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Abstract. Strain replacement occurs when after a vaccination campaign one (or
more) strains decline in prevalence while another strain (or strains) rise in prevalence.
Differential effectiveness of the vaccine is the widely accepted and the most impor-
tant mechanism which leads to this replacement effect. Recent theoretical studies have
suggested that strain replacement may occur even if the vaccine is perfect, that is,
the vaccine is completely effective with respect to all strains present. It has already
been shown that perfect vaccination, along with a trade-off mechanism, such as co-
infection or cross-immunity, lead to strain replacement. In this paper, we examine the
hypothesis that strain replacement with perfect vaccination occurs only with trade-
off mechanisms which allow a strain with a lower reproduction number to eliminate
a strain with a higher reproduction number in the absence of vaccination. We test
this hypothesis on a two-strain model with vertical transmission. We first show that
vertical transmission as a trade-off mechanism can lead to dominance of a strain with
suboptimal reproduction number. Based on the hypothesis we expect, and we show,
that strain replacement occurs with vertical transmission.

Keywords: differential effectiveness, trade-off mechanism, vertical transmission, “per-
fect” vaccination, strain replacement.

1. Introduction

Vaccination provides protection against a pathogen, specific to the pathogen strain
that created it. For many diseases whose causative agents are represented by multiple
strains, the protection of a vaccine is only partial. For instance, Streptococcus pneumo-
niae is represented by more than 90 serotypes while the most comprehensive vaccine
covers only 23 serotypes. When a vaccination campaign is carried out with such a vac-
cine, vaccinated individuals are protected against the strains included in the vaccine, but
not against the remaining strains. Consequently, the prevalence of the vaccine strains
declines while the prevalence of some of the non-vaccine strains rises. This phenomenon
is known as strain replacement. Multiple studies exist reporting rise in the prevalence
of non-vaccine strains (see [3, 5, 14, 15] for examples concerning S. pneumoniae and
[13] for a review). Strain replacement occurs primarily because the vaccine protects
against some strains but not others, that is, because of the differential effectiveness of
the vaccine. The fact that differential effectiveness of the vaccines leads to strain re-
placement has been supported by a number of experimental results and mathematical
studies [7, 8, 11, 19, 20]. More recently, theoretical studies have suggested that strain
replacement may occur even if the vaccine is perfect, that is, if the vaccine provides full
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protection against all strains involved [6]. Perfect vaccines can lead to strain replace-
ment if there is some trade-off mechanism that allows for the strains to coexist in the
presence, or in the absence of vaccination.

The trade-off mechanism considered in [6] is super-infection, defined as the ability of
one strain to infect individuals infected with the other, and immediately take over the
host. Other mechanisms, such as coinfection, defined as the ability of two strains to
coexist in one host, have also been found to lead to strain replacement with perfect vac-
cination [12, 13]. Not all trade-off mechanisms, however, can lead to strain replacement
with perfect vaccination. For example, it has been shown that in the most basic models
involving cross-immunity as a trade-off mechanism, strain replacement will not occur
with perfect vaccination [12]. So what makes super-infection and coinfection different
from cross-immunity?

When a number of strains compete for a single resource, namely susceptible indi-
viduals, in the most general case the only outcome of the competition is competitive
exclusion. Under this scenario, one strain persists, while the others are eliminated. The
strain that outcompetes and eliminates the rest is the one that can persist on the lowest
number of susceptibles, that is, the strain with the largest reproduction number [1].

A trade-off mechanism may allow a strain with smaller reproduction number to coexist
with the strain that has a larger reproduction number. In fact, all trade-off mechanisms
allow for coexistence of strains with different reproduction numbers, and therefore allow
for persistence of a competitively inferior strain together with the competitively superior
strain. Some trade-off mechanisms, however, may also allow a strain with smaller repro-
duction number to take over and eliminate a strain with a larger reproduction number.
For instance, assume R1 > R2 where R1 and R2 are the reproduction numbers of the
two strains, respectively. In the absence of a trade-off mechanism, strain one eliminates
strain two. However, in the presence of some trade-off mechanisms strain two may be
able to eliminate strain one, regardless of the fact that strain one has a larger reproduc-
tion number. Not all trade-off mechanisms have this property. It has been shown that
super-infection and coinfection do [16, 17], while cross-immunity does not [18].

In this paper we consider the following hypothesis: Strain replacement with perfect
vaccination occurs in conjunction with trade-off mechanisms that allow a strain with
lower reproduction number to dominate and eliminate a strain with a higher reproduc-
tion number in the absence of vaccination. Proving this hypothesis independently of
the model may be difficult, so we consider a specific model in which the strains can
be transmitted horizontally, as well as vertically. Vertical transmission occurs when a
pathogen is transmitted from parent to offspring (e.g. HIV can be transmitted from a
mother to a newborn). A wide range of microparasites can be transmitted both ver-
tically and horizontally [2, 9]. Vertical transmission is a known mechanism that leads
to coexistence between the pathogen strains. Moreover, it has been suggested that it
may allow a strain with a lower reproduction number to outcompete and eliminate a
strain with a higher reproduction number [10]. We consider a model with vertical trans-
mission without vaccination in Section 2 and show that this is indeed the case. Based
on our hypothesis we expected that if we introduce perfect vaccination to the baseline
model, strain replacement will occur. We show in Section 3 that the model with vertical
transmission and perfect vaccination allows for strain replacement. That is, if strain
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one dominates in the absence of vaccination, at certain vaccination levels, strain two
eliminates strain one and dominates by itself. Section 4 summarizes our results.
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2. A Model Without Vaccination or Healthy Births From Infected
Individuals (Model 1)

In this section, we introduce a model with vertical and horizontal transmission without
vaccination. We consider a population, with respect to time, of total size N(t), which
is then divided into three different classes. The number of susceptibles, uninfected with
either of the two strains, is denoted by S(t). The two infected classes are represented
by I(t), for those infected with strain one, and J(t), for those infected with strain two.

