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Abstract

A multi-strain model of a vector-borne disease with distributed delay in the vector and the

host is investigated. It is shown that if the reproduction number of the model R0 < 1, the unique

disease-free equilibrium is globally asymptotically stable. Without loss of generality strain one

is assumed to have the largest reproduction number. In this case, the dominance equilibrium

of strain one is shown to be locally stable. The basic reproduction number for a strain i (Ri
0
)

is written as a product of the reproduction number of the vector (Ri
v) and the reproduction

number of the host (Ri

h
), that is Ri

0
= Ri

h
Ri

v
. Competitive exclusion principle is derived under

the somewhat stronger condition that if strain one maximizes both the reproduction number of

the host Ri

h
< R1

h
, i 6= 1 and the reproduction number of the vector Ri

v < R1

v, i 6= 1, strain

one dominance equilibrium is globally asymptotically stable.

Key words: Vector-host, competitive exclusion, distributed delay, global stability, Lyapunov

function.
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1 Introduction

Vector-borne diseases are among the most complex infectious diseases to understand, model and

control. Their complexity stems from the multi-staged life cycle of the vector, often influenced

by the climate, the intricate evolution of the parasite, developing both in the vector and the
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host, and the fact that most vector-borne diseases have humans as well as non-human species as

hosts. Many factors make controlling vector-borne diseases particularly challenging. This article

focuses on one particular aspect, namely the evolution of the parasite. Parasites of vector-borne

diseases exist in several species or serotypes. For instance, four species of the Plasmodium parasite

cause malaria: P. falciparum, P. ovale, P. vivax, and P.malariae. Four serotypes of the dengue

fever virus cause dengue. However, within these large classification groups, each pathogen can

be antigenically diverse and may exist in multiple variants, called strains. Multi-strain models

for vector-borne diseases have been considered before (see [5,7,8] and the references therein) but

in most cases strains are assumed to interact through cross-immunity or other mechanism which

generates coexistence.

For directly transmitted infections it is well known that in the simplest case when no trade off

mechanism is present [22], the only possible outcome of the competition of n strains is competitive

exclusion. In this case, the strain with the largest reproduction number outcompetes and eliminates

the remaining strains, a result first established by Bremermann and Thieme [2]. In this article,

we address the question whether this principle extends to vector-borne diseases. Because the

dynamics of the vector is subjected to a significant influence from the incubation period of the

pathogen within the vector, called extrinsic incubation period, and the incubation period within

the host, called intrinsic incubation period, we incorporate distributed delay both in the vector

and the host to account for these delays. Natural delays occurring in the dynamics of vector-

borne diseases are typically incorporated as discrete delays or age-structure. As such they lead to

backward bifurcation, oscillations [1,6,15,16,28,34] and even chaos [23].

In this article, we consider the outcome of the competition in the resulting multi-strain vector-

borne model with distributed delay. Originally our hypothesis was that, analogously to directly

transmitted diseases, the strain with the maximal reproduction number eliminates all the rest.

However, the analysis revealed that we need a stronger condition for competitive dominance in

the case of vector-borne diseases. In particular, we notice that the basic reproduction number for

a strain i (Ri
0) is written as a product of the reproduction number of the vector (Ri

v) and the

reproduction number of the host (Ri
h), that is R

i
0 = Ri

hR
i
v. We find that for vector-borne diseases

the competitive exclusion principle can be formulated as follows: The strain that maximizes both

the vector and the human reproduction numbers dominates in the population. Such a strain will also

have an overall maximal reproduction number. We should mention, however, that our competitive

exclusion principle for vector-borne diseases is not complete. It would not give the outcome of

the competition of the strains when different strains maximize the vector Rv and the human Rh

reproduction numbers. For instance, if strain one maximizes the human reproduction number, that

is R1
h > Ri

h for all i 6= 1, but strain two maximizes the vector reproduction number, R2
v > Ri

v for

all i 6= 2, then our competitive exclusion principle does not imply which strain will dominate in

the population. We hypothesize that the strain with the maximal basic reproduction number will

dominate but different approach than the one we have applied here may be necessary to establish

this result.
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This paper is structured as follows. In section 2, we introduce a multi-strain version of the

vector-borne disease model with two distributed delays. In section 3, we discuss the equilibria

and establish their local stabilities. In section 4, we establish global stability of the disease-free

equilibrium. In section 5, we verify competitive exclusion principle under the assumption that

strain one maximizes both the human and the vector reproduction numbers. Section 6 summarizes

our results.

2 Model formulation

As in the introduction, we assume the pathogen causes the vector-host transmission disease exis-

tence through multiple strains. The multi-strain model of the vector-host interaction divides the

vector population under consideration into the following groups: susceptible vectors, denoted by

Sv, and infected vectors, which are divided into n subgroups: those infected with a strain i, de-

noted by Ivi , i = 1, 2, · · · , n. If we let Nv(t) be the total number of vectors at time t, we have

Nv(t) = Sv(t) +
n∑

i=1
Ivi(t). Let Nh(t) be the density of the total host population at time t, which is

composed of the number of susceptible individuals Sh(t), the number of infective individuals Ihi
(t)

with a strain i, i = 1, 2, · · · , n, and the number of recovered or immune individuals Rh(t). For the

disease transmission, it is assumed that a susceptible host can receive the infection through contact

with a strain i infective mosquitoes. Similarly, a susceptible mosquito can receive the infection

through contact with strain i infectious human. Furthermore, it is assumed that a susceptible

host and susceptible mosquito become exposed when they receive the infection from an infective

individual and remain exposed for some period before becoming infectious.

