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Abstract—Biological processes occur at distinct

but interlinked scales of organization. Yet, mathe-

matical models are often focused on a single scale.

Recently, there has been a significant interest in

creating and using models that link the within-

host dynamics and population level dynamics of

infectious diseases. These types of multi-scale mod-

els, called immuno-epidemiological models, fall in

four categories, dependent on the type of the

epidemiological component of the model: network

or IBM models, “nested” age-since-infection struc-

tured models, ODE models, and “size-structured”

models. Immuno-epidemiological multi-scale mod-

els have been used to address a variety of ques-

tions, including what is the impact of within-host

dynamics on population-level quantities such as

reproduction number and prevalence, as well as

questions related to evolution of the pathogen or

co-evolution of the pathogen and the host. Here we

review the literature on immuno-epidemiological

modeling as well as the main insights these models

have created.
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I. INTRODUCTION

Biological processes occur at nested scales

of organization. In infectious diseases, the dy-

namical interplay between the microparasite and

the host immune system has a strong impact

on the epidemiological characteristics of the dis-

ease, such as pathogen shedding, population level

transmission, disease-induced host mortality and

recovery. Yet, traditionally, differential equation

modeling of infectious diseases has been strictly

separated by biological scale of organization.

Within-host modeling of infectious diseases has

been drawing significant attention in the last

century. Simple differential equation models, de-

veloped to describe a number of diseases such

as HIV, HCV, malaria, flu and others, have lead

to dramatically improving our understanding of

how microscopic processes develop and affect

the host health. Several books are devoted to

within-host (immunological) modeling of infec-

tious diseases [63], [50], [40] and multiple ar-

ticles develop and use such models to answer

an array of biological questions regarding the

pathogen and its interplay with the immune sys-

tem and target cells. At the same time numerous

differential equation models have been devel-

oped to model the dynamics of specific diseases

or in general the distribution of pathogens on

population level. Between-host (epidemiological)

models have addressed a variety of questions

related to public health. Multiple books focus on



the contributions of mathematics to epidemiology

([10], [20], [18], [33] just to mention a few).

Some important public health questions that can

be addressed with epidemic models regard the

fraction of the population that needs to be vac-

cinated to eradicate a disease, the reproduction

number of various disease outbreaks and what

efficacy do control measures have.

Pathogen reproduction, transmission and evo-

lution are processes that span several scales of

biological organization, i.e. intracellular, within-

host, and population scales. Answering effec-

tively public health questions at the popula-

tion level often requires the understanding and

the “lifting” of processes from within-host lev-

els to the population level. Unfortunately, very

rarely do mathematical models encompass mul-

tiple scales of biological organization. Here we

will review the relatively recent models link-

ing the within-host scale with the between-host

scale. The emergent area of linked data, models

and knowledge is called immuno-epidemiology.

Hellriegell defines immuno-epidemiology as the

area that “ combines individual- and population-

oriented approaches to create new perspectives”

[30]. We define the mathematical immuno-

epidemiology as the area in which mathematical

dynamical models of within-host disease pro-

cesses are interlinked to population-level dynam-

ical models of disease spread to allow for novel

results. The concept of immuno-epidemiology is

not new but in the last half of the 20th century

it was primarily linked to the interaction of

immunology and epidemiology of macroparasitic

diseases and malaria [27], [54], [28]. Until the

21st century little has been done linking immuno-

logical and epidemiological ideas in micropara-

sitic diseases, such as viral pathogens.

Why is it important to develop and study

multi-scale infectious disease models? (1) Be-

cause immunological considerations predict im-

portant epidemiological determinants, such as

disease prevalence and reproduction number

[19]. Such important epidemiological quantities

can be explicitly related (for arbitrary parameter

values) to host pathogen load and immune re-

sponses. (2) Data exist on both scales; linking

them is essential for quantitatively coupling pro-

cesses across scales. Furthermore, the biological

understanding gained from more data will be

more comprehensive and accurate. (3) Incorpo-

rating explicit immune responses is important in

diseases, such as dengue, where disease severity

depends on the strength of this response [14].

(4) These models are essential for elucidating

the role of within-host disease dynamics for

pathogen evolution [47], [15].

