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Abstract

Vaccination is the most effective method of preventing the spread of infectious dis-
eases. For many diseases, vaccine-induced immunity is not life long and the duration
of immunity is not always fixed. In this paper, we propose an SIVS model taking
the waning of vaccine-induced immunity and general nonlinear incidence into con-
sideration. Our analysis shows that the model exhibits global threshold dynamics in
the sense that if the basic reproduction number is less than 1, then the disease-free
equilibrium is globally asymptotically stable implying the disease dies out; while
if the basic reproduction number is larger than 1, then the endemic equilibrium
is globally asymptotically stable indicating that the disease persists. This global
threshold result indicates that if the vaccination coverage rate is below a critical
value, then the disease always persists and only if the vaccination coverage rate is
above the critical value, the disease can be eradicated.
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1 Introduction

Mathematical models describing the dynamics of infectious diseases are of
great public health importance because they provide insights on implement-
ing practical and efficient disease-control strategies [1]. Vaccination is one of
the most effective methods to prevent and control the spread of many infec-
tions [2–5]. Many early epidemic models assumed that vaccination imparts
permanent immunity [6–8]. The baseline assumption for most compartmental
models incorporating vaccination is that individuals in each compartment are
homogeneously mixed. For example, Liu et al. [9] proposed two SVIR models
with permanent immunity to investigate the impacts of both continuous and
impulsive vaccination policies. Xiao and Tang [10] built a simple SIV model
including susceptible, infected and imperfectly vaccinated classes and assum-
ing a nonlinear incidence rate. They showed that complex dynamics can be
induced by imperfect vaccination. Gao et al. [11] formulated an SEIRS model
and examined the possibility of eradicating an infectious disease by imple-
menting the pulse vaccination strategy.

It has been recognized that the waning of vaccine-induced immunity has
been one of the major causes for reemergence of some childhood diseases such
as measles, rubella and pertussis [12–14]. For chickenpox, the varicella vaccine
only provides temporary immunity, permanent immunity can only be gained
via recovery from natural chickenpox disease. For those previously vaccinated
children, if the vaccine-induced immunity is under protective level or com-
pletely lost, which can be identified by an antibody titer test, then they may
become vulnerable to the infections again [15]. It is thus of great importance
to incorporate the waning of vaccine-induced immunity into disease modeling
to understand how the waning of vaccine-induced immunity impacts the dis-
ease dynamics. In this regard, some delay differential equation models have
been proposed under the assumption that the vaccine-induced immunity last-
s for a fixed time period [16]. If the immunity duration is not fixed, similar
to the age-of-infection [17], the age-of-vaccination is taken into consideration.
This usually results in a partial differential equation model. See, for example,
[18–21].

Another crucial aspect in disease modeling is understanding how the pop-
ulation behavior and the infectivity of the disease impact the disease dynam-
ics [22,23]. Mathematically, this can be captured by the incidence rate of a
disease, defined as the average number of new cases per unit of time. Two typi-
cal incidence rates are the bilinear (or mass action) and the standard incidence
rates [24]. It has been commonly accepted that the bilinear incidence rate βSI
(where β is the transmission rate, S is the Susceptible, I is the infected) is more
appropriate for communicable diseases such as H5N1 [25], SARS [26], Hand,
foot, and mouth disease [27], but not for sexually transmitted infections [28];
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while the standard incidence rate βSI
S+I

seems to be a good approximation if the
number of available partners is large but each individual cannot make more
contacts than is practically feasible. In practice, these two limiting incidence
rates are both over simplified and cannot capture some important features of
disease transmission. For example, if the number of infectious individuals is
too large, then there should be a saturation effect. Thus a saturated incidence
rate Sf(I) with f(I) = I

1+αI
seems more appropriate[29]. For models with

various nonlinear incidence rates, we refer to [30–34].

In this work, we consider an SIRVS model that takes both the waning of
vaccine-induced immunity and nonlinear incidence into consideration. More
specifically, the nonlinear incidence is assumed to be of the form Sf(I) with
f satisfying

(A1) For x ∈ R+, f(x) ≥ 0 with equality if and only if x = 0, f ′(x) ≥ 0, and
f ′′(x) ≤ 0.

Note that the same assumption has also been made in [35,36]. Typical such
functions include f(I) = βI, and f(I) = βI

1+αI
.

It follows from Assumption (A1) and the Mean Value Theorem that

f ′(x)x ≤ f(x) ≤ f ′(0)x for x ∈ R+. (1.1)

The above inequality will be used in proving our main result. Indeed it can
be used to modify the arguments for the case with bilinear incidence rate
considered in [18–20,37].

The population under consideration is classified into four disjoint compart-
ments, namely, susceptible, infected, recovered and vaccinated classes. We use
S(t), I(t) and R(t) to denote the population sizes of susceptible compartment,
infected compartment, and recovered compartment at time t, respectively. It
is assumed that susceptible individuals are vaccinated at the rate of ϕ ≥ 0.
We let v(t, a) denote the population size of the vaccinated compartment at
time t with the vaccination age a and assume that vaccine-induced immunity
wanes at the rate of ε(a), which satisfies the following property

(A2) ε : [0,∞) → [0,∞) is bounded, nondecreasing and piecewise continuous
with possibly finite many jumps.

Further, we assume that all newly recruited individuals, including the new-
borns, are susceptible and the recruitment rate is Λ > 0. The natural death
rate is µ > 0 and the disease induced death rate is δ. The infected individuals
are assumed to enter the recovered class at a rate of γ. Since for some diseases
such as chickenpox, the recovered individuals gain permanent disease-induced
immunity and we focus on how the waning of vaccine-induced immunity affects
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the disease dynamics, in this work, we assume that the recovered individuals
do not enter the susceptible class.

Based on the above assumptions, our SIVS model with vaccination-age and
nonlinear incidence is described by

dS(t)
dt

= Λ− µS(t)− S(t)f(I(t))− ϕS(t) +
∫∞
0 ε(a)v(t, a)da,

dI(t)
dt

= S(t)f(I(t))− (µ+ γ + δ)I(t),

dR(t)
dt

= γI(t)− µR(t),

∂v(t,a)
∂t

+ ∂v(t,a)
∂a

= −(µ+ ε(a))v(t, a),

v(t, 0) = ϕS(t),

S(0) = S0 ≥ 0, I(0) = I0 > 0, R(0) = R0 ≥ 0, v(0, ·) = v0(·) ∈ L1
+,

(1.2)

where L1
+ is the set of integrable functions from (0,∞) into R+ = [0,∞).