Let Λh and Λv be the birth rate of the host population and the vectors, respectively. b is

the average rate of biting on hosts by a single mosquito (number of bites per unit time), and the

hosts are always sufficient in abundance; so that it is reasonable to assume that the biting rate b

is constant. Thus, the number of bites on hosts per unit time per host is b
Nh

. If β′hi
is probability

of infected bites with strain i on host individuals that produce an infection, b
Nh
β′hi

ShIvi is the

infection force of the interaction between the infected mosquitos with strain i infected vectors Ivi
and the susceptible host Sh. As pointed out in the introduction, there exists extrinsic and intrinsic

incubation period in mosquitos and hosts, respectively. Let τ be the extrinsic incubation period

of the parasite in the vector population. Since only a proportion of vectors survive this incubation

period, the force of infection on host individuals at the present time t is b
Nh
β′hi

Sh(t)Ivi(t− τ)e
−µvi

τ ,

where µvi is the death rate of the vectors infected with strain i. In reality, however, the incubation

period is not a number but an interval during which the maturation of the parasite occurs in

different hosts and vectors. Hence, we assume that τ is a distributed parameter(see [3,19]). As

a result, the force of infection becomes
b

Nh
β′hi

Sh(t)

∫ τv

0
g′hi

(τ)Ivi(t − τ)e−µvi
τdτ where the kernel

function g′hi
(τ) represents the distribution of the infectivity of the parasites in vector population

where the time taken to become infectious is τ .

Similarly, let µh be death rate of host individuals, and αhi
be recovery rate of infected host indi-

viduals with strain i. β′vi is probability of a susceptible vector bites on the infective host individuals

with strain i that produce an infection. Based on the above facts and that the average total rate

of contacts between host and vectors must be conserved [27, P667],
b

Nh
β′viSv(t)

∫ τh

0
g′vi(τ)Ihi

(t −

3



τ)e−(µh+αhi
)τdτ gives the incidence of new cases of infection for the vector at the present time

t. The kernel function g′vi(τ) expresses the infectivity on susceptible vectors during the intrinsic

incubation period. Here, τv, τh are, respectively, the upper limits of the parasites incubation peri-

ods in hosts and vectors. The terms e−µvi
τ , e−(µh+αhi

)τ account for the probability of survival as

infectious of host individuals during the intrinsic incubation period.

In more general sense, there would be possibility that the removed population is alive and bitten

again by vectors, or multiple infectious bites on infected people may affect the disease progression.

For simplicity, however, we assume that the recovered population will no longer be involved in

the transmission process, and multiple infectious bites on infected hosts do not play a role in the

progression of the disease. Under the above assumption, our multi-strain model with extrinsic and

intrinsic distributed incubation periods can be formulated as follows:

dSv(t)

dt
= Λv −

n∑

i=1

β′vi
bSv(t)

Nh(t)

∫ τh

0
g′vi(τ)Ihi

(t− τ)e−(µh+αhi
)τdτ − µvSv(t),

dIvi(t)

dt
= β′vi

bSv(t)

Nh

∫ τh

0
g′vi(τ)Ihi

(t− τ)e−(µh+αhi
)τdτ − µvIvi(t), i = 1, · · · , n,

dSh(t)

dt
= Λh −

n∑

i=1

β′hi

bSh(t)

Nh(t)

∫ τv

0
g′hi

(τ)Ivi(t− τ)e−µvi
τdτ − µhSh(t),

dIhi
(t)

dt
= β′hi

bSv(t)

Nh(t)

∫ τv

0
g′hi

(τ)Ivi(t− τ)e−µvi
τdτ − (µh + αhi

)Ihi
(t), i = 1, · · · , n,

dRh(t)

dt
=

n∑

i=1

αhi
Ihi

(t)− µhRh(t).

(2.1)

Model (2.1) is equipped with the following initial conditions:

Sv(0) = Sv0 , Ivi(θ) = ψvi(θ), Sh(0) = Sh0
, Ihi

(θ) = ψhi
(θ), Rh(0) = Rh0

, i = 1, · · · , n.

Sv0 > 0, Sh0
> 0, Rh0

> 0, ψvi(θ) ≥ 0, ψhi
(θ) ≥ 0, θ ∈ [−h, 0], h = max{τv, τh}.

(2.2)

All parameters in model (2.1) are nonnegative. We define the following space of functions

X = R
+ ×

n∏

i=1

(C([−h, 0],R+)× R
+ ×

n∏

i=1

(C([−h, 0],R+)× R
+,

where, the Banach space C([−h, 0],R) of continuous functions mapping the interval [−h, 0] into

R is equipped with the sup-norm ||ψ|| = sup−h≤θ≤0 |ψ(θ)|. By the standard theory of functional

differential equations [11], it can be verified that solutions of (2.1) with nonnegative initial conditions

(2.2) has a unique solution (Sv(t), Ivi(t), Sh(t), Ihi
(t), Rh(t)) which remains nonnegative for all t ≥ 0.

Moreover, we can show the solutions of system (2.1) are ultimately uniformly bounded in X. In

fact, it follows from the total vector population size Nv(t) satisfying N
′
v(t) = Λv − µvNv(t) that

Nv(t) →
Λv

µv
, as t→ ∞.

Similarly, we have

Nh(t) →
Λh

µh
, as t→ ∞.

4



So, it is assumed that the total vector and host population sizes Nv(t), Nh(t) are asymptotically

constant.

Let

Ω =

{
(Sv, Iv1 , · · · , Ivn , Sh, Ih1

, · · · , Ihn
) ∈ |Sv(t) +

n∑

i=1

Ivi(t) ≤
Λv

µv
, Sh(t) +

n∑

i=1

Ihi
(t) ≤

Λh

µh

}
.

It is easy to see that the set Ω is positively invariant for system (2.1). We note that Rh(t) can be

removed from the equations of system (2.1), it is sufficient to analyze the dynamical behavior of

solutions to system (2.1) without the equation of Rh(t). For simplicity, we introduce the following

notation.

βvi =
b

Nh
β′vi , βhi

=
b

Nh
β′hi

, ghi
(τ) = e−µvi

τg′vi(τ), gvi(τ) = g′vi(τ)e
−(µh+αhi

)τ , i = 1, 2, · · · , n.

Furthermore, we impose the following assumptions:

Assumptions 1:

1. It is assumed that gvi(τ), and ghi
(τ) are continuous on [0, h], i = 1, 2, · · · , n;

2. gvi(τ), and ghi
(τ) satisfy
∫ τh

0
gvi(τ)dτ = avi ,

∫ τv

0
ghi

(τ)dτ = ahi
, i = 1, 2, · · · , n;

3. gvi(τ) ≥ 0, ghi
(τ) ≥ 0 for 0 ≤ τ ≤ h, i = 1, 2, · · · , n. Here h = τh, τv respectively.