In this paper we review models linking within-

host and between-host processes and some of

the insights that have resulted from them. First,

we detail some immunological models used in

the coupled frameworks. The variability of these

modeling techniques stems from the various

types of epidemiological models from which

they’ve arisen. There are four basic types of epi-

demiological models being employed: network

or individual based epidemiological models, re-

viewed in subsection 3.1, ODE epidemiologi-

cal models, reviewed in subsection 3.2, size-

structured epidemiological models, reviewed in

section 3.3, and age-since-infection structured

epidemiological models, reviewed in subsection

3.4. Finally, in section 4, we provide further

discussion of the immuno-epidemiological mod-

eling and its implications to biology.

II. WITHIN-HOST MODELS

Within-host models are dynamical models that

represent, in caricature, the interaction of the

pathogen with the host replication machinery or

immune defenses within a single host individual.

Roughly speaking these models can be classi-

fied into three groups: models that depict the



reproduction processes of the pathogen within the

host; models that depict the pathogen with the

immune responses; and models that include both

the replication of the pathogen and the immune

responses. The simplest within-host models are

of the first two types. We introduce here an ex-

ample of each of the first two types as these types

are the ones typically used in linked models.

A. Within-host model of the pathogen replication

cycle

Within-host models that represent the

pathogen replication cycle assume a typical viral

pathogen that replicates using the machinery of

host cells, called target cells. To introduce such a

model, let x(τ) be the number of pathogen-free

(healthy) target cells (in the blood) and y(τ) be

the number of infected target cells. The amount

of pathogen is denoted by P (τ). The within-host

replication model has been used for many viral

diseases before [50].

x′ = r − bPx− µx,
y′ = bPx− dy,
P ′ = νdy − (δ + s)P

(II.1)

where r is the replication rate of target cells, b

is the infection rate, µ is the clearance rate of

healthy cells, d is the clearance rate of infected

cells, ν is the number of pathogen particles

released from lysis of an infected cell, δ is the

clearance rate of pathogen, and s is the shedding

rate. The dynamics of the pathogen and target

cells is shown in Figure 1.

Model (II.1) has been completely analyzed

[17]. The reproduction number of the pathogen

is given by

ℜ0 =
rνb

µ(δ + s)
(II.2)

The model has two equilibria, an infection-free

equilibrium E0 = (r/µ, 0, 0) and an infection

Fig. 1. The dynamics of the pathogen and target cells. Pa-

rameter values are: r = 50000000, b = 0.000000000015,

µ = 0.01, d = 0.5, δ = 3, ν = 250, s = 0.00008.

equilibrium E∗ = (x∗, y∗, P ∗) where

x∗ =
δ + s

νb
y∗ =

µ(δ + s)

νbd
(ℜ0 − 1)

P ∗ = µ
b
(ℜ0 − 1)

(II.3)

B. Models with immune response

The adaptive immune response includes a cel-

lular component which includes various types

of T cells and humoral response which consists

of B cells and antibodies. Simple pathogen-

immune response models typically include only

the pathogen P (τ) and one type immune re-

sponse cells, B-Cells, B(τ). The pathogen repli-

cates according to the Malthus model or logistic

model. B cells kill the pathogen and B cell

production is stimulated by the pathogen. B cells

are cleared at rate d:

P ′ = rP

(

1−
P

K

)

− ǫPB,

B′ = aP − dB,
(II.4)

where r is the parasite growth rate, K is its

carrying capacity, ǫ is the killing rate of the

immune response, a is the activation rate of the

immune response and d is the clearance of the

immune response. The dynamics of model (II.4)

is illustrated in Figure 2.

The model has two equilibria: (0, 0) which is

always unstable and a coexistence equilibrium



Fig. 2. The dynamics of the pathogen and the immune

response. Parameter values are r = 1, K = 1000, ǫ = 0.1,

a = 0.2.

(P ∗, B∗) where

P ∗ =
rdK

ǫaK + rd
B∗ =

raK

ǫaK + rd
. (II.5)

Immunological models vary immensely in

complexity and detail. Differences also stem

from the particular processes in the disease being

modeled. For our purposes here these two simple

within-host models are sufficient to illustrate

the concepts. In the next section, we introduce

various epidemiological models.