Note that the third equation of system (1.2) does not appear in the remain-
ing three equations. This allows us to consider the following sub-system

dS(t)
dt

= Λ− µS(t)− S(t)f(I(t))− ϕS(t) +
∫∞
0 ε(a)v(t, a)da,

dI(t)
dt

= S(t)f(I(t))− (µ+ γ + δ)I(t),

∂v(t,a)
∂t

+ ∂v(t,a)
∂a

= −(µ+ ε(a))v(t, a),

v(t, 0) = ϕS(t),

S(0) = S0 ≥ 0, I(0) = I0 > 0, v(0, ·) = v0(·) ∈ L1
+,

(1.3)

PDE models with bilinear incidence rates related to (1.3) have been exten-
sively studied in the literature. For some recent work, we refer to [19–21,38–40]
and the references therein. Establishing global dynamics of PDE models with
age-structure has been a challenging task due to the lack of well-established
tools. The difficulties increase when the PDE disease model has a nonlinear
incidence rate. The purpose of this paper is to make an attempt to establish
global dynamics for (1.3).

It follows from [41,42] that system (1.3) has a unique continuous solution
if the initial conditions satisfy the compatibility condition

v0(0) = ϕS0

In the sequel, we always assume the above compatibility condition is satisfied.
Tools from Browne and Pilyugin [43] can be employed to show that the solution
of (1.3) exists on R+ and it is nonnegative. Thus we can define a solution
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semiflow Φ : R+ × (R+ × R+ × L1
+) → R+ × R+ × L1

+ of (1.3) as

Φ(t, (S0, I0, v0)) = (S(t), I(t), v(t, ·))

for t ∈ R+ and (S0, I0, v0) ∈ R+ × R+ × L1
+.

Let N(t) = S(t) + I(t) +
∫ ∞

0
v(t, a)da, then it follows from (1.3) that

dN(t)

dt
≤ Λ− µN(t),

which implies that lim sup
t→∞

N(t) ≤ Λ

µ
. Let

Γ = {(S0, I0, v0(·)) ∈ R+ × R+ × L1
+ : v0(0) = ϕS0, N(0) ≤ Λ

µ
}.

Then it is straightforward to show that Γ is positively invariant and attracts
all positive solutions of Φ of (1.3). Therefore, in the following, we restrict our
attention to solutions of (1.3) with initial conditions in Γ.

The rest of this paper is organized as follows. In Section 2, we discuss the
existence and local stability of equilibria of (1.3). In Section 3, we establish
the global dynamics of (1.3). We conclude this work in Section 4 with some
discussions.

2 Existence and local stability of equilibria

Define π : R+ → R+ as

π(a) = e−µa−
∫ a

0
ε(s)ds

and
K =

∫ ∞

0
ε(a)π(a)da.

Then
K ≤

∫ ∞

0
ε(a)e−

∫ a

0
ε(s)dsda = 1. (2.1)

An equilibrium (S̄, Ī, v̄(·)) of (1.3) must satisfy the following equations

0 = Λ− µS̄ − S̄f(Ī)− ϕS̄ +
∫∞
0 ε(a)v̄(a)da,

0 = S̄f(Ī)− (µ+ γ + δ)Ī ,

dv̄(a)
da

= −(µ+ ε(a))v̄(a),

v̄(0) = ϕS̄.

(2.2)
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It follows from the third and the fourth equations of (2.2) that

v̄(a) = ϕS̄π(a),

while by the first and the third equations of (2.2), we obtain

S̄ =
Λ

f(Ī) + µ+ ϕ(1−K)
.

Substituting the above into the second equation of (2.2) yields g(Ī) = 0, where

g(I) , f(I)[Λ− (µ+ γ + δ)I]− (µ+ δ)[µ+ ϕ(1−K)]I.

By (A1), Ī = 0 clearly is a solution to g(I) = 0. Thus

E0 =

(
Λ

µ+ ϕ(1−K)
, 0,

ϕΛ

µ+ ϕ(1−K)
π(a)

)

is the disease-free equilibrium.

In order to obtain the condition for the existence of an endemic equilibrium,
we define the basic reproduction number as

R0 =
Λf ′(0)

(µ+ γ + δ)(µ+ ϕ(1−K))
. (2.3)

In epidemiology, the basic reproduction number R0 gives the average number
of cases that one typical infectious individual generates, if introduced into a
susceptible population, over the whole infectious period 1

µ+γ+δ
.

If (S∗, I∗, v∗(·)) is an endemic equilibrium, then we must have I∗ ∈ (0, Λ
µ+δ

)

satisfying h(I∗) = 0, where

h(I) =
g(I)

I
=
f(I)

I
[Λ− (µ+ γ + δ)I]− (µ+ δ)[µ+ ϕ(1−K)].

Note that

lim
I→0+

h(I) = f ′(0)Λ− (µ+ γ + δ)[µ+ ϕ(1−K)]

= (µ+ γ + δ)[µ+ ϕ(1−K)](R0 − 1)

and

lim
I→ Λ

µ+γ+δ
−
h(I) = −(µ+ γ + δ)[µ+ ϕ(1−K)] < 0 (since K < 1).

Moreover, for I ∈ (0, Λ
µ+γ+δ

), it follows from (1.1) that

h′(I) =
[Λ− (µ+ γ + δ)I][f ′(I)I − f(I)]− f(I)(µ+ γ + δ)I

I2
< 0.
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Therefore, h(I) = 0 has an unique positive solution in (0, Λ
µ+γ+δ

) if and only

if R0 > 1. Let I∗ be a unique solution of h(I) = 0 in (0, Λ
µ+γ+δ

). Then system

(1.3) admits a unique endemic equilibrium E∗ = (S∗, I∗, ϕS∗π(a)), where S∗ =
Λ

f(I∗)+µ+ϕ(1−K)
.

Summarizing the above analysis, we have the following result concerning
the existence of equilibria.

Theorem 2.1 Consider system (1.3) with R0 defined in (2.3). If R0 ≤ 1,
then there is a unique equilibrium, which is the disease-free equilibrium E0;
while if R0 > 1, then there are two equilibria, the disease-free equilibrium E0

and the endemic equilibrium E∗.