In the next section, we investigate the dynamics of following system

dSv(t)

dt
= Λv −

n∑

i=1

βviSv(t)

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ − µvSv(t),

dIvi(t)

dt
= βviSv(t)

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ − µvIvi(t), i = 1, · · · , n.

dSh(t)

dt
= Λh −

n∑

i=1

βhi
Sh(t)

∫ τv

0
ghi

(τ)Ivi(t− τ)dτ − µhSh(t),

dIhi
(t)

dt
= βhi

Sh(t)

∫ τv

0
ghi

(τ)Ivi(t− τ)dτ − (µh + αhi
)Ihi

(t), i = 1, · · · , n.

(2.3)

From the above discussion, we have always the following proposition for system (2.3)

Proposition 2.1 There exists a unique solution (Sv(t), Ivi(t), Sh(t), Ihi
(t)) of system (2.3) with

initial conditions (2.2). This solution is nonnegative for all t ≥ 0. Moreover, all the solutions of

system (2.3) are ultimately uniformly bounded in Ω.

3 Equilibria and local stability

System (2.1) always has a unique disease-free equilibrium E0, which is given by

E0 =

(
Λv

µv
,0,

Λh

µh
,0

)

5



where 0 = (0, · · · , 0) is a n− dimensional vector of zeroes.

According to the definition of the basic reproduction number [30], which is the expected number

of secondary cases produced in an entirely susceptible population by a typical infected individual

during its entire infectious period, we define the reproduction number of strain i:

Ri
0 =

aviahi
βhi

βviΛhΛv

(µh + αhi
)µh(µv)2

, i = 1, · · · , n.

We notice that the disease cycle in vector-borne disease is consists of two transmission path-

ways: human-to-vector transmission and vector-to-human transmission. Each of these pathways

is characterized with its own reproductive number. The reproductive number of human-to-vector

transmission of strain i is given by

Ri
h =

aviβviΛv

µv(µh + αhi
)

Similarly, the reproduction number of the vector-to-human pathway of strain i is given by

Ri
v =

ahi
βhi

Λh

µhµv
, i = 1, 2, · · · , n.

Obviously, the reproduction number for a strain i in system (2.3) is a product of the human and

vector reproduction numbers:

Ri
0 = Ri

hR
i
v.

We define a reproduction number of the whole system (2.3)

R0 = max{R1
0,R

2
0, · · · ,R

n
0}.

By direct calculation, we show that for each i, in system (2.3), there is a corresponding strain-i

equilibrium Ei given by

Ei = (S∗
vi
, 0, · · · , 0, I∗vi , 0, · · · , 0, S

∗
hi
, 0, · · · , 0, I∗hi

, 0, · · · , 0),

where the non-zero components I∗vi and I
∗
hi

are in position i+1 and n+j+1, respectively. Moreover,

equilibrium Ei exists if and only if Ri
0 > 1. The nonzero components of the equilibrium Ei are given

by

S∗
vi
=

Λv

aviβviI
∗
hi

+ µv
, S∗

h =
Λhµv(aviβviI

∗
hi

+ µv)

I∗hi
(ahi

aviβhi
βviΛv + βviµvµh) + µhµ2v

,

I∗vi =
aviβviI

∗
hi
Λv

µv(aviβviI
∗
hi

+ µv)
, I∗hi

=
µhµ

2
v(R

i
0 − 1)

βhi
βviahi

aviΛv + aviβviµhµv
.

Now we investigate the stability of the equilibria in system (2.3), let us first linearizing system

(2.3) at disease-free equilibrium E0. In particular, let Sv(t) =
Λv

µv
+ xv(t), Ivi(t) = yvi(t), Sh(t) =

Λh

µh
+xh(t), Ihi

(t) = yhi
(t). We look for exponential solutions (xv(t) = x̄ve

λt, yvi(t) = ȳvie
λt, xh(t) =

x̄he
λt, yhi

(t) = ȳhi
eλt) of the time-dependent system for the perturbations. Thus, we obtain the

following eigenvalue problem




λx̄v = −
Λv

µv

n∑

i=1

βvi ȳhi

∫ τh

0
gvi(τ)e

−λτdτ − µvx̄v,

λȳvi = ȳhi

Λv

µv
βvi

∫ τh

0
gvi(τ)e

−λτdτ − µvȳvi ,

λx̄h = −
Λh

µh

n∑

i=1

βhi
ȳvi

∫ τv

0
ghi

(τ)e−λτdτ − µhx̄h,

λȳhi
= ȳvi

Λh

µh
βhi

∫ τv

0
ghi

(τ)e−λτdτ − (µh + αhi
)ȳhi

.

(3.1)
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Solving the linear system (3.1), it is easy to obtain that −µv, −µh are two negative characteristic

roots of system (2.3) and other characteristic roots (n−2) are determined by the following equation

[(λ+ µv)(λ+ µh + αhi
)−

ΛvΛhβviβhi
aviahi

µvµh

∫ τv

0
ghi

(τ)e−λτdτ

∫ τh

0
gvi(τ)e

−λτdτ ]n−2 = 0. (3.2)

We now show that all characteristic roots in (2.6) have negative real part. Note that Eq (3.2) is

continuous functions of τ , and there is a continuity in the eigenvalues for τ ≥ 0. Using Rouche’s

Theorem [4, Theorem 9.17.4], we know that given the eigenvalues were all negative in the non-delay

case, introducing a delay can cause a change in stability if and only if for some value of τ , there

exists a purely imaginary root of equation (3.2), i.e., a pair of eigenvalues must cross the imaginary

axis if they are to become positive. For the equation (3.2), we have the following lemma:

Lemma 3.1 If R0 = max{R1
0, · · · ,R

n
0} < 1, the characteristic equation (3.2) has no purely

imaginary roots.