III. IMMUNO-EPIDEMIOLOGICAL MODELS

The epidemiological component of the

immuno-epidemiological models can take

several different forms based on existing

modeling frameworks, or just epidemiologically

relevant quantities, such as the reproduction

number, expressed in terms of the immunological

variables. In this section we consider four types

of immuno-epidemiological models structured

by the type of epidemic model.

A. Network epidemic models

In network epidemic models, individuals are

nodes in a network. Each individual or node

can exhibit its own within-host dynamics (see

Figure 3). The models can show the impact of the

individual immune dynamics on population-level

Fig. 3. Network immuno-epidemiological schematic dia-

gram.

transmission of disease. Tucknell [57] and Kos-

tova [34] introduced some of the first immuno-

epidemiological models where the epidemiolog-

ical component is a network. Kostova linked a

network of n within-host models and showed

that even if the immune response clears the

infection in each individual when isolated, while

these individuals are in a network, the pathogen

persists in each one of them and on a “population

level”.

Vickers and Osgood [58] suggest that in-

creased variance among people’s ability to re-

spond to an infection, while maintaining the

average immune responsiveness, may worsen the

overall impact of an outbreak within a pop-

ulation. Furthermore, high values for the net-

work connectivity reduced the timing between

peak viral levels in neighboring individuals. A

network based immuno-epidemiological model

was applied by Vickers and Osgood [59] to

study treatment of chlamydia which suggested

that treatment applied up to the third day post

infection has significant chance of preventing

transmission of the disease to the nearest neigh-

bor. Delivering treatment past the 3rd day post

infection allows for infection of nearest neighbor

as well as reinfection.



Lukens et al. [37] use a simple ODE differen-

tial equation model of influenza A and links that

model through infectivity to large-scale agent-

based population-level model to study influenza

A epidemics. The authors obtain a map of the

parameters of the immune model that charac-

terizes clinical phenotypes of influenza infection

and immune response variability across the pop-

ulation. At the population-level, the authors sim-

ulate effectively epidemics in Allegheny County,

Pennsylvania and consider both age-specific and

age-independent severity assumptions.

One of the serious drawbacks of network and

agent-based immuno-epidemiological models is

that very few population level quantities that

describe the disease distribution can be computed

analytically in closed form. In particular, in net-

work models there are difficulties for computing

the reproduction number and the prevalence of

the disease. Consequently, little can be learned

of the effect of the immune response on these

quantities outside of extensive simulations [52].

The next three classes of immuno-

epidemiological models remedy this shortcoming

but some of them assume that all infected

individuals undergo the same within-host

dynamics, an assumption that is largely

unrealistic. Still these models have contributed

immensely to our further understanding of the

mutual impact of within-host and between-host

processes.

B. ODE immuno-epidemiological models

One way to obtain a simpler ODE immuno-

epidemiological model for chronic diseases is to

consider the immune model at infectious equilib-

rium. In this case one can make the parameters

of a simple ODE epidemic model dependent

on the equilibria values of the pathogen and/or

the immune response. For instance, a simple SI

Fig. 4. Immuno-epidemiological modeling with environ-

mental transmission.

model becomes:

S′ = Λ− β(P ∗)SI −m0S
I ′ = β(P ∗)SI − (m0 +m1(P

∗, B∗))I
(III.1)

where P ∗ and B∗ are given by (II.5) and m0 is

the natural death rate, m1 is the disease-induced

death rate, β is the transmission rate, and Λ

is the recruitment rate. One can then investi-

gate how within-host parameters, pathogen load

and immune response affect the epidemiologi-

cal quantities, such as disease-induced mortal-

ity, prevalence and reproduction number. These

conclusions are not necessarily equivalent to

conclusions obtained from other type immuno-

epidemiological models such as the nested mod-

els considered below.

Another opportunity to connect the within-

host and between host dynamical systems in an

ODE model emerges in environmentally trans-

mitted disease. In this case a chronological-time-

structured within-host ODE system is linked to

a chronological-time-structured ODE epidemio-

logical system through the pathogen load in the

environment (see Figure 4).