Next, we study the local stability of the equilibria obtained in Theorem 2.1.
Linearizing system (1.3) at an equilibrium Ē = (S̄, Ī, v̄(·)) deduces the asso-
ciated characteristic equation as

0=

∣∣∣∣∣∣∣
λ+ µ+ f(Ī) + ϕ(1− K̂(λ)) S̄f ′(Ī)

−f(Ī) λ+ µ+ γ + δ − S̄f ′(Ī)

∣∣∣∣∣∣∣ ,
where

K̂(λ) =
∫ ∞

0
ε(a)π(a)e−λada.

Then the equilibrium Ē is locally (asymptotically) stable if all eigenvalues of
the characteristic equation have negative real parts and it is unstable if at
least one eigenvalue has a positive real part.

Theorem 2.2 Consider system (1.3) with R0 defined in (2.3). If R0 < 1,
then the disease-free equilibrium E0 is locally asymptotically stable and if R0 >
1, the unique endemic equilibrium E∗ is locally asymptotically stable.

Proof. The characteristic equation at E0 is

0 =

∣∣∣∣∣∣∣
λ+ µ+ ϕ(1− K̂(λ)) f ′(0)S0

0 λ+ µ+ γ + δ − S0f ′(0)

∣∣∣∣∣∣∣ ,
where S0 = Λ

µ+ϕ(1−K)
. It is clear that one eigenvalue is

λ = (µ+ γ + δ)(
S0f ′(0)

µ+ γ + δ
− 1) = (µ+ γ + δ)(R0 − 1)

and all other eigenvalues satisfy

λ+ µ+ ϕ = ϕK̂(λ). (2.4)
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We claim that all roots of (2.4) have negative real parts. Otherwise, let λ0
be a root of (2.4) with Re(λ0) ≥ 0. Then the module of the left hand side of
(2.4) is |λ0 + µ + ϕ| > ϕ, while the module of the right hand side of (2.4) is
|ϕK̂(λ0)| ≤ ϕK ≤ ϕ. This leads to a contradiction. This proves our claim and
hence E0 is locally asymptotically stable when R0 < 1.

The characteristic equation at E∗ is

0=

∣∣∣∣∣∣∣
λ+ µ+ f(I∗) + ϕ(1− K̂(λ)) S∗f ′(I∗)

−f(I∗) λ+ µ+ γ + δ − S∗f ′(I∗)

∣∣∣∣∣∣∣
=
[
λ+ µ+ ϕ(1− K̂(λ))

]
(λ+ µ+ γ + δ − S∗f ′(I∗))

+f(I∗)(λ+ µ+ γ + δ)

= (λ+ µ+ ϕ(1− K̂(λ)) + f(I∗))(λ+ µ+ γ + δ)

−S∗f ′(I∗)
[
λ+ µ+ ϕ(1− K̂(λ))

]
=
[
λ+ µ+ ϕ(1− K̂(λ)) + f(I∗)

]
(λ+ µ+ γ + δ)

−(µ+ γ + δ)f ′(I∗)I∗

f(I∗)

[
λ+ µ+ ϕ(1− K̂(λ))

]
,

where S∗ = (µ+γ+δ)I∗

f(I∗)
was used. Next, we show that the characteristic equa-

tion has no eigenvalues with nonnegative real parts. By way of contradiction,
assume that there is one eigenvalue λ1 with Re(λ1) ≥ 0. Then

∣∣∣∣∣1 + f(I∗)

λ1 + µ+ ϕ(1− K̂(λ1))

∣∣∣∣∣ |λ1 + µ+ γ + δ| =
∣∣∣∣∣(µ+ γ + δ)f ′(I∗)I∗

f(I∗)

∣∣∣∣∣ . (2.5)

It follows from (1.1) and the right hand of (2.5) that

∣∣∣∣∣(µ+ γ + δ)f ′(I∗)I∗

f(I∗)

∣∣∣∣∣ ≤ µ+ γ + δ.

On the other hand, by the left hand of (2.5), we have

∣∣∣∣∣1 + f(I∗)

λ1 + µ+ ϕ(1− K̂(λ1))

∣∣∣∣∣ |λ1 + µ+ γ + δ| > µ+ γ + δ,

since
∣∣∣∣1 + f(I∗)

λ1+µ+ϕ(1−K̂(λ1))

∣∣∣∣ > 1. This leads to a contradiction. This completes

the proof. 2
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3 Global stability analysis

We use the Fluctuation Lemma to establish the global stability of the
disease-free equilibrium E0. To this end, we first introduce the notation

ψ∞ = lim inf
t→∞

ψ(t) and ψ∞ = lim sup
t→∞

ψ(t).

and then state the Fluctuation Lemma as below.

Lemma 3.1 (Fluctuation Lemma [44]) Let ψ : R+ → R be a bounded and
continuously differentiable function. Then there exist sequences {sn} and {tn}
such that sn → ∞, tn → ∞, ψ(sn) → ψ∞, ψ′(sn) → 0, ψ(tn) → ψ∞, and
ψ′(tn) → 0 as n→ ∞.

We also need the following lemma to prove our Theorem 3.3.

Lemma 3.2 ([41]) Suppose f : R+ → R is a bounded function. Then

lim sup
t→∞

∫ t

0
k(θ)f(t− θ)dθ ≤ f∞∥k∥1.

where ∥k∥1 =
∫∞
0 k(s)ds.

Theorem 3.3 If R0 < 1, then the disease-free equilibrium E0 of (1.3) is
globally asymptotically stable.

Proof. It follows from Theorem 2.2 that it suffices to show that E0 is attractive
in Γ. Let (S(t), I(t), v(t, a)) be a solution of (1.3) with (S0, I0, v0(·)) ∈ Γ.
Integrating the second equation of (1.3) with the boundary condition yields

v(t, a) =

ϕS(t− a)π(a), t ≥ a,

v0(a− t) π(a)
π(a−t)

, t < a,
(3.1)

With the assistance of the Fluctuation Lemma, it is easy to get

S∞ ≤ Λ

µ+ ϕ(1−K)
.

It follows from (1.1) that

dI(t)
dt

= S(t)f(I(t))− (µ+ γ + δ)I

≤ Λ
µ+ϕ(1−K)

f ′(0)I − (µ+ γ + δ)I

= (µ+ γ + δ)[R0 − 1]I.
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This leads to I∞ → 0.

