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Abstract Spatial heterogeneity plays an important role in the distribution and persistence of infectious

diseases. In this article, a vector-host epidemic model is proposed to explore the effect of spatial het-

erogeneity on the evolution of vector-borne diseases. The model is a Ross-McDonald type model with

multiple competing strains on a number of patches connectedby host migration. The multi-patch basic re-

production numbersRj
0, j = 1, 2, · · · , l are respectively derived for the model withl strains onn discrete

patches. Analytical results show that ifRj
0 < 1, then strainj cannot invade the patchy environment and

dies out. The invasion reproduction numbersR
j
i , i, j = 1, 2, i 6= j are also derived for the model with two

strains onn discrete patches. It is shown that the invasion reproduction numbersRj
i , i, j = 1, 2, i 6= j pro-

vide threshold conditions that determine the competitive outcomes for the two strains. Under the condition

that both invasion reproduction numbers are lager than one,the coexistence of two competing strains is

rigorously proved. However, the two competing strains cannot coexist for the corresponding model with

no host migration. This implies that host migration can leadto the coexistence of two competing strains

and enhancement of pathogen genetic diversity. Global dynamics is determined for the model with two

competing strains on two patches. The results are based on the theory of type-K monotone dynamical

systems.
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1 Introduction

Two characteristics that are main drivers behind the distribution and persistence of infections diseases,

are host migration and pathogen variability. Host migration allows the pathogen to invade new areas, and

maintains the disease in areas where it would disappear if the area were isolated. Pathogen variability

allows the pathogen to persist despite building host immunity, wide-spread treatment and vaccination.

These two heterogeneities of transmission have been explored separately in multiple studies. In this article

we study them together to gain insight on the impact of spatial heterogeneity on pathogen genetic diversity.

On the one hand, understanding the transmission mechanismsfor diseases with multiple strains or

serotypes is critical for predicting the persistence and evolution of diseases. Mathematical models have

provided a powerful tool to broaden our knowledge into the mechanisms [1, 2] that lead to coexistence

or competitive exclusion of multiple strains. The competitive exclusion principle is a classic result in this

field, which states that no two species can indefinitely occupy the same ecological niche [3]. Using a

multi-strain ODE model, Bremermann and Thieme [4] proved that the principle of competitive exclusion

is valid with the strain with the highest reproduction number persisting, while all remaining strains are

being eliminated. Castillo-Chavez et al. [5, 6] formulateda simple two-sex epidemiological model that

considers the competitive interactions of two strains. They showed that coexistence of two competing

strains is not possible except in special and unrealistic circumstances.

However, it is a common phenomenon that multiple strains coexist in nature. For instance, dengue

fever has four different serotypes, often coexisting in thesame geographical region [1]. The competitive

exclusion principle leads to the conclusion that persistent coexistence may only occur if some heterogene-

ity in the ecological niche is present. Identifying the factors that allow multiple strains to coexist is an

important topic in theoretical biology that has been occupying significant attention in the last 20 years.

Recent studies have shown that mechanisms, such as superinfection [2, 7], co-infection [8, 9], partial

cross-immunity [10], density dependent host mortality [11], different modes of transmission [12], can

lead to coexistence of strains. In this paper, we will show that another mechanism, spatial heterogeneity,

can also generate the coexistence of multiple competing strains in the same geographical domain.

On the other hand, spatial heterogeneities are believed to play an important role in the distribution
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and dynamics of infectious diseases [14]. Spatial heterogeneity can be incorporated in epidemic models

as a continuous characteristic, in the form of epidemic models with diffusion, or as a discrete character-

istic where migration of individuals between discrete geographical regions is considered. The discrete

geographical regions can be cities, towns, states, countries or other appropriate community devisions. In

recent years, several studies have focused on the transmission dynamics of infectious diseases in patchy

environments by using deterministic meta-population epidemic models [15]. Castillo-Chavez and Yakubu

[16] discussed a two-patch SIS epidemic model with dispersion governed by discrete equations. Wang and

Zhao [17] and Wang and Mulone [18] proposed an epidemic modelwith population dispersal to describe

the dynamics of disease spread between two patches andn patches. Wang and Zhao [19] formulated a

time-delayed epidemic model to describe the dynamics of disease spread among patches, an age structure

is incorporated in order to simulate the phenomenon that some diseases only occur in the adult popu-

lation, sufficient conditions are established for global extinction and uniform persistence of the disease.

Arino and van den Driessche [20] developed a multi-city epidemic model to analyze the spatial spread of

infectious diseases. Dhirasakdanon, Thieme and Driessche[21] established sharp persistence results for

multi-city models. All the previous articles consider directly transmitted diseases.

Vector-borne diseases, such as West Nile virus (WNV) and malaria, have reemerged after being nearly

eliminated in the 1950s and 1960s [13]. Migration patterns of the hosts, birds and humans, is one of the

important reasons that cause the worldwide spread of the vector-borne diseases. Wonham et al. [22] have

suggested that the WNV model should be extended biologically to consider bird migration. Rappoleet.

al. [23] have provided some factors supporting the hypothesis that the migrant bird is an introductory host

for the spread of WNV. Owen et al. [24] have demonstrated thatmigrating passerine birds are potential

dispersal vehicles for WNV. These studies show that the importance of migration on the distribution and

maintainance of infectious diseases can hardly be underestimated. Few articles have considered the effect

of host migration among multiple patches on the dynamics of vector-borne diseases. Augeret. al. [25]

formulate a Ross-MacDonald model onn patches to describe the transmission dynamics of malaria. In

a recent study Cosneret. al. [26] consider the impact of both short term host movement andlong-term

host migration on the dynamics of vector-borne diseases. The models in [25, 26] discuss only vector-host

diseases represented by a single strain. In this paper, based on the model in [25] we formulate Ross-
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MacDonald type model with multiple competing strains onn patches. Competitive exclusion of the strains

is the only outcome on a single patch. The main question that we address is whether spatial heterogeneity

can generate the coexistence of multiple competing strainsin a common heterogenous geographical area.

The remaining parts of this paper are organized as follows. In the next section we formulate the Ross-

MacDonald model with multiple competing strains onn patches. In Section 3, we derive the reproduction

numbers and investigate the local stability of the model. InSection 4, we consider the threshold dynamics

of a two-strain multi-patch version of the model. Section 5 is devoted to the global analysis of the two-

strain two-patch version of the model. The paper ends with a brief discussion of the results in section

6.

2 Model description

In this section we formulate a Ross-MacDonald type model to describe the transmission dynamics of

a vector borne disease. Vector and host populations occupyn discrete patches linked by host migration.

The model also incorporatesl competing strains.

To introduce the model letNi(t) denote the total host population in thei-th patch which is partitioned

into l + 1 distinct epidemiological subclasses: susceptible and infected with strainj, j = 1, 2, · · · , l.

The size of the susceptible host population on patchi is denoted bySi(t). The size of the infected host

population with strainj on patchi is denoted byHj
i (t), j = 1, 2, · · · , l. Let Ti(t) denote the total vector

population in thei-th patch. The vector population is also divided into susceptible and infected with

strainj, j = 1, 2, · · · , l subclasses. The size of the susceptible vector population that occupies patchi is

denoted byMi(t). The size of the infected with strainj vector population that occupies patchi is denoted

byV j
i (t), j = 1, 2, · · · , l. We assume that the system which describes the spread of a vector borne disease
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with l strains in thei-th patch is governed by the following differential equations:








































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


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













dSi(t)

dt
= νiNi − bi(

l
∑

j=1

αjV
l
i )
Si
Ni

+

l
∑

j=1

γjiH
j
i − νiSi,

dHj
i (t)

dt
= biαjV

j
i

Si
Ni

− γjiH
j
i − νiH

j
i ,

dMi(t)

dt
= Λi − bi(

l
∑

j=1

βjH
j
i )
Mi

Ni
− µiMi,

dV j
i (t)

dt
= biβjMi

Hj
i

Ni
− µiV

j
i ,

Ni = Si +Hi

j = 1, 2, · · · , l. (2.1)

Here,bi is the per capita biting rate of vectors on hosts in thei-th patch;αj , βj are the disease transmission

probabilities from infected vectors with strainj to uninfected hosts and from infected hosts with strainj

to uninfected vectors, respectively;νi is the birth and death rate of the hosts;µi is the natural death rate of

the vectors;γji is the recovery rate of infected hosts with strainj in thei-th patch, andΛi is the recruitment

rate of the uninfected vectors (by birth) in thei-th patch.

When then patches are connected, we assume that only hosts can migrateamong the patches since

vectors are usually arthropods who typically move only small distances during their lifetime. Letmji ≥ 0

denote the per capita rate that susceptible and infected hosts of patchi leave for patchj, wherei 6= j.

Then the dynamics of the hosts and the vectors with migrationis governed by the following model:


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
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






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






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











































dSi(t)

dt
= νiNi − bi(

l
∑

j=1

αjV
j
i )
Si
Ni

+
l

∑

j=1

γjiH
j
i

+

n
∑

k=1,k 6=i

mikSk −
n
∑

k=1,k 6=i

mkiSi − νiSi,

dHj
i (t)

dt
= biαjV

j
i

Si
Ni

− γjiH
j
i +

n
∑

k=1,k 6=i

mikH
j
i −

n
∑

k=1,k 6=i

mkiH
j
i − νiH

j
i ,

dMi(t)

dt
= Λi − bi(

l
∑

j=1

βjH
j
i )
Mi

Ni
− µiMi,

dV j
i (t)

dt
= biβjMi

Hj
i

Ni
− µiV

j
i ,

Ni = Si +Hi

(2.2)

wherei = 1, 2, · · · , n, j = 1, 2, · · · , l.

Adding the firstl + 1 equations of the system (2.1) gives

dNi(t)

dt
= 0,
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and it follows that the total population sizeNi(t) = N0
i is a constant. Similarly, adding the lastl + 1

equations of the system (2.1) gives

dTi(t)

dt
= Λi − µiTi.

The asymptotic equilibrium values for theTi areTi(t) → Λi

µi
:= W̄i ast −→ +∞.

By adding the firstl + 1 equations of the system (2.2), we have

dNi(t)

dt
=

n
∑

j=1,j 6=i

mijNj −
n
∑

j=1,j 6=i

mjiNi.

This system can be rewritten as

dN(t)

dt
=MN(t), (2.3)

whereN is the column vector(N1, N2, · · · , Nn)
T and the superscriptT denotes transpose. The move-

ment matrix M is defined byM(i, j) = mij for i 6= j and

M(i, i) = −
n
∑

j=1,j 6=i

mji.

We assume that the matrixM is irreducible, that is, the graph of the patches is stronglyconnected through

the movement of hosts. If that is not the case, it follows from[25] that the system (2.2) can be divided into

some decoupled subsystems. From article [25] it follows that any trajectory of the system (2.3) remains

in the affine hyperplane orthogonal to the vector(1, 1, · · · , 1)T and containing the initial conditionN(0).

In the affine hyperplane the system (2.3) has a positive equilibrium denoted byN̄ = (N̄1, N̄2, · · · , N̄n)
T .

Moreover, the positive equilibrium̄N is globally asymptotically stable on the affine hyperplane.

Noting that the total host and vector populations for system(2.1) and (2.2) tend to the the asymptotic

states ast→ +∞, in this paper we always assume that the system (2.1) and the system (2.2) have reached

the asymptotic states. Thus system (2.1) is equivalent to the following system































dHj
i (t)

dt
= biαjV

j
i

N0
i −

l
∑

j=1
Hj
i

N0
i

− (γji + νi)H
j
i ,

dV j
i (t)

dt
= biβj(W̄i −

l
∑

j=1

V j
i )
Hj
i

N0
i

− µiV
j
i ,

(2.4)
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and system (2.2) can be reduced to the system as follows


















































dHj
i (t)

dt
= biαjV

j
i

N̄i −
l
∑

j=1
Hj
i

N̄i

−γjiH
j
i +

n
∑

k=1,k 6=i

mikH
j
k −

n
∑

k=1,k 6=i

mkiH
j
i − νiH

j
i ,

dV j
i (t)

dt
= biβj(W̄i −

l
∑

j=1

V j
i )
Hj
i

N̄i

− µiV
j
i ,

(2.5)

wherei = 1, 2, · · · , n, j = 1, 2, · · · , l.