Using this novel modeling scenario Feng at



al [12], [21], [22] investigate the transmission

of Toxoplasma gondii. Feng at al [21] links a

dynamic within-host model of the type (II.1),

where the infection of target cells depends on

population-level prevalence I , with an SI epi-

demic model much like (III.1), where trans-

mission depends on viral load. Within-host and

between-host reproduction numbers are com-

puted but for the linked model analysis sug-

gests that long-term behavior of the infection

may depend on the initial conditions. Articles

[12], [22] contain the environment as an explicit

variable and find that infection may persist on

population level even if the isolated between-host

reproduction number is less than one; a result that

is facilitated by the within-host dynamics.

C. Size-structured PDE immuno-

epidemiological models

Size-structured PDE immuno-epidemiological

models are perhaps the most complex type of

immuno-epidemiological models. In this case the

epidemiological model consists of physiologi-

cally structured PDEs in which the structural

independent variables are the dynamical vari-

ables of the ODE immune model. The first such

model was proposed by [45] (see also [44])

where the “size structure” variable is the immune

response. Analysis of this model revealed sim-

ilarities to age-since-infection structured mod-

els particularly because the structural variable

is strictly increasing in time. This model was

further extended by [23] to model where the

population-level density of infected individuals is

structured by both the viral load and the immune

response. [23] also transforms the size-structured

model to an age-since-infection model where the

independent variables are age-since-infection and

initial pathogen inoculum. Considering a specific

within-host model that allows for both pathogen

extinction and unbounded growth, the authors

investigate the population level impact of the

initial inoculum and of the isolation threshold.

A somewhat different modeling approach to

the same modeling scenario is given by [6], [7],

[48]. The authors suggest coupling a classical

HIV/HCV within-host model, given by equations

(II.1) with a size-structured SIR epidemic model.

The authors establish well-posedness in the spe-

cial case when the density of infected individuals

is structured only by the viral load. Furthermore,

they develop numerical methods and discuss the

impact of the (fixed) number of target cells and

the burst size on the epidemic [6], [7]. The results

allow to determine the distribution of the density

of the infected individuals by their viral load.

In general, the size-structured approach

presents interesting mathematical challenges,

such as the potential for measure-valued

solutions, modeling issues at creating and

linking the models, computational issues with

the large number of independent variables [6],

[7], [48]. Because of these issues, creating

the within-host model is an important step.

Furthermore, the computational and analytical

problems with the large number of independent

variables somewhat restrict the incorporation of

significant realism into the immune system; a

problem that can be addressed by incorporating

fewer within-host model dependent variables

as independent variables in the epidemiological

model. There are still a lot of interesting and

open questions, related to this approach.

D. Nested models

Nested models are a relatively recent class of

models suggested for the first time by Gilchrist

and Sasaki [25]. The main advantages of nested

models relative to size-structured models is that

these models allow for the use of very realistic

and specific to a given disease models. Establish-

ing well-posedness for these models is generally

not very problematic [51]. Furthermore, since the

number of independent variables in the PDE part



of the model is restricted to two, there are little

difficulties with computation, independently of

the complexity of the immunological or epidemi-

ological components.

Because of their advantages, since the

Gilchrist and Sasaki paper, nested models have

acquired significant popularity. The nested mod-

els “nest” a time-post-infection structured im-

mune dynamics model into a time-post-infection

and chronological time structured epidemiologi-

cal model. Nested models also link the within-

host model with the epidemiological model

through the parameters of the epidemiological

models that are expressed in terms of within-host

dependent variables. To introduce a simple nested

immuno-epidemiological model, let S(t) denote

the number of susceptible humans and i(τ, t) be

the density of infected humans. In the simplest

case, we can use an SI epidemiological model.

The model takes the form:

S′ = Λ− S

∫

∞

0
β(τ)i(τ, t)dτ −m0S,

iτ + it = −(m0 +m1(τ))i(τ, t),

i(0, t) = S

∫

∞

0
β(τ)i(τ, t)dτ.