Lemma 3.1 implies that there exists a sequence {tn} such that tn → ∞,
S(tn) → S∞, and S ′(tn) → 0 as n→ ∞. Note that lim

n→∞
I(tn) = 0. Thus

dS(tn)
dt

= Λ− (µ+ ϕ)S(tn) + ϕ
∫ tn
0 ε(a)S(tn − a)π(a)da

+
∫∞
tn
ε(a)v0(a− tn)

π(a)
π(a−tn)

da− S(tn)f(I(tn))

and lim
n→∞

∫∞
tn
ε(a)v0(a− tn)

π(a)
π(a−tn)

da = 0. Let n→ ∞, then

0 ≥ Λ− [µ+ ϕ]S∞ + ϕ
∫∞
0 ε(a)S∞π(a)da− S∞f(I

∞)

= Λ− [µ+ ϕ(1−K)]S∞ − S∞f(I
∞).

Note that I∞ → 0, we then have Λ
µ+ϕ(1−K)

≤ S∞ ≤ S∞ ≤ Λ
µ+ϕ(1−K)

. That is,

lim
t→∞

S(t) = Λ
µ+ϕ(1−K)

. It follows from (3.1) that

lim
t→∞

v(t, a) =
ϕΛ

µ+ ϕ(1−K)
π(a).

Therefore, (S(t), I(t), v(t, ·)) → E0 in R+×R+×L1
+ as t→ ∞. This completes

the proof. 2

Next we study the permanence of (1.3). Define ρ : Γ → R+ as

ρ(S, I, v) = f(I), for (S, I, v) ∈ Γ.

Let

Γ0 = {(S0, I0, v0) ∈ Γ : there exists a t0 ∈ R+ such that ρ(Φ(t0, (S0, I0, v0))) > 0}.

Obviously, if (S0, I0, v0) ∈ Γ \ Γ0, then (S(t), I(t), v(t, ·)) → E0 as t→ ∞.

Definition 3.1 ([45]) If there exists an ϵ > 0, independent of the initial
conditions, such that

lim sup
t→∞

ρ(Φ(t, (S0, I0, v0(·)))) > ϵ (respectively, lim inf
t→∞

ρ(Φ(t, (S0, I0, v0))) > ϵ),

then (1.3) is called to be uniformly weakly ρ-persistent (respectively, u-
niformly strongly ρ-persistent), for (S0, I0, v0) ∈ Γ0.

Proposition 3.4 If R0 > 1, then (1.3) is uniformly weakly ρ-persistent.

Proof. If R0 > 1, we can choose an ϵ0 > 0 such that(
Λ

µ+ ϕ(1−K) + ϵ0
− ϵ0

)
f ′(f−1(ϵ0))− (µ+ γ + δ) > 0. (3.2)
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By contradiction, assume that there exists (S0, I0, v0) ∈ Γ0 with

lim sup
t→∞

ρ(Φ(t, (S0, I0, v0))) ≤
ϵ0
2
.

Then there exists t0 ∈ R+ such that

ρ(Φ(t, (S0, I0, v0))) ≤ ϵ0 for t ≥ t0.

Without loss of generality, we can assume that t0 = 0. In fact, this can be
achieved by replacing the initial condition with Φ(t0, (S0, I0, v0)). Therefore,
for t ≥ t0 = 0, it follows from (1.1) that

f(I(t)) ≤ ϵ0, I(t) ≤ f−1(ϵ0). (3.3)

Furthermore, if {tn} is a sequence such that S(tn) → S∞, then the Fluctuation
Lemma together with (3.1) shows that

dS(tn)

dt
≥Λ− (µ+ ϕ)S(tn)− ϵ0S(tn) + ϕ

∫ tn

0
ε(a)S(tn − a)π(a)da.

Combining Lemma 3.1 and the above inequality, we obtain S∞ ≥ Λ
µ+ϕ(1−K)+ϵ0

.

Thus there exists t1 ≥ t0 such that S(t) ≥ Λ
µ+ϕ(1−K)+ϵ0

− ϵ0 for t ≥ t1. Again,

by replacing the initial condition, we can assume that S(t) ≥ Λ
µ+ϕ(1−K)+ϵ0

− ϵ0
for t ∈ R+. This, together with (A1), (3.1) and (3.3), leads to

dI(t)

dt
=S(t)f(I(t))− (µ+ γ + δ)I(t)

≥
(

Λ

µ+ ϕ(1−K) + ϵ0
− ϵ0

)
f(I(t))− (µ+ γ + δ)I(t)

≥
(

Λ

µ+ ϕ(1−K) + ϵ0
− ϵ0

)
f ′(I(t))I(t)− (µ+ γ + δ)I(t)

=

[(
Λ

µ+ ϕ(1−K) + ϵ0
− ϵ0

)
f ′(f−1(ϵ0))− (µ+ γ + δ)

]
I(t)

for t ∈ R+. It follows from the positivity of I0 that lim inf
t→∞

I(t) = +∞. This

contradicts with the boundedness of I. The proof is complete. 2

It follows from Proposition 3.4 that Φ(t,Γ0) ⊆ Γ0, and hence it induces
a semiflow on Γ0. Next we show that the solution semiflow Φ has a global
compact attractor A in Γ0. To this end, we first introduce two lemmas.

Lemma 3.5 ([46, Theorem 3.4.6]) Let T (t) be a semigroup acting on X =
R2

+ × L1
+(0,∞). If T (t) : X → X, t ∈ R+ is asymptotically smooth, point
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dissipative and orbits of bounded sets are bounded, then there exists a global
attractor.

A semiflow is asymptotically smooth if each forward invariant bounded
closed set is attracted by a nonempty compact set.

Lemma 3.6 ([46, Lemma 3.2.3]) For each t ∈ R+, suppose T (t) = S(t) +
U(t) : X → X has the property that U(t) is completely continuous and there
is a continuous function k : R+ × R+ → R+ such that k(t, r) → 0 as t → ∞
and |S(t)x| ≤ k(t, r) if |x| < r. Then T (t), t ∈ R+, is asymptotically smooth.

Proposition 3.7 If R0 > 1, then there exists a global attractor A for the
solution semiflow Φ of (1.3) in Γ0.

Proof. By Lemma 3.5, we need to show that the semiflow Φ is asymptotically
smooth. This can be achieved by employing Lemma 3.6 as follows.

