi B+ + i)
and

J ; J(4) =
lim H;(t) _O’tLIerooVi (t)=0

t——+o0

forallj =1,2,---,1,57 # j*. This completes the proof Theorem 3.1.
Appendix B: Proof of (—1)5Ws > 0.

From the equations in (5.3), we have
( FQ(H1>H27VY1 )VQ 7H1>H27V1 7‘/2 )

1 1 1 1 2 2 2
H1>H27VY1 ¢V27H17H27V17 2

1 1 1 1 2 2 2
H1>H27VY1 ¢V27H17H27V17 2

CH )
© (H117H217VY11¢V217H127H227V17 22)
CH )

( )

\ 63 H1>H27VY1 >V27H17H2¢V1 7‘/2

It is easy to verify that

a(ré7 @%7 @%7 _@%7 _C—)%)

det
L Vi vy, Vg V)

1 1 1 2 2 = W5 < 0.
‘(H2#7V1#7V2#7V1#7V2#)) 0

Applying the implicit function theorem we conclude thathexist continuously differentiable functions
H(HY, B}, H3),V{{(H}, B}, H3), V} (H}, H}, H3), V2 (H}, H}, H3), V3 (H}, H}, H3) defined on a

neighborhoodA of (H,#, H# | H2*) such that
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1 2 2 1 1 2 2 1 1 2 2 1
(1) H21(H1#7H1#3H2#) = H2#7‘/11(H1#7H1#7H2#) = Vl #7V21(H1#7H1#7H2#) = ‘/'2#’

1 2 2 2 1 2 2 2
V12(H1#7H1#7H2#) =V #v V22(H1#>H1#>H2#) = Vz#?
(2) For(HY, H, H}) € A, HY(H}, H2, H3), Vi\(H}, H2, HE), V3 (H}, B2, HE), VE(H}, B, H3),
VZ(H{, H?, H3?) satisfy the equations
( F%(HllvH21(H117H127H22)7Vll(HllvH12>H22)7V21(H117H12¢H22)>
H127H227V12(H117H127H2) V2 (H17H17H2)) = O

O!(H},HY(H{, H}, H3),V{' (H{, H} , H3),Vy (H{, H}, H3),

L H127H22¢V12(H117H127H22)7‘/22(H11>H127H22))
(3) For(H{, H?, H3) € A, we have

0, 4,75=12;

8(F%v@%7@%7_@%7_@%)
8H21(H117H127H22) _ 8(H11,V11,V21,—V12,—V22))
E)"HfL N det( 8(F§,@%,®%,—@%, —@%) )’
8(H21,V11,V21,—V12,—V22)
a(F%7@%v@%7_@%7_@§)
8‘/11(H11,H12,H22) o 8(H21,H11,V21,—V12,—V22))
OH] - 0(r}, 61,65, -67,-63)
e s, Vi, v, v, —v2)
2) 71720 1> 2
On the one hand, substituting the functidi$(H{, H?, H3), V}(H{, H?, H3), Vo (H, HE, H3)

det(

det(

VE(HL, H? H3),VZ(HL, HE, H2) for the expressioi: (HT, H, ViL, Vit HE H3, V2, V) yields that
T(HUHDHQ) _F (H17H2(H17H17H2) Vll(H117H127H22)7
Vi (Hi, HY, H3), HY, H3, VP (H{, HY, H3), V3 (H}, HY, H3)).
Differentiating the functioril' (H{, H, H3) with respect ta{, we have
OY(Hy, HY, H3)

OH} 2% 3%
OH1 Ny — H! — g2 ov)
= [mo1 =5 OH! + brag — Ni 1 8Hll — (byarl Vit + 41 +may + 1/1)]|(H11#7H12#’H22#) (6.1)
1
We
=

On the other hand, the first equation in (5.5) implies that axeeh

0.F4 (Hl# HZ#) Hl# Jipo
OH) | i 2 ey = 2 + OH} |t 12
Sincegy(H, ", Hy*) < 0 and

Oipo

| L (52)2a151W2[b252H22# + p2Na + ba 31 (Ng — HQQ#)]
OHL (7 HYF)

