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Abstract

A multi-strain model of a vector-borne disease with distributed delay in the vector and the
host is investigated. It is shown that if the reproduction number of the model Ry < 1, the unique
disease-free equilibrium is globally asymptotically stable. Without loss of generality strain one
is assumed to have the largest reproduction number. In this case, the dominance equilibrium
of strain one is shown to be locally stable. The basic reproduction number for a strain i (R})
is written as a product of the reproduction number of the vector (R) and the reproduction
number of the host (R}l), that is R} = R}LR; Competitive exclusion principle is derived under
the somewhat stronger condition that if strain one maximizes both the reproduction number of
the host Ri < R}, i # 1 and the reproduction number of the vector R! < R., i # 1, strain

one dominance equilibrium is globally asymptotically stable.
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1 Introduction

Vector-borne diseases are among the most complex infectious diseases to understand, model and
control. Their complexity stems from the multi-staged life cycle of the vector, often influenced

by the climate, the intricate evolution of the parasite, developing both in the vector and the
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host, and the fact that most vector-borne diseases have humans as well as non-human species as
hosts. Many factors make controlling vector-borne diseases particularly challenging. This article
focuses on one particular aspect, namely the evolution of the parasite. Parasites of vector-borne
diseases exist in several species or serotypes. For instance, four species of the Plasmodium parasite
cause malaria: P. falciparum, P. ovale, P. vivax, and P.malariae. Four serotypes of the dengue
fever virus cause dengue. However, within these large classification groups, each pathogen can
be antigenically diverse and may exist in multiple variants, called strains. Multi-strain models
for vector-borne diseases have been considered before (see [5,7,8] and the references therein) but
in most cases strains are assumed to interact through cross-immunity or other mechanism which
generates coexistence.

For directly transmitted infections it is well known that in the simplest case when no trade off
mechanism is present [22], the only possible outcome of the competition of n strains is competitive
exclusion. In this case, the strain with the largest reproduction number outcompetes and eliminates
the remaining strains, a result first established by Bremermann and Thieme [2]. In this article,
we address the question whether this principle extends to vector-borne diseases. Because the
dynamics of the vector is subjected to a significant influence from the incubation period of the
pathogen within the vector, called extrinsic incubation period, and the incubation period within
the host, called intrinsic incubation period, we incorporate distributed delay both in the vector
and the host to account for these delays. Natural delays occurring in the dynamics of vector-
borne diseases are typically incorporated as discrete delays or age-structure. As such they lead to
backward bifurcation, oscillations [1,6,15,16,28,34] and even chaos [23].

In this article, we consider the outcome of the competition in the resulting multi-strain vector-
borne model with distributed delay. Originally our hypothesis was that, analogously to directly
transmitted diseases, the strain with the maximal reproduction number eliminates all the rest.
However, the analysis revealed that we need a stronger condition for competitive dominance in
the case of vector-borne diseases. In particular, we notice that the basic reproduction number for
a strain i (RY) is written as a product of the reproduction number of the vector (R!) and the
reproduction number of the host (R}), that is Rf) = R} R’. We find that for vector-borne diseases
the competitive exclusion principle can be formulated as follows: The strain that mazrimizes both
the vector and the human reproduction numbers dominates in the population. Such a strain will also
have an overall maximal reproduction number. We should mention, however, that our competitive
exclusion principle for vector-borne diseases is not complete. It would not give the outcome of
the competition of the strains when different strains maximize the vector R, and the human Ry,
reproduction numbers. For instance, if strain one maximizes the human reproduction number, that
is R} > R: for all i # 1, but strain two maximizes the vector reproduction number, R? > R for
all ¢ # 2, then our competitive exclusion principle does not imply which strain will dominate in
the population. We hypothesize that the strain with the maximal basic reproduction number will
dominate but different approach than the one we have applied here may be necessary to establish

this result.



This paper is structured as follows. In section 2, we introduce a multi-strain version of the
vector-borne disease model with two distributed delays. In section 3, we discuss the equilibria
and establish their local stabilities. In section 4, we establish global stability of the disease-free
equilibrium. In section 5, we verify competitive exclusion principle under the assumption that
strain one maximizes both the human and the vector reproduction numbers. Section 6 summarizes

our results.

2 Model formulation

As in the introduction, we assume the pathogen causes the vector-host transmission disease exis-
tence through multiple strains. The multi-strain model of the vector-host interaction divides the
vector population under consideration into the following groups: susceptible vectors, denoted by
Sy, and infected vectors, which are divided into n subgroups: those infected with a strain ¢, de-

noted by I,,,i = 1,2,--- ,n. If we let N,(¢) be the total number of vectors at time ¢, we have
n

Ny(t) = Sy(t) + > L, (t). Let Np(t) be the density of the total host population at time ¢, which is
i=1

composed of thelﬁumber of susceptible individuals Sp,(t), the number of infective individuals I, (t)
with a strain 4, ¢ = 1,2,--- ,n, and the number of recovered or immune individuals Rp(t). For the
disease transmission, it is assumed that a susceptible host can receive the infection through contact
with a strain ¢ infective mosquitoes. Similarly, a susceptible mosquito can receive the infection
through contact with strain ¢ infectious human. Furthermore, it is assumed that a susceptible
host and susceptible mosquito become exposed when they receive the infection from an infective
individual and remain exposed for some period before becoming infectious.

Let A and A, be the birth rate of the host population and the vectors, respectively. b is
the average rate of biting on hosts by a single mosquito (number of bites per unit time), and the
hosts are always sufficient in abundance; so that it is reasonable to assume that the biting rate b
is constant. Thus, the number of bites on hosts per unit time per host is Nih. If 5,’” is probability
of infected bites with strain ¢ on host individuals that produce an infection, Nihﬁ,’“ShIw is the
infection force of the interaction between the infected mosquitos with strain ¢ infected vectors I,
and the susceptible host Sj. As pointed out in the introduction, there exists extrinsic and intrinsic
incubation period in mosquitos and hosts, respectively. Let 7 be the extrinsic incubation period
of the parasite in the vector population. Since only a proportion of vectors survive this incubation
period, the force of infection on host individuals at the present time ¢ is Nihﬁ;zz Sp(t) L, (t —T)e HiT,
where (1, is the death rate of the vectors infected with strain ¢. In reality, however, the incubation
period is not a number but an interval during which the maturation of the parasite occurs in

different hosts and vectors. Hence, we assume that 7 is a distributed parameter(see [3,19]). As
b i

a result, the force of infection becomes Fﬁl/n Sh(t)/ Gh, (1)L, (t — T)e " "dr where the kernel
h 0

function g;” (1) represents the distribution of the infectivity of the parasites in vector population
where the time taken to become infectious is 7.