Proof. Assume the contrary. Set

Q(λ, τ) = λ2+(µh+αhi
+µv)λ+µv(µh+αhi

)−
βhi

βviΛvΛh

µhµv

∫ τv

0
ghi

(τ)e−λτdτ

∫ τh

0
gvi(τ)e

−λτdτ = 0.

(3.3)

To proceed, we first consider equation (3.3) with τ = 0. It is easy to verify that all roots in Eq.

(3.3) have negative real parts for Ri
0 < 1 and τ = 0. For τ > 0, we show that Q(λ, τ) = 0 has no

purely imaginary roots. Set

F1(λ, τ) =

∫ τv

0
ghi

(τ)e−λτdτ

∫ τh

0
gvi(τ)e

−λτdτ,

F2(λ) = λ2 + λ(µh + αhi
+ µh) + µv(µh + αhi

),

F3 =
βhi

βviΛvΛh

µhµv
.

Let λ = iω (ω > 0) be a root of equation (3.3). Thus,we have

F1(iω, τ) =

∫ τv

0
ghi

(τ)e−iωτdτ

∫ τh

0
gvi(τ)e

−iωτdτ.

Thus, we have |F1(iω, τ)| ≤ ahi
avi . From equation (3.3), we have F2(iω) − F3F1(iω, τ) = 0.

Therefore, we have ∣∣∣∣
F2(iω)

F3

∣∣∣∣ = |F1(iω, τ)| ≤ ahi
avi .

That is, |F2(iω)| ≤ ahi
avi |F3|. Thus, we have

[µv(µh + αhi
)− ω2]2 + (µh + αhi

+ µv)
2ω2 = ω4 + [(µh + αhi

)2 + µ2v]ω
2 + µ2v(µh + αhi

)2

≤ a2hi
a2viβ

2
hi
β2vi

(
ΛhΛv

µhµv

)2

.
(3.4)

It follows from (3.4) that we obtain

ω4 + [(µh + α)2 + µ2v]ω
2 + µ2v(µh + αhi

)2(1− (Ri
0)

2) ≤ 0. (3.5)

Obviously, if Ri
0 < 1, i = 1, 2, · · · , n, it is impossible for (3.5) to hold. Hence, the linearized

system (3.2) can not have any roots with positive real part.
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Therefore, from the above discussion, we have established the following result:

Theorem 3.1 If R0 = max{R1
0, · · · ,R

n
0} < 1, then the disease-free equilibrium E0 of system (2.3)

is locally asymptotically stable. If R0 > 1, it is unstable.

Now we shall establish the local stability of the single-strain equilibrium Ei for a fixed i. We

have the following result

Theorem 3.2 Assume for a fixed i, Ri
0 > 1. If Rj

0 < Ri
0 for all j 6= i, then the strain-i equilibrium

Ei is locally asymptotically stable. Otherwise, if there exists k0 such Rk0 > Ri, then the single-strain

equilibrium Ei is unstable.

Proof. To simplify the presentation, without loss of generality, we shall assume that i = 1,

i .e.,R1
0 > 1, and Ri

0 < R1
0, for i = 2, · · · , n. We linearize system (2.3) around the strain-one

equilibrium E1. Let Sv(t) = S∗
v1

+ xv1(t), Iv1(t) = I∗v1 + yv1(t), Sh(t) = S∗
h1

+ xh1
(t), Ih1

(t) =

I∗h1
+ yh1

(t), Ivi(t) = yvi(t), Ihi
(t) = yhi

(t), for i = 2, · · · , n. We obtain the following linearized

system

dxv1(t)

dt
= −βv1S

∗
v1

∫ τh

0
gv1(τ)yh1

(t− τ)dτ − βv1I
∗
h1
av1xv1(t)− S∗

v1

n∑

i=2

∫ τh

0
βvigvi(τ)yhi

(t− τ)dτ

−µvxv1(t),

dyv1(t)

dt
= βv1S

∗
v1

∫ τh

0
gv1(τ)yh1

(t− τ)dτ + βv1I
∗
h1
av1xv1(t)− µvyv1(t),

dyvi(t)

dt
= βviS

∗
v1

∫ τh

0
gvi(τ)yhi

(t− τ)dτ − µvyvi(t), i = 2, · · · , n,

dxh1
(t)

dt
= −βh1

S∗
h1

∫ τv

0
gh1

(τ)yv1(t− τ)dτ − βh1
I∗v1ah1

xh1
(t)− S∗

h1

n∑

i=2

∫ τv

0
βhi

ghi
(τ)yvi(t− τ)dτ

−µhxh1
(t),

dyh1
(t)

dt
= βh1

S∗
h1

∫ τv

0
gh1

(τ)yv1(t− τ)dτ + βh1
I∗h1

ah1
xh1

(t)− (µh + αh1
)yh1

(t),

dyhi
(t)

dt
= βhi

S∗
h1

∫ τv

0
ghi

(τ)yvi(t− τ)dτ − (µh + αhi
)yhi

(t), i = 2, · · · , n.

(3.6)

We notice that the linearized equations for strains k = 2, 3, · · · , n can separate from the whole

system. Thus, by direct calculation, we obtain the following characteristic equations

(λ+ µh + αhi
)(λ+ µv)− βviβhi

S∗
h1
S∗
v1

∫ τh

0
gvi(τ)e

−λτdτ

∫ τv

0
ghi

(τ)e−λτdτ = 0. (3.7)

Similar to proof in Lemma 3.1, it is easy to show that if Ri
0 < R1

0, i = 2, 3, · · · , n, Eq (3.7) has no

purely imaginary roots and all eigenvalues of these equations have negative real parts.

Therefore, the stability of E1 depends on the eigenvalue of the following system




λxv1 = −βv1S
∗
v1
yh1

∫ τh

0
gv1(τ)e

−λτdτ − βv1av1I
∗
h1
xv1 − µvxv1

λyv1 = βv1S
∗
v1
yh1

∫ τh

0
gv1(τ)e

−λτdτ + βv1av1I
∗
h1
xv1 − µvyv1 ,

λxh1
= −βh1

S∗
h1
yv1

∫ τv

0
gh1

(τ)e−λτdτ − βh1
ah1

I∗v1xh1
− µvxh1

,

λȳh1
= βh1

S∗
h1
yv1

∫ τv

0
gh1

(τ)e−λτdτ + βh1
ah1

I∗v1xh1
− (µh + αh1

)yh1
.