(III.2)

where m0 is the natural death rate, m1 is the

disease-induced death rate, Λ is the recruitment

rate and β is the transmission rate. Model (III.2)

can be linked with either of the within-host

models. The transmission rate β(τ) depends on

the pathogen load. Experimental evidence sug-

gest that the transmission probability does not

increase linearly with the pathogen load but in a

saturating fashion [35]. We will use the following

simple function of saturating growth:

β(τ) =
cP (τ)

Q+ P (τ)

where c is the contact rate and Q is the half-

saturating constant. The disease-induced mor-

tality can be linked in multiple ways to the

immune system. It is thought that two distinct

processes lead to disease-induced mortality in

the host. On one side is the pathogen itself, and

on the other is the immune response. We take

the disease-induced mortality generated by the

pathogen proportional to the pathogen load. The

disease-induced mortality generated by the im-

mune response has been taken to be proportional

to the growth of the immune response aBP [25],

[53]. We take here the disease-induced mortality

proportional to B2. The square guarantees that at

low values of B, the immune response almost has

no impact on the disease-induced mortality while

at high levels of B, it has significant impact. This

way a trade-off exists between the necessity the

immune response to be vigorous enough to clear

the virus, but not too vigorous to kill the host.

The disease-induced mortality is then given by

m1(τ) = νrP (τ) + ξB2

where ν and ξ are constants of proportionality.

ξ = 0 if we are working with immune model

(II.1).

One of the main disadvantages of the nested

immuno-epidemiological models relative to the

network and size-structured models is that

they assume that all individuals exhibit the

same immune dynamics. To remedy this dis-

advantage one may consider a multi-group

immuno-epidemiological model where the differ-

ent groups exhibit different immune dynamics.

The multi-group model is somewhat complicated

and obtaining analytical results on it is not easy.

This weakens one of the great advantages of the

nested models, namely that basic epidemiological

quantities, such as the reproduction number and

the prevalence, can be computed in analytical

form. A schematic diagram of nested models is

given in Figure 5.

The reproduction number of the immuno-

epidemiological model (III.2) depends on the
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Fig. 5. Nested immuno-epidemiological schematic dia-

gram.

within-host variables and parameters:

R0 =
Λ

m0

∫

∞

0
β(τ)e−m0τ e−

∫
τ

0
m1(σ)dσdτ.

(III.3)

There are two types of questions being

addressed with nested models: How does

the within-host pathogen dynamics affect the

population-level reproduction number and preva-

lence? What are the evolutionary and co-

evolutionary consequences of the pathogen and

host within-host evolution?

Several articles have suggested that the de-

pendence of the reproduction number R0 on

the pathogen reproduction rate r may be non-

monotone [31], [53], [43]. As the within-host

pathogen reproduction rate r grows, it should

be increasing the population-level reproduction

number R0; however the increased pathogen load

is increasing host mortality, which in turn leads

to decrease in the population-level reproduction

number. This creates a well-described in the

literature hump-shaped form of R0 as a func-

tion of r. The dependence of R0 on immuno-

logical parameters has been further discussed

in [32], [41], [34], [16], [8]. The dependence

of prevalence on the some of the within-host

parameters may also be counter-intuitive. For

instance, prevalence may decrease with increase

of b in model (II.1) [42]. This in turn implies that

within-host medication that lower the infection of

target cells, that is decrease b, de facto increase

the population-level prevalence of the disease.

This paradox has been observed in practice in

HIV, where medications lower within-host virus

load and increase survivability of infected in-

dividuals which leads to increasing prevalence.

Furthermore, amplification of the HIV epidemic

has been observed through nested models [55].

More mathematical questions related to immuno-

epidemiological models, such as well-posedness

and optimal control are addressed in [51].

The importance of multi-scale immuno-

epidemiological modeling is best highlighted by

its role in studying evolution [47]. Gilchrist

and Sasaki were among the first to address co-

evolution [25] using multi-scale approaches but

since then evolution of virulence has been at-

tracting significant attention. Because evolution

involves multiple interacting strains, a number

of approaches have been developed to handle the

emergent complexity [3], [4], [5], [13], [15], [24],

[26], [36], [38]. One possible way is to model the

strains explicitly on within-host and/or between-

host scales [42], [13]. In the absence of trade-

off mechanisms, the strain that maximizes its

between-host epidemiological reproduction num-

ber dominates; a result first established rigor-

ously mathematically in [11]. In the presence of

trade-offs there is coexistence between the strains

and invasibility is governed by population-level

invasion numbers. Nested models further reveal

[2] that the optimal virulence in a co-infection

model increases with multiple infections and that

in a linked within-host and between-host co-

infection model, an evolutionary stable strategy

(ESS) can turn into a branching point [1]. An

ESS is a strategy which, if adopted in the pop-

ulation, cannot be invaded by any other strategy.