Similarly, let ;1;, be death rate of host individuals, and oy, be recovery rate of infected host indi-
viduals with strain 4. 5{% is probability of a susceptible vector bites on the infective host individuals

with strain ¢ that produce an infection. Based on the above facts and that the average total rate

b h
of contacts between host and vectors must be conserved [27, Pgg7], Fhﬁ{,lsv(t)/ G, (T) I, (t —
0



7)67(“h+ahi)7d7' gives the incidence of new cases of infection for the vector at the present time
t. The kernel function g, (7) expresses the infectivity on susceptible vectors during the intrinsic
incubation period. Here, 7,, 7, are, respectively, the upper limits of the parasites incubation peri-
ods in hosts and vectors. The terms e #»7, e~ ntan)T account for the probability of survival as
infectious of host individuals during the intrinsic incubation period.

In more general sense, there would be possibility that the removed population is alive and bitten
again by vectors, or multiple infectious bites on infected people may affect the disease progression.
For simplicity, however, we assume that the recovered population will no longer be involved in
the transmission process, and multiple infectious bites on infected hosts do not play a role in the
progression of the disease. Under the above assumption, our multi-strain model with extrinsic and

intrinsic distributed incubation periods can be formulated as follows:

dSv(t) _ ¢ / bSv(t) ™ / —(pntan, )T

=y - Zlﬁ SAD /0 g (7)In, (t = T)e Tdr — puSy(t),

Th

dl,,(t) _ ,3:) bS,(t) / g;,(T)Ih.(t _ T)e*(ﬂthahi)TdT — ol (), i=1,--- ,n,

dt v Nh 0 v ¢ ¢
dSp(t) bSh(t) -

ok =A, - Zﬁh () /0 g;li (7)1, (t — T)e MiTdr — ppSp(t), (2.1)
dIp,(t) / v(t) /TU / - ;
Ghi\Y) I (+— Bos T g o —1....

o B, Nul) o Gh, (7)1, (t — T)e dr — (pn + ap)Ip, (), i =1,--- ,n,

d]th(t) — Zahifhi (t) — Mth(t).

Model (2.1) is equipped with the following initial conditions:

SU(O):SUO’ Uz( ) ¢U( ) (O)ZShO’ Ihz(a):whz(a)’ Rh(o):Rhoa Z:1, ,
oy >0, Spy >0, Rpy > 0, e, (8) > 0, 6, (6) >0, 0 [=h,0], h = max{r, 7). (2.2)

All parameters in model (2.1) are nonnegative. We define the following space of functions

X = R+><H —h, 0] R+)><R+><H [—h,0],R*) x RY,
i=1
where, the Banach space C(|—h,0],R) of continuous functions mapping the interval [—h, 0] into
R is equipped with the sup-norm ||| = sup_j,<y<( |[#(0)|. By the standard theory of functional
differential equations [11], it can be verified that solutions of (2.1) with nonnegative initial conditions
(2.2) has a unique solution (S, (t), Iy, (t), Su(t), In,(t), Ry (t)) which remains nonnegative for all ¢ > 0.
Moreover, we can show the solutions of system (2.1) are ultimately uniformly bounded in X. In

fact, it follows from the total vector population size N, (t) satisfying N, (t) = A, — 1, Ny (t) that

A
Ny(t) = —, as t — oo.
v

Similarly, we have

A
Np(t) — 2R as t— oo
Hh



So, it is assumed that the total vector and host population sizes N, (t), N (t) are asymptotically
constant.
Let

Q:{(SQMIUU'”,Ivn,Shthly : Ihn €|S +ZIU7' S +ZIh }

It is easy to see that the set {2 is positively invariant for system (2.1). We note that Ry (t) can be
removed from the equations of system (2.1), it is sufficient to analyze the dynamical behavior of

solutions to system (2.1) without the equation of Ry (t). For simplicity, we introduce the following

notation.
b b — o, T ] / —(ppt+ap )T
/81)1' = Fh/ﬁyia 5h¢ = Fhﬂhﬁ ghi(T) =e ¢ gvi(T)a gvi(T) = gvi(T)e =12, ,n.

Furthermore, we impose the following assumptions:

Assumptions 1:
1. It is assumed that g,,(7), and g, (7) are continuous on [0,h], i = 1,2,--- ,n;
2. gy, (1), and gy, (7) satisfy

Th Tov
/ Yo, (T)dT = Qu;, / 9n; (T)dT = Qh,;, 1=1,2,--,m;
0 0

3. gv;(1) >0, gp(r)>0for0<7<h, i=1,2--- n Hereh =Ty, 7, respectively.

In the next section, we investigate the dynamics of following system

dsv(t) = Av - ZIBUiS’l}(t) /OTh Gv; (T)Im (t - T)dT - 'u'vSv(t)’
=1

%}(t) = ,Bvisv(t) /’Th gvi(T)Ihi (75 — T)dT — MvIvi(t), i = 1, cm.
. (2.3)
dSC/;t(t) =Ap— ;ﬁhish(t)/o gn, (T) L, (t — T)dT — ppSp(t),
dIfCle(t) = ,Bhish(t) /TU 9h; (T)Ivi(t - T)d’T — (,Uh + Oéhi)Ihi(t), 1= 1, cee L.
¢ 0

From the above discussion, we have always the following proposition for system (2.3)

Proposition 2.1 There ezists a unique solution (Sy(t), L, (t), S(t), In,(t)) of system (2.3) with
initial conditions (2.2). This solution is nonnegative for all t > 0. Moreover, all the solutions of

system (2.8) are ultimately uniformly bounded in Q.