(3.8)
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By looking for exponential solutions of (3.8), we obtain the following the characteristic equation

(λ+ µh + αh1
)(λ+ µv + av1βv1I

∗
h1
)(λ+ µh + ah1

βh1
I∗v1)

−(λ+ µh)βh1
S∗
h1

∫ τv

0
gh1

(τ)e−λτdτβv1S
∗
v1

∫ τh

0
gv1(τ)e

−λτdτ = 0.
(3.9)

Now we show that Eq (3.9) has no purely imaginary roots. In fact, we divide both sides by (λ+µh),

then we set

LHS
def
=

(λ+ av1βv1I
∗
h + µv)(λ+ µh + ah1

βh1
I∗v )(λ+ µh + αh1

)

(λ+ µh)

RHS
def
= βh1

βv1S
∗
h1

(
Λv

µv
− I∗v1

)∫ τv

0
e−λτgh1

(τ)dτ

∫ τh

0
e−λτgv1(τ)dτ. (3.10)

If λ is a root with ℜλ ≥ 0, it follows from (3.10) that

|LHS| ≥ (av1βv1I
∗
h1

+ µv)(αh1
+ µh), |RHS| ≤ ah1

av1βh1
βv1S

∗
h1
(
Λv

µv
− I∗v ) = ah1

av1βh1
βv1S

∗
h1
S∗
v1
.

Using the equilibrium point(S∗
v1
, I∗v1 , S

∗
h1
, I∗v1) satisfies the corresponding equation, we obtain

|LHS| ≥ (av1βv1I
∗
h1

+ µv)(αh1
+ µh) = (av1βv1I

∗
h1

+ µv)
ah1

βh1
S∗
h1
I∗v1

I∗h1

= (av1βv1I
∗
h1

+ µv)
ah1

βh1
S∗
h1

I∗h1

av1βv1S
∗
v1
I∗h1

µv

> ah1
av1βh1

βv1S
∗
h1
S∗
v1

≥ |RHS|.

It is a contradiction. Hence, using Rouche’s Theorem [4, Theorem 9.17.4], we only show that Eq.

(3.9) can not have any roots with positive real part. Therefore, the strain-one equilibrium E1 is

locally asymptotically stable for R1
0 > 1 and Ri

0 < R1
0, i = 2, 3, · · · , n. Otherwise E1 is unstable.

�

4 Global stability of the disease-free equilibrium

In the previous section, we have shown that equilibria are locally stable, i.e. given the conditions

on the parameters, if the initial conditions are close enough to the equilibrium, the solution will

converge to that equilibrium. In this section, our objective is to extend these results to global

results. Now we first establish the global stability of the disease-free equilibrium. We have the

following result:

Theorem 4.1 If R0 = max{R1
0, · · · ,R

n
0} < 1, the disease-free equilibrium E0 is globally asymptot-

ical stable.

Proof From the first and the third equations of system (2.3), we obtain

S′
v(t) ≤ Λv − µvSv(t), S′

h(t) ≤ Λh − µhSh(t). (4.1)

It follows from the above inequalities that

lim sup
t

Sv(t) ≤
Λv

µv
, lim sup

t
Sh(t) ≤

Λh

µh
. (4.2)
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Thus, from system (2.3) and inequalities (4.2), we have

dIvi(t)

dt
≤ βvi

Λv

µv

∫ τh

0
gviIhi

(t− τ)dτ − µvIvi(t),

dIhi
(t)

dt
≤ βhi

Λh

µh

∫ τv

0
ghi
Ivi(t− τ)dτ − (µh + αhi

)Ihi
(t), i = 1, · · · , n.

(4.3)

From (4.3), we obtain that

Ivi(t) ≤ e−µvtIvi(0) + βvi
Λv

µv

∫ t

0
e−µs

∫ τh

0
gvi(τ)Ihi

(s− τ)dτds.

Thus, from the above expression, for i = 1, · · · , n, we have

lim sup
t

Ivi(t) ≤ βviavi
Λv

µv

∫ ∞

0
e−µvsds lim sup

t
Ihi

(t) ≤ βviavi
Λv

µ2v
lim sup

t
Ihi

(t). (4.4)

Similarly, for i = 1, · · · , n we also have

lim sup
t

Ihi
(t) ≤ ahi

βhi

Λh

µh

∫ ∞

0
e−(µh+αhi

)sds lim sup
t

Ivi(t) ≤ ahi
βhi

Λh

µh

1

µh + αhi

lim sup
t

Ivi(t).

(4.5)

From (4.4) and (4.5), we have

lim sup
t

Ivi(t) ≤ aviahi
βvi

Λv

µ2v
βhi

Λh

µh

1

µh + αhi

lim sup
t

Ivi(t) ≤ R0 lim sup
t

Ivi(t). (4.6)

Since R0 < 1 and Ivi(t), i = 1, · · · , n is bounded, it follows from the above expression that

lim sup
t

Ivi(t) = 0, i = 1, · · · , n.

Similarly, from (4.5), we have

lim sup
t

Ihi
(t) = 0, i = 1, · · · , n.

Therefore, (Ivi(t), Ihi
(t)) → (0, 0) as t → ∞. From the above discussion and Theorem 2.1, we can

conclude that the disease-free equilibrium E0 is globally asymptotically stable for R0 < 1 . This

completes the proof of Theorem 4.1. �

5 Principle of competitive exclusion

For directly transmitted diseases, Bremermann and Thieme [2] establish that in the simplest sce-

nario when competitive exclusion is the only outcome, the strain with the largest reproduction

number persists, while the remaining strains die out. While extending the Bremermann and Thieme

[2] result to vector-borne diseases remains an open problem (in the case of vector-borne diseases,

we seem to need a stronger condition for competitive exclusion), we were able to show competi-

tive exclusion under the somewhat stronger condition that the winning strain maximizes both the

human and the vector reproduction numbers, not just the overall reproduction number.