In the remainder of this article we will analyze the dynamicsof the system (2.4) and (2.5) instead of

(2.1) and (2.2), respectively, and we will further investigate how spatial heterogeneity affects the dynamics

and outbreaks of the vector borne diseases with multiple strains on multiple patches.

3 The reproduction numbers and the local stability

One of the important critical threshold quantities in epidemiological modeling studies is the reproduc-

tion number. Epidemiologically, this quantity is defined asthe average number of secondary cases (infec-

tions) produced by a typical infected individual during theentire period of infection when this infectious

individual is introduced into a completely susceptible population [30]. Mathematically, the reproduction

number serves as a threshold quantity that often determinesthe persistence or eradication of the disease

[11, 31, 32]. Generally, if the basic reproduction number isless than one, the disease can not establish

itself in the population, If the reproduction number is greater than one the disease will be endemic. In this

section we derive the reproduction numbers for strainj, j = 1, 2, · · · , l, and then we investigate the local

stabilities of the boundary equilibria using these reproduction numbers.

We begin by introducing certain notations that will be used throughout this paper. Let

R
2ln
+ := {(I1, I2, · · · , I l) : Hj

i ≥ 0, V j
i ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , l}.

We define a subsetΩ of R2ln
+ by

Ω = {(I1, I2, · · · , I l) ∈ R
2ln
+ :

l
∑

j=1

Hj
i ≤ N̄i,

l
∑

j=1

V j
i ≤ W̄i, i = 1, 2, · · · , n},

where

Ij = (Hj
1 ,H

j
2 , · · · ,Hj

n, V
j
1 , V

j
2 , · · · , V j

n ). (3.1)
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Let ϕ(I1, I2, · · · , I l) denote the solution flow generated by (2.5). It is not difficult to see that the flow is

positively invariant inΩ. For two vectorsx = (x1, x2, · · · , x2n), z = (z1, z2, · · · , z2n) ∈ R
2n we define

an order between them as follows:

x ≤ z if xi ≤ zi, i = 1, 2, · · · , 2n.

We can easily derive the reproduction number of system (2.4)which gives the isolated reproduction

number for strainj in patchi:

Rji =

√

b2iαjβjW̄i

(γji + νi)µiN0
i

. (3.2)

Similar argument as in the proof of Theorem 3.2 and Theorem 4.2 of [5], we can obtain the following

theorem.

Theorem 3.1. For a giveni ∈ {1, 2, · · · , n}, the system(2.4)has

1) if Rji < 1 for all 1 ≤ j ≤ l, then the disease for all strains will eventually die out, i.e., the

disease-free equilibrium of the system (2.4) is globally asymptotically stable;

2) if Rji > 1 for some1 ≤ j ≤ l and assume that there existsj∗ ∈ {1, 2, · · · , l} such thatRj
∗

i > Rji

for all j = 1, 2, · · · , l, j 6= j∗, then

lim
t→+∞

Hj∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i

− µi(γ
j∗

i + νi)]N
0
i

biβj∗(γ
j∗

i + νi + biαj∗
W̄i

N0
i

)
, lim
t→+∞

V j∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i

− µi(γ
j∗

i + νi)]N
0
i

biαj∗(biβj∗ + µi)
,

and

lim
t→+∞

Hj
i (t) = 0, lim

t→+∞
V j
i (t) = 0

for all j = 1, 2, · · · , l, j 6= j∗.

The proof of Theorems 3.1 is provided in Appendix A.

Theorem 3.1 implies that if the system (2.5) has no host migration among patches then no more than

one strain will persist in the population of patchi, namely the strain with the largest reproduction number

in patchi. All strains which have lower basic reproductive rates die out in patchi. In what follows we will

prove that coexistence of two competing strains in a common area is possible if the system incorporates

host migration among patches. This suggests that host migration, that is spatial heterogeneity, is one of

the mechanisms which can lead to the coexistence of multiplecompeting strains.
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We now derive the basic reproduction numbers for system (2.5). Let c ∈ {1, 2 · · · , l} and

Γc = {(I1, I2, · · · , I l) ∈ Ω : Ij = 0, j 6= c}, (3.3)

thenΓc is invariant for system (2.5). The system (2.5) inΓc is


















dHc
i (t)

dt
= biαcV

c
i

N̄i −Hc
i

N̄i

− γciH
c
i +

n
∑

k=1,k 6=i

mikH
c
k −

n
∑

k=1,k 6=i

mkiH
c
i − νiH

c
i ,

dV c
i (t)

dt
= biβc(W̄i − V c

i )
Hc
i

N̄i

− µiV
c
i , i = 1, 2, · · · , n.

(3.4)

It is clear thatEc0(I
c = 0) is the disease-free equilibrium (DFE) of the subsystem (3.4). Noting that

the model has 2n infected populations, namelyHc
i andV c

i , i = 1, 2, · · · , n, it follows that, in the notation

of [33], the matrixF c andV c for the new infection terms and the remaining transfer termsrespectively,

are given by

F c =

(

0 F c
12

F c
21 0

)

, V c =

(

V c
11 0
0 V c

22

)

,

where

F c
12 =











b1αc 0 · · · 0
0 b2αc · · · 0
...

...
. . .

...
0 0 · · · bnαc











,F c
21 =













b1βc
W̄1

N̄1
0 · · · 0

0 b2βc
W̄2

N̄2
· · · 0

...
...

. ..
...

0 0 · · · bnβc
W̄n

N̄n













,

V c
11 =











γ̂c1 −m12 · · · −m1n

−m21 γ̂c2 · · · −m2n
...

...
. . .

...
−mn1 −mn2 · · · γ̂cn











,V c
22 =











µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µn











,

andγ̂ci = γci + νi +
n
∑

k=1,k 6=i

mki.

Results in [33] imply that the basic reproduction number of the subsystem (3.4) is given by

Rc
0 : = ρ(F c(V c)−1)

=
{

ρ(diag{b1βc
W̄1

N̄1
, b2βc

W̄2

N̄2
, · · · , bnβc

W̄n

N̄n

}(V c
11)

−1diag{b1αc
µ1

,
b2αc
µ2

, · · · , bnαc
µn

})
}

1
2

(3.5)

whereρ(M) represents the spectral radius of the matrixM .

Following Smith [34] one can establish that the subsystem (3.4) is strongly concave. Results in [34]

also imply that that either the origin of system (2.5) is globally asymptotically stable inΓc defined in

(3.3), or system (2.5) has a unique equilibriumEIc(Ic = Īc > 0, Ij = 0, j 6= c) such that it is globally
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asymptotically stable inΓc \ {O}, whereIc, Ij are defined in (3.1). This conclusion is based on the

observation thatEIc is linearly stable inΓc, that is

Ac11 =































η1 m12 · · · m1n αcQ
H
1 0 · · · 0

m21 η2 · · · m2n 0 αcQ
H
2 · · · 0

...
...

. . .
...

...
...

.. .
...

mn1 mn2 · · · ηn 0 0 · · · αcQ
H
n

βcQ
V
1 0 · · · 0 Qβ1 0 · · · 0

0 βcQ
V
2 · · · 0 0 Qβ2 · · · 0

...
...

. . .
...

...
...

.. .
...

0 0 · · · βcQ
V
n 0 0 · · · Qβn































, (3.6)

is a stable matrix, where

QVi =
bi(W̄i − V̄ c

i )

N̄i

, QHi =
bi(N̄i − H̄c

i )

N̄i

, Qβi = −µi −
biβcH̄

c
i

N̄i

,

ηi = −biαcV̄
c
i

N̄i

− γci −
n
∑

k=1,k 6=i

mki − νi, i = 1, 2, · · · , n.

Simple algebraic calculations imply that system (3.4) has an equilibrium if and only ifRc
0 > 1. Thus we

have

Theorem 3.2. If Rc
0 ≤ 1, then the disease-free equilibrium (DFE)E0 of the system (2.5) is globally

asymptotically stable inΓc. If Rc
0 > 1, then system(2.5)has a unique equilibriumEIc(Ic = Īc > 0, Ij =

0, j 6= c) which is globally asymptotically stable inΓc \ {O}.

Now we are able to state the main result in this section.

Theorem 3.3. 1) If Rj
0 ≤ 1 for all 1 ≤ j ≤ l, then the DFEE0 of the system (2.5) is globally asymptoti-

cally stable inΩ.

2) If there existsc ∈ {1, 2, · · · , l} such thatRc
0 > 1 and Rj

0 ≤ 1 for 1 ≤ j ≤ l, j 6= c, then

the boundary equilibriumEIc(Ic = Īc > 0, Ij = 0, j 6= c) is globally asymptotically stable inΩ \

{(I1, I2, · · · , I l) : Ic = 0}.

Proof. For a givenj ∈ {1, 2, · · · , l}, it follows from the system (2.5) that



















dHj
i (t)

dt
≤ biαjV

j
i − γjH

j
i +

n
∑

k=1,k 6=i

mikH
j
k −

n
∑

k=1,k 6=i

mkiH
j
i − νiH

j
i ,

dV j
i (t)

dt
≤ biβj

W̄i

N̄i

Hj
i − µiV

j
i , i = 1, 2, · · · , n.

(3.7)
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Let us consider the following differential equations



















dH̃j
i (t)

dt
= biαj Ṽ

j
i − γjH̃

j
i +

n
∑

k=1,k 6=i

mikH̃
j
k −

n
∑

k=1,k 6=i

mkiH̃
j
i − νiH̃

j
i ,

dṼ j
i (t)

dt
= biβj

W̄i

N̄i

H̃j
i − µiṼ

j
i , i = 1, 2, · · · , n.

(3.8)

Since the system (3.8) is a linear system, the global stability of the origin of the system (3.8) is determined

by the stability of the matrixJ j = F j − V j . If Rj
0 ≤ 1, Theorem 2 in [33] implies that the matrixJ j is

stable. Then we havelim
t→+∞

H̃j
i (t) = 0, lim

t→+∞
Ṽ j
i (t) = 0 for all 1 ≤ i ≤ n. By the comparison principle

it then follows thatHj
i (t) → 0, V j

i (t) → 0 ast → +∞ for all 1 ≤ i ≤ n.

If Rj
0 ≤ 1 for all 1 ≤ j ≤ l, then we have lim

t→+∞
H̃j
i (t)) = 0, lim

t→+∞
Ṽ j
i (t) = 0 for all 1 ≤ i ≤

n, 1 ≤ j ≤ l. We can easily see thatE0 is locally asymptotically stable inΩ. This fact implies that the

disease-free equilibriumE0 is globally asymptotically stable inΩ if Rj
0 < 1 for all 1 ≤ j ≤ l.