In addition to the different classes, there are many different parameters included in
the model. The per capita birth rate of individuals into the susceptible class is expressed
by bx. Also, the per capita birth rates of uninfected newborns from the infected classes
I and J into the susceptible class are represented by η1 and η2 respectively. The rate of
vertical transmission of the disease into the infected classes I and J is given by b1 and
b2 respectively. On the other hand, the rate of horizontal transmission of susceptible
individuals becoming infected with strain one is given β1. Symmetrically, β2 signifies this
rate with the exception that it deals with strain two. Typically, an individual infected
with a particular virus has a higher death rate than an individual in the susceptible class.
Since we have assigned the natural death rate to be µ; α1 and α2 are disease-induced
death rates and give us the ability to increase the death rates within the two infected
classes. These parameters can be referenced in Table 1.

Table 1: Parameter meanings for the model

Parameter Description
bx per capita birth rate into the susceptible class
b1 per capita birth rate of infected newborns into infected class I
b2 per capita birth rate of infected newborns into infected class J
η1 per capita birth rate of uninfected newborns from infected class I
η2 per capita birth rate uninfected newborns from infected class J
η3 per capita birth rate of susceptible newborns from vaccinated class

(to be used in the vaccination model)

β1 transmission rate of strain 1
β2 transmission rate of strain 2
µ per capita death rate
α1 disease-induced per capita death rate of infected class I
α2 disease-induced per capita death rate of infected class J
ψ per capita vaccination rate (to be used in the vaccination model)

This model is as follows:

dS

dt
= (bxS + η1I + η2J)(1− S − I − J)− µS − β1IS − β2JS

dI

dt
= I[b1(1− S − I − J)− (µ + α1) + β1S](2.1)

dJ

dt
= J [b2(1− S − I − J)− (µ + α2) + β2S]

We represent the model using a flow chart in Figure 1.
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Figure 1. Flow chart of the model without vaccination.

From a biological standpoint, it is reasonable to assume that the birth rate of new
individuals from either of the infected classes is less than that of the healthy population.
To represent this assumption with parameters, we have: η1 + b1 < bx and η2 + b2 < bx.

The term (1−S− I−J) is a logistic term and accounts for population size limitation
due to crowding. The carrying capacity has been rescaled to one. The total population
N(t) = S(t) + I(t) + J(t) satisfies the following differential equation:

(2.2)
dN

dt
= (bxS + η1I + η2J + b1I + b2J)(1− S − I − J)− µN − α1I − α2J.

≤ bxN(1−N)− µN (Logistic Equation)

= (bx − µ)N (Malthus Equation)

⇒ N(t) ≤ N0e
(bx−µ)t(2.3)

From the preceding calculations, we make certain parameter assumptions to be held
throughout this paper. In order for the entire population not to die out, we assume
bx > µ.

For the remainder of this paper, we will assume η1, η2 = 0. However, we will come
back to the original model (2.1) in the discussion. This model has been considered in
an article by Lipsitch et al. [10].

2.1. Disease-Free Equilibrium and Reproduction Numbers. The disease free

equilibrium (DFE) of the model (2.1) is computed to be: E0 =
(

bx−µ
bx

, 0, 0
)
. The re-

production numbers follow as:

(2.4) R1 =
b1µ + β1(bx − µ)

bx(µ + α1)
R2 =

b2µ + β2(bx − µ)

bx(µ + α2)

The two reproduction numbers are symmetric. This follows from the fact that the
two infected classes have similar structures (with the exception of the parameters).
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Analyzing the reproduction numbers further, we can obtain expressions for the rate
of each type of transmission, whether it be horizontal or vertical. Analyzing the repro-
duction number of strain one, we can express it as:

R1 =
b1

µ + α1

µ

bx

+
β1

µ + α1

(
1− µ

bx

)

Different parts of this expression have different significance. The reproduction number
is a weighted average of the reproduction number of vertical transmission (R̃1) and the

reproduction number of horizontal transmission ( ˜̃R1), where

R̃1 =
b1

µ + α1

˜̃R1 =
β1

µ + α1

.

Notice that the reproduction number of strain one, R1, is a convex combination of

R̃1 and ˜̃R1. This, in particular means that the value of R1 is between the values of

R̃1 and ˜̃R1. So now, we will impose another parameter assumption to be held true for
the vertical transmission reproduction numbers of both strains. We will assume that
vertical transmission is of relatively small significance or:

(2.5) R̃1 =
b1

µ + α1

< 1 R̃2 =
b2

µ + α2

< 1

Theorem 2.1. The following conditions give the stability of the DFE.

a.) If R1 < 1 and R2 < 1 then DFE is locally asymptotically stable (l.a.s.).
b.) If R1 > 1 or R2 > 1 then DFE is an unstable saddle.