Mathematically speaking, establishing the competitive exclusion principle means establishing

the global stability of the strain one equilibrium E1. From Theorem 2.2, we obtain that under

some conditions the equilibrium E1 is locally asymptotically stable. In this section, we are ready to
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establish the global stability of the strain one equilibrium E1 by constructing Lyapunov functional,

similar to the one used in [9,10,13,14,18,20,21,24,25,31,32]. We note that for constructing Lyapunov

function, such as f(x) = x− 1− lnx, here f(x) is not defined if x = 0. Thus, in order to construct

our Lyapunov function, we must first show that when R0 > 1, the disease persist in the form of

strain one. Now we apply the persistence theory by Hale and Waltmann [12] for infinite-dimensional

systems to show the uniform persistence of strain one in system (2.3). The methods and techniques

have been recently employed by other authors (see [26,29,33]).

To proceed, we introduce the following notation and terminology. Let X be a complete metric

space with metric d. Suppose that T is a continuous semiflow on X, that is, a continuous mapping

T : [0,∞) ×X → X with the following properties:

Tt ◦ Ts = Tt+s, t, s > 0, T0(x) = x, x ∈ X,

where Tt denotes the mapping from X to X given by Tt(x) = T (t, x). The distance d(x, Y ) of a

point x ∈ X to a subset Y of X is defined by

d(x, Y ) = inf
y∈Y

d(x, y).

Recall that the positive orbit γ+(x) through x is defined as γ+(x) = ∪t>0{T (t)x}, and its

ω−limit set is ω(x) = ∩s≥0∪t≥s{T (t)x}. Define by W s(E) the strong stable set of a compact

invariant set E as W s(E) = {x : x ∈ X,ω(x) 6= φ, ω(x) ⊂ E}. Denote by T (t), t ≥ 0, the family of

solution operators corresponding to (2.3). The following assumption must be satisfied

(H1): Let X0 ⊂ X,X0 ⊂ X,X0 ∩ X0 = ∅. X0 is open and dense in X. Moreover, the

C0-semigroup T (t) on X satisfies

T (t) : X0 → X0,

T (t) : X0 → X0.

Let Tb(t) = T (t)|X0 and Ab be the global attractor for Tb(t). The following result is discussed

in [12, Theorem 4.2]:

Lemma 5.1 Suppose that T (t) satisfies (H1) and the following conditions:

(i) There is a t0 > 0 such that T (t) is compact for t > t0;

(ii) T (t) is point dissipative in X;

(iii) Ãb =
⋂

x∈Ab
Ω(x) is isolated and has an acyclic covering

M̃ , where

M̃ = {M1,M2, · · · ,Mn};

(iv) W s(Mi) ∩X0 = ∅ for i = 1, 2, · · · , n.

Then T (t) is a uniform repeller with respect to X0, i.e., there is an η > 0 such that for any

x ∈ X0, lim inft→+∞ d(T (t),X0) ≥ η.

We use the above lemma to establish the following result:

Theorem 5.1 Assume that R0 > 1. Then the disease perisist in the population. If R1
0 > 1 and

strains two to n approach zero, that is

lim sup
t→∞

Ihi
(t) = 0, lim sup

t→∞
Ivi(t) = 0, i = 2, 3, · · · , n.
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then, for all initial conditions that belong to Ω0, strain one can persists. In particular, there exists

a constant γ > 0 such that

lim inf
t→+∞

Iv1(t) > γ, lim inf
t→+∞

Ih1
(t) > γ.

Proof. Under the assumptions of Theorem 5.1, system has two nonnegative equilibrium E0 and E1.

Let φ be a vector of initial conditions for system (2.1). We assume the function in the vector φ are

continuous. Let

X̂ = R
+ ×

n∏

i=1

(C([−h, 0],R+)×R
+ ×

n∏

i=1

(C([−h, 0],R+),

where, the Banach space C([−h, 0],R+) of continuous functions mapping the interval [−h, 0] into

R
+ equipped with the sup-norm ||ψ|| = sup−h≤θ≤0 |ψ(θ)|. Set

X0 = {φ ∈ X̂ : ψv1(θ) > 0, ψh1
(θ) > 0, ψvi(θ) = 0, ψhi

(θ) = 0, θ < 0, i = 2, · · · n},

X0 = {φ ∈ X̂ : ψvi(θ) = 0, ψhi
(θ) = 0, θ ≤ 0, i = 1, · · · n.}

Obviously, we have X = X0
⋃
X0. It suffices to show that there exists an η > 0 such that for any

solution ut of system (2.3) initiating from X0, lim inft→∞ d(Ut,X0) ≥ η. To this end, we have to

verity below that the conditions of Lemma 5.1 are satisfied.

First, it follows that both X and X0 are positively invariant. Clearly, ∂X0 is relatively closed

in X. It is easy to verify that system (2.3) is point dissipative. Set

M∂ = {φ ∈ X : T (t)φ satisfies system (2.3) and T (t)φ ∈ ∂X,∀t ≥ 0.}

We now claim that M∂ = {(
Λv

µv
, 0,

Λh

µh
,0)}, where 0 = (0, · · · , 0) is a n− dimensional vector of

zeroes. Assuming φ ∈M∂ it suffices to show that Ivi(t) = Ihi
(t) = 0, i = 1, · · · , n, ∀t ≥ 0. Assume

that on the contrary, there exists t0 > 0 such that (i) for some strain-i0, we have Ivi0 (t0) > 0 while

Ihi
(t0) = 0, i = 1, · · · , n or (ii) for some strain-j0, we have Ihj0

(t0) > 0 while Ivi(t0) = 0, i = 1, · · · , n

In case (i), from the third equation of (2.3), we have

İhi0
(t)|t=t0 = βhi0

Sh(t0)

∫ τv

0
ghi0

(τ)Ivi0 (t0 − τ)dτ > 0.