If there existsc ∈ {1, 2, · · · , n} such thatRc
0 > 1 andRj

0 ≤ 1 for 1 ≤ j ≤ n, j 6= c, then we

have that lim
t→+∞

H̃j
i (t)) = 0, lim

t→+∞
Ṽ j
i (t) = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ l, j 6= c. Furthermore, if

(I1(0), I2(0), · · · , I l(0)) ∈ Ω \ {(I1, I2, · · · , I l) : Ic = 0}, by using the comparison principle, we can

easily prove that there existsς > 0 such that

Hc
i (t) > ς, V c

i (t) > ς (3.9)

for t sufficiently large and all1 ≤ i ≤ n. In this case the limiting system of system (2.5) is subsystem

(3.4). SinceRc
0 > 1, Theorem 3.2 implies thatEIc(Īc > 0, Īj = 0, j 6= c) is globally asymptotically

stable inΓc \ {O}. Denote the flows generated by systems (2.5) byΨ(t,X). Since for anyX ∈ Ω \

{(I1, I2, · · · , I l) : Ic = 0}, the orbit {Ψ(t,X) : t > 0} is precompact,ωΨ(X)the limit set ofX,

exists. LetωPΨ be the projection ofωΨ(X) ontoΓc. then (3.9) implies thatωPΨ ∈ Γc \ {0}. By Theorem

2.3 in [27] we can conclude that the equilibriumEIc(Īc > 0, Īj = 0, j 6= c) is a global attractor in

Ω \ {(I1, I2, · · · , I l) : Ic = 0}. This completes the proof of Theorem 3.3.
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4 Coexistence of two strains on n patches

In this section we consider the case of two strains onn patches. When system (2.5) has only two

strains, strain 1 and strain 2, then it can be rewritten as






















































































dH1
i (t)

dt
= biα1V

1
i

N̄i −H1
i −H2

i

N̄i

−γ1iH1
i +

n
∑

k=1,k 6=i

mikH
1
k −

n
∑

k=1,k 6=i

mkiH
1
i − νiH

1
i ,

dV 1
i (t)

dt
= biβ1(W̄i − V 1

i − V 2
i )
H1
i

N̄i

− µiV
1
i ,

dH2
i (t)

dt
= biα2V

2
i

N̄i −H1
i −H2

i

N̄i

−γ2iH2
i +

n
∑

k=1,k 6=i

mikH
2
k −

n
∑

k=1,k 6=i

mkiH
2
i − νiH

2
i ,

dV 2
i (t)

dt
= biβ2(W̄i − V 1

i − V 2
i )
H2
i

N̄i

− µiV
2
i ,

i = 1, 2 · · · , n. (4.1)

In the case when at least one of the reproduction numbers is smaller than one, that is, eitherR1
0 ≤ 1 or

R2
0 ≤ 1, Theorem 3.3 gives the global behavior of system (4.1). Therefore, we only need to consider the

case when bothR1
0 > 1 andR2

0 > 1. WhenR1
0 > 1,R2

0 > 1, the system (4.1) has the disease-free equi-

librium E0(0, 0), which is unstable, as well as the two boundary equilibriaEI1(Ī
1, 0), EI2(0, Ī

2), where

Īj = (H̄j
1 , H̄

j
2 , · · · , H̄j

n, V̄
j
1 , V̄

j
2 · · · , V̄ j

n ), j = 1, 2. In what follows we investigate the local stability of

the boundary equilibriaEI1(Ī
1, 0), EI2(0, Ī

2). To this effect we define two important quantitiesR2
1 ,R

1
2

as follows

R
2
1 = (ρ(M 2

1 ))
1
2 ,R1

2 = (ρ(M 1
2 ))

1
2 ,

where

M
2
1 =

{

diag{b1β2
W̄1 − V̄ 1

1

N̄1
, b2β2

W̄2 − V̄ 1
2

N̄2
, · · · , bnβ2

W̄n − V̄ 1
n

N̄n

}

×(V 2
11)

−1diag{b1α2
N̄1 − H̄1

1

N̄1µ1
, b2α2

N̄2 − H̄1
2

N̄2µ2
, · · · , bnα2

N̄n − H̄1
n

N̄nµn
}
}

;

M
1
2 =

{

diag{b1β1
W̄1 − V̄ 2

1

N̄1
, b2β1

W̄2 − V̄ 2
2

N̄2
, · · · , bnβ1

W̄n − V̄ 2
n

N̄n

}

×(V 1
11)

−1diag{b1α1
N̄1 − H̄2

1

N̄1µ1
, b2α1

N̄2 − H̄2
2

N̄2µ2
, · · · , bnα1

N̄n − H̄2
n

N̄nµn
}
}

.

andV
j
11, j = 1, 2 are defined in Section 3.

Theorem 4.1. 1) If R2
1 > 1 (R2

1 < 1) the boundary equilibriumEI1(Ī
1, 0) is unstable (locally stable).
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2) If R1
2 > 1 (R1

2 < 1) the boundary equilibriumEI2(0, Ī
2) is unstable (locally stable).

Proof. We only prove the first point above, since the second point canbe proved in a similar way.

The Jacobian matrixJ(EI1(Ī
1, 0)) atEI1(Ī

1, 0) takes the form

J(EI1(Ī
1, 0)) =

(

A1
11 A1

12

0 A1
22

)

,

whereA1
11 has the same form as (3.6) and

A1
22 = F 1

22 − V 1
22,

F 1
22 =





























0 0 · · · 0 α2Q̄
H
1 0 · · · 0

0 0 · · · 0 0 α2Q̄
H
2 · · · 0

...
...

. ..
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · α2Q̄
H
n

β2Q̄
V
1 0 · · · 0 0 0 · · · 0

0 β2Q̄
V
2 · · · 0 0 0 · · · 0

...
...

. ..
...

...
...

. . .
...

0 0 · · · β2Q̄
V
n 0 0 · · · 0





























,

V 1
22 =





























ζ1 −m12 · · · −m1n 0 0 · · · 0
−m21 ζ2 · · · −m2n 0 0 · · · 0

...
...

.. .
...

...
...

. . .
...

−mn1 −mn2 · · · ζn 0 0 · · · 0
0 0 · · · 0 µ1 0 · · · 0
0 0 · · · 0 0 µ2 · · · 0
...

...
.. .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · µn





























,

and

Q̄Vi =
bi(W̄i − V̄ 1

i )

N̄i

, Q̄Hi =
bi(N̄i − H̄1

i )

N̄i

, ηi = γ2i +

n
∑

k=1,k 6=i

mki + νi, i = 1, 2, · · · , n.

The stability of the boundary equilibriumEI1(Ī
1, 0) is determined by the stability of the matricesA1

11

andA1
22. It follows from (3.6) that the matrixA1

11 is stable. We only need to investigate the stability of

the matrixA1
22.

SinceV 1
22 has theZ pattern and it is a strictly row diagonally dominant matrix,we conclude thatV 1

22

is non-singular M-matrix. It is easy to see thatF 1
22 is non-negative, then−A1

22 = V 1
22 − F 1

22 has theZ
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pattern [33]. Thus,

s(A1
22) < 0 ⇐⇒ −A1

22 is a non-singular M-matrix,

wheres(A1
22) denotes the maximum real part of all the eigenvalues of the matrix A1

22. By results in article

[33], we have

−A1
22 is a non-singular M-matrix⇐⇒ I − F 1

22(V
1
22)

−1 is a non-singular M-matrix.

SinceF 1
22(V

1
22)

−1 is non-negative, all eigenvalues ofF 1
22(V

1
22)

−1 have magnitude less than or equal to

ρ(F 1
22(V

1
22)

−1). So

I − F 1
22(V

1
22)

−1 is a non-singular M-matrix ⇐⇒ ρ(F 1
22(V

1
22)

−1) < 1

⇐⇒ (ρ(M 2
1 ))

1
2 < 1.

Hence,s(A1
22) < 0 if and only if R2

1 < 1. We conclude that the boundary equilibriumEI1(Ī1, 0) is

locally stable whenR2
1 < 1.

Similarly, we haves(A1
22) = 0 if and only if R2

1 = 1. In addition,s(A1
22) > 0 if and only if R2

1 > 1.

Thus, ifR2
1 > 1 then the boundary equilibriumEI1(Ī

1, 0) is unstable. This concludes the proof.

Theorem 4.2. If R1
2 > 1 andR2

1 > 1 , then there exists anε > 0 such that for every(I1(0), I2(0)) ∈

IntR4n
+ the solution(I1(t), I2(t)) of system(4.1)satisfies that

lim inf
t→+∞

Hj
i (t) ≥ ε, lim inf

t→+∞
V j
i (t) ≥ ε

for all i = 1, 2, · · · , n, j = 1, 2. Moreover, the system(4.1)admits at least one (component-wise) positive

equilibrium.

Proof. Define

X = {(I1, I2) : Hj
i ≥ 0, V j

i ≥ 0, i = 1, 2, · · · , n, j = 1, 2},

X0 = {(I1, I2) : Hj
i > 0, V j

i > 0, i = 1, 2, · · · , n, j = 1, 2},

∂X0 = X \X0.

To prove the theorem, it suffices to show that (4.1) is uniformly persistent with respect to(X0, ∂X0) (see

[17]).
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First, from system (4.1), we get that bothX andX0 are positively invariant. Clearly,∂X0 is relatively

closed inX and the system (4.1) is point dissipative. If(I1(t), I2(t)) are solutions of system (4.1), we

define

M∂ = {(I1(0), I2(0)) : (I1(t), I2(t)) ∈ ∂X0,∀t ≥ 0}.

We can show that

M∂ = B1 ∪B2, (4.2)

whereB1 = {(I1, I2) : I2 ≡ 0} andB2 = {(I1, I2) : I1 ≡ 0}. Let (I1(0), I2(0)) ∈ M∂ . To

show that (4.2) holds, it suffices to show thatI1(t) ≡ 0 or I2(t) ≡ 0 for all t ≥ 0. We establish this

result by contradiction. Suppose the result is not true. Then there exists at1 > 0 such that, without loss

of generality,H1
1 (t1) > 0,H2

1 (t1) > 0 andHj
i (t1) = 0, i = 2, 3, · · · , n, j = 1, 2, V j

i (t1) = 0, i =

1, 2 · · · , n, j = 1, 2 (the other cases can be discussed in the same way). Since

dHj
i (t)

dt
≥ −(γji +

n
∑

k=1,k 6=i

mki + νi)H
j
i ,

dV j
i (t)

dt
≥ −µiV j

i

for all i = 1, 2 · · · , n, j = 1, 2, we can easily see that if there exists at0 > 0 such thatHj
i (t0) > 0 or

V j
i (t0) > 0 thenHj

i (t) > 0 or V j
i (t) > 0 for all t > t0. Let k ∈ {2, 3, · · · , n}. The irreducibility ofM

implies that there exists a chain from1 to k, i.e., a sequencei1, i2, · · · , is ∈ {1, 2, · · · , n} with i1 = 1

andis = k such thatmipip+1
> 0 for 1 ≤ p ≤ s− 1. System (4.1) implies that we have

dH1
i2
(t)

dt
|t=t0 > 0.

Then there exists ati2(> t1) such thatH1
i2
(t) > 0 for all t > ti2. Similarly, there exists atip(> tip−1

), p =

3, 4, · · · , s such thatH1
ip
(t) > 0 for all t > tip . Sincek is arbitrary, we can conclude that there exists

a t1 > 0 such thatH1
i (t) > 0 for all i = 1, 2, · · · , n andt > t1. From the second equation of system

(4.1) we can easily see that there exists aT 1(> t1) such thatV 1
i (t) > 0 for all i = 1, 2 · · · , n and

t > T 1. As in the previous proof it is also easy to show that ifH2
1 (0) > 0 there exists aT 2 > 0 such that

H2
i (t) > 0, V 2

i (t) > 0 for all i = 1, 2, · · · , n andt > T 2. Clearly, we have thatHj
i (t) > 0, V j

i (t) >

0, i = 1, 2, · · · , n, j = 1, 2 for all t > max{T 1, T 2} . This means that(I1(t), I2(t)) /∈ ∂X0 for all
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t > max{T 1, T 2}, which contradicts the assumption(I1(0), I2(0)) ∈ M∂ . The contradiction implies

that (4.2) holds.

It is clear that there are three equilibriaE0, EI1 andEI2 in M∂ . SinceR2
1 > 1, we can chooseδ1 > 0

small enough such that

r21 :=
(

ρ
(

diag{b1β2
W̄1 − V̄ 1

1 − 2δ1
N̄1

, b2β2
W̄2 − V̄ 1

2 − 2δ1
N̄2

, · · · , bnβ2
W̄n − V̄ 1

n − 2δ1
N̄n

}

×(V 2
11)

−1diag{b1α2
N̄1 − H̄1

1 − 2δ1
N̄1µ1

, b2α2
N̄2 − H̄1

2 − 2δ1
N̄2µ2

, · · · , bnα2
N̄n − H̄1

n − 2δ1
N̄nµn

}
)

) 1
2

> 1.