3  Equilibria and local stability

System (2.1) always has a unique disease-free equilibrium &y, which is given by

A, A
50 = <_707 _h70>
Hy Hh



where 0 = (0,---,0) is a n— dimensional vector of zeroes.
According to the definition of the basic reproduction number [30], which is the expected number
of secondary cases produced in an entirely susceptible population by a typical infected individual

during its entire infectious period, we define the reproduction number of strain i:

Ri o anahiﬂhi/BUiAhAU -
0= 7, 1=1,---,n.
(kn + ang) pin (po)

We notice that the disease cycle in vector-borne disease is consists of two transmission path-

ways: human-to-vector transmission and vector-to-human transmission. Each of these pathways
is characterized with its own reproductive number. The reproductive number of human-to-vector
transmission of strain ¢ is given by
Rz _ aviﬁviAv
pio(pn + an,)
Similarly, the reproduction number of the vector-to-human pathway of strain ¢ is given by
an, Bn; An
Foh oy

Obviously, the reproduction number for a strain ¢ in system (2.3) is a product of the human and

R = L i=1,2,--,n.

vector reproduction numbers:
L= RiR),
We define a reproduction number of the whole system (2.3)
Ro = max{R{, RE,--- , R4}
By direct calculation, we show that for each 4, in system (2.3), there is a corresponding strain-i
equilibrium &; given by

51:(5;707 70 I* 07 707S]>;i707"' 707[;;2'707.” 70)7

s Lo

where the non-zero components I and I, », are in position ¢+1 and n+j+1, respectively. Moreover,

equilibrium &; exists if and only if 7?,6 > 1. The nonzero components of the equilibrium &; are given

by

_ AU S* . Ath(auiﬁviIﬁ: + MU)
vi aviﬁvilzi + [y Pk I;;l (ahiavilﬁhi 5UiAU + IBUz’ :U’U:uh) + Mhlu% ’
= h;

vi ,va(aviﬁvi I;;z + ,Um) ’ B ﬁhiﬁvi ahiaviAv + aviﬁviﬂhﬂv .

Now we investigate the stability of the equilibria in system (2.3), let us first linearizing system

(2.3) at disease-free equilibrium &. In particular, let S, (t) = % + zy(t), I, (t) = yu,(t), Sn(t) =
%—{—xh(t), I,,(t) = yn,(t). We look for exponential solutions (z,(t) = T,e™, yy, (t) = Gu, e, 24 (t) =

fhe)‘t,yhi(t) = ghie’\t) of the time-dependent system for the perturbations. Thus, we obtain the

following eigenvalue problem

(

Ay @ \

— v — — —

)\xv = - Z /Bviym / Gu; (T)e Tdr — HoLy,
Ho i 0

A, T (3.1)
ATp = —— Z/Bhlyvi/ g, (T)e T dT — pnh,
Hr 53 0
= An ™ —AT ~
Ani = Yoo B | - gns()e " dr = (kh + n; )Un;
\



Solving the linear system (3.1), it is easy to obtain that —pu,, —pup are two negative characteristic

roots of system (2.3) and other characteristic roots (n—2) are determined by the following equation

AvAhﬂvi Bhi Qoy; Ap;
Hoyllh

[+ p10) A+ a4+ ) — /O Y g (r)e M dr /O Y (D A2 — 0. (3.2)

We now show that all characteristic roots in (2.6) have negative real part. Note that Eq (3.2) is
continuous functions of 7, and there is a continuity in the eigenvalues for 7 > 0. Using Rouche’s
Theorem [4, Theorem 9.17.4], we know that given the eigenvalues were all negative in the non-delay
case, introducing a delay can cause a change in stability if and only if for some value of 7, there
exists a purely imaginary root of equation (3.2), i.e., a pair of eigenvalues must cross the imaginary

axis if they are to become positive. For the equation (3.2), we have the following lemma:

Lemma 3.1 If Ry = max{R},---, R4} < 1, the characteristic equation (3.2) has no purely

1maginary roots.

Proof. Assume the contrary. Set

By Ay, [ [T .
Q1) = )\2+(,uh+ozhi—i—uy))\—l—uy(uh—i—ahi)—%/ gn,;(T)e A dT/ gu,; (T)e Mdr = 0.
v 0 0
(3.3)

To proceed, we first consider equation (3.3) with 7 = 0. It is easy to verify that all roots in Eq.
(3.3) have negative real parts for R§ < 1 and 7 = 0. For 7 > 0, we show that Q(\,7) = 0 has no

purely imaginary roots. Set

) Th
B = [ g ar [T g,
0 0
Fy(N) = A2 4+ Aun + oy + pn) + fro(pin + an,),

IBhi 5’[}2' AUA/’L
Hn by

Py =
Let A =iw (w > 0) be a root of equation (3.3). Thus,we have

v 4 Th .
F (iw, 1) :/ ghi(T)e“"TdT/ G, (T)e™ T dr.
0 0

Thus, we have |Fj(iw,7)| < ap,ay,. From equation (3.3), we have Fy(iw) — F3F(iw,7) = 0.

Therefore, we have

Fg(iw)
F3

That is, [F(iw)| < ap,a.,|F3|. Thus, we have

= |Fy(iw, 7)) < an,au,.

(o (pn + on,) — W% + (i + a4 po)’w® = wh + [(un + an,)? + p2lw? + p2(n + on,)?

2 2 g 2'<AhAv>2. (3.4)

It follows from (3.4) that we obtain
Wt [(pn + @)+ pi)w® + g+ an,)* (1= (Rp)?) < 0. (3.5)

Obviously, if Ry < 1,4 = 1,2,--- ,n, it is impossible for (3.5) to hold. Hence, the linearized

system (3.2) can not have any roots with positive real part.



Therefore, from the above discussion, we have established the following result:

Theorem 3.1 If Rp = max{R}, - ,RA} < 1, then the disease-free equilibrium &y of system (2.3)
is locally asymptotically stable. If Rg > 1, it is unstable.