2.2. Strain 1 and strain 2 dominance equilibrium. We can compute the strain one
and strain two dominance equilibrium as the ordered triples:

(2.6) E1 = (S∗1 , I
∗
1 , 0) =

(
1− µ

bx

− (bx + β1)(µ + α1)(R1 − 1)

β1(bx + β1 − b1)
,
bx(µ + α1)(R1 − 1)

β1(bx + β1 − b1)
, 0

)

(2.7) E2 = (S∗2 , 0, J
∗
2 ) =

(
1− µ

bx

− (bx + β2)(µ + α2)(R2 − 1)

β2(bx + β2 − b2)
, 0,

bx(µ + α2)(R2 − 1)

β2(bx + β2 − b2)

)

Theorem 2.2. Assume R̃1 < 1 and R̃2 < 1.

a.) E1 exists iff R1 > 1.
b.) E2 exists iff R2 > 1.

See appendix for justification.

2.3. Invasion Reproduction Numbers. The invasion numbers are computed as the
following:

(2.8) R̂1 =
b1(1− S∗2 − J∗2 ) + β1S

∗

µ + α1

R̂2 =
b2(1− S∗1 − I∗1 ) + β2S

∗

µ + α2

The biological interpretation of the invasion reproduction numbers is as follows. The
invasion reproduction number of strain one is the number of secondary cases that one
infected individual will produce in a population where strain two is at equilibrium. R̂1

measures the invasion capabilities of strain one. Similarly, R̂2 is this measure for strain
two.
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Furthermore, we can obtain expressions of the invasion numbers in terms of parameter
values.

R̂1 = R1 +
b1β2 − β1(bx + β2)

µ + α1

(µ + α2)(R2 − 1)

β2(β2 + bx − b2)
(2.9)

R̂2 = R2 +
b2β1 − β2(bx + β1)

µ + α2

(µ + α1)(R1 − 1)

β1(β1 + bx − b1)
(2.10)

This is a result of substituting the values from (2.6) and (2.7) for the expressions
(1− S∗ − J∗) and S∗.

Theorem 2.3. Assume R1 > 1 and R̃1 < 1.

a.) E1 is locally asymptotically stable if R̂2 < 1.

b.) E1 is unstable if R̂2 > 1.

Similarly, we have:

Theorem 2.4. Assume R2 > 1 and R̃2 < 1.

a.) E2 is locally asymptotically stable if R̂1 < 1.

b.) E2 is unstable if R̂1 > 1.

Proof is technical and is omitted.

2.4. Parametric Plot. In order to define and plot the boundaries of local stability of
E1 and E2, we consider a parametric plot in the (R1,R2) plane. To do so, we need to
express the invasion numbers from (2.9) and (2.10) in terms of R1 and R2. To this
end, we eliminate α1 and α2. From the expressions for the reproduction numbers (2.4)
we have (µ + α1) and (µ + α2) in terms of the remaining parameter values and the
reproduction numbers. Replacing those expressions into (2.9) and (2.10) we express the
two invasion numbers as:

R̂1 = R1 +
R1[b1β2 − β1(bx + β2)][b2µ + β2(bx − µ)]

[b1µ + β1(bx − µ)][β2(β2 + bx − b2)]

(
1− 1

R2

)
(2.11)

R̂2 = R2 +
R2[b2β1 − β2(bx + β1)][b1µ + β1(bx − µ)]

[b2µ + β2(bx − µ)][β1(β1 + bx − b1)]

(
1− 1

R1

)
(2.12)

With the invasion numbers in terms of the reproduction numbers, we can now generate
parametric plots from the invasion numbers. We consider the (R1,R2) plane. Since R̂1

and R̂2 are functions of R1 and R2, the equations R̂1 = 1 and R̂2 = 1 define two curves
in the (R1,R2) plane. From the first invasion number R̂1 = 1, we can express the

reproduction number R1 as a function of R2. Similarly, from R̂2 = 1, we can express
R2 as a function of R1.

To make this process easier, we will take all the parameters of the invasion numbers
R̂1 and R̂2, and symbolize them as single constants K1 and K2 respectively.

K1 =
[b1β2 − β1(bx + β2)][b2µ + β2(bx − µ)]

[b1µ + β1(bx − µ)][β2(β2 + bx − b2)]

K2 =
[b2β1 − β2(bx + β1)][b1µ + β1(bx − µ)]

[b2µ + β2(bx − µ)][β1(β1 + bx − b1)]
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Starting with (2.11) and (2.12), we can express R̂1 = 1 as R1 = g(R2) and R̂2 = 1
as R2 = f(R1). Utilizing the substitutions for K1 and K2 we can express Ri in terms of
Rj, with i, j = 1, 2 and i 6= j as follows:

R1 =
1

1 +K1(1− 1
R2

)
= g(R2) R2 =

1

1 +K2(1− 1
R1

)
= f(R1)

Using these two functions, we can now plot the curves in the (R1,R2) plane, which
yields the parametric plot, Figure 2.
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Figure 2. Parametric plot of the invasion numbers R̂1 and R̂2 expressed
as the reproduction numbers. Parameter values used for this plot: bx =
0.7791, b1 = 0.4261, b2 = 0.6864, β1 = 0.2396, β2 = 0.765, and µ = 0.0713.
These parameter values yield K1 = −0.19 and K2 = −1.47.