Let us consider the arbitrary positive solution(I1(t), I2(t)) of system (4.1). Now we can claim that

lim sup
t→+∞

max
i

{H2
i (t), V

2
i (t)} > δ1.

Suppose, for the sake of contradiction, that there is aT1 > 0 such thatH2
i (t) < δ1, V

2
i (t) < δ1, i =

1, 2, · · · , n, for all t > T1. Noting that


















dH1
i (t)

dt
≤ biα1V

1
i

N̄i −H1
i

N̄i

− γ1iH
1
i +

n
∑

k=1,k 6=i

mikH
1
k −

n
∑

k=1,k 6=i

mkiH
1
i − νiH

1
i ,

dV 1
i (t)

dt
≤ biβ1(W̄i − V 1

i )
H1
i

N̄i

− µiV
1
i , i = 1, 2, · · · , n.

Since the equilibriumEI1(I
1 = Ī1) of system (3.4), wherec = 1, is globally asymptotically stable, by

comparison principle there is aT2 > 0 such thatH1
i (t) < H̄1

i + δ1, V̂
1
i (t) < V̄ 1

i + δ1, i = 1, 2 · · · , n, for

all t > T2. Then, fort > max{T1, T2}, we have

H1
i (t) < H̄1

i + δ1, V
1
i (t) < V̄ 1

i + δ1, 0 < H2
i (t) < δ1, 0 < V 1

i (t) < δ1

for i = 1, 2, · · · , n. Hence, from the third and fourth equations of system (4.1) we have


















dH2
i (t)

dt
≥ biα2V

2
i

N̄i − (H̄1
i + 2δ1)

N̄i

− (γ2i + νi +
n
∑

k=1,k 6=i

mki)H
2
i +

n
∑

k=1,k 6=i

mikH
2
k ,

dV 2
i (t)

dt
≥ biβ2(W̄i − (V̄ 1

i + 2δ1))
H2
i

N̄i

− µiV
2
i , i = 1, 2 · · · , n.

(4.3)

for sufficiently larget. We consider the following auxiliary system



















dH̃2
i (t)

dt
= biα2Ṽ

2
i

N̄i − (H̄1
i + 2δ1)

N̄i

− (γ2i + νi +
n
∑

k=1,k 6=i

mki)H̃
2
i +

n
∑

k=1,k 6=i

mikH̃
2
k ,

dṼ 2
i (t)

dt
= biβ2(W̄i − (V̄ 1

i + 2δ1))
H̃2
i

N̄i

− µiṼ
2
i , i = 1, 2 · · · , n.

(4.4)
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The coefficient matrixJ̃2
1 of system (4.4) is given by

J̃2
1 =









































Q̃γ1 · · · m1n αcQ̄
H
1 0 · · · 0

m21 Q̃γ2 · · · m2n 0 αcQ̄
H
2 · · · 0

...
...

. . .
...

...
...

. . .
...

mn1 mn2 · · · Q̃γn 0 0 · · · αcQ̄
H
n

βcQ̄
V
1 0 · · · 0 −µ1 0 · · · 0

0 βcQ̄
V
2 · · · 0 0 −µ2 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · βcQ̄
V
n 0 0 · · · −µn









































,

where

Q̃Vi =
bi(W̄i − V̄ 1

i − 2δ1)

N̄i

, Q̃Hi =
bi(N̄i − H̄1

i − 2δ1)

N̄i

,

Q̃γj = −γij − µi −
n
∑

k=1,k 6=j

mkj, i = 1, 2, · · · , n; j = 1, 2, ·, n.

Similar discussion as for the matriceŝJ j implies that the matrices̃J2
1 are also unstable and their prin-

cipal eigenvalue is either positive or has a positive real part λ̃m > 0 whenr21 > 1. Using the linear

systems theory, we can establish that all positive solutions of system (4.4) tend to infinity ast → ∞.

Then, applying the standard comparison principle, we have that H̃2
i (t) → +∞ and Ṽ 2

i (t) → +∞ as

t → +∞ for all i = 1, 2 · · · , n. This is a contradiction with the assumption thatH2
i (t) → 0 and

V 2
i (t) → 0 ast→ +∞ for all i = 1, 2 · · · , n, which leads a contradiction. The contradiction implies that

lim sup
t→+∞

max
i

{H2
i (t), V

2
i (t)} > δ1. Similarly, sinceR1

2 > 1, we can chooseδ2 small enough such that

lim sup
t→+∞

max
i

{H1
i (t), V

1
i (t)} > δ2.

By Theorem 3.2EI1 is global attractor inB1 \ {0} andEI2 is global attractor inB2 \ {0} for (4.1).

By the afore-mentioned arguments, it then follows that the set {E0, EI1 , EI2} is isolated invariant set in

X, andW s(E0) ∩ X0 = ∅, W s(EI1) ∩X0 = ∅, W s(EI2) ∩X0 = ∅. Clearly, the set{E0, EI1 , EI2}

is acyclic in∂X0, then Theorem 4.6 in [35] leads to the conclusion that the system (4.1) is uniformly

persistent with respect to(X0, ∂X0). Using Theorem 1.3.7 in [36], as applied to the solution semiflow of

system (4.1), we can infer that the system has a positive equilibrium. This completes the proof of Theorem

4.2.
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Theorem 3.1 implies that if the system (4.1) has no host migration among patches then no more than

one strain will persist in the population of patchi except in special and unrealistic circumstances. However,

it follows from Theorem 4.2 that the coexistence of two competing strains is possible if the system has

host migration among dispersal patches. The coexistence occurs on alln patches. This indicates that the

host migration, i.e., the spatial heterogeneity, can lead to the coexistence of multiple competing strains.

5 Global behavior of two strains on two patches

Global results for multi-strain or multi-patch systems arerare, so it is of particular interest to further

study the asymptotic behavior of the system (4.1). The high dimension of system (4.1) with generaln,

however, increases the difficulty in obtaining informationon the global behavior of the system. To show

the main idea and obtain results on the global behavior, which might be obscured by the complicated

computation for the higher dimensional case, in this section we will focus on the casen = 2. We shall see

that the minimum dimension choice for patchy environment enables us to do some more detailed rigorous

analysis.

Whenn = 2, the model (4.1) becomes














































dH1
i (t)

dt
= biα1V

1
i

N̄i −H1
i −H2

i

N̄i

− γ1iH
1
i +mikH

1
k −mkiH

1
i − νiH

1
i ,

dV 1
i (t)

dt
= biβ1(W̄i − V 1

i − V 2
i )
H1
i

N̄i

− µiV
1
i ,

dH2
i (t)

dt
= biα2V

2
i

N̄i −H1
i −H2

i

N̄i

− γ2iH
2
i +mikH

2
k −mkiH

2
i − νiH

2
i ,

dV 2
i (t)

dt
= biβ2(W̄i − V 1

i − V 2
i )
H2
i

N̄i

− µiV
2
i , i, k = 1, 2, i 6= k.

(5.1)

Straight forward computation yields that the basic reproduction number for strainj, j = 1, 2 over the

whole domain can be expressed as

Rj
0 =

√
2

2

√

(Rj1)
2(1− χj) + (Rj2)

2(1− ζj) + [((Rj1)
2(1− χj)− (Rj2)

2(1− ζj))2 + 4(Rj1)
2(Rj2)

2χjζj]
1
2

and the invasion reproduction number for strainj on patchi can be expressed as

R
j
i =

√
2

2

√

(R̃j
1i)

2(1− χj) + (R̃j
2i)

2(1− ζj) +
(

((R̃j
1i)

2(1− χj)− (R̃j
2i)

2(1− ζj))2 + 4(R̃j
1i)

2(R̃j
2i)

2χjζj
)

1
2
,

where

χj =

m21

γ
j
1+ν1

1 + m21

γ
j
1+ν1

+ m12

γ
j
2+ν2

; ζj =

m12

γ
j
2+ν2

1 + m21

γ
j
1+ν1

+ m12

γ
j
2+ν2

;
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R̃
j
ki =

√

b2kαjβj(N̄k − H̄ i
k)(W̄k − V̄ i

k )

µk(γ
j
k + νk)(N̄k)2

, i, j, k = 1, 2, i 6= j.

We recall that reproduction numbers of strainj on patchi, Rji , i, j = 1, 2, are defined in (3.2). From the

proof of Theorem 4.1, we have

Rj
0 < 1(Rj

0 = 1,Rj
0 > 1) ⇔ s(J j0) < 0(s(J j0 ) = 0, s(J j0 ) > 0),

where

J j0 =





















−(γj1 + ν1 +m21) m12 b1αj 0

m21 −(γj2 + ν2 +m12) 0 b2αj

b1βj
W̄1

N̄1
0 −µ1 0

0 b2βj
W̄2

N̄2
0 −µ2





















ands(J j0) is the maximum real part of the eigenvalues of the matrixJ j0 . SinceJ j0 is irreducible and has

non-negative off-diagonal elements, it follows form Theorem A.5 in [37] thats(J j0 ) is a simple eigenvalue

of J j0 with a positive eigenvector. Furthermore, since the diagonal elements of−J are positive and its

off-diagonal elements are non-positive, it follows fromM−matrix theory [38] that

s(J j0 ) < 0 ⇔



















































J j01 = −(γj1 + ν1 +m21) < 0,

J j02 = (γj1 + ν1 +m21)(γ
j
2 + ν2 +m12)−m12m21 > 0,

J j03 = (γj1 + ν1)(γ
j
2 + ν2)µ1(1 +

m21

γj1 + ν1
+

m12

γj2 + ν2
)((Rj1)

2(1− χj)− 1) < 0,

J j04 = (γj1 + ν1)(γ
j
2 + ν2)µ1µ2(1 +

m21

γj1 + ν1
+

m12

γj2 + ν2
)×

(1− (Rj1)
2(1− χj)− (Rj2)

2(1− ζj) + (Rj1)
2(Rj2)

2(1− χj − ζj)) > 0,

whereJ j0k, k = 1, 2, 3, 4 are the leading principal minors ofJ j0 with k rows. Consequently, a simple

calculation yields that

Rj
0 < 1 ⇔











(bi)
2αjβjW̄i

µiN̄i(γ
j
i + νi +mki)

< 1, i, k = 1, 2, i 6= k,

(Rj1)
2(1− χj) + (Rj2)

2(1− ζj)− (Rj1)
2(Rj2)

2(1− χj − ζj) < 1.

Using a similar approach, we have

R
j
i < 1 ⇔











(bi)
2αjβj(W̄i − V̄ i

i )(N̄i − H̄ i
i )

µi(N̄i)2(γ
j
i + νi +mki)

< 1, k = 1, 2, k 6= i,

(R̃j
1i)

2(1− χj) + (R̃j
2i)

2(1− ζj)− (R̃j
1i)

2(R̃j
2i)

2(1 − χj − ζj) < 1.

(5.2)

It follows from Theorem 3.3 that the global behavior of system (5.1) is clear in the case when both

reproduction numbers are less than one, or at most one reproduction number is greater than one, that is
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eitherR1
0 > 1 or R2

0 > 1. Hence, in this section we only need to investigate the global dynamics of the

model in the case whenR1
0 > 1 andR2

0 > 1. WhenR1
0 > 1 andR2

0 > 1, the system (5.1) has three

boundary equilibriaE0, EI1(Ī
1, 0), EI2(0, Ī

2), whereĪ1 = (H̄1
1 , H̄

1
2 , V̄

1
1 , V̄

1
2 ), Ī

2 = (H̄2
1 , H̄

2
2 , V̄

2
1 , V̄

2
2 ).

We begin by investigating the local dynamics of system (5.1). Any positive equilibrium must satisfy

the following algebraic equations



























Γji (H
1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) := biαjV

j
i

N̄i −H1
i −H2

i

N̄i

−(γji +mki + νi)H
j
i +mikH

j
k = 0,

Θj
i (H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) := biβj(W̄i − V 1

i − V 2
i )

H
j
i

N̄i
− µiV

j
i = 0,

(5.3)

wherei, j, k = 1, 2, i 6= k. From the second equation in (5.3), we have


















V 1
i =

biβ1W̄iH
1
i

biβ1H
1
i + biβ2H

2
i + N̄iµi

,

V 2
i =

biβ2W̄iH
2
i

biβ1H
1
i + biβ2H

2
i + N̄iµi

.