For t ∈ R+ and (S0, I0, v0) ∈ Γ0, define

Φ̂(t, (S0, I0, v0)) = (0, 0, v̂(t, ·)),

Φ̃(t, (S0, I0, v0)) = (S(t), I(t), ṽ(t, ·)),

where

ṽ(t, a) =

 v(t, a) for 0 ≤ a ≤ t

0 for t < a
=

ϕS(t− a)π(a) for 0 ≤ a ≤ t

0 for t < a
(3.4)

and

v̂(t, a) = v(t, a)− ṽ(t, a) =

 0 for 0 ≤ a ≤ t,

v0(a− t) π(a)
π(a−t)

for t < a.
(3.5)

Then Φ = Φ̂+Φ̃. Obviously, both v̂ and ṽ are nonnegative. By (3.5), we obtain

∥Φ̂(t, (S0, I0, v0))∥= ∥v̂(t, ·)∥1

=
∫ ∞

t
v0(a− t)

π(a)

π(a− t)
da

=
∫ ∞

0
v0(a)

π(a+ t)

π(a)
da

≤ e−µt
∫ ∞

0
v0(a)da

= e−µt∥v0∥1

12



≤ e−µt∥(S0, I0, v0)∥

and hence Φ̂ satisfies the assumption in Lemma 3.6.

Next we show that Φ̃ is completely continuous. This means that for any
fixed t ∈ R+ and any bounded set B ⊆ Γ0, the set Bt , {Φ̃(t, (S0, I0, v0)) :
(S0, I0, v0) ∈ B} is precompact. It is sufficient to show that Bt,v = {ṽ(t, ·) :
(S(t), I(t), ṽ(t, ·)) ∈ Bt} is precompact. This can be achieved by applying the
Fréchet-Kolmogrov Theorem [47]. Firstly, it follows from the definitions of Φ̃
and Γ0 that Bt,v is bounded. This implies that the first condition of the Fréchet-
Kolmogrov Theorem holds. Secondly, it is easy to see that

∫∞
t ṽ(t, a)da =

0. Thus the third condition of the Fréchet-Kolmogrov Theorem is satisfied.
Finally, to verify the second condition of the Fréchet-Kolmogrov Theorem, we
show that Bt,v is uniformly continuous Φ̃ or

lim
h→0+

∥ṽ(t, ·)− ṽ(t, ·+ h)∥1 = 0 uniformly in Bt,v. (3.6)

Equation (3.6) holds automatically when t = 0 since ṽ(0, ·) = 0 by (3.4). As a
result, we only need to consider the case with t > 0. Let h ∈ (0, t). Then

∥ṽ(t, ·)− ṽ(t, ·+ h)∥1
=
∫ ∞

0
|ṽ(t, a)− ṽ(t, a+ h)|da

= ϕ
∫ t−h

0
|S(t− a− h)π(a+ h)− S(t− a)π(a)|da+ ϕ

∫ t

t−h
S(t− a)π(a)da

≤ϕ
∫ t−h

0
S(t− a− h)|π(a+ h)− π(a)|da+ ϕ

Λ

µ+ ϕ(1−K)
h

+ϕ
∫ t−h

0
|S(t− a− h)− S(t− a)|π(a)da

≤ϕ
Λ

µ+ ϕ(1−K)
µh+ ϕ

∫ t−h

0
|S(t− a− h)− S(t− a)|π(a)da

+ϕ
Λ

µ+ ϕ(1−K)
h

as S(t) ≤ Λ
µ+ϕ(1−K)

for t ∈ R+ and |π(a + h) − π(a)| ≤ 1 − e−
∫ a+h

a
µds ≤

µh. This estimate, together with the uniform continuity of S(t), immediately
yields (3.6). The proof is complete. 2

By Proposition 3.4, Proposition 3.7, and [48, Theorem 3.2], we immediately
have

Theorem 3.8 System (1.3) is uniformly strongly ρ-persistent if R0 > 1.

A total trajectory of Φ is a functionX : R → R+×L1
+ such that Φ(s,X(t)) =

X(t+ s) for all t ∈ R and all s ∈ R+.
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Corollary 3.9 Suppose R0 > 1. Let (S(t), I(t), v(t, ·)) be a total trajectory in
A. Then there exists an ε0 > 0 such that S(t), I(t), v(t, 0) > ε0 for all t ∈ R.

Proof. It follows from I(t) ≤ Λ
µ
and Assumption (A1) that

dS(t)

dt
≥ Λ− (µ+ ϕ+ f(

Λ

µ
))S(t)

and hence S∞ ≥ Λ
µ+ϕ+f(Λ

µ
)
. This provides a lower bound ε1 for the S-coordinate

for any point in A. Theorem 3.8 implies that there exists ε2 > 0 such that
ρ(S(t), I(t), v(t, ·)) > ε2 for all t ∈ R. Thus f ′(0)I(t) ≥ f(I(t)) ≥ ε2 and hence
I(t) ≥ ε2

f ′(0)
. Note that v(t, 0) = ϕS ≥ ϕε1. We can take ε0 = min{ε1, ε2

f ′(0)
, ϕε1}

to complete the proof. 2

Remark 3.1 Corollary 3.9 establishes the persistence of system (1.3) when
the basic reproduction number R0 > 1. This implies that there always exist
infectious individuals when the basic reproduction number is larger than 1.
This result is crucial as it implies that the Lyapunov functional to be used
in proving the global stability of the endemic equilibrium and its derivative
along solutions of system (1.3) are meaningful at infinity.

Define φ : (0,∞) → R as

φ(x) = x− 1− lnx.

It is well-known that φ attains a global minimum only at 1 with φ(1) = 0 and
φ(x) > 0 for x ̸= 1.

Lemma 3.10 ([35, Proposition A.1]) Define

F (I) = φ

(
f(I)

f(I∗)

)
− φ

(
I

I∗

)
.

If Assumption (A1) is satisfied, then F (I) ≤ 0 for all I > 0.

Now we are in the position to prove the following result.

Theorem 3.11 If R0 > 1, then the endemic equilibrium E∗ is globally asymp-
totically stable in Γ0.