Hence, there is a sufficiently small constant ε0 such that Ihi0
(t) > 0,∀t ∈ (t0, t0+ ε0). On the other

hand, from Ivi0 (t0) > 0, we obtain a positive ε1 (0 < ε1 < ε0) such that Ihi0
(t) > 0,∀t ∈ (t0, t0+ε1).

Thus, we obtain Ivi0 (t) > 0, Ihi0
(t) > 0,∀ ∈ (t0, t0+ε). This is in contradiction with the assumption

that (Sv(t), Ivi(t), Sh(t), Ihi
(t)) ∈M∂ ,∀t ≥ 0. Similarly, we can show the case (ii) does not hold.

Let Ω2 =
⋃

x∈Y2
ω(x), where Y2 is the global attractor of T (t) restricted to ∂X. We now show

that Ω2 = {E0}. In fact, it follows from Ω2 ⊆ M∂ and the first and third equations of (2.3). we

have limt→+∞ Sv(t) =
Λv

µv
, limt→+∞ Sv(t) =

Λv

µv
. Thus, {E0} is the isolated invariant set in X.

Finally we need to show that W s(E0)
⋂
X0 = ∅.

Assume that on contrary. Thus, there exists a solution Ut ∈ X0 such that

lim
t→+∞

Sv(t) =
Λv

µv
, lim

t→+∞
Sh(t) =

Λh

µh
,

lim
t→+∞

Ivi(t) = 0, lim
t→+∞

Ihi
(t) = 0. i = 1, · · · , n.
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Hence, for each ε > 0 there exists a time T0 such that for each t > T0 we have

Ivi(t) < ε, Ihi
(t) < ε. i = 1, · · · , n.

By shifting the dynamical system, we may assume that the above inequalities are satisfied for t ≥ 0.

From the first and third equations of (2.3) and taking into account the above inequalities, we have

dSv(t)

dt
≥ Λv −

n∑

i=1

βviaviεSv(t)− µvSv(t),
dSh(t)

dt
≥ Λh −

n∑

i=1

βhi
ahi

Sh(t)− µvSh(t). (5.1)

Therefore, from (5.1), we have

lim sup
t→∞

Sv(t) ≥ lim inf
t→∞

Sv(t) ≥
Λv

µv +
∑n

i=1 βviaviε

lim sup
t→∞

Sh(t) ≥ lim inf
t→∞

Sh(t) ≥
Λh

µh +
∑n

i=1 βhi
ahi

ε
.

Thus, there exists a T1 > T0 such that, for any t > T1, and using the second equation of system

(2.3) and the inequality above, we have

dIvi(t)

dt
≥

βviΛv

µv +
∑n

i=1 βviaviε

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ − µvIvi(t). (5.2)

Similarly, there exists a T2 > T0, such that for any t ≥ T2, we have

dIhi
(t)

dt
≥

βhi
Λh

µh +
∑n

i=1 βhi
ahi

ε

∫ τv

0
ghi

(τ)Ivi(t− τ)dτ − (µh + αhi
)Ihi

(t). (5.3)

By the mean value theorem for integrals, we know that for any time t, there is a ξt such that

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ = aviIhi
(ξt), for t− h < ξt < t. (5.4)

Therefore, from (5.2)-(5.4), we obtain

dIvi(t)

dt
≥

aviβviΛv

µv +
∑n

i=1 βviaviε
Ihi

(ξt)− µvIvi(t),

dIhi
(t)

dt
≥

βhi
Λh

µh +
∑n

i=1 βhi
ahi

ε

∫ τv

0
ghi

(τ)Ivi(t− τ)dτ − (µh + αhi
)Ihi

(t).

(5.5)

Notice that R1 =
ah1

av1βh1
βv1ΛhΛv

(µh + αh1
)µhµ2v

> 1. Thus, we may assume we have chosen sufficiently small

ε in such a way that we have

ah1
av1βh1

βv1ΛhΛv

(µh + αh1
)(µh +

∑n
i=1 βhi

ahi
ε)(µv +

∑n
i=1 βviaviε)µv

> 1. (5.6)

Since (Ivi(t), Ihi
(t)) → (0, 0), i = 1, · · · , n as t→ ∞, then by a standard comparison argument,

the solution (xvi(t), yhi
(t)) of the following equation

dxvi(t)

dt
= aviβvi

Λv

µv +
∑n

i=1 βviaviε
yhi

(ξt)− µvxvi(t),

dyhi
(t)

dt
= βhi

Λh

µh +
∑n

i=1 βhi
ahi

ε

∫ τv

0
ghi

(τ)xvi(t− τ)dτ − (µh + αhi
)yhi

(t), i = 1, · · · , n.

(5.7)
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with initial conditions xv0(T1) = Ivi(T1), yn0(T2) = Ihi
(T2) has to converge to (0, 0) as well for

inequality (5.6). On the other hand, for i = 1, · · · , n, if we set,

Wi(t) =
βhi

Λh

µv(µh +
∑n

i=1 βhi
ahi

ε)

∫ τv

0
ghi

(τ)xvi(t− τ)dτ + yhi
(t) + (µh + αhi

)

∫ t

ξt

yhi
(s)ds, (5.8)

Obviously, it follows from the solution (xvi(t), yhi
(t)) → (0, 0) that Wi(t) → 0 as t → ∞. In

particular, we have W1(t) → 0 as t → ∞. However, by directly calculating the derivative in (5.8),

we obtain

dWi(t)

dt
=

[
ahi

aviβhi
βviΛhΛv

(µh +
∑n

i=1 βhi
ahi

ε)(µv +
∑n

i=1 βviaviε)
− (µh + αhi

)

]
y(ξt). (5.9)

Thus, for the above expression (5.9), if we consider i = 1 and use (5.6), then we have W1(t) → ∞

as t→ ∞. This is a contradiction.

Therefore, we have W s(E0)
⋂
X0 = ∅. This completes the proof of Theorem 5.1. �

Now we are able to state our main result.

Theorem 5.2 Assume that R1 > 1, Rj
h < R1

h and Rj
v < R1

v for j = 2, · · · , n. Then, equilibrium

E1 is globally asymptotically stable.