(5.4)

Then, by substituting (5.4) into the first equation in (5.3),we have






Fi(H
1
1 ,H

2
1 ,H

1
2 ,H

2
2 ) = H1

i ϕi(H
1
i ,H

2
i ) +mikH

1
k = 0,

Gi(H
1
1 ,H

2
1 ,H

1
2 ,H

2
2 ) = H2

i ψi(H
1
i ,H

2
i ) +mikH

2
k = 0, i, k = 1, 2, i 6= k,

(5.5)

where

ϕi(H
1
i ,H

2
i ) =

(bi)
2α1β1W̄i(N̄i −H1

i −H2
i )

(biβ1H1
i + biβ2H2

i + N̄iµi)N̄i

− (γ1i + νi +mki);

ψi(H
1
i ,H

2
i ) =

(bi)
2α2β2W̄i(N̄i −H1

i −H2
i )

(biβ1H1
i + biβ2H2

i + N̄iµi)N̄i

− (γ2i + νi +mki), i, k = 1, 2, i 6= k.

From (5.5) it follows that

H1
1 = − 1

m21
H1

2ϕ2(H
1
2 ,H

2
2 ),

H2
1 = − 1

m21
H2

2ψ2(H
1
2 ,H

2
2 ).

(5.6)

Substituting (5.6) into (5.5) yields:















































F (H1
2 ,H

2
2 ) := ϕ2(H

1
2 ,H

2
2 )ϕ1

(

− 1

m21
H1

2ϕ2(H
1
2 ,H

2
2 ),

− 1

m21
H2

2ψ2(H
1
2 ,H

2
2 )
)

−m12m21 = 0,

G(H1
2 ,H

2
2 ) := ψ2(H

1
2 ,H

2
2 )ψ1

(

− 1

m21
H1

2ϕ2(H
1
2 ,H

2
2 ),

− 1

m21
H2

2ψ2(H
1
2 ,H

2
2 )
)

−m12m21 = 0.

(5.7)
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Clearly, F (H̄1
2 , 0) = 0, G(0, H̄2

2 ) = 0. Equations (5.7) give a 2×2 system which only depends

on H1
2 ,H

2
2 . From (5.4) and (5.6) we can easily see that the system (5.1) has a positive equilibrium

E#(H1#
1 ,H1#

2 , V 1#
1 , V 1#

2 ,H2#
1 ,H2#

2 , V 2#
1 , V 2#

2 ) if and only if (5.7) has a positive solution(H1#
2 ,H2#

2 )

satisfyingϕ2(H
1#
2 ,H2#

2 ) < 0, ψ2(H
1#
2 ,H2#

2 ) < 0, i.e.,

[(γ12 + ν2 +m12)N̄2

b2α1W̄2
+1

]

H1#
2 +

[(γ12 + ν2 +m12)N̄2β2
b2α1β1W̄2

+1
]

H2#
2 > N̄2

[

1− (γ12 + ν2 +m12)µ2N̄2

(b2)2α1β1W̄2

]

,

[(γ12 + ν2 +m12)β1N̄2

b2α2β2W̄2
+1

]

H1#
2 +

[(γ12 + ν2 +m12)N̄2

b2α2W̄2
+1

]

H2#
2 > N̄2

[

1− (γ12 + ν2 +m12)µ2N̄2

(b2)2α2β2W̄2

]

.

After extensive algebraic calculations, we can verify that

∂F

∂H1
2

∣

∣

∣

∣

(H1#
2 ,H

2#
2 )

> 0,
∂F

∂H2
2

∣

∣

∣

∣

(H1#
2 ,H

2#
2 )

> 0;
∂G

∂H1
2

∣

∣

∣

∣

(H1#
2 ,H

2#
2 )

> 0,
∂G

∂H2
2

∣

∣

∣

∣

(H1#
2 ,H

2#
2 )

> 0.

To obtain results on the local stability of the endemic equilibrium, we assume the following non-degeneracy

assumption (H)

(H)
F
H2

2
(H1#

2 ,H
2#
2 )

F
H1

2
(H1#

2 ,H
2#
2 )

·
G

H1
2
(H1#

2 ,H
2#
2 )

G
H2

2
(H1#

2 ,H
2#
2 )

6= 1.

Then we have the following result.

Theorem 5.1. LetE#(H1#
1 ,H1#

2 , V 1#
1 , V 1#

2 ,H2#
1 ,H2#

2 , V 2#
1 , V 2#

2 ) be a positive equilibrium of system

(5.1) and let (H) hold. EquilibriumE# is locally stable if
F
H2

2
(H1#

2 ,H
2#
2 )

F
H1

2
(H1#

2 ,H
2#
2 )

·
G

H1
2
(H1#

2 ,H
2#
2 )

G
H2

2
(H1#

2 ,H
2#
2 )

< 1, and it is

unstable if
F
H2

2
(H1#

2 ,H
2#
2 )

F
H1

2
(H1#

2 ,H
2#
2 )

·
G

H1
2
(H1#

2 ,H
2#
2 )

G
H2

2
(H1#

2 ,H
2#
2 )

> 1.

Proof. The Jacobian matrixJ(E#) atE# takes the form

J(E#) =

(

A11 A12

A21 A22

)

,

where

A11 =



























−(b1α1
V

1#
1

N̄1
+ γ11

+ν1 +m21)
m12 b1α1

N̄1−H
1#
1 −H

2#
1

N̄1
0

m21
−(b2α1

V
1#
2

N̄2
+ γ12

+m12 + ν2)
0 b2α1

N̄2−H
1#
2 −H

2#
2

N̄2

b1β1
W̄1−V

1#
1 −V

2#
1

N̄1
0 −(µ1 + b1β1

H
1#
1

N̄1
) 0

0 b2β1
W̄2−V

1#
2 −V

2#
2

N̄2
0 −(µ2 + b2β1

H
1#
2

N̄2
)



























;
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A12 =

























−b1α1
V

1#
1

N̄1
0 0 0

0 −b2α1
V

1#
2

N̄2
0 0

0 0 −b1β1H
1#
1

N̄1
0

0 0 0 −b2β1H
1#
2

N̄2

























;

A21 =

























−b1α2
V

2#
1

N̄1
0 0 0

0 −b2α2
V

2#
2

N̄2
0 0

0 0 −b1β2H
2#
1

N̄1
0

0 0 0 −b2β2H
2#
2

N̄2

























;

A22 =



























−(b1α2
V

2#
1

N̄1
+ γ21

+ν1 +m21)
m12 b1α2

N̄1−H
1#
1 −H

2#
1

N̄1
0

m21
−(b2α2

V
2#
2

N̄2
+ γ22

+m12 + ν2)
0 b2α2

N̄2−H
1#
2 −H

2#
2

N̄2

b1β2
W̄1−V

1#
1 −V

2#
1

N̄1
0 −(µ1 + b1β2

H
2#
1

N̄1
) 0

0 b2β2
W̄2−V

1#
2 −V

2#
2

N̄2
0 −(µ2 + b2β2

H
2#
2

N̄2
)



























.

Let

T =

























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0

























,

and consider the matrix

J̃ = T

(

A11 A12

A21 A22

)

T−1.

It is easy to see that if all eigenvalues ofJ̃ have negative real parts then so do those ofJ(E#). Note that

all off-diagonal elements of̃J are non-negative. LetWi, i = 1, 2 · · · , 8 be the leading principal minors of
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J̃ with i rows. Then straight forward algebraic calculations give

(−1)1W1 = γ12 + ν2 +m12 + b2α1
V 1#
2

N̄2
> 0;

(−1)2W2 = (b2α1
V 1#
2

N̄2
+ γ12 + ν2 +m12)(µ1 + b1β1

H1#
1

N̄1
) > 0;

(−1)3W3 = (µ1 + b1β1
H1#

1

N̄1
)(µ2b2α1

V 1#
2

N̄2
+ b2β1

H1#
2

N̄2
×

(b2α1
V 1#
2

N̄2
+ γ12 +m12 + ν2)− µ2ϕ2(H

1#
2 ,H2#

2 ))

> 0;

(−1)4W4 = (µ2 + b2β2
H2#

2

N̄2
)(µ1 + b1β1

H1#
1

N̄1
)(µ2b2α1

V 1#
2

N̄2
+ b2β1

H1#
2

N̄2
×

µ2

µ2 + b2β2
H

2#
2

N̄2

(b2α1
V 1#
2

N̄2
+ γ12 +m12 + ν2)− µ2ϕ2(H

1#
2 ,H2#

2 ))

> 0;

(−1)5W5 = (µ2 + b2β2
H2#

2

N̄2
)(µ1 +

µ1

µ1 + b1β2
H

2#
1

N̄1

b1β1
H1#

1

N̄1
)(µ2b2α1

V 1#
2

N̄2
+

b2β1
H1#

2

N̄2

µ2

µ2 + b2β2
H

2#
2

N̄2

(b2α1
V 1#
2

N̄2
+ γ12 +m12 + ν2)− µ2ϕ2(H

1#
2 ,H2#

2 ))

> 0.

Furthermore, we apply tricky calculations to conclude that(−1)6W6 > 0 and(−1)7W7 > 0. The

proofs for (−1)6W6 > 0 and (−1)7W7 > 0 are given in Appendices B and C, respectively. Since

(−1)iWi > 0, i = 1, 2, · · · , 7, it follows from the well-known M-matrix theory that the stability of

the matrixJ̃ is determined by the sign of the determinant ofJ̃ . In particular, ifdet(J̃) > 0 then the

matrix J̃ is stable, and ifdet(J̃) < 0 then the matrixJ̃ is unstable. In what follows we prove that

det(J(E#)) = det(J̃) > 0 if and only if

FH2
2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

< 1.

Moreover, we prove thatdet(J(E#)) = det(J̃) < 0 if and only if

FH2
2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

> 1.

We begin by observing that from the equations (5.3), we have


















Γ1
i (H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θj
i (H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Γ2
i (H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0, i, j = 1, 2.
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Furthermore, we verify that

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,H

1
1 ,−H2

2 )
|
(H1#

2 ,V
1#
1 ,V

1#
2 ,V

2#
1 ,V

2#
2 ,H

1#
1 ,H

2#
2 )

) =W7 < 0.

The implicit function theorem then implies that there existcontinuously differentiable functionsH1
i (H

2
1 ),

V j
i (H

2
1 ),H

2
2 (H

2
1 ), i, j = 1, 2 defined on a neighborhood∆ of H2#

1 such that

(1)H1
i (H

2#
1 ) = H1#

i , V j
i (H

2#
1 ) = V j#

i ,H2
2 (H

2#
1 ) = H2#

2 , i, j = 1, 2;

(2) ForH2
1 ∈ ∆, the functionsH1

i (H
2
1 ), V

j
i (H

2
1 ),H

2
2 (H

2
1 ), i, j = 1, 2 satisfy the equations



































Γ1
2(H

1
1 ,H

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),

H2
1 ,H

2
2 , V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 )) ≡ 0,

Θj
i (H

1
1 ,H

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),

H2
1 ,H

2
2 , V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 )) ≡ 0, i, j = 1, 2;

(3) ForH2
1 ∈ ∆, we have

∂V 2
1 (H

2
1 )

∂H2
1

= −
det(

∂(Γ1
2,Θ

1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−H2
1 ,H

1
1 ,−H2

2 )
)

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,H

1
1 ,−H2

2 )
)

= −D85

W7
,

−∂H
1
1 (H

2
1 )

∂H2
1

= −
det(

∂(Γ1
2,Θ

1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,−H2

1 ,−H2
2 )

)

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,H

1
1 ,−H2

2 )
)

=
D86

W7
,

∂H2
2 (H

2
1 )

∂H2
1

= −
det(

∂(Γ1
2,Θ

1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,H

1
1 ,−H2

1 )
)

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

2,−Θ2
1,Γ

1
1,−Γ2

2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 ,H

1
1 ,−H2

2 )
)

= −D87

W7
,

whereDij is the complement minor of order7 obtained by removing thei-th row andj-th column from

the matrixJ̃ .