Proof. By Theorem 2.2 and Proposition 3.7, it suffices to show A = {E∗}. Let
X(t) = (S(t), I(t), v(t, ·)) be a total trajectory in A. By Corollary 3.9, there

exists ϵ0 > 0, for any t ∈ R, such that 0 ≤ φ(x) < ϵ0 for x = S(t)
S∗ ,

I(t)
I∗
, and

v(t,0)
v∗(0)

. Note that v(t,a)
v∗(a)

= v(t−a,0)π(a)
v∗(0)π(a)

= v(t−a,0)
v∗(0)

, which implies that 0 ≤ φ(x) ≤ ϵ0
for any t ∈ R and a ∈ R+.
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Let
α(a) =

∫ ∞

a
ε(s)v∗(s)ds.

Then
dα(a)

da
= −ε(a)v∗(a).

Define
V (t) = S∗VS(t) + I∗VI(t) + Vv(t),

where VS(t) = φ(S(t)
S∗ ), VI(t) = φ( I(t)

I∗
) and Vv(t) =

∫ ∞

0
α(a)φ(

v(t, a)

v∗(a)
)da. Then

V is bounded.

Next we show that the upper-right derivative dV (t)
dt

along the solution is
non-positive. We first have

dVS(t)

dt
=

(
1− S∗

S(t)

) [
Λ− (µ+ ϕ)S(t)− S(t)f(I) +

∫ ∞

0
ε(a)v(t, a)da

]

=

(
1− S∗

S(t)

) [
(µ+ ϕ)S∗ + S∗f(I∗(a))−

∫ ∞

0
ε(a)v∗(a)da

−(µ+ ϕ)S(t)− S(t)f(I) +
∫ ∞

0
ε(a)v(t, a)da

]
=−(µ+ ϕ)S∗(

S∗

S
+

S

S∗ − 2) + S∗f(I∗)[1− S(t)f(I(t))

S∗f(I∗)
− S∗

S

+
f(I(t))

f(I∗)
] +

∫ ∞

0
ε(a)v∗(a)

[
v(t, a)

v∗(a)
− S∗v(t, a)

S(t)v∗(a)
− 1 +

S∗

S

]
da.

Differentiating VI with respect to t and noting that µ + γ + δ = S∗f(I∗)
I∗

, we
obtain

dVI(t)

dt
=

(
1− I∗

I(t)

)
[Sf(I(t))− (µ+ γ + δ)I]

=

(
1− I∗

I(t)

)[
Sf(I(t))− S∗f(I∗)I

I∗

]

=S∗f(I∗)[1 +
S(t)f(I(t))

S∗f(I∗)
− S(t)f(I(t))I∗

S∗f(I∗)I(t)
− I(t)

I∗
].

The derivative of Vv can be calculated as follows

dVv(t)

dt
=
∫ ∞

0
α(a)

∂φ(v(t,a)
v∗(a)

)

∂t
da

=
∫ ∞

0
α(a)(1− v∗(a)

v(t, a)
)

1

v∗(a)

∂v(t, a)

∂t
da
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=−
∫ ∞

0
α(a)(1− v∗(a)

v(t, a)
)
v(t, a)

v∗(a)
[
va(t, a)

v(t, a)
+ µ+ ε(a)]da

=−
∫ ∞

0
α(a)(

v(t, a)

v∗(a)
− 1)[

va(t, a)

v(t, a)
+ µ+ ε(a)]da,

where va(t, a) =
∂v(t,a)

∂a
. With the assistance of

∂

∂a
(
v(t, a)

v∗(a)
) = (

v(t, a)

v∗(a)
− 1)[

va(t, a)

v(t, a)
+ µ+ ε(a)],

d
da
(α(a)) = −ε(a)v∗(a), and integration by parts, we have

dVv(t)

dt
=−

∫ ∞

0
α(a)

∂

∂a
(
v(t, a)

v∗(a)
)da

=−α(a)φ(v(t, a)
v∗(a)

)|a=∞
a=0 +

∫ ∞

0
φ(
v(t, a)

v∗(a)
)
dα(a)

da
da

=−α(a)φ(v(t, a)
v∗(a)

)|a=∞ + α(0)φ(
v(t, 0)

v∗(0)
)

−
∫ ∞

0
ε(a)v∗(a)φ(

v(t, a)

v∗(a)
)da.

Using α(0) =
∫∞
0 ε(a)v∗(a)da yields

dVv(t)

dt
=−α(a)φ(v(t, a)

v∗(a)
)|a=∞ +

∫ ∞

0
ε(a)v∗(a)φ(

v(t, 0)

v∗(0)
)da

−
∫ ∞

0
ε(a)v∗(a)φ(

v(t, a)

v∗(a)
)da.

Summing up dVS

dt
, dVI

dt
, and dVv

dt
yields

dV
dt

= −(µ+ ϕ)S∗(S
∗

S
+ S

S∗ − 2)− α(a)φ(v(t,a)
v∗(a)

)|a=∞

+S∗f(I∗)[2− S∗

S
+ f(I(t))

f(I∗)
− S(t)f(I(t))I∗

S∗f(I∗)I(t)
− I(t)

I∗
]

+
∫∞
0 ε(a)v∗(a)[φ(v(t,0)

v∗(0)
)− φ(v(t,a)

v∗(a)
) + v(t,a)

v∗(a)
− S∗v(t,a)

S(t)v∗(a)
− 1 + S∗

S
]da

= −(µ+ ϕ(1−K))S∗(S
∗

S
+ S

S∗ − 2)− α(a)φ(v(t,a)
v∗(a)

)|a=∞

+S∗f(I∗)[φ(f(I(t))
f(I∗)

)− φ( I(t)
I∗

)− φ(S
∗

S
)− φ(S(t)f(I(t))I

∗

S∗f(I∗)I(t)
)]

−
∫∞
0 ε(a)v∗(a)φ( S∗v(t,a)

S(t)v∗(a)
)da.

It follows from Lemma 3.10, the properties of φ and
∫∞
0 ε(a)v∗(a)da = ϕS∗K

that dV (t)
dt

≤ 0. Therefore V is nonincreasing. Since V is bounded on X(·), the
ω−limit set of X(·) must be contained in M, the largest invariant subset of
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{dV
dt

= 0}. It follows from dV
dt

= 0 that S(t) = S∗ and v(t, a) = v∗(a). Thus
dS(t)
dt

= 0 in M. This implies that

0 = Λ− (µ+ ϕ)S∗ − S∗f(I(t)) +
∫ ∞

0
ε(a)v∗(a)da

for t ∈ R, which yields f(I(t)) = f(I∗) for all t ∈ R. This, together with
monotonicity of f(x) stated in (A1) implies that I(t) = I∗ for all t. Therefore,
M = {E∗}.