Now we shall establish the local stability of the single-strain equilibrium &; for a fixed i. We
have the following result
Theorem 3.2 Assume for a fized i, RY > 1. IfRé < R for all j # i, then the strain-i equilibrium
& s locally asymptotically stable. Otherwise, if there exists ko such Ry, > R, then the single-strain
equilibrium &; is unstable.
Proof. To simplify the presentation, without loss of generality, we shall assume that ¢ = 1,
i.e.,Ré > 1, and R% < 7?,(1], for i = 2,--- ,n. We linearize system (2.3) around the strain-one
equilibrium &;. Let Sy(t) = Sy + 2, (), Loy (t) = Iy, + yu, (1), Sult) = Sk, + xp, (1), In, (t) =
I+ yn (), L (t) = v, (t), In,(t) = yn,(t), for i = 2,--- ,n. We obtain the following linearized

system

dl’v t * h * * - h
7d1t( ) = —fu, Sy, /0 9oy (T)Yny (t = 7)dT — Buy Iy @y 0, () — S5, Z/O Bo. 90, (T)yn, (t — T)dT
i=2
—HyTyy (t)7
dyy, (t « [T .
dlt( ) = 5111 Svl /0 9y (T)yhl (t - T)dT + 5111 Ihlalevl (t) = Mol (t)’
dy,, (t . [ .
# - 51),'501 /0 g’U,’ (T)yfh; (t - T)dT - nyvi (t)7 1= 27 e, N,
don, (1) _ s " t—1)d I n_s S " t—7)d
T = _IBh1 h1 0 9hy (T)yvl( - T) T = 5/11 vlah1xh1( ) — P Z 0 /Bhighi(T)yvi( - T) T
=2
_thhl (t)a
dyn, (t « [T «
dlt( ) = 5h15h1 /0 9h, (T)yvl (t - T)dT + 5h1[h1ah1xh1 (t) - (:U'h + ahl)yhl (t)v
dyy,. (t R .
yhth() = 5h¢Sh1 /0 9h,; (T)yvi (t - T)dT - (:U'h + ahi)yhi(t)7 1=2,-,n.
(3.6)
We notice that the linearized equations for strains &k = 2,3,--- ,n can separate from the whole

system. Thus, by direct calculation, we obtain the following characteristic equations

Ty

Th
(A + pn + an ) (N + o) = Bu; B, Sh, Sy, / 9o, (T)BATdT/ gn.(T)edr = 0. (3.7)
0 0

Similar to proof in Lemma 3.1, it is easy to show that if Rf) < Ré,z' =2,3,---,n, Eq (3.7) has no
purely imaginary roots and all eigenvalues of these equations have negative real parts.

Therefore, the stability of £ depends on the eigenvalue of the following system
Th
)\1'1)1 = _ﬂm Sslym / Guy (T)eiATdT - /81)1 Ay I;Lklxvl — MyZoyy
0
Th
Ayvl = ,Bvl S:;lyhl / gv1 (T)eiATdT + /82)1 avl I;,:lﬂfvl - ,vavl,
0

Ty (38)
)\,Ihl = _5/115]);1?/1)1 / ghl (T)B_ATdT - /Bhlahl-[;lxhl - //vahp
0

Tv
)\ghl = Bhlsf*zlyvl / 9hy (T)e_ATdT + IBhl ahII’ltlxhl - (:U'h + ahl)yhl'
0

8



By looking for exponential solutions of (3.8), we obtain the following the characteristic equation

()\ + pp + Oéhl)()‘ + o + aUIIBUIIZil)(}\ + ph ahlﬂhll’ltl)
R o L[ e (3.9)
L R R R R R

Now we show that Eq (3.9) has no purely imaginary roots. In fact, we divide both sides by (A+ up),

then we set . .
def (A @y, Boy Ij 4 po) (N + pon, 4 any Bry L) (N + pn + auy)

LHS =
(A4 pn)

de * AU * Yo T o T
RHS :f 5h1/81)15h1 (M_ - Iv1> / € A 9hq (T)dT/ € A Gy (T)dT' (3'10)
0 0

(2

If A is a root with A > 0, it follows from (3.10) that

* * A * * *
|LHS| > (avlﬁvllhl + Mv)(am + :uh)’ |RHS| < ah1av1/8h1/8015h1(1u_v - Iv) = ahlavlﬁhllﬁvlshlsvl'
v

Using the equilibrium point (S} , I , SF , I ) satisfies the corresponding equation, we obtain

v1? v Mhy T
. . hy Py Sp, L
’LHS‘ > (avlﬂmjhl + /’[/U)(ahl + :U'h) = (av1ﬂv1lh1 + Mv)%
h1
ah, B, St oy Boy Sy 17
:(amﬂmﬁil +MU) 11*1 L
h1 Ho

> apy oy Bhy Boy Shy Sy, > [RHS.

It is a contradiction. Hence, using Rouche’s Theorem [4, Theorem 9.17.4], we only show that Eq.

(3.9) can not have any roots with positive real part. Therefore, the strain-one equilibrium & is

locally asymptotically stable for Ré > 1 and R% < Ré,i =2,3,--- ,n. Otherwise & is unstable.
O

4  Global stability of the disease-free equilibrium

In the previous section, we have shown that equilibria are locally stable, i.e. given the conditions
on the parameters, if the initial conditions are close enough to the equilibrium, the solution will
converge to that equilibrium. In this section, our objective is to extend these results to global
results. Now we first establish the global stability of the disease-free equilibrium. We have the

following result:

Theorem 4.1 If Rg = max{??,(l], -~ RE} < 1, the disease-free equilibrium & is globally asymptot-
ical stable.

Proof From the first and the third equations of system (2.3), we obtain
SI(t) < Ay — pSu(t),  Sh(t) < Ap — unSh(t). (4.1)
It follows from the above inequalities that

(%

A
limsup S, (t) < —, limsup Sp(t) < —h
t

. 4.2
Moy t Hh ( )