On the one hand, substituting the functionsH1
i (H

2
1 ), V

j
i (H

2
1 ),H

2
2 (H

2
1 ), i, j = 1, 2 for the expression

Γ2
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) yields:

Υ(H2
1 ) := Γ1

1(H
1
1 (H

2
1 ),H

1
2 (H

2
1 ), V

1
1 (H

2
1 ), V

1
2 (H

2
1 ),H

2
1 ,H

2
2 (H

2
1 ), V

2
1 (H

2
1 ), V

2
2 (H

2
1 )).
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By differentiating the functionΥ(H2
1 ) with respect toH2

1 , we have

∂Υ(H2
1 )

∂H2
1

|
H2

1=H
2#
1

= [b1α2
N̄1 −H1

1 −H2
1

N̄1

∂V 2
1

∂H2
1

− b1α2
V 2
1

N̄1

∂H1
1

∂H1
2

+m12
∂H2

2

∂H2
1

− (b1α2
V 2
1

N̄1
+ γ21 +m21 + ν1)]|H2

1=H
2#
1

=
det(J̃)

W7
.

(5.8)

On the other hand, in Appendix C we have obtained continuously differentiable functions̃H1
1 (H

2
1 ,H

2
2 ),

H̃1
2 (H

2
1 ,H

2
2 ) from the first equation (5.5). These functions are defined on aneighborhood∆′ of (H2#

1 ,H2#
2 )

and satisfy:

H̃1
1 (H

2#
1 ,H2#

2 ) = H1#
1 , H̃1

2 (H
2#
1 ,H2#

2 ) = H1#
2 .

By substitutingH1
2 = H̃1

2 (H
2
1 ,H

2
2 ) into the second equation in (5.5), we obtain

Υ′(H2
1 ,H

2
2 ) = H2

2ψ2(H̃
1
2 (H

2
1 ,H

2
2 ),H

2
2 ) +m21H

2
1 = 0.

From Appendix C we can see that

∂Υ′(H2
1 ,H

2
2 )

∂H2
2

|
(H2#

1 ,H
2#
2 )

< 0.

The implicit function theorem then implies that there exists a continuously differentiable functioñH2
2 (H

2
1 )

defined on a neighborhood̃∆ of H2#
1 such that

H̃2
2 (H

2#
1 ) = H2#

2 ,

and

Υ′(H2
1 ,H

2
2 (H

2
1 )) ≡ 0

for all H2
1 ∈ ∆̃. Moreover, from Appendix C we have

∂H̃2
2

∂H2
1

|
H2

1=H
2#
1

= −
Υ′
H2

1

(H2#
1 ,H2#

2 )

Υ′
H2

2

(H2#
1 ,H2#

2 )
> 0.

SinceFH1
2
(H1#

2 ,H2#
2 ) > 0 then by the implicit function theorem there exists a continuously dif-

ferentiable functionH̃1
2 (H

2
2 ) defined on a neighborhood∆′ of H2#

2 such thatH̃1
2 (H

2#
2 ) = H1#

2 and

F (H̃1
2 (H

2
2 ),H

2
2 ) ≡ 0 for H2

2 ∈ ∆′. Moreover, we have

∂H̃1
2

∂H2
2

|
H2

2=H
2#
2

= −
FH2

2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

< 0.
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By substituting (5.6) andH1
2 = H̃1

2 (H
2
2 ),H

2
2 = H̃2

2 (H
2
1 ) into the second equation in (5.5), we obtain

Υ(H2
1 ) = − 1

m21
H̃2

2 (H
2
1 ))G(H̃

1
2 (H̃

2
2 (H

2
1 )), H̃

2
2 (H

2
1 )).

Differentiating the functionΥ(H2
1 ) with respect toH2

1 , we have

∂Υ(H2
1 )

∂H2
1

|
H2

1=H
2#
1

= − 1

m21
H2#

2

∂H̃2
2

∂H2
1

|
H2

1=H
2#
1

GH2
2
(H2#

1 ,H2#
2 )

[

1−
GH1

2
(H2#

1 ,H2#
2 )

G
H2

2 (H
2#
1 ,H

2#
2 )

·
FH2

2
(H2#

1 ,H2#
2 )

FH2
1
(H2#

1 ,H2#
2 )

]

.

(5.9)

Hence, we see that

∂Υ(H2
1 )

∂H2
1

|
H2

1=H
2#
1

> 0 (5.10)

if and only if
FH2

2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

> 1.

Moreover,

∂Υ(H2
1 )

∂H2
1

|
H2

1=H
2#
1

< 0 (5.11)

if and only if
FH2

2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

< 1.

From equations (5.8), (5.10) and (5.11) we can easily see that det(J(E#)) = det(J̃) > 0 if and only

if
FH2

2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

< 1,

anddet(J(E#)) = det(J̃) < 0 if and only if

FH2
2
(H1#

2 ,H2#
2 )

FH1
2
(H1#

2 ,H2#
2 )

·
GH1

2
(H1#

2 ,H2#
2 )

GH2
2
(H1#

2 ,H2#
2 )

> 1.

This completes the proof of Theorem 5.1.

We now proceed to investigate the global stability of the system (5.1). Let

Λ = {(H1
2 ,H

2
2 ) ∈ R

2
+ : ϕ2(H

1
2 ,H

2
2 ) < 0, ψ2(H

1
2 ,H

2
2 ) < 0,

H1
2 +H2

2 ≤ N̄2,−H1
2ϕ2(H

1
2 ,H

2
2 )−H2

2ψ2(H
1
2 ,H

2
2 ) ≤ m21N̄1}

and

Ω = {((I1, I2) ∈ R
8
+ : Ij , (Hj

1 ,H
j
2 , V

j
1 , V

j
2 ),H

1
i +H2

i ≤ N̄i, V
1
i + V 2

i ≤ W̄i, i = 1, 2}.
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The Jacobian matrix of system (5.1) at each point(I1, I2) ∈ Ω has the form




A1(I
1, I2) −A2(I

1, I2)

−A3(I
1, I2) A4(I

1, I2)



 ,

whereAi(I1, I2), i = 1, 2, 3, 4 are all 4 × 4 matrices One can verify that all off-diagonal entries of

A1(I
1, I2) andA4(I

1, I2) are non-negative, andA2(I
1, I2) andA3(I

1, I2) are non-negative matrices. It

follows from Smith [39] that the flowΦt(I1, I2) generated by (5.1) is type-K monotone in the sense that

Φt(Ĩ
1, Ĩ2) ≥K Φt(Î

1, Î2) whenever (Ĩ1, Ĩ2) ≥K (Î1, Î2) and t > 0.

Theorem 4.1.2 in [39] implies that almost all solutions of system (5.1) are convergent to the equilibria,

and thus the global dynamics of the system (5.1) is completely determined by the equations (5.7). Since

the algebraic equations (5.7) are difficult to solve explicitly, in what follows we only consider a special

case to show the global stability. We further assume the following hypothesis:

(H’) {(H1
2 ,H

2
2 ) : F (H

1
2 ,H

2
2 ) = 0,H1

2 ≥ 0,H2
2 ≥ 0} ⊂ Λ and{(H1

2 ,H
2
2 ) : G(H

1
2 ,H

2
2 ) = 0,H1

2 ≥

0,H2
2 ≥ 0} ⊂ Λ.

Straight forward, but tedious algebraic calculations yield that

FH1
2
(H1

2 ,H
2
2 ) > 0, FH2

2
(H1

2 ,H
2
2 ) > 0, GH1

2
(H1

2 ,H
2
2 ) > 0, GH2

2
(H1

2 ,H
2
2 ) > 0.

Using the implicit function theorem, from the equations (5.7) we can infer that there exist positive, contin-

uously differentiable functionsH2
2 = f(H1

2 ),H
1
2 ,= g(H2

2 ) defined on the intervals[0, H̄1
2 ] and[0, H̄2

2 ],

respectively, such that

(1) f(H̄1
2 ) = 0, g(H̄2

2 ) = 0;

(2) ForH1
2 ∈ [0, H̄1

2 ] andH2
2 ∈ [0, H̄2

2 ], H
2
2 = f(H1

2 ) andH1
2 = g(H2

2 ) satisfyF (H1
2 , f(H

1
2 )) ≡ 0

andG(g(H2
2 ),H

2
2 ) ≡ 0;

(3) df(H
1
2 )

dH1
2

= −
F
H1

2
(H1

2 ,I
2
2 )

F
H2

2
(H1

2 ,H
1
2 )
< 0,

dg(H2
2 )

dH2
2

= −
G

H2
2
(H1

2 ,H
2
2 )

G
H1

2
(H1

2 ,H
2
2 )
< 0.

The last property above says thatH2
2 = f(H1

2 ),H
1
2 = g(H2

2 ) are both monotonically decreasing functions

on the intervals[0, H̄1
2 ] and[0, H̄2

2 ] respectively.

Let H (H1
2 ) = g(f(H1

2 )),H
1
2 ∈ [χ, H̄1

2 ], where

χ =

{

f−1(H̄2
2 ) if f(0) > H̄2

2 ;
0 if f(0) ≤ Īm2 .
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In view of the properties off andg, H (H1
2 ) satisfiesH ′(H1

2 ) > 0 for H1
2 ∈ [χ, H̄1

2 ]. Suppose the

equationH (H1
2 ) = H1

2 hasl positive roots in the interval(χ, H̄1
2 ), which we label asH1

21 < H1
22 <

· · · < H1
2l. Since each root gives a positive equilibrium of system (5.1), then system (5.1) hasl positive

equilibria. The corresponding positive equilibriaE∗
j (I

1∗
j , I

2∗
j ), j = 1, 2, · · · , l of (5.1) are given by

(I1∗j , I
2∗
j ) = (H1∗

1j ,H
1∗
2j , V

1∗
1j , V

1∗
2j ,H

2∗
1j ,H

2∗
2j , V

2∗
1j , V

2∗
2j ), j = 1, · · · , l, (5.12)

where

H2∗
2j = f(H2∗

1j ),H
1∗
1j = − 1

m21
H1∗

2jϕ2(H
1∗
2j ,H

2∗
2j ),H

2∗
1j = − 1

m21
H2∗

2j ψ2(H
1∗
2j ,H

2∗
2j ),

V 1∗
1j =

b1β1W̄1H
1∗
1j

b1β1H
1∗
1j + b1β2H

2∗
1j + N̄1µ1

, V 1∗
2j =

b2β1W̄2H
1∗
2j

b2β1H
1∗
2j + b2β2H

2∗
2j + N̄2µ2

,

V 2∗
1j =

b1β2W̄1H
2∗
1j

b1β2H
1∗
1j + b1β2H

2∗
1j + N̄1µ1

, V 2∗
2j =

b2β2W̄2H
2∗
2j

b2β1H
1∗
2j + b2β2H

2∗
2j + N̄2µ2

,

respectively. Moreover, we have

(0, Ī2) ≤K (I1∗1 , I2∗1 ) ≤K · · · ≤K (I1∗l , I
2∗
l ) ≤K (Ī1, 0).

For convenience, letB(EI1), B(EI2), B(E∗
j ), j = 1, 2 · · · , l, denote the basin of attraction ofEI1 , EI2 , E

∗
j

in R
8
+, andCl U denote the closure ofU . Note that the flowϕt(I1, I2) generated by the system (4.1) is

type-K strongly monotone. The following Theorem summarizes the results on existence and stability of

the positive equilibria.

Theorem 5.2. LetR1
0 > 1, R2

0 > 1. Let (H) and (H’) hold.

1) If R2
1 > 1,R1

2 > 1, then system (5.1) has an odd numberl of positive equilibria given by (5.12). The

odd indexed positive equilibriaE∗
j , j = 1, 3, · · · , l are asymptotically stable andCl∪j oddB(E∗

j ) = R
8
+.