The main goal in Section 2 is to show that a strain with a lower reproduction number
can dominate and persist, while the strain with larger reproduction number can be
eliminated. Different regions of Figure 2 yield particular outcomes of the system. To
distinguish the importance between each region of Figure 2, we will shade various sections
differently in Figure 3.

The white area of Figure 3 is where both reproduction numbers are less than one.
This in most cases will lead to both strains dying out. We will not consider this area
any further.

One of the more important areas of this plot is the darker gray area (in the upper left

of Figure 3). Here we have the invasion number R̂2 > 1, while R̂1 < 1, so strain two
has the ability to invade strain one, but not vice versa. For this reason, reproduction
numbers with values within this area will yield a system in which strain two will be the
dominant strain, and strain one will be eliminated.

Similarly, in the light gray area (towards the right of Figure 3), we have a similar

scenario with the other strain. In this area R̂2 < 1 and R̂1 > 1, which leads us to
conclude strain one will dominate, while strain two will be eliminated.
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Figure 3. Shaded parametric plot of Model 1 to distinguish between
different areas.

The third area of importance is the black region. Here we have that both invasion
numbers are greater than one, or that each strain has the ability to invade the other
strain. Since both invasion reproduction numbers are greater than one, we expect that
coexistence of the two strains will occur. So for the reproduction numbers, R1 and R2,
whose values fall within this area, both strains will coexist within the population.

With the role of the different regions explained, we now focus on the most important
information that this parametric plot offers us. Recall, the main goal with this model
(Section 2) is to show that a strain with a suboptimal reproduction number can dominate,
while the other strain is eliminated. For this reason, in addition to plotting the two
functions of the invasion numbers, we have also plotted a few other lines to serve as
guides. In particular, the diagonal line gives the value where R1 = R2. We note that
in the area above this line we have R1 < R2, and in the area below R1 > R2. Looking
back at Figure 3, we see that in general the strain with the higher reproduction number
dominates. This is particularly the case with strain two whose region of dominance
(dark gray area in Figure 3) lies entirely above the line R1 = R2, that is, it occurs
when R1 < R2. This is also true to a large extent for strain one. Most of its region of
dominance (light gray area in Figure 3) is below the line R1 = R2, that is R1 > R2.
However, a part of the light gray area lies above the line R1 = R2. Figure 4 highlights
the area where strain one dominates, yet it has a lower reproduction number.

Referencing this parametric plot, we know that it is possible to obtain a situation
where the strain with suboptimal reproduction number dominates, while the other strain
dies out. In what follows, we describe the approach that lead us to these plots. To obtain
dominance of a strain with suboptimal reproduction number, we need that the boundary
of its region of dominance lies on the opposite side of the lineR1 = R2. To show that this
situation will occur, we will examine the constant values of K1 and K2, which encompass
all the parameter values of the invasion numbers. From Theorem 2.3, we know that if
R̂2 < 1, then strain two cannot invade the equilibrium of strain one. In other words,
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Figure 4. Parametric plot highlighting the area of greatest importance.

strain one dominates. Moveover, strain one has the ability to dominate with a smaller
reproduction number if R2 > R1, or when f(R1) > R1. In order to get this situation
on a parametric plot, we need the curve f(R1) to be above the line R1 = R2. For this
to occur we want that:

1

1 +K2(1− 1
R1

)
≥ R1(2.13)

Notice that f(R1) is a decreasing function of R1 if K2 > 0, and f(R1) is an increasing
function of R1 if K2 < 0. Also, if K2 > 0, the largest value of f(R1) is f(1) = 1 ⇒
f(R1) < R1 for all R1 > 1. So the condition in (2.13) will never hold.

Now, take K2 < 0 ⇒ f(R1) is an increasing function of R1. So f(1) = 1 ⇒ f(R1) > 1
for all R1, so the condition in (2.13) may hold. There are two distinct cases that we will
examine to determine exactly when (2.13) holds.

In the first case we will assume 1 +K2 > 0. Then 1 +K2(1− 1
R1

) > 0 for all R1 ≥ 1.

To see this, notice that 1 + K2(1 − 1
R1

) is a decreasing function of R1, so the smallest
value is when R1 →∞. To find this value explicitly, we evaluate the following limit.

lim
R1→∞

(
1 +K2

(
1− 1

R1

))
= 1 +K2

If 1+K2 > 0, then f(R1) is a continuous positive function of R1 for all R1 > 1. From
this, we can see directly that (2.13) will not hold.

1

1 +K2(1− 1
R1

)
≥ R1

1 ≥ R1

[
1 +K2

(
1− 1

R1

)]

= (1 +K2)R1 −K2
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This is a convex combination of R1 and one, so its value is always greater than one
and we will never be able to attain the condition.