Thus, from system (2.3) and inequalities (4.2), we have

dl, (t A, [T
ul) 5%—”/ oiIn; (t = T)dT — po L, (¢),
dt My Jo (4 3)
dIn, (t Ay [T , :
A0 < ﬁhl—h/ Gn; Lo, (t = T)dT — (pop, + ap, ) I, (), i=1,--- ,n.
dt ph Jo
From (4.3), we obtain that
A t Th
Iw (t) < e_uvtlvi (0) + 51}2_1}/ G_MS/ Gv; (T)Ihi(s - T)deS'
Hv Jo 0
Thus, from the above expression, for ¢ = 1,--- ,n, we have
. Ny [ s o Ay
limsup I, () < By, a0, — e M3ds limsup Iy, (t) < By,ay, —5 limsup Ip,,(t). (4.4)
t Mo Jo t My t
Similarly, for ¢ = 1,--- ,n we also have
. An [ _(untan)s g 1: Ap 1 .
limsup Ip, (t) < ap,Bn, — e WhTn )3 ds limsup I, (t) < ap,Br, — ——— limsup I,,, (t).
t Hh Jo t Hh fh + Qp; ot
(4.5)
From (4.4) and (4.5), we have
li I, (t) < 3 A”ﬁ An_ 1y I,,(t) < Ro i I, (t) (4.6)
imsup I, Gy Oy, By, —= B, — ———— limsup I, imsup I, (t). .
tpvz —vzhzvzlu% hl,ufh,ufh_'_ahl tpvz — 0 tpvz
Since Ry < 1 and I,,,(t),7 =1,--- ,n is bounded, it follows from the above expression that

limsup I,,(t) =0, i=1,--- ,n.
t

Similarly, from (4.5), we have
limsup Ip,(t) =0, i=1,--- ,n.
t

Therefore, (I, (), In,(t)) — (0,0) as t — co. From the above discussion and Theorem 2.1, we can
conclude that the disease-free equilibrium Fy is globally asymptotically stable for Rg < 1 . This
completes the proof of Theorem 4.1. O

5 Principle of competitive exclusion

For directly transmitted diseases, Bremermann and Thieme [2] establish that in the simplest sce-
nario when competitive exclusion is the only outcome, the strain with the largest reproduction
number persists, while the remaining strains die out. While extending the Bremermann and Thieme
[2] result to vector-borne diseases remains an open problem (in the case of vector-borne diseases,
we seem to need a stronger condition for competitive exclusion), we were able to show competi-
tive exclusion under the somewhat stronger condition that the winning strain maximizes both the
human and the vector reproduction numbers, not just the overall reproduction number.
Mathematically speaking, establishing the competitive exclusion principle means establishing
the global stability of the strain one equilibrium &;. From Theorem 2.2, we obtain that under

some conditions the equilibrium & is locally asymptotically stable. In this section, we are ready to
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establish the global stability of the strain one equilibrium &; by constructing Lyapunov functional,
similar to the one used in [9,10,13,14,18,20,21,24,25,31,32]. We note that for constructing Lyapunov
function, such as f(z) = x — 1 —Inx, here f(z) is not defined if x = 0. Thus, in order to construct
our Lyapunov function, we must first show that when Ry > 1, the disease persist in the form of
strain one. Now we apply the persistence theory by Hale and Waltmann [12] for infinite-dimensional
systems to show the uniform persistence of strain one in system (2.3). The methods and techniques
have been recently employed by other authors (see [26,29,33]).

To proceed, we introduce the following notation and terminology. Let X be a complete metric
space with metric d. Suppose that T is a continuous semiflow on X, that is, a continuous mapping
T :]0,00) x X — X with the following properties:

Tt OTs = Tt+s,t55 > O,TO('I) =T,T e X?

where T; denotes the mapping from X to X given by Ti(x) = T'(¢t,x). The distance d(z,Y") of a
point € X to a subset Y of X is defined by

d(z,Y) = inf d(z,y).

Recall that the positive orbit v (x) through z is defined as v"(x) = Upo{T(t)z}, and its
w—limit set is w(x) = ﬂszom- Define by W#(FE) the strong stable set of a compact
invariant set F as W9(E) ={z: z € X,w(x) # ¢,w(z) C E}. Denote by T'(t),t > 0, the family of
solution operators corresponding to (2.3). The following assumption must be satisfied

(H1): Let Xo € X, X° C X,XoN X" = (. Xq is open and dense in X. Moreover, the
Co-semigroup T'(t) on X satisfies

T(t): Xo — Xo,

T(t): X° — X°

Let Ty(t) = T'(t)| Xo and Ay be the global attractor for T,(¢). The following result is discussed
in [12, Theorem 4.2]:

Lemma 5.1 Suppose that T'(t) satisfies (H1) and the following conditions:
(i) There is a to > 0 such that T'(t) is compact for t > to;
(ii) T'(t) is point dissipative in X ;
(iii) A, = MNeca, 2(z) is isolated and has an acyclic covering
M, where
M = {My, My, -+, My};

(v) W(M;))NXy=0 fori=1,2,--- ,n.
Then T'(t) is a uniform repeller with respect to Xy, i.e., there is an n > 0 such that for any
r € X, liminf, ,, o d(T(t), Xo) > n.

We use the above lemma to establish the following result:

Theorem 5.1 Assume that Rg > 1. Then the disease perisist in the population. If R(l) > 1 and

strains two to n approach zero, that is

hmsup[hl(t) :O’ hmsup[vl(t) :07 2:273’ M.

t—o00 t—o00
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then, for all initial conditions that belong to g, strain one can persists. In particular, there exists
a constant v > 0 such that

lim mf I, (t) > 7, limtirifm In, (t) > 7.

t—+

Proof. Under the assumptions of Theorem 5.1, system has two nonnegative equilibrium & and &;.
Let ¢ be a vector of initial conditions for system (2.1). We assume the function in the vector ¢ are
continuous. Let
X = R+><H —h, 0] R+)><R+><H [—h,0],R"),
i=1
where, the Banach space C([—h,0],R") of continuous functions mapping the interval [—h,0] into
R* equipped with the sup-norm |[¢|| = sup_,<g<q [¢(6)]. Set

X0 = {$ € X 110, (0) > 0,6, (6) > 0,464,(0) = 0,445,(0) = 0,0 < 0,i =2, n},
Xo={op€ X :1h,(0) =0,0p,,(0) =0,0 <0,i=1,---n.}

Obviously, we have X = X°|J Xq. It suffices to show that there exists an i > 0 such that for any
solution u; of system (2.3) initiating from X©, liminf; ,o, d(Uz, Xo) > . To this end, we have to
verity below that the conditions of Lemma 5.1 are satisfied.