The boundary equilibriaEI1 , EI2 and the even indexed positive equilibriaE∗
j , j = 2, 4, · · · , l − 1 are

unstable. Moreover, ifl = 1 thenE∗
1 is globally asymptotically stable inR8

+ \ (Γ1 ∪ Γ2).

2) If R2
1 < 1,R1

2 < 1, then system (5.1) has an odd numberl of positive equilibria given by (5.12).

The boundary equilibriaEI1 , EI2 and the even indexed positive equilibriaE∗
j , j = 2, 4, · · · , l − 1, are

asymptotically stable, andCl((∪j evenB(E∗
j ) ∪ B(EI1) ∪ B(EI2)) = R

8
+. The odd indexed positive

equilibriaE∗
j , j = 1, 3, · · · , l are unstable. Moreover, ifl = 1 then there exists an unordered separatrixS
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containingE0 and the unique positive equilibriumE∗, and the unordered separatrixS the separates the

basins of attraction of theEI1 andEI2 .

3) If R2
1 > 1,R1

2 < 1, then system (5.1) has an even numberl of positive equilibria given by (5.12).

The boundary equilibriumEI2 and the even indexed positive equilibriaE∗
j , j = 2, 4, · · · , l, are asymp-

totically stable, andCl((∪j evenB(E∗
j ) ∪ B(EI2)) = R

8
+. The boundary equilibriumEI1 and the odd

indexed positive equilibriaE∗
j , j = 1, 3, · · · , l − 1 are unstable. Moreover, ifl = 0, i.e., system (5.1) has

no positive equilibrium, thenEI2 is globally asymptotically stable inR8
+ \ Γ1.

4) If R2
1 < 1,R1

2 > 1, then the system (5.1) has an even numberl of positive equilibria given by

(5.12). The boundary equilibriumEI1 and the odd indexed positive equilibriaE∗
j , j = 1, 3, · · · , l − 1,

are asymptotically stable, andCl((∪j oddB(E∗
j ) ∪ B(EI1)) = R8

+. The boundary equilibriumEI2 and

the even indexed positive equilibriaE∗
j , j = 2, 4, · · · , l, are unstable. Moreover, ifl = 0, i.e., system (5.1)

has no positive equilibrium, thenEI1 is globally asymptotically stable inR8
+ \ Γ2.

In order to prove Theorem 5.2, we need to prove the following lemmas.

Lemma 5.3. Let assumption (H’) hold. Then we have

R
1
2 > 1(R1

2 < 1) ⇔ F (0, H̄2
2 ) < 0(F (0, H̄2

2 ) > 0).

Proof. From the expression ofϕ2(H
1
2 ,H

2
2 ), we have

ϕ2(0, H̄
2
2 ) =

(b2)
2α1β1W̄2(N̄2 − H̄2

2 )

(b2β2H̄
2
2 + N̄2µ2)N̄2

− (γ12 + ν2 +m12)

=
(b2)

2α1β1(W̄2 − V̄ 2
2 )(N̄2 − H̄2

2 )

µ2(N̄2)2
− (γ12 + ν2 +m12).

Thus,

ϕ2(0, H̄
2
2 ) < 0 ⇔ (b2)

2α1β1(W̄2 − V̄ 2
2 )(N̄2 − H̄2

2 )

µ2(N̄2)2(γ
1
2 + ν2 +m12)

< 1,

ϕ2(0, H̄
2
2 ) > 0 ⇔ (b2)

2α1β1(W̄2 − V̄ 2
2 )(N̄2 − H̄2

2 )

µ2(N̄2)2(γ12 + ν2 +m12)
> 1.
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SubstitutingH1
2 = 0,H2

2 = H̄2
2 into the expression forF (H1

2 ,H
2
2 ) gives

F (0, H̄2
2 ) = ϕ2(0, H̄

2
2 )ϕ1(0,−

1

m21
H̄2

2ψ2(0, H̄
2
2 ))−m12m21

= [
(b2)

2α1β1(W̄2 − V̄ 2
2 )(N̄2 − H̄2

2 )

µ2(N̄2)2
− (γ12 + ν2 +m12)]×

[
(b1)

2α1β1(W̄1 − V̄ 2
1 )(N̄1 − H̄2

1 )

µ1(N̄1)2
− (γ11 + ν1 +m21)]−m12m21

= [(γ12 + ν2)(γ
1
1 + ν1) +m12(γ

1
1 + ν1) +m21(γ

1
2 + ν2)]×

[1− (R̃j
1i)

2(1− χj)− (R̃j
2i)

2(1− ζj) + (R̃j
1i)

2(R̃j
2i)

2(1− χj − ζj)].

Here, we have used the factH̄2
1 = − 1

m21
H̄2

2ψ2(0, H̄
2
2 ). We can then conclude that

F (0, H̄2
2 ) > 0 ⇔ (R̃j

1i)
2(1− χj) + (R̃j

2i)
2(1− ζj)− (R̃j

1i)
2(R̃j

2i)
2(1− χj − ζj) < 1,

F (0, H̄2
2 ) < 0 ⇔ (R̃j

1i)
2(1− χj) + (R̃j

2i)
2(1− ζj)− (R̃j

1i)
2(R̃j

2i)
2(1− χj − ζj) > 1.

Assumption (H’) implies thatϕ2(0, H̄
2
2 ) < 0. Hence, the conclusions follow immediately from (5.2)

Similarly, we can establish the following lemma whose proofis omitted.

Lemma 5.4. Let the assumption (H’) hold. Then we have

R
2
1 > 1(R2

1 < 1) ⇔ G(H̄1
2 , 0) < 0(G(H̄1

2 , 0) > 0).

Now we are able to prove Theorem 5.2.

Proof of Theorem5.2. Here we only prove part 1) of the Theorem The other parts can beestablished

similarly except the last conclusion in part 2) which is a corollary of Theorem 1 in paper [40]. We consider

the roots of the equationH (H1
2 ) = H1

2 in the interval[χ, H̄1
2 ]. If R2

1 > 1 andR1
2 > 1 hold, Lemma 5.3

and Lemma 5.4 imply thatF (0, H̄2
2 ) < 0, G(H̄1

2 , 0) < 0, i.e.,f(0) > H̄2
2 , g(0) > H̄1

2 . Hence, we can

easily see thatχ = f−1(H̄2
2 ) > 0, g(f(χ)) = 0, g(f(H̄1

2 )) > H̄1
2 . The non-degeneracy assumption (H)

implies that the numberl of the roots of the equationH (H1
2 ) = H1

2 in the interval[χ, H̄1
2 ] is odd. Let the

roots of the equationH (H1
2 ) = H1

2 in the interval[χ, H̄1
2 ] beH1∗

21 < H1∗
22 < · · · < H1∗

2l . This means that

system (5.1) has exactlyl positive equilibria given by (5.12) and three boundary equilibria E0, EI1 , EI2 .
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Moreover, the non-degeneracy assumption (H) also implies thatg′(f(H1∗
2j ))f

′(H1∗
2j ) > 1, i.e.,

FH2
2
(H1∗

2j ,H
2∗
2j )

FH1
2
(H1∗

2j ,H
2∗
2j )

·
GH1

2
(H1∗

2j ,H
2∗
2j )

GH2
2
(H1∗

2j ,H
2#
2j )

< 1

in the case whenj is odd andg′(f(H1∗
2j ))f

′(H1∗
2j ) < 1, that is,

FH2
2
(H1∗

2j ,H
2∗
2j )

FH1
2
(H1∗

2j ,H
2∗
2j )

·
GH1

2
(H1∗

2j ,H
2∗
2j )

GH2
2
(H1∗

2j ,H
2#
2j )

> 1

in the case whenj is even. By Theorem 5.1 the odd indexed positive equilibriaE∗
j are locally asymp-

totically stable and the even indexed positive equilibriaE∗
j are unstable. Note that the flowϕt(I1, I2)

generated by (5.1) is type-K strongly monotone. SinceEI2 <K E∗
1 <K · · · <K E∗

l <K EI1 andE∗
1 , E

∗
l

are both asymptotically stable, it follows from Theorem 2.2.2 in [39] thatEI2 , EI1 are both unstable. By

Theorem 4.1.2 in [39] we obtain that almost all solutions of system (5.1) are convergent to the equilibria

andCl ∪j odd B(E∗
j ) = R

8
+. This completes the proof of Theorem 5.2.

6 Discussion

In this article we study the effect of spatial heterogeneityon the transmission dynamics of a vector-

borne diseases with multiple strains and on multiple patches. Based on the Ross-MacDonald multi-patch

model analyzed by Auger et al. [25], we formulate an extension multi-patch multi-strain model. Vector-

borne diseases, such as malaria, often display heterogeneity of transmission in different locations. High

transmission areas neighbor low transmission areas and those are connected by host migration. Vector-

borne disease have reemerged as a major public health threatin the last 30-40 years. The reasons for the

re-emergence are complex but they involve the evolution of the pathogens to more resilient drug-resistant

strains, often persisting in different isolated regions [41]. This suggests that studying the evolution of

pathogens in a spatial context (on multiple patches) is an important topic of particular interest. We be-

lieve our model here is the first one that studies the impact ofspatial heterogeneities on the evolution of

pathogens.

We focus on investigating the dynamics of the multi-patch multi-strain Ross-McDonald type model.

We define the multi-patch basic reproduction numbersRj
0 for each strain. Theorem 3.3 shows that if the

reproduction number for strainj is less than one then strainj can not invade the patchy environment and
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dies out over the entire domain. Theorem 3.3 also implies that if the multi-patch basic reproduction num-

bers for all strains are less than one the disease free equilibrium is globally asymptotically stable and the

disease is eliminated from the host and the vector populations. When the multi-patch basic reproduction

numbers for all strains are greater than one, each strain caninvade into the population when alone, and

thus all strains compete for the same resource, the susceptible individuals.

In order to obtain further theoretical results, we systematically analyze the multi-patch multi-strain

model onn discrete patches but restricting the number of strains to two. By analyzing the local stability of

the single-strain equilibria, we derive the invasion reproduction numbersRj
i , i, j = 1, 2, i 6= j for strainj.

Applying the theory of uniform persistence of dynamical systems the uniform persistence of two compet-

ing strains on the entire domain is rigorously proved in Theorem 4.2 under the condition that both invasion

reproduction numbers are lager than one. However, the results of Theorem 3.1 show that if the system

has no host migration no more than one strain will persist in the population on a single patch, namely the

strain with the largest reproduction number on that patch. Multiple strains may persist, each on a sepa-

rate patch, but essentially a divide and conquer strategy isadopted. When the patches are linked through

migration, the divide and conquer strategy is not an option and all strains whose reproduction number is

greater than one are competing. However, Theorem 4.2 and 3.1indicate that spatial heterogeneity can

lead to the coexistence of multiple competing strains on theentire domain. Hence, spatial heterogeneity

supports pathogen genetic diversity. This is the main result of this article.

Finally, we examine the global behavior of the model with twocompeting strains on two patches.

Applying the well-known M-matrix theory and the implicit function theorem a complete classification for

the local stabilities of positive equilibria is given in Theorem 5.1. We determine that the flowΦt(I1, I2)

generated by the two-strain two-patch model (5.1) is type-Kmonotone. By applying the theory of type-

K monotone dynamical systems, we provide the global behavior of the two-strain two-patch model in

Theorem 5.2 which is completely determined by the algebraicequations (5.7). These results follow from

the conditions on the invasion reproduction numbers as wellas the non-degeneracy assumption (H) and

assumption (H’).

There are still many interesting and challenging mathematical questions which need to be studied for
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the system (2.5). For example, we could not present the complete classification for the dynamics of the

system (2.5). The main difficulty stems from the high dimension of the multi-patch multi-strain model.

Additionally, the model discussed here can also be extendedto incorporate the other ingredients, such

as the different incidences and/or different compartmental structures. It is worth noting that the methods

applied to study model (5.1) are not applicable to the other general models because the monotonicity of

the model (5.1) plays an essential role in our analysis. We leave these investigations for the future.
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Appendix A: Proof of Theorem 3.1.