(b251H21# + 5252H§# + Napiz)? Ny

< 0,
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7.
OF8| 4 i ot o
OHL | (HI# H1# 2% H2#)

differentiable functionff (H}, H2, H2) defined on a neighborhoay’ of (H{ ", H:* | H*) such that

it follows that < 0. By the implicit function theorem, there exists a continsigu

o 1 2 2 1
H%(H1#=H1#=H2#) :H2#

and

F»(Hi, Hy(H{,H{,H3),H{, H}) =0

for (H], H?, H3) € A'. Moreover, we have

aﬁg‘ Ml
STl 2t g2ty = 1 2 1# 0
QHI (T HT HyT) @2(H2#>H2#)+H2#a—1%|(H11#,Hf#7H22#)

> 0.
Substituting (5.4) andl = H}(H}, H?, H3) into the expressiol'} (H{, H3, V!, Vil HE H3, V2, V3),
we can obtain

T(HllvH127H22) = Hllwl(Hll7H12) +m12f{21(H117H12vH22)'

Differentiating the functionl' (H{, H?, H2) with respect ta{, we have

OY(H{, H{, H3)
OH} a2 %)

o1 ma1
1 772 1
=[p1(H{,H{) + H ——= — m12 # o l# g 2H 2
oL )+ i @2(H217H22)+H21—g}’}21”(1{11 Ha HY T )
2
1 Do 6.2)
902(H217H22)+H213?;1 OH;
1,1 001 Op2

dp1
1 772y g7l
p2(Hy, Hy)H, OHT + HiHy OH] 6H21]|(H11#,H21#,H12#,H§#)

<0
Since(pl(Hll#aHf#) < 07¢2(H21#7H22#) < 07 g—}_o[zl|(H21#’H22#) < 0 and

4%71(H11#7 H12#)<P2(H21#, HQQ#) — miamay = 0,

Op1(HL, HE) (b1)2a1 B Wi b1 B1H? + i Ny + b1 81 (N1 — H?)]

W s = — v Y <0
OH! |H1 Ha (b1 HY + b1 S1HY + Nipa1)?Ny

From (6.1) and (6.2) we can easily see thal )51y > 0 sinceWV; < 0.
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Appendix C: Proof of (—1)"W; > 0.

From the equations in (5.3), we have

( F%(Hll?H%v Vll? V217 H12>H22> V127 V22)

Hi, Hy VL Vi HE HZ V2 Vi

)
)

Hi Hy, VL Vi HE H2 V2V

0,
1( ) =0,
5( ) =0,
OF(H{, Hy, V{', V', H, H3, V2, V5) = 0,
5( ) =0,

O(H{, HY, Vi, Vi, H? HZ V2, V}

\ P%(Hll7H217V117V217H127H227V127V22) =0.

It is easy to verify that

8(F%¢®%¢®%7_®%¢_@%7F%) o
8(H217 ‘/lla V217 _V227 _V127 Hll) ‘(Hé#’Vll#’V21#’V12#7V22#’H11#)) B W6 - 0

det(
The implicit function theorem then implies that there exshtinuously differentiable functions
H21(H12> H22)> Vll(H127 H22)7 V21(H12> H22)> V12(H127 H22)7 VZQ(HlQa H22)> Hll(H127 H22)
defi . 24 24
efined on a neighborhoatl of (H;", H;™) such that
2 2 1 2 2 1 2 2 1 2 2
1) H%(H1#7H2#) = H2#>V11(H1#,H2#) = V1#7V21(H1#7H2#) = ‘/Q#av12(H1#>H2#) =
Vi v ) = vy iy YY) = Hy

(2) For(H2, H}) € A, H(H}, H}), Vi (H?, H3), V3 (H?, H3), V2 (H}, H}), V2 (H?, HY), H} (H}, H3)
satisfy the equations
Ui (H{(HY, H3), Hy (H?, H3), Vi (HY, H3), V3 (HY, H3), HY, H3, VP (HY, H3), V3 (H}, H3)) = 0,

©J(HI(H?, H2), Hi(H}, HZ), Vi (H}, H?), Vi (H}, H?), H}, H3, V2 (H?, H3), Vi (HE, H3))

0,
wherei, j =1, 2;

(3) For(H?, H3) € A, we have
8@%? @%v @%7 _@%7 _@%7 P%)

Lomumay _ “SCmvivi v gD
8f"22 det( 8(F%,@%,@%,—@%,—@%,F%) ) ’
8(H21,V11,V21,—V12,—V22,H11)
det( O(F%,@%,@%,—@%,—@%,F%) )
8‘/22(H12,H22) _ 8(H21’V11>V217_V12>_H22>H11)
8H22 det( a(ré7@%v@%7_@%=_@%7r%) ’