First, it follows that both X and X© are positively invariant. Clearly, 0Xj is relatively closed
in X. It is easy to verify that system (2.3) is point dissipative. Set

My = {¢ € X : T(t)¢ satisfies system (2.3) and T'(t)¢p € 0X,Vt > 0.}
Ap,

We now claim that My = {(—, 0,—,0)}, where 0 = (0,---,0) is a n— dimensional vector of

zeroes. Assuming ¢ € My it suffices to show that I, (t)=1Ip,(t) =0, i=1,--- ,n, Vt > 0. Assume

that on the contrary, there exists ¢ty > 0 such that (i) for some strain-iy, we have I% (to) > 0 while

In,(to) = 0,4 =1,--- ,nor (i) for some strain-jo, we have Iy, (to) > 0 while I, (to) = 0,i=1,--- ,n
In case (i), from the third equation of (2.3), we have

o, (Blimto = Br, Snlto) /0 Ghy (T) Ly (0 — T)d7 > 0.

Hence, there is a sufficiently small constant ¢y such that [ hig (t) > 0,Vt € (to,to+0). On the other
hand, from I, (to) > 0, we obtain a positive £1 (0 < &1 < g¢) such that Ij,, () > 0,Vt € (to,to+e1).
Thus, we obtain I, (t) >0, I, (t) > 0,V € (to,to+¢). Thisis in contradiction with the assumption
that (Sy(t), L, (t), Sp(t), In,(t )) € My, vVt > 0. Similarly, we can show the case (ii) does not hold.
Let Q2 = [ ey, w(), where Y3 is the global attractor of T'(t) restricted to 0X. We now show
that Qo = {&}. In fact, it follows from Qo C My and the first and third equations of (2.3). we

A
have lim;_s 4 o0 Sp(t) = —, limy_s 1 o0 Sy(t) = —. Thus, {&} is the isolated invariant set in X.
i

Finally we need to show that W*(&) N X° =

Assume that on contrary. Thus, there exists a solution U; € X° such that

A A

lim S,(t) = =2, lim Sy(t) = =2

t——+o00 My t—+o0 jurs
t_l)linoolw()—O, tginoofhi(t):o.z:l,---,n
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Hence, for each € > 0 there exists a time Ty such that for each ¢ > Tj we have
L,(t) <e, Iy(t)<e i=1,---,n.

By shifting the dynamical system, we may assume that the above inequalities are satisfied for ¢ > 0.

From the first and third equations of (2.3) and taking into account the above inequalities, we have

ds, (1)
dt

> M= Y S — mSu®), D 2 A S gt~ (0. (1)

i=1 i=1

Therefore, from (5.1), we have

A

lim sup S,(¢t) > lim inf S,(t) > nv
tﬁ};)o ®) t—o0 ®) Ho + Zizl Bu; v, €

Ay,

lim sup Si(t) > lim inf Sy(¢) > .
t—o00 2 AL 5 pin + > Brane
Thus, there exists a 17 > Ty such that, for any ¢ > 77, and using the second equation of system

(2.3) and the inequality above, we have

a1, (0 Bl
> n
dt = py+ Z@':1 /81)1- Ay, €

/0 " (VI (= P — o (2). (5.2)

Similarly, there exists a T > Tj, such that for any ¢t > T, we have

dIp,(t) S Bh; An
dt = pn D20 Briane

Tv
/ gn, ()1, (t — T)dT — (pp, + ap, ) In, (t). (5.3)
0
By the mean value theorem for integrals, we know that for any time ¢, there is a & such that
Th
/ Gu; (M) I, (t — T)dT = ay, I, (&), for t—h <& <t (5.4)
0

Therefore, from (5.2)-(5.4), we obtain

dIUi (t) > Qo 51},’ Av

dt o lu’U + Z?:l B’Uz’anE
dIp,(t) S Bh; An

dt T upt+ Z?:l 5h¢ah¢€

Apy Aoy /Bhl 51}1 AhAv

. (ko + any )i
€ in such a way that we have

Iy, (&) — poly, (1),
(5.5)

A”gmwﬂm@—7m7—0%+amﬂm@»

Notice that R1 =

> 1. Thus, we may assume we have chosen sufficiently small

Apq Ay Bhl /81)1 AhAv

1 . > 1. 5.6
(1n + oy ) (i + D25y Bhyan€) (o + D5 Bu; @, €) b (5:6)

Since (I, (t), In,(t)) — (0,0),i = 1,--- ,n as t — oo, then by a standard comparison argument,
the solution (., (t),yn,(t)) of the following equation

d:l?v.(t) Av
- = Qy; Py Zn i — o, (1),
dt a ’LIB K3 ,Uﬂu + Z:1 5viavi€yhz (gt) /J, z ’L( )
dyn, (t) A T 5-1)
Yh, h v .
L = ) . Vs t — d _— . . t 3 == 1, Tty .
i Bh, g Z?ﬁhiahiﬁ/o Gn; (7)o, (t — T)dT — (1 + n)yn, (1), n
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with initial conditions x,o(11) = I, (T1), yno(T2) = Ip,(T2) has to converge to (0,0) as well for
inequality (5.6). On the other hand, for i =1,---  n, if we set,

B An
lu’U(lUJh + Z?:l 5hiahi€

Obviously, it follows from the solution (x,(t),yn,(t)) — (0,0) that W;(t) — 0 as t — oo. In
particular, we have Wi (t) — 0 as t — co. However, by directly calculating the derivative in (5.8),

Wi(t) =

) /OTU G (T) Ty, (t — T)dT + yp, (t) + (un + ()cm)/g yn,(s)ds, (5.8)

we obtain

dWZ (t) B |: ap, aviﬁhiﬁviAhAv
dt (Mh + Z?:1 5hiahi6) (:uv + Z?zl IBW avie)

Thus, for the above expression (5.9), if we consider ¢ = 1 and use (5.6), then we have Wy (t) — oo

- ah»] y(E). (5.9)

as t — oo. This is a contradiction.
Therefore, we have W$(&) (| X° = (). This completes the proof of Theorem 5.1. O

Now we are able to state our main result.

Theorem 5.2 Assume that Rq > 1, R{L < R}L and RS < RL for j =2,--- ,n. Then, equilibrium
&1 is globally asymptotically stable.