The above analysis indicates that the ω−limit set of X(·) consists of just
the endemic equilibrium E∗ and hence V (X(t)) ≥ V (E∗) for all t ∈ R. Thus
A = {E∗}. The proof is complete. 2

Remark 3.2 Theorem 3.11 indicates that the endemic equilibrium E∗ at-
tracts all solutions of (1.3), if R0 > 1. This, together with Theorem 3.3 and
Theorem 2.2, implies that the global stability of equilibria for system (1.3) is
completely determined by the reproduction number R0. This result partially
extends the previous existing results for disease models with age structure
[4,18] in which only local stability results are established.

4 Discussion

In this paper we have incorporated the waning of vaccine-induced immu-
nity and nonlinear incidence rate into an age-structured SIVS model. It has
been shown that the disease dynamics is completely determined by the basic
reproduction number: if the reproduction number is less than 1, the disease-
free equilibrium E0 is globally asymptotically stable and the disease dies out;
while if the basic reproduction number is larger than 1, then the endemic
equilibrium E∗ is globally asymptotically stable and the disease persists.

Similar to many disease models, our newly studied model exhibits global
threshold dynamics. Unlike ordinary differential equation models, our PDE
model requires more subtle analysis to achieve the global dynamics. Further,
our result does shed some light on how to manage vaccination coverage rate to
control the spread of diseases. Based on our analysis, there exists a threshold
value

ϕ0 :=
Λf ′(0)− µ(µ+ γ + δ)

(µ+ γ + δ)(1−K)

for the vaccine coverage rate. Clearly, the vaccination coverage required to
eradicated the disease is higher than that when the waning of vaccine-induced
immunity is neglected (i.e., K = 0). Thus setting the vaccination coverage ϕ
as ϕ0 with K = 0 is not sufficient for the disease to die out.
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To illustrate our theoretical result, we take chickenpox related disease pa-
rameters for the purpose of numerical computation. More precisely, we set

µ =
1

75
year−1, γ = 26 year−1, δ = 0.014 year−1.

This means the average individual lifespan is 75 years, and the infection lasts
for about 2 weeks (in the range of 10 ∼ 21 days) and among every 10, 000
infected individuals, 140 died each year as a result of chickenpox (in the range
of 100 ∼ 150 in the USA [49]). For chickenpox virus, clinic data suggests the
vaccinated individuals gain protective immunity during the first 5 years, and
the immunity gradually wanes since then [50]. We take the following form for
ε(a):

ε(a) =

 0, 0 < a ≤ 5,

1
65
, a > 5.

This implies, the immunity is completely lost after 70 years. The incidence
function f(I) is taken as a saturation function given below

f(I) =
0.8I

1 + 0.2I
.

The birth rate is taken as Λ = 13 per 1000 people per year in the USA
according to the World Bank data [51]. With these specified parameters values,
the computed critical vaccination coverage is ϕ0 = %77.43 (with K ≈ 0.50),
which is twice as high as that of the case when the waning of vaccine-induced
immunity is neglected (the resulting coverage is %38.62). This clearly indicates
the waning of vaccine-induced immunity should be taken into consideration in
designing practical vaccination strategies. Numerical simulations are presented
in Figure 1.
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Fig. 1. Numerical solutions of (1.3) with five different sets of initial conditions. The
parameters are listed in the text and ϕ varies from 0.8 to 0.1. (a) ϕ = 0.8 > ϕ0; (b)
ϕ = 0.5 < ϕ0, (c) ϕ = 0.5 < ϕ0,.
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Our analysis shows that the immunity waning function ε(a) crucially influ-
ences the critical vaccination coverage ϕ0. Much clinic work should be further
conducted to reveal how the vaccine-induced immunity wanes for diseases such
as chickenpox so that we may gain better description on the immunity waning
function ε(a) and thus come up with better estimate on the critical vaccination
coverage ϕ0 to eradicate the disease.

Acknowledgements

Part of this work was done when JY was a visiting scholar at the De-
partment of Mathematics, University of Florida. JY would like to thank the
Department for kind hospitality he received there. Research is partially sup-
ported by the National Natural Science Foundation of China (No. 61203228,
No. 11371313, No. 11241005), China Scholarship Council (201308140016), the
Young Sciences Foundation of Shanxi (2011021001-1), Program for the Out-
standing Innovative Teams of Higher Learning Institutions of Shanxi, Shanxi
“131” Talents Program and Shanxi 100 Talent Program. The work of MM was
supported by NSF grant DMS-1220342.

References

[1] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and
Control, Oxford University Press, 1992.

[2] M. Haber, I.M. Longini, M.E. Halloran, Measures of the effects of vaccination
in a randomly mixing population, Int. J. Epidemiol., 20 (1991) 300-319.

[3] B. Shulgin, L. Stone, Z. Agur, Pulse vaccination strategy in the SIR epidemic
model. Bull. Math. Biol., 60 (1998) 1123-1148.

[4] M. Iannelli, M. Martcheva, X.Z. Li, Strain replacement in an epidemic model
with super-infection and perfect vaccination, Math. Biosci., 195 (1) (2005) 23-
46.

[5] C.A. Iliano V, R.O Marcelo, Transmission blocking vaccines to control insect-
borne diseases: a review, Mem. Inst. Oswaldo Cruz, 105(1)(2010) 1-12.

[6] M.E. Alexander, C. Bowman, S.M. Moghadas, R. Summers, A.B. Gumel, B.M.
Sahai, A vaccination model for transmission dynamics of influenza, SIAM J.
Appl. Dyn. Syst., 3 (2004) 503-524.

[7] B. Buonomo, A. dOnofrio, D. Lacitignola, Global stability of an SIR epidemic
model with information dependent vaccination, Math. Biosci., 216 (2008) 9-16.

19



[8] G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for
age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012) 25-38.

[9] X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination
strategies, J. Theor. Bio., 253 (2008) 1-11.

[10] Y. Xiao, S. Tang, Dynamics of infection with nonlinear incidence in a simple
vaccination model, Nonlinear Anal. Real World Appl., 11 (2010) 4154-4163.

[11] S. Gao, L. Chen, J. J. Nieto, A. Torres, Analysis of a delayed epidemic model
with pulse vaccination and saturation incidence, Vaccine, 24 (2006) 6037-6045.