In the second case we assume 1+K2 < 0. But, with this assumption, the denominator
of f(R1) may become zero. This is because for some value of R1, denoted by R∗

1, the
equality 1 +K2(1− 1

R1
) = 0 holds. This value can be calculated as:

R∗
1 =

K2

K2 + 1

Clearly, R∗
1 > 0, as both the numerator and the denominator are negative. Moreover,

R∗
1 > 1, since the numerator is larger than the denominator. We notice that:

lim
R1→R∗−1

1

1 +K2(1− 1
R1

)
≥ R∗

1

Therefore, there are values of R1 for which f(R1) > R1. Thus, the inequality (2.13)
can hold.

It is understood, as we increase the values of R1 and R2 in the parametric plot,
the value of one of the curves will not be defined for all values of the corresponding
reproduction number that is larger than one. By evaluating the above limit, we see that
(2.13) will hold, but only for some finite R1, specifically when R1 < R∗

1.
With a better understanding of the parameter situations needed to show strain re-

placement, we will use a point labeled “D” corresponding to an ordered pair (R1,R2).
We will choose parameter values in such a way that the two reproduction numbers will
correspond to the point “D”, which will fall within the shaded area of Figure 4. To ob-
tain these parameter values, we generated a random search until all given assumptions
and conditions were met.

After these parameters are determined, we demonstrate that the strain with subopti-
mal reproduction number dominates in Figure 5.

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1
Suboptimal Reproduction Number

JHtL

SHtL

IHtL

Figure 5. Simulation of Model 1 when the strain with lower reproduction
number, I(t), dominates a strain with a higher reproduction number, J(t).
Parameter values used for this plot: bx = 0.7791, b1 = 0.4261, b2 = 0.6864,
β1 = 0.2396, β2 = 0.765, µ = 0.0713, α1 = 0.057, and α2 = 0.2311. The
reproduction numbers follow as: R1 = 2.00 and R2 = 2.51.
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In Figure 5 we have the reproduction number of strain one, R1 = 2.00, while the
reproduction number of strain two, R2 = 2.51. Yet, strain one, represented by I(t), is
the dominant strain, while strain two, represented by J(t), is eliminated. Therefore, the
principle that the strain with higher reproduction number excludes the strain with lower
reproduction number is not valid in this model [1].

Using the parametric plot in Figure 2, we were able to show that dominance of a
strain with suboptimal reproduction number, can be attained. But just as importantly,
we can also use the analysis to choose parameter values which do not provide us with this
situation. To generate these plots, it must be the case that one of the assumptions on
the parameters values is no longer held. For this example, we will assume that bx 6> b1.
We find K1 = 1.75 and K2 = 5.62, so both values are positive and generate the plot
Figure 6.
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Figure 6. Parametric plot of Model 1 when we do not get the situation
of the strain with suboptimal reproduction number being dominant. Pa-
rameter values used for this plot: bx = 0.423, b1 = 0.5945, b2 = 0.3808,
β1 = 0.0572, β2 = 0.1094, and µ = 0.1458

Unlike Figure 2, in Figure 6 there is no region which suggests that a strain with
suboptimal reproduction number dominates a strain with a higher reproduction number.
This is because in Figure 6 the area underneath the R̂2 = 1 curve would be dominated
by strain one. Also, the region to the left of R̂1 = 1 curve would be dominated by strain
two. Finally, the region between the two curves represents coexistence. Thus, there is
no such area as in Figure 4, where a strain with a lower reproduction number would
dominate a strain with a higher reproduction number.
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3. A Vaccination Model Without Healthy Births From Both Infected
Individuals (Model 2)

In this section we introduce a model similar to that in section 2, however now we
include a vaccinated class, which is represented by V (t). The birth rate of susceptible
newborns from the vaccinated class is represented by η3. It is reasonable to expect that
the per capita birth rate of susceptible and vaccinated individuals is the same. Therefore,
we will take η3 = bx. The per capita vaccination rate is represented by ψ. All other
parameters have the same meaning as in Model 1, so we can use Table 1 as a reference.
With this, the general model that includes vaccination is:

dS

dt
= (bxS + η1I + η2J + η3V )(1− S − I − J − V )− (µ + ψ)S − β1IS − β2JS

dI

dt
= I[b1(1− S − I − J − V )− (µ + α1) + β1S]

dJ

dt
= J [b2(1− S − I − J − V )− (µ + α2) + β2S]

dV

dt
= ψS − µV

(3.1)

The vaccination within this model is assumed to be “perfect”, or that it is one-hundred
percent effective against both strains in the system. Thus, we note that all individuals
in the vaccinated class are completely protected against both strains and are not subject
to any further infections. Furthermore, using the results from section 2, which showed
that a strain with suboptimal reproduction number can dominate, while the other strain
dies out, in this section, we conjecture and show that strain replacement occurs through
perfect vaccination.