An ESS arises from singular strategy that cannot

be invaded by neighboring phenotypes. To see

this from a pairwise invasibility plot (PIP) (see



Fig. 6. Pairwise invasibility plot.

Figure 6), we draw a vertical line through the

singular strategy and confirm that the vertical line

lies entirely in the non-invasibility region.

Nested models have the potential to link

in a natural way the virus reproduction rate,

population-level fitness, and population level

disease-induced mortality. For HIV, the reproduc-

tion rates of the virus increase at a moderate

rate and the virulence is slightly higher than

the level that maximizes the population-level

transmissibility of the virus [39]. For Hepatitis

C, slowly replicating strains have a higher fitness

and produce more population-level secondary

infections while strains with higher replication

rates dominate within a host [38]. For Influenza

A, the relative importance of virulence and viral

clearance by the immune system on the viral

fitness and persistence was found to depend on

the temperature [29].

Day at al [15] develop the mathematical theory

that bridges the nested immuno-epidemiological

models to quantitative genetics and evolution of

traits. Using this framework, the authors show

that the trade-off between transmission and vir-

ulence, studied early on in multi-scale models

in [24], is an interplay of the genetic varia-

tion of the pathogen and the population-level

dynamics of the disease. This framework is the

backbone for future research at the interface of

dynamic population modeling and quantitative

genetic modeling.

Conclusions from multi-scale nested models

for chronic diseases can be derived by writing

the epidemiological quantities in term of the

infected equilibrium of the within-host model

[26], [46], [9]. This approach bridges to the ODE

immuno-epidemiological models, discussed in

section III.B. Following this approach article

[26] found that within-host selection favors viral

production rates ν that maximize virulence but

between-host pathogen fitness is maximized at

some intermediate virulence and viral production

rate. Article [9] extends the results in [26] by

incorporating superinfection.

IV. DISCUSSION

These new, more integrative modeling ap-

proaches, each have strengths in weaknesses

mathematically and in terms of their levels of

biological realism, but they have on the whole

led to new and biologically counter intuitive

insights. This is exemplified by even early ex-

amples of these models, such as Kostova [34],

which demonstrated population-level disease per-

sistence even when individual immune responses

are able to clear infection and result in immu-

nity. A second example is the population level

persistence of virus, even when the between host

reproduction number is less than 1, as shown by

Feng et al.[22]. This result leads to the surprising

interpretation that immune responses do not nec-

essarily tip the balance of interactions in favor of

the host and decrease disease prevalence. Sim-

ilarly, drug administration may mimic the host

immune system and increase disease prevalence,

(e.g., references [42] and [54]).

At another level, when we focus on the evolu-

tion of virulence, immuno-epidemiological mod-

els again lead to counter-intuitive results, (e.g.,

[26]). The results of these analyses, that selection



within an individual can favor different pathogen

traits than selection among individuals, highlight

that the within-host/among host model structure

characteristic of these models meets the require-

ments for trait-group selection to play a role

in evolutionary dynamics [60], where virus in

individuals constitutes trait groups from which

virus emerge, intermix and infect susceptible

individuals. Wilson’s model has been criticized

for unrealistic, or at least uncommon, assump-

tions of population structure (reviewed in [61]),

however, infectious disease may represent a com-

mon context in which individual- and group-

level selection both act strongly and at times in

conflict.

Ultimately, understanding the evolution of vir-

ulence might be informed by models designed

to understand trait evolution in the context of

multi-level selection such as those discussed in

[56]. In general, because there are sometimes

conflicts between within-host and among-host

virulence optima, new insights will likely come

from relaxing the biologically-unrealistic, albeit

simplifying, assumption that virulence evolves to

its within-host optimum prior to the epidemio-

logical dynamics of the model. Again, modeling

approaches appropriate for relaxing this assump-

tion might be informed by the body of literature

focused in the modeling of group and individual

level selection, especially those approaches that

consider the continuous nature of the dynamics

of within-individual and among-individual pro-

cesses [56].
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