[12] J. R. Kremer, F. Schneider, C. P. Muller, Waning antibodies in measles and
rubella vaccineesa longitudinal study, Vaccine, 24(2006), 2594–2601.

[13] F.R. Mooi, N.A.T. van der Maas, H.E. de Melker, Pertussis resurgence: waning
immunity and pathogen adaptation two sides of the same coin, Epidemiol.
Infect., 142(2014), 685–694.

[14] A. M. Wendelboe, A. van Rie, S. Salmaso, J. A. Englund, Duration of immunity
against pertussis after natural infection or vaccination, Pediatr Infect Dis J.
24(2005), S58–S61.

[15] D. Miron, I. Lavi, R. Kitov, A. Hendler, Vaccine effectiveness and severity of
varicella among previously vaccinated children during outbreaks in day-care
centers with low vaccination coverage, Pediatr Infect Dis J. 24(2005): 233-236.

[16] M. L. Taylor, T. W. Carr, An SIR epidemic model with partial temporary
immunity modeled with delay, J. Math. Biol., (2009) 59:841-880.

[17] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory
of epidemics I, Proc. Roy Soc. Ser. A, 115 (1927) 700-721.

[18] X. Li, J. Wang, M. Ghosh, Stability and bifurcation of an SIVS epidemic model
with treatment and age of vaccination, Appl. Math. Model., 34 (2010) 437-450.

[19] X. Duan, S. Yuan, X. Li, Global stability of an SVIR model with age of
vaccination. Appl. Math. Comput., 226 (2014) 528-540.

[20] X. Duan, S. Yuan, Z. Qiu, J. Ma, Global stability of an SVEIR epidemic model
with ages of vaccination and latency, Comput. Math. Appl., 68 (2014) 288-308.

[21] H. Gulbudak, M. Martcheva, A Structured avian influenza model with imperfect
vaccination and vaccine induced asymptomatic infection, Bull. Math. Biol., 76
(10) (2014) 2389-2425.

[22] R.M. Anderson, R.M. May, The invasion, persistence, and spread of infectious
diseases within animal and plant communities, Philos. Trans. R. Soc. Lond. B,
314 (1986), 533-570.

[23] A. d’Onofrio, Vaccination policies and nonlinear force of infection:
generalization of an observation by Alexander and Moghadas (2004), Appl.
Math. Comput. 168 (2005) 613-622.

20



[24] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology
and Epidemiology (Texts in Applied Mathematics), Second Edition, Springer-
Verlag, New York, 2011.

[25] M. Martcheva, Avian Flu: Medeling and implications for control, J. Biol. Syst.,
22 (2014) 151-175.

[26] W. Wang, S. Ruan, Simulating the SARS outbreak in Beijing with limited data,
J. Theor. Biol., 227 (2004)369-379.

[27] Q. Zhu, Y.T. Hao, J.Q. Ma, S.C. Yu, Y. Wang, Surveillance of Hand, Foot, and
Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 24(4),
(2011) 349-356.

[28] F. Liljeros, C.R. Edling, L.A. Nunes Amaral, Sexual networks: implications for
the transmission of sexually transmitted infections, Microb. Infect., 5(2) (2003)
189-196.

[29] V. Capasso, G. Serio, A generalization of the Kermack-Mackendric deterministic
model, Math. Biosci., 42 (1978) 43-61.

[30] W.M. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the
behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986) 187-204.

[31] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone
incidence rate, Math. Biosci., 208(2) (2007) 419-429.

[32] P. van den Driessche, J. Watmough, A simple SIS epidemic model with a
backward bifurcation, J. Math. Biol., 40 (2000) 525-540.

[33] L. Wu, Z. Feng, Homoclinic bifurcation in an SIQRmodel for childhood diseases,
J. Differ. Equations, 168 (2000), 150-167.

[34] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear
incidence rate, J. Differ. Equations, 188(1) (2003) 135-163.

[35] R.P. Sigdel, C.C. McCluskey, Global stability for an SEI model of infectious
disease with immigration, Appl. Math. Comput., 243 (2014) 684-689.

[36] Y. Enatsu and Y. Nakata, Stability and bifurcation analysis of epidemic models
with saturated incidence rates: An application to a nonmonotone incidence rate,
Math. Biosci. Eng., 11 (2014) 785-805.

[37] P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global
asymptotic stability for an infection-age model, Appl. Anal., 89 (2010) 1109-
1140.

[38] Y. Chen, J. Yang, F. Zhang, The global stability of an SIRS model with infection
age, Math. Biosci. Eng., 11 (2014) 449-469.

[39] C.C. McCluskey, Global stability for an SIR epidemic model with delay and
nonlinear incidence, Nonlinear Anal. Real World Appl., 11 (2010) 3106-3109.

21



[40] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR
epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010)
1192-1207.

[41] M. Iannelli, Mathematical Theory of Age-structured Population Dynamics,
in Applied Mathematics Monographs 7, comitato Nazionale per le Scienze
Matematiche, Consiglio Nazionale delle Ricerche (C.N.R.), Giardini, Pisa, 1995.

[42] P. Magal, Compact attrators for time periodic age-structured population
models, Electron. J. Differ. Equations, 65 (2001) 1-35.

[43] C.J. Browne, S.S. Plyugin, Global analysis of age-structured within-host virus
model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) 1999-2017.

[44] W.M. Hirsch, H. Hanisch, J.P. Gabriel, Differential equation models of some
parasitic infections: Methods for the study of asymptotic behavior, Comm. Pure
Appl. Math., 38 (1985) 733-753.

[45] H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persistence,
AMS, Providence, 2011.

[46] J.K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI,
1988.

[47] K. Yasida, Functional Analysis, 2nd ed., Berlin-Heidelberg, New York, Springer-
Verlag, 1968.

[48] H.R. Thieme, Uniform persistence and permanence for non-autonomous
semiflows in population biology, Math. Biosci., 166(2000) 173-201.

[49] http://www.cdc.gov/chickenpox/about/overview.html.

[50] S.S. Chaves, P. Gargiullo,J.X. Zhang,R. Civen,D. Guris,L. Mascola, J.F.
Seward, Loss of vaccine-induced immunity to varicella over time, N Engl J
Med., 356(11) (2007) 1121-1129.

[51] http://data.worldbank.org/indicator/SP.DYN.CBRT.IN.

22