J

I

µ

(1−N)2b

µ

Vxb

ψ

S (1−N)

2µ+α

1µ+α

2

(1−N)

bx

b1

(1−N)
η1(1−Ν)

η2(1−Ν)

β1

β

Figure 7. Flow chart of the model with vaccination.
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Similar to the first model, we again assume η1 and η2 to be zero. The vaccine-
dependent reproduction numbers of the two strains are given by:

R1(ψ) =
b1(

µ
bx

) + β1(
µ

µ+ψ
)(1− µ

bx
)

µ + α1

R2(ψ) =
b2(

µ
bx

) + β2(
µ

µ+ψ
)(1− µ

bx
)

µ + α2

(3.2)

With a vaccinated class, the reproduction number values depend on the value of ψ. In
fact, the reproduction numbers are decreasing functions with respect to ψ. In the absence
of vaccination (ψ = 0), the reproduction numbers are identical to the reproduction
numbers (2.4) in section 2. Moreover we observe, R1(0) = R1 and R2(0) = R2. The
fraction µ

(µ+ψ)
is the proportion of susceptible individuals in a disease-free population

subjected to vaccination at rate ψ. The system (3.1) always has a disease-free equilibrium
which can be found as:

E0 =

((
1− µ

bx

)
µ

µ + ψ
, 0, 0,

(
1− µ

bx

)
ψ

µ + ψ

)

The system (3.1) also has one equilibrium corresponding to each strain: E1 = (S∗1 , I
∗, 0, V ∗

1 )
and E2 = (S∗2 , 0, J

∗, V ∗
2 ). The values of I∗ and J∗ are as follows:

I∗ =
( b1µ

bx
+ β1µ

µ+ψ
(1− µ

bx
))[1− 1

R1(ψ)
]

β1µ
µ+ψ

[1 + µβ1

bx(µ+ψ)
− b1

bx
]

=
C1[1− 1

R1(ψ)
]

C2

(3.3)

J∗ =
( b2µ

bx
+ β2µ

µ+ψ
(1− µ

bx
))[1− 1

R2(ψ)
]

β2µ
µ+ψ

[1 + µβ2

bx(µ+ψ)
− b2

bx
]

=
D1[1− 1

R2(ψ)
]

D2

(3.4)

As before, we will represent the values of I∗ and J∗ as functions of the reproduction
numbers R1(ψ) and R2(ψ), eliminating α1 and α2 in the process from (3.2). For sim-
plicity we lump all the remaining parameters in appropriately defined constants, C1, C2,
D1, and D2.

Linearizing around the equilibrium E2, we find the invasion reproduction number of
strain one in the presence of vaccination as R̂1. Similarly, linearizing around E1, we find
R̂2.

The expressions for I∗ and J∗ become important substitutions into the invasion num-
bers, which are computed as:

R̂1 =

b1µ
bx

+ β1µ
µ+ψ

− β1µµ
bx(µ+ψ)

+ µ
(µ+ψ)

( b1β2

bx
− β1 − µβ1β2

bx(µ+ψ)
)J∗

µ + α1

(3.5)

R̂2 =

b2µ
bx

+ β2µ
µ+ψ

− β2µµ
bx(µ+ψ)

+ µ
(µ+ψ)

( b2β1

bx
− β2 − µβ1β2

bx(µ+ψ)
)I∗

µ + α2

(3.6)

As before, for simplification reasons, we take groups of parameters in the expressions
for R̂1 and R̂2 and represented them as constants. We can do that since all of these
parameter values are constant, do not depend on R1(ψ) and R2(ψ), and do not include

α1 or α2. The following shows the constants M1 and M2, used for simplification in R̂1.

M1 =
b1µ

bx

+
β1µ

µ + ψ
− β1µµ

bx(µ + ψ)

M2 =
µ

(µ + ψ)

(
b1β2

bx

− β1 − µβ1β2

bx(µ + ψ)

)
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The same can be done for the parameters in R̂2 using the constants N1 and N2. With
these substitutions, the invasion numbers can be expressed as:

R̂1 =
M1 +M2J

∗

µ + α1

(3.7)

R̂2 =
N1 +N2I

∗

µ + α2

It is now necessary to generate the parametric plots for this model. To do so, we
must find the expressions R̂1(ψ) = F (R1(ψ),R2(ψ)) and R̂2(ψ) = G(R1(ψ),R2(ψ)).
After we have these expressions, just as we did in section 2, we will need to represent
the reproduction numbers as functions of one another. For example, we will show how
to obtain R1(ψ) = f(R2(ψ)), while the second expression will follow by symmetry.

To start, we set the invasion number R̂1 = 1. After substituting the values for J∗ and
(µ + α1) from (3.4) and (3.2) respectively, into (3.7), we obtain:

R̂1 =

(
M1 +M2

D1[1− 1
R2(ψ)

]

D2

)
R1(ψ)

M1

= 1

R1(ψ) =
1

1 + M2D1

M1D2
[1− 1

R2(ψ)
]

Again, since Mi and Di are constants (with i = 1 or 2), we can simplify the expression
even more, by defining a new constant K, where K = M2D1

M1D2
. Thus, the expression

R1(ψ) = f(R2(ψ)) is:

R1(ψ) =
1

1 +K[1− 1
R2(ψ)

]
(3.8)

Similarly, this same process is used to find R2(ψ) = g(R1(ψ)) with the exception that
the constant will now be labeled as L.

R2(ψ) =
1

1 + L[1− 1
R1(ψ)

]
(3.9)

Now, using these two functions, we generate a parametric plot of the two curves.
However, since we have vaccination in the model, these plots will fluctuate depending on
the level of vaccination. We will use this to demonstrate how specific areas of dominance
within the parametric plot change with increasing levels of vaccination.