)
8(H21’ ‘/117 V21’ _V12’ _V22’ Hll)
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On the one hand, substituting the functidd$(H?, H3), V' (H?, H2), V3 (H?, H2), V2 (H?, H3),
VZ(H?, H3), Hi (H?, H3) for the expressiol3(H{, Hi, VL, Vi, H?, H3, V2, V) yields that
Y'(HY, H3) == U3(H{ (HY, H3), Hy (H}, H3),
VI\(HY, H3), Vo (HY, H3), HY, H3, VP (HY, H3), V3 (HY, H3)).
Differentiating the functiorit’(H#, H3) with respect taH2, we have
OY'(H, H3)

OH?2 a2 z#)
_ [b V22(H127H22) 8I_IQI NZ_HQI(H%aHQQ)_Hg
= |020x2 = 5 + boary — X
Ny,  OH? N, 6.3)
oV '
8—H222 — (b0 V5 (HY, H3) + 75 +maz + )] 2w pyow
=

On the other hand, the first equation in (5.5) leads to
o(F1, %)

== det(m)‘(Hll#7H21#,Hf#,H22#)
14 724 1# 91
er(HY® HE) ¥ S0 e o e
_ 0
ma1 902(H21#a H22#) + H21# -

OH) iz
1 2 14 02 1 1 2
= 801(H1#7H1#)H2#—8H1 ‘(Hé#ng#) + H1#802(H2#7H2#)><
2
dp1

‘ 8801 8Q02
oHL' (7 oY)

T—
+Hy " Hy 8H11‘(H}#,Hf#)aHQI‘(Hé#,Hi#)

>0

sincey; (H,™, H#) < 0,0y(Hy™, H3") < 0, %'(Hé#,HS#) <0, g—lﬁ\(Hll#ﬂ%#) < 0and
oL (HL HY Yoo (Hy ™, Hy ) = mazmay = 0.

By the implicit function theorem, there exists a continugutifferentiable functiond | (H?, H3), Hi(H?, H3)

defined on a neighborhoal’ of (H2#, H2*) such that
H(H" B") = B 1y (" 1Y) = Hy"
and
Fi(H{(Hf, H3), Hy (Hf, H3), Hf, H3) = 0,1 = 1,2
for (H?, H3) € A’. Moreover, we have

O}

OH? i 3% =

=, o,
£ oHZ (H* H)

(m| 1

)
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where

0
1 2 1 ¥1
901(H1#>H1#) +H1#ﬁ|(Hll#,H12#) 0
= = ! >0,
#0992 D2 |
m21 2 8H2 (Hl# H2#)
14 24 1 01 14 Doy
52: Sol(Hl 7H1 )+H1 _8H11|(H11#7H12#) Hl 8H2‘(H11#’H12#) > 0.
mai 0

SubstitutingH} = HL(H?, H2) into the second equation in (5.5), we can obtain
2 2 1 2
Y'(H{, H3) = Hyvs(Hy (HY, H3), Hy) + moy H7.

Differentiating the functiol(’( H?, H2) with respect taH3, we have

8T/(H127 H2)

—omg it

0 Z1 . 0o

8H1 |(H1# HQ#) + —8H§ |(H§#7H22#)]

Oy — o4 0o -
RYiE \(Hl# H2#)]: H, 8—H21\(H1# H2#):1}
by 14 01
o3 * 12#) OH]
Oipo

22 o)

2(Hy " HY )+ HY¥ [~
{[Q/)Q(Hl# HQ#)—I—HQ#

+ H;

[l — [l = &

{eml* B go (¥ ) 22

1# o2 24 02
VYo (Hy™, Hy™) + H, oH3

1 2
\(H}#,Hf#)[@(Hz#, Hy%)x

—~

1 1 2
[t gz + Hy T (H ™ HY™) o

A
L

(6.4)

OY'(H, HF)
OH? 2 3
Oy
Y 2 L
> 9H)

)
E 6.5
|(H21#,H22#) + mo1 (6.5)

> 0,
1 2 1 2
sincep) (H ¥, H*) < 0,49 (HY*  H3?) < 0, aH2|(H1# paty <0, 8H1\(H1# gty <0,

dpa

a1t | 1 g2+ < 0@nd= > 0. The facts that

<P1(H11#>H12#)<P2(H21#,H22#) —miama; =0

and
0o 0o _ 0p by
ol oy ) g oyt ) = gzl mit Sl )

were used in the above calculations. From (6.3) and (6.5)ameeasily see that-1)"WW; > 0 since

We > 0.
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