Proof. Because of the complexity of the expressions, we define the Lyapunov functional in compo-
nents and take the derivative of each component separately. Set f(z) =z —1—1Inz, x > 0. The

components of the Lyapunov’s functional are defined as follows:

Ws,(t) = ah1f<5§£t)>, Wi, (t) = amf(%}k(lt) >,
Wir,, (t) / NG (I’“( )>d7, (5.10)

W—i—hi (t) = Qp, / (bj(T)Ihi (t — T)dT, i=2,---,n,
0

Th

where, ¢;(7) = / gv;(0)do, j=1,--- ,n.
We calculate the derivative of the above expressions in (5.10) along system (2.3). We obtain

dWg, (t) Su(t) — 57, dS,(t)

it~ MTTS) Sndt

~ an, SS(?ti)—SS [Av -3 880 /O " ()t — )7 — MUSU(t)}

h1 (SL;';I - Sv( )> [/81)1 Ihlavl + ,U'v / 51}, v gvz )Im (t - T)dT - IU’USU:|
ahluv(Sv( ) —S5,)° ™ Sy Sy () In, (t —7)
)S* + /8U1]h1a’h1 / gm( )<1 - Sv(t)> (1 - W)dT

Sy N\ Su(O) I, (t—7)
_(lhl / /Bvlgvl ( - v(t)> S;l dr.
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The above equations can reduced to the following

dWs, () poan, (Su(t) — S85))? . /Th Sy(t) I, (t — 7)
dt - Sv( )S,;';l + /B'Ul Ihla'hl gm (T) 1 - S;;l I;;l

Sy I (t—T1) n_r, Sy(t)In. (t — 1)
_Sv(t) i I/;,kl >d7— O ZZ;/O ﬁvi‘gvi (T) (S—;';l - Ihi (t - T))dT.
(5.11)

AWn, () an, (L, (1) = I3,) dlL, (1)
it L) Ldi

= ol f)) L ){/am 0 [ 00 ¢ = 1) = 0]

WL )1 S i) Si0Ial-) By Y,
Iyl 0 Svllhl Ivl Svllhl IUI (t)

(5.12)

Differentiating the time derivative of W, (¢) with respective to ¢, we obtain

dW+IU1 Ihl( )
dt YT / oi(7 < >dT

. e

- _a - Ih1( _T)> ™ a ™ <[h1(t_7—)>d pa
o (G| e, [T (B Jaon o)

Notice that hH}L ¢1(7) = 0 and f(lhl - T)> is bounded. It follows that liH}L 1(T) (Ihll(gﬂ> =
T— T 1

wdl—T(T) = —gy, (7). Hence, we have

0. Moreover,

Tl a0 (D) s, [ gm0y (2D ar
h ° h (5.13)
_ h In, (t) In,(t—1)
= ah1/0 Gy (T) <f< I]jl > - f< I;;l >>d7—
Similarly, we have
dWyg, (t h
%() = Qp, /O Gv; (T)(Ihi (t) - Ih¢ (t - T))dT7 1=2,---n. (5’14)
Set
1 Su(t) 15 1y, (1)
Wv(t) B /8U1[I>;1f< 551 ) - ﬂv1S;1[I>;1f< > /BUI U1 h1 =2 Ivl " WJFLH( ) (5 15)

Thus, by (5.11)-(5.14), we obtain
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&S0 ﬁm[* [ N 1) B

™ SoM)In, (t =7)  Ly(t)  So(®)In, (t—1) I3
—i—ah/gyT(l—i- P - — = s dr
"Jo (7) Su I I Sy I L, (1)

+Z (“gf 5 ;* [ g ()10 = e - R L(t))

Th I, (t I, (t I, (t—71 I, (t—7
+ / Ahy Gy (T) < hIl*( ) —In hIl*( ) — (I* ) +In . (I* )>dT
0 h1 h1 h1 h1

de(t) . _ahluU(SU(t)—Szly +an, ATh gvl(7)<1_ Sv(t) Ihl(t—T) S;l Ihl(t_T))dT

n
Qpy 51%

Z Bl /OTh 9o (T)In; (t) — In,(t — 7))dT
i=2 V17 hy

o(Sy(t) — 8*)? h Sy, » v — Iy, (¢
eSO SR 0o S 0 SO ) T
U() vlﬁvl‘[hl 0 Sv(t) Iv1 S I Ihl h1

I I, (t — - v [T - v
—1n h (t) + In h (t* T) ) dr + Z ahl—ﬁ*l / g’Uz’ (T)Ihi (t)dT - Z ~hat 2 s o L '(t)
- 0

_l’_

[;;1 [hl =2 /8U1[h1 /BUII;'L:S;I
(5.16)
Similarly, set
Tv I, (t—T
Wsh( ) = v1f< S£ )>’ WJFIhl (t) :/ avlgpl(T)f(%)dT’
h1 0 vl (5.17)

I Tv '
Wlhl( ) = av1f< h1 >, W+[hi (t) = /0 avlgoj(T)Ivi(t —T)dr, i=2,---,n,

Where, SDJ(T) = / ghj (U)do-? j = 15 N
Calculating the derivative of the expressions in (5.17), respectively, along system (2.3), we
obtain

AWs, (1) i (Su(t) = S3,) dSh(t)

dt B Sh(t) Sy dt
[ih G, (Sh(t) — Sy ) ™ Sp(t) It =7)  Sp, | Ln(t—1)
= _ I 1-— L 1 d
S, (t)S;;l + ay, ﬂhl vy / 9h, (T) ( S;;l I;;l Sh (t) + [;1 T

D S A U R

(5.18)

16



dwry, (t) av, (In, (1) = I, ) dI, (t)

dt I, (t) Iy dt
o, (I, () — I}, i

= B I 5,500 [ (1) (6 = 7)dr — G+ )T, (1)

Iy In, () 0
o (1 I T Sk I

= @ = L) 6,0 / gny (7) L, (t — 7)dr — thl (t)]
Ihllln( ) 0 I

_ ﬁhlszllglavl /Tv gn, (7) (1 + Sp(t) 1, (t — 7) _ I, (1) Sh( )Mo, (t —7) I;:1 >d7’.
I;;l 0 ' 521151 Iljl S;;l];)kl Ih1 (t)