3.1. Simulation Results. The following simulations of Model 2 provide evidence of
strain replacement with increasing levels of vaccination. With each of the simulation
plots, there exists a corresponding parametric plot. However, since the reproduction
numbers are decreasing functions of ψ, increasing the level of vaccination changes the
values of the reproduction numbers. In addition to this, the parametric plots will also
change.

Given a set of parameter values, we can use (3.8) and (3.9) to generate a parametric
plot. From the given parameters, along with the level of vaccination, we can choose
specific values of the reproduction numbers R1(ψ) and R2(ψ). With these values, we
then obtain an ordered pair (R1(ψ),R2(ψ)), with ψ being fixed. These reproduction
numbers are the coordinates of the point “D” in the parametric plot. Depending on
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Figure 8. Parametric and corresponding simulation plot of Model 2
when ψ = 0. The reproduction numbers of I and J are: R1 = 4.36
and R2 = 7.05 respectively.

the location of the point “D”, we will obtain different outcomes from the competition
between the strains.

The parameters used for the simulations in Figure 8, Figure 9, and Figure 10 are:
bx = 0.732, b1 = 0.197, b2 = 0.0652, β1 = 0.440, β2 = 0.876, µ = 0.0771, η1 = η2 = 0,
η3 = bx, α1 = 0.0179, and α2 = 0.0349.

In the first of three series of simulation plots for this model, Figure 8, we take vac-
cination to be zero, or ψ = 0. To understand how the system may react, we generate
the parametric plot, Figure 8(a), using the fixed parameter values above. Even though
this parametric plot is not an exact copy as in section 2, it is similar and offers us the
opportunity to reference Figure 3, to understand the distinct areas where a particular
strain will dominate.

The positioning of the point “D” in the parametric plot, Figure 8(a), suggests that
strain one, which has suboptimal reproduction number, will dominate. We confirm this
conjecture with the outcome of the dynamic simulation, Figure 8(b), of the system.

As we increase vaccination to a level of ψ = 0.15, not only do the reproduction
numbers change, but also the position of the point “D” and the boundary curves R̂1 = 1
and R̂2 = 1. Now this point falls in a region where the strains coexist. This is shown in
the second simulation, Figure 9.

Finally, in the third simulation plot, Figure 10, we increase vaccination even further
to a level of ψ = 0.28. Even though there is not much change in the parametric plot,
Figure 10(b), the values of the reproduction numbers and therefore the coordinates of
“D” change. That proves to be very important. Now, this point falls into a region where
the opposing strain, namely the one which was eliminated with zero vaccination, is now
the dominant strain.

Through this sequence of plots, we see that strain replacement has occurred in the
model with perfect vaccination (3.1) where healthy births from infected individuals are
not permitted.
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Figure 9. Parametric and corresponding simulation plot of Model 2
when ψ = 0.15. The reproduction numbers are: R1(ψ) = 1.63 and
R2(ψ) = 2.44.
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Figure 10. Parametric and corresponding simulation plot of Model 2
when ψ = 0.28. The reproduction numbers are: R1(ψ) = 1.11 and
R2(ψ) = 1.57.

4. Discussion

In this paper we consider a model with two strains and vertical transmission as a
trade-off mechanism. We address the following hypothesis: since vertical transmission
is a trade-off mechanism which leads to the dominance of a strain with suboptimal
reproduction number, it will also lead to strain replacement with perfect vaccination.
We first show that vertical transmission is a trade-off mechanism that allows a strain
with suboptimal reproduction number to dominate. We do that in the case when healthy
births from the infected classes are not allowed (η1 = η2 = 0). We obtain the result by

computing invasion reproduction numbers R̂1 and R̂2. The equalities R̂1 = 1 and R̂2 = 1
define curves in the (R1,R2) plane. Dominance of a strain with lower reproduction
number occurs when the dominance region of this strain intersects the line R1 = R2. We
develop the analytical techniques to detect such a scenario. We show both analytically
and graphically that this situation can occur in our model in the case when healthy
births from the infected classes are not allowed (η1 = η2 = 0). We have also investigated
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the case where healthy births from the infected classes are permitted (η1 6= 0, η2 6= 0)
and we have obtained a similar result [22]. Furthermore, we conjectured that a trade-
off mechanism that allows a strain with suboptimal reproduction number to dominate
will lead to strain replacement with perfect vaccination. To address this question, we
consider the model with perfect vaccination. We define again the invasion reproduction
numbers in the presence of vaccination and the corresponding graphic interpretation
of the equalities R̂1 = 1 and R̂2 = 1. Strain replacement with perfect vaccination
does indeed occur for the case where healthy births from the infected classes are not
permitted (η1 = η2 = 0) under the following scenario. As a starting point, we first
consider a situation where in the absence of vaccination (ψ = 0) dominance of a strain
with suboptimal reproduction number occurs. Then, increasing the vaccination level
leads to coexistence of the two strains. Further increase of the vaccination level leads
to elimination of the strain which dominated originally and persistence of the strain
which was eliminated in the absence of vaccination. The case (η1 6= 0, η2 6= 0) is again
considered through simulations in [22] and similar results are obtained. We summarize
the trade-off mechanisms and whether each of them leads to dominance of a strain with
a lower reproduction number and/or to strain replacement in Table 2.