For any1 ≤ p, q ≤ n, we consider the system



















































dĤp
i (t)

dt
= biαpV̂

p
i

N0
i − (Ĥp

i + Ĥq
i )

N0
i

− (γpi + νi)Ĥ
p
i ,

dV̂ p
i (t)

dt
= biβp(W̄i − (V̂ p

i + V q
i ))

Ĥp
i

N0
i

− µiV̂
p
i ,

dĤq
i (t)

dt
= biαqV̂

q
i

N0
i − (Ĥp

i + Ĥq
i )

N0
i

− (γqi + νi)Ĥ
q
i ,

dV̂ q
i (t)

dt
= biβq(W̄i − (V p

i + V̂ q
i ))

Ĥq
i

N0
i

− µiV̂
q
i .

If we let R̂pi and R̂qi be the reproduction numbers for strainp and q, then R̂pi = Rpi and R̂qi = Rqi .

SinceRji ≤ 1 for all j (which impliesR̂pi < 1 andR̂qi < 1) it follows from Theorem 4.1.2 in [6] that

Hp
i (t) → 0,Hq

i (t) → 0 andV̂ p
i (t) → 0, V̂ q

i (t) → 0, ast→ +∞. On the other hand, from the comparison

principle, it follows thatHp
i (t) ≤ Ĥp

i (t),H
q
i (t) ≤ Ĥq

i (t) andV p
i (t) ≤ V̂ p

i (t), V
q
i (t) ≤ V̂ q

i (t) for all

t ≥ 0. Thus, the the disease-free equilibrium of the system (2.4)is globally asymptotically stable. This

completes the proof of part (1).
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2) For anyj 6= j∗, consider the system






















































dĤj∗

i (t)

dt
= biαj∗ V̂

j∗

i

N0
i − (Ĥj∗

i + Ĥj
i )

N0
i

− (γj
∗

i + νi)Ĥ
j∗

i ,

dV̂ j∗

i (t)

dt
= biβj∗(W̄i − (V̂ j∗

i + V j
i ))

Ĥj∗

i

N0
i

− µiV̂
j∗

i ,

dĤj
i (t)

dt
= biαj V̂

j
i

N0
i − (Ĥj∗

i + Ĥj
i )

N0
i

− (γji + νi)Ĥ
j
i ,

dV̂ j
i (t)

dt
= biβj(W̄i − (V j∗

i + V̂ j
i ))

Ĥj
i

N0
i

− µiV̂
j
i .

Let R̂j
∗

i andR̂ji be the reproduction numbers for strainj∗ andj, thenR̂j
∗

i = Rj
∗

i andR̂ji = Rji . Hence

R̂j
∗

i > R̂ji and it follows from Theorem 4.1.2 in [6] thatHj
i (t) → 0V̂ j

i (t) → 0, ast → +∞. Again,

from the comparison principle, it follows thatHj
i (t) ≤ ˆ̂Hj

i (t) andV j
i (t) ≤ V̂ j

i (t) for all t ≥ 0. Thus,

lim
t→+∞

Hj
i (t) = 0, lim

t→+∞
V j
i (t) = 0. Sincej is arbitrary, we have

lim
t→+∞

Hj∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i

− µi(γ
j∗

i + νi)]N
0
i

biβj∗(γ
j∗

i + νi + biαj∗
W̄i

N0
i

)
, lim
t→+∞

V j∗

i (t) =
[b2iαj∗βj∗

W̄i

N0
i

− µi(γ
j∗

i + νi)]N
0
i

biαj∗(biβj∗ + µi)
,

and

lim
t→+∞

Hj
i (t) = 0, lim

t→+∞
V j
i (t) = 0

for all j = 1, 2, · · · , l, j 6= j∗. This completes the proof Theorem 3.1.

Appendix B: Proof of (−1)6W6 > 0.

From the equations in (5.3), we have














































Γ1
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ1
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ1
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ2
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ2
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0.

It is easy to verify that

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

2,−Θ2
1)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

2 ,−V 2
1 )

|
(H1#

2 ,V
1#
1 ,V

1#
2 ,V

2#
1 ,V

2#
2 )

) =W5 < 0.

Applying the implicit function theorem we conclude that there exist continuously differentiable functions

H1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 ) defined on a

neighborhood∆ of (H1#
1 ,H2#

1 ,H2#
2 ) such that
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(1)H1
2 (H

1#
1 ,H2#

1 ,H2#
2 ) = H1#

2 , V 1
1 (H

1#
1 ,H2#

1 ,H2#
2 ) = V 1#

1 , V 1
2 (H

1#
1 ,H2#

1 ,H2#
2 ) = V 1#

2 ,

V 2
1 (H

1#
1 ,H2#

1 ,H2#
2 ) = V 2#

1 , V 2
2 (H

1#
1 ,H2#

1 ,H2#
2 ) = V 2#

2 ;

(2) For(H1
1 ,H

2
1 ,H

2
2 ) ∈ ∆,H1

2 (H
1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ),

V 2
2 (H

1
1 ,H

2
1 ,H

2
2 ) satisfy the equations



































Γ1
2(H

1
1 ,H

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),

H2
1 ,H

2
2 , V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 )) ≡ 0,

Θj
i (H

1
1 ,H

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),

H2
1 ,H

2
2 , V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 )) ≡ 0, i, j = 1, 2;

(3) For(H1
1 ,H

2
1 ,H

2
2 ) ∈ ∆, we have

∂H1
2 (H

1
1 ,H

2
1 ,H

2
2 )

∂H1
1

= −
det(

∂(Γ1
2,Θ

1
1,Θ

1
2,−Θ2

1,−Θ2
2)

∂(H1
1 , V

1
1 , V

1
2 ,−V 2

1 ,−V 2
2 )

)

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

1,−Θ2
2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

1 ,−V 2
2 )

)

,

∂V 1
1 (H

1
1 ,H

2
1 ,H

2
2 )

∂H1
1

= −
det(

∂(Γ1
2,Θ

1
1,Θ

1
2,−Θ2

1,−Θ2
2)

∂(H1
2 ,H

1
1 , V

1
2 ,−V 2

1 ,−V 2
2 )

)

det(
∂(Γ1

2,Θ
1
1,Θ

1
2,−Θ2

1,−Θ2
2)

∂(H1
2 , V

1
1 , V

1
2 ,−V 2

1 ,−V 2
2 )

)

,

On the one hand, substituting the functionsH1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),

V 2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 ) for the expressionΓ1

1(H
1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) yields that

Υ(H1
1 ,H

2
1 ,H

2
2 ) := Γ1

1(H
1
1 ,H

1
2 (H

1
1 ,H

2
1 ,H

2
2 ), V

1
1 (H

1
1 ,H

2
1 ,H

2
2 ),

V 1
2 (H

1
1 ,H

2
1 ,H

2
2 ),H

2
1 ,H

2
2 , V

2
1 (H

1
1 ,H

2
1 ,H

2
2 ), V

2
2 (H

1
1 ,H

2
1 ,H

2
2 )).

Differentiating the functionΥ(H1
1 ,H

2
1 ,H

2
2 ) with respect toH1

1 , we have

∂Υ(H1
1 ,H

2
1 ,H

2
2 )

∂H1
1

|
(H1#

1 ,H
2#
1 ,H

2#
2 )

= [m21
∂H1

2

∂H1
1

+ b1α1
N̄1 −H1

1 −H2
1

N̄1

∂V 1
1

∂H1
1

− (b1α1V
1
1 + γ11 +m21 + ν1)]|(H1#

1 ,H
2#
1 ,H

2#
2 )

=
W6

W5
.

(6.1)

On the other hand, the first equation in (5.5) implies that we have

∂F2

∂H1
2

|
(H1#

1 ,H
1#
2 ,H

2#
1 ,H

2#
2 )

= ϕ2(H
1#
2 ,H2#

2 ) +H1#
2

∂ϕ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

.

Sinceϕ2(H
1#
2 ,H2#

2 ) < 0 and

∂ϕ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

= −(b2)
2α1β1W̄2[b2β2H

2#
2 + µ2N̄2 + b2β1(N̄2 −H2#

2 )]

(b2β1H
1#
2 + b2β2H

2#
2 + N̄2µ2)2N̄2

< 0,
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it follows that ∂F2

∂H1
2

|
(H1#

1 ,H
1#
2 ,H

2#
1 ,H

2#
2 )

< 0. By the implicit function theorem, there exists a continuously

differentiable functionH̃1
2 (H

1
1 ,H

2
1 ,H

2
2 ) defined on a neighborhood∆′ of (H1#

1 ,H2#
1 ,H2#

2 ) such that

H̃1
2 (H

1#
1 ,H2#

1 ,H2#
2 ) = H1#

2

and

F2(H
1
1 , H̃

1
2 (H

1
1 ,H

2
1 ,H

2
2 ),H

2
1 ,H

2
2 ) ≡ 0

for (H1
1 ,H

2
1 ,H

2
2 ) ∈ ∆′. Moreover, we have

∂H̃1
2

∂H1
1

|
(H1#

1 ,H
2#
1 ,H

2#
2 )

= − m21

ϕ2(H
1#
2 ,H2#

2 ) +H1#
2

∂ϕ2

∂H1
2

|
(H1#

1 ,H
2#
1 ,H

2#
2 )

> 0.

Substituting (5.4) andH1
2 = H̃1

2 (H
1
1 ,H

2
1 ,H

2
2 ) into the expressionΓ1

1(H
1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ),

we can obtain

Υ(H1
1 ,H

2
1 ,H

2
2 ) = H1

1ϕ1(H
1
1 ,H

2
1 ) +m12H̃

1
2 (H

1
1 ,H

2
1 ,H

2
2 ).

Differentiating the functionΥ(H1
1 ,H

2
1 ,H

2
2 ) with respect toH1

1 , we have

∂Υ(H1
1 ,H

2
1 ,H

2
2 )

∂H1
1

|
(H1#

1 ,H
2#
1 ,H

2#
2 )

= [ϕ1(H
1
1 ,H

2
1 ) +H1

1

∂ϕ1

∂H1
1

−m12
m21

ϕ2(H1
2 ,H

2
2 ) +H1

2
∂ϕ2

∂H1
2

]|
(H1#

1 ,H
1#
2 ,H

2#
1 ,H

2#
2 )

=
1

ϕ2(H1
2 ,H

2
2 ) +H1

2
∂ϕ2

∂H1
2

[ϕ1(H
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From (6.1) and (6.2) we can easily see that(−1)6W6 > 0 sinceW5 < 0.
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Appendix C: Proof of (−1)7W7 > 0.

From the equations in (5.3), we have






























































Γ1
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ1
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ1
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ2
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Θ2
2(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0,

Γ1
1(H

1
1 ,H

1
2 , V

1
1 , V

1
2 ,H

2
1 ,H

2
2 , V

2
1 , V

2
2 ) = 0.

It is easy to verify that
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(6.4)

∂Υ′(H2
1 ,H

2
2 )

∂H2
1

|
(H2#

1 ,H
2#
2 )

= −H2#
2

∂ψ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

Ξ2

Ξ
+m21

> 0,

(6.5)

sinceϕ1(H
1#
1 ,H2#

1 ) < 0, ψ2(H
1#
2 ,H2#

2 ) < 0, ∂ψ2

∂H2
2

|
(H1#

2 ,H
2#
2 )

< 0, ∂ϕ1

∂H1
1

|
(H1#

1 ,H
2#
1 )

< 0,

∂ϕ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

< 0 andΞ > 0. The facts that

ϕ1(H
1#
1 ,H2#

1 )ϕ2(H
1#
2 ,H2#

2 )−m12m21 = 0

and

∂ϕ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

∂ψ2

∂H2
2

|
(H1#

2 ,H
2#
2 )

=
∂ϕ2

∂H2
2

|
(H1#

2 ,H
2#
2 )

∂ψ2

∂H1
2

|
(H1#

2 ,H
2#
2 )

were used in the above calculations. From (6.3) and (6.5) we can easily see that(−1)7W7 > 0 since

W6 > 0.
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