M - e f(0) o)
[ a0 (fm (®) L In®) Int=7) | In(t-7) > .
0

I I I I
dW. t Tv
tzlthi( ) :/ oy g () (L, (1) = L (= 7))dr, i=2,-- ,n
0
(5.19)
Set
1 Sh(t>> I (Ih <t)> ~ 1
Wi(t) = + ! = + Y I, (t) + Wy, (2
0 =5 f( ) st () 2 0+ W, 0
(5.20)
+Z ﬁ +Ih (t).
1 U1
By (5.18)—(5.20) and the system (2.3), we obtain
dWi(t) _aylﬂh(Sh( ) — S )? +/Tva o) (2 Sk In() Sh(t) I 1, (t —7) N L, (1)
dt ﬁh1521[$1 ( ) 0 o Sh(t) I* S*Ih1 I’ltl I;I
L, (t) Ly, (t ) v1 Bh; / v, (Bn + an,)
S PTR AZAS LA ! I, (t)dr — N I, (t).
Iitl ‘[51 Z h1 ’U1 Z Bhlshllsl
(5.21)
Set
W(t) = Wy(t) + Wi(t).
From (5.16) and (5.21), we obtain
AW() _ proan (Solt) = S5)°  pnau, (Sh(t) = Sj,) /m o (2 S L)
dt By S Ik Su(t) By Si I, S (t) 0 1701 Sv(t) I

Sy(t) I T (b —7)  In, (£) In, () I, (t_7)> Ty St
_ v " + — —1In 1* +1ln— m d7'+/ v, h (7_) 9 _ 1
551‘[1)1 Ih1 Ihl Ihl Ihl 0 1 1 Sh(t)
In(t)  SmOB Lyt =7)  In() L) Iyt —7)
- - —1 1 d
I, T R T TR T

V1 U1 U1 v
ap, B, / @y, (Bn + o) Ay, B, /
I, (t)dr — " ) + 9o, (7)1, (t)dT
Z Gy Z o Si T Z e (7)1, (1)
_ Gpy My
ﬂvl hi1~v1
(5.22)
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It follows from equation (5.22) that

W) pan, (5.0 = 55 o (Sh(0) ~ 5;,)° [ o[ 5o -
dt /81)1‘9;k I* ( ) ﬁmSZII{Z ( ) 1 Sv(t)
—In 551 + SU,E )151 Ihl( *_ 7—) “1—-1In Svit)fékl Ihl (t*_ 7—) + Ihl*(t) - Ivl*(t):|d7_
Sv(t) S’UlIvl Ihl Svll'l)l Ihl Ihl I’Ul
™ In, (1) Iy, K Sy,
+/ ap, oy (T (ln —— —In dT—/ Ao, Gh
0 ) 1 1( ) Ihl ) Ivl(t) 0 1 1( ) S ( )
S Sh(t)I*vl( LT Sh(t)I*vl( NI, }d
Sh () Si T, In, SiuLin

v Iv1 (t) Ihl (t) IUI (t) I
— 1 —1 d
ACIC not “fm(t) ’

o3 (e Ut )2 SR (20 i)
P 51)1[;;1 (Mh+ah1)l* v;

hy By
(5.23)
Ty Th
Using the equality / gn, (T)dT = ahl,/ 9v, (T) dT = ay,, we obtain
0 0
™ 7 L) I (t
(/ apy Go, (T)dT — / avlghl(7)> <% - %) =0,
0 0 h (5.24)

() mgate) = [ ousmorar) (B2 - ) <o

Using f(z) =2 — 1 —1Inz, 2 > 0 and the expression of R} and R, from (5.23) we obtain

AW () poan (Solt) = S5)  paaw (Su(t) — S5 ) 1" Sk
B T Busi IS0 B S5 T3, 5 (1) | o )[f (sv<t>>

(e ( ”ﬂdf—/f ean o (5t) 1 ()]

U1
n
a
2
1=2

2 ; i
h [ Re v1 Mh+ah) Rj
— — — — 1 |1Ip, (t).

. 4 dW (t
Since f(z) >0 for z > 0, R} < R} and R}, < R}, i # 1 we have I/Zt( ) <0. Let

_ Wit
Q:{(Sva-[vp"' aIvn,Shthla"' ,Ihn) €X|d—(t) :0}

It is easy to verify that dmét(t) = 0 if and only if S,(¢) = S},, L, (t) = S5, Su(t) =S}, In, (t) =
If, Iy(t) = 0, In(t) = 0, i = 2,---n. Hence, the largest invariant set in Q is the singleton

{&1}. By LaSalle invariance principle and Theorem 3.2, we show that equilibrium & is globally
asymptotically stable. O

6 Discussion

In this paper we introduce a multi-strain model of a vector-borne disease with distributed delay in

the vector and the host. We define the basic reproduction number of the disease as the maximum
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of the reproduction numbers of each strain. We show that if Rg < 1 the disease-free equilibrium is
locally and globally stable, that is the number of infected with each strain goes to zero. Furthermore,
we show that if Rg > 1, then the disease persists.

Our main objective with the article was to extend the competitive exclusion result established
by Bremermann and Thieme [2]. This principle states that in the basic ODE model when multiple
strains compete only the strain with the largest reproduction number persists, if its reproduction
number is larger than one, and the other strains die out. In this case coexistence is not possible
outside of the trivial scenario when the reproduction numbers of two different strains are equal.

To prove the competitive exclusion result for the multi-strain vector-borne model with dis-
tributed delay, we need to prove global stability of the a single-strain equilibrium. We approached
the problem using a Lyapunov function. However, we were able to establish only the following
weaker result: It is well known that the reproduction number in vector-borne diseases splits into a
vector reproduction number and host reproduction number, namely Rj = R}LRQ Our result states
the the strain that maximizes both the vector reproduction number and the human reproduction
number will dominate in the population and eliminate the rest. In particular, if we assume that
Ri < R} and Ri < Rl for i = 2,...,n then strain one will dominate and eliminate the rest. In
this case coexistence does not occur. In fact, it can be shown that model (2.3) does not have a
coexistence equilibrium if all strain reproduction numbers are different.

Our result does not resolve the competition outcome in the case when different strains maximize
the human and the vector reproduction numbers. In this sense the question whether complete com-
petitive exclusion holds in the vector-host model is still an open question. We surmise that because
coexistence equilibrium is not present, competitive exclusion in this case also occurs with the strain
with maximal reproduction number eliminating the rest. Establishing this result, however, may
need a different approach.

From the prospective of public health, public health efforts will work best if directed to moni-
toring the vector and host reproduction numbers of the multiple strains in vector-borne diseases.
Control measures may need to be applied to the strain(s) that maximize the vector and the host

reproduction numbers.
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