Table 2. Trade-off mechanism overview

Trade-off
mechanism

R1 > R2, but
strain 2 excludes
strain 1

Strain replacement
with perfect vacci-
nation

Reference

Model 2 (η1 = η2 = 0) Yes Yes [10, 22]
Model 2 (η1 6= 0, η2 6= 0) Yes Yes [10, 22]
Super-infection Yes Yes [6]
Co-infection Yes Yes [12]
Mutation No No [12]
Cross-immunity No No [12]

Since our model includes virulence, one may draw some conclusions about the impact
of vaccination on the evolution of virulence. This is particularly shown in the special
case when the two strains transmit with the same transmission rates, β1 = β2. Then
R1 < R2 if and only if α1 > α2. Thus, in the absence of vaccination a strain with higher
virulence may dominate. After vaccination, however, this strain will be replaced by a
lower-virulence strain. Thus, perfect vaccination against vertically transmitted strains
may reduce virulence. To translate these results to the more general and more realistic
case when β1 6= β2 one has the use methodology of adaptive dynamics [21]. The impact
of imperfect vaccines and their mode of action on pathogen evolution and virulence was
more thoroughly addressed in [4].

The main conclusion from this investigation is that significant evidence exist that
a trade-off mechanism can lead to strain replacement with perfect vaccination if and
only if it allows for a less fit strain, a strain with a lower reproduction number, to
dominate in the absence of vaccination. Future work may be able to establish rigorously
this result. The main biological implication of our work is that efforts directed to
elimination of the differential effectiveness of the vaccine cannot be expected to eradicate
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strain replacement. Such efforts may be more successful with non-vertically transmitted
pathogens whose strains are not subjected to interactions such as coinfection and super-
infection.
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5. Appendix

Proof of Theorem 2.2.
a.) For these equilibria to exist, we need to be certain the equilibria are valid, or in other
words, they must be nonnegative. Since we used substitutions to find expressions for
these equilibria, it is necessary for S∗, J∗, (1− S∗), and (1− S∗− J∗) all to be positive.

Show J∗ > 0 when J∗ is expressed as:

J∗ =
bx(µ + α2)(1−R2)

β2(b2 − bx − β2)

=
bx(µ + α2)(R2 − 1)

β2(β2 + bx − b2)

Examining the individual signs of the numerator and denominator:

bx(µ + α2)(R2 − 1) > 0 (as the parameters are all positive)

β2(β2 + bx − b2) > 0 (by assumption b2 < bx)

Therefore, the overall value of J∗ > 0.
Next, we will do the same for S∗ which is the expression:

S∗ = 1− µ

bx

− bx + β2

bx

J∗

= 1− µ

bx

− bx + β2

bx

bx(µ + α2)(R2 − 1)

β2(β2 + bx − b2)

= 1− µ

bx

− (bx + β2)(µ + α2)

β2(β2 + bx − b2)

(
b2µ + β2(bx − µ)

bx(µ + α2)
− 1

)

= 1− µ

bx

− bx + β2

β2(β2 + bx − b2)

(
b2

µ

bx

+ β2

(
1− µ

bx

)
− (µ + α2)

)

Notice the denominator of this term is positive. Thus, in the next step, after taking
a common denominator, it is left out as it has no influence to the overall sign of the



Serotype Replacement of Vertically Transmitted Diseases Through Perfect Vaccination 21

expression. The numerator is left to be:

= β2(β2 + bx − b2)

(
1− µ

bx

)
− (bx + β2)

[
b2

µ

bx

+ β2

(
1− µ

bx

)
− (µ + α2)

]

= −β2b2

(
1− µ

bx

)
− (bx + β2)b2

µ

bx

+ (bx + β2)(µ + α2)

= −b2(β2 + µ) + (bx + β2)(µ + α2)

= −b2β2 − µ(b2 − bx) + β2(µ + α2) + bxα2

Using the assumptions in Section 2, we get the expression, µ(b2− bx) < 0. In addition
to this, since all of the values for the parameters are positive, bxα2 > 0. With these
individual expressions positive, just as we did with the denominator, we will leave them
out of the remaining steps:

= β2(−b2 + (µ + α2))

= β2(µ + α2)

( −b2

µ + α2

+ 1

)

= β2(µ + α2)(1− R̃1)

> 0

This follows from assumption dealing with the vertical transmission, which then im-
plies that S∗ > 0.

Finally, we will examine (1− S∗) and (1− S∗ − J∗), which are expressed as:

1− S∗ =
µ

bx

+

(
bx + β2

bx

)
J∗

1− S∗ − J∗ =
µ

bx

+

(
bx + β2

bx

)
J∗ − J∗

=
µ

bx

+

(
bx + β2

bx

)
J∗ − bxJ

∗

bx

=
µ

bx

+
β2

bx

J∗

> 0

With all positive parameter values we can conclude that these expressions are positive.
Therefore, by showing these four expressions S∗, J∗, (1 − S∗), and (1 − S∗ − J∗) all

to be positive with the assumption R2 > 1 and R̃2 < 1, we have a valid strain two
equilibrium. Hence, E2 exists.

b.) It follows analogously from part (a) to prove E1 exists when R1 > 1 and R̃1 < 1.
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