Proof. Because of the complexity of the expressions, we define the Lyapunov functional in compo-

nents and take the derivative of each component separately. Set f(x) = x− 1 − lnx, x > 0. The

components of the Lyapunov’s functional are defined as follows:

WSv(t) = ah1
f

(
Sv(t)

S∗
v1

)
, WIv1

(t) = ah1
f

(
Iv1(t)

I∗v1

)
,

W+Iv1
(t) = ah1

∫ τh

0
φ1(τ)f

(
Ih1

(t− τ)

I∗h1

)
dτ,

W+Ivi
(t) = ah1

∫ τh

0
φj(τ)Ihi

(t− τ)dτ, i = 2, · · · , n,

(5.10)

where, φj(τ) =

∫ τh

τ

gvj (σ)dσ, j = 1, · · · , n.

We calculate the derivative of the above expressions in (5.10) along system (2.3). We obtain

dWSv (t)

dt
= ah1

Sv(t)− S∗
v1

Sv(t)

dSv(t)

S∗
v1
dt

= ah1

Sv(t)− S∗
v1

Sv(t)S∗
v1

[
Λv −

n∑

i=1

βviSv(t)

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ − µvSv(t)

]

= ah1

(
1

S∗
v1

−
1

Sv(t)

)[
βv1S

∗
v1
I∗h1

av1 + µvS
∗
v1

−
n∑

i=1

∫ τh

0
βviSv(t)gvi(τ)Ihi

(t− τ)dτ − µvSv

]

= −
ah1

µv(Sv(t)− S∗
v1
)2

Sv(t)S∗
v1

+ βv1I
∗
h1
ah1

∫ τh

0
gv1(τ)

(
1−

S∗
v1

Sv(t)

)(
1−

Sv(t)Ih1
(t− τ)

S∗
v1
I∗h1

)
dτ

−ah1

n∑

i=2

∫ τh

0
βvigvi(τ)

(
1−

S∗
v1

Sv(t)

)
Sv(t)Ihi

(t− τ)

S∗
v1

dτ.
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The above equations can reduced to the following

dWSv (t)

dt
= −

µvah1
(Sv(t)− S∗

v1
)2

Sv(t)S∗
v1

+ βv1I
∗
h1
ah1

∫ τh

0
gv1(τ)

(
1−

Sv(t)

S∗
v1

Ih1
(t− τ)

I∗h1

−
S∗
v1

Sv(t)
+
Ih1

(t− τ)

I∗h1

)
dτ − ah1

n∑

i=2

∫ τh

0
βvigvi(τ)

(
Sv(t)Ihi

(t− τ)

S∗
v1

− Ihi
(t− τ)

)
dτ.

(5.11)

dWIv1
(t)

dt
=
ah1

(Iv1(t)− I∗v1)

Iv1(t)

dIv1(t)

I∗v1dt

=
ah1

(Iv1(t)− I∗v1)

Iv1(t)I
∗
v1

[
βv1Sv(t)

∫ τh

0
gv1(τ)Ih1

(t− τ)dτ − µvIv1(t)

]

=
ah1

βv1S
∗
v1
I∗h1

I∗v1

∫ τh

0
gv1(τ)

(
1 +

Sv(t)Ih1
(t− τ)

S∗
v1
I∗h1

−
Iv1(t)

I∗v1
−
Sv(t)Ih1

(t− τ)

S∗
v1
I∗h1

I∗v1
Iv1(t)

)
dτ.

(5.12)

Differentiating the time derivative of W+Iv1
(t) with respective to t, we obtain

dW+Iv1
(t)

dt
= ah1

d

dt

∫ τh

0
φ1(τ)f

(
Ih1

(t− τ)

I∗h1

)
dτ

= −ah1

∫ τh

0
φ1(τ)df

(
Ih1

(t− τ)

I∗h1

)

= −ah1
φ1(τ)f

(
Ih1

(t− τ)

I∗h1

)∣∣∣∣
τh

0

+ ah1

∫ τh

0
f

(
Ih1

(t− τ)

I∗h1

)
dφ1(τ).

Notice that lim
τ→h

φ1(τ) = 0 and f

(
Ih1(t−τ)

I∗
h1

)
is bounded. It follows that lim

τ→h
φ1(τ)

(
Ih1(t−τ)

I∗
h1

)
=

0. Moreover, dφ1(τ)
dτ

= −gv1(τ). Hence, we have

dW+Iv1
(t)

dt
= ah1

φ1(0)f

(
Ih1

(t)

I∗h1

)
− ah1

∫ τh

0
gv1(τ)f

(
Ih1

(t− τ)

I∗h1

)
dτ

= ah1

∫ τh

0
gv1(τ)

(
f

(
Ih1

(t)

I∗h1

)
− f

(
Ih1

(t− τ)

I∗h1

))
dτ.

(5.13)

Similarly, we have

dW+Ivi
(t)

dt
= ah1

∫ τh

0
gvi(τ)(Ihi

(t)− Ihi
(t− τ))dτ, i = 2, · · · n. (5.14)

Set

Wv(t) =
1

βv1I
∗
h1

f

(
Sv(t)

S∗
v1

)
+

I∗v1
βv1S

∗
v1
I∗h1

f

(
Iv1(t)

I∗v1

)
+

1

βv1S
∗
v1
I∗h1

n∑

i=2

Ivi(t) +W+Iv1
(t)

+

n∑

i=2

βvi
βv1I

∗
h1

W+Ivi
(t).

(5.15)

Thus, by (5.11)-(5.14), we obtain
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dWv(t)

dt
= −

ah1
µv(Sv(t)− S∗

v1
)2

Sv(t)S∗
v1
βv1I

∗
h1

+ ah1

∫ τh

0
gv1(τ)

(
1−

Sv(t)

S∗
v1

Ih1
(t− τ)

I∗h1

−
S∗
v1

Sv(t)
+
Ih1

(t− τ)

I∗h1

)
dτ

+
ah1

βv1I
∗
h1

n∑

i=2

∫ τh

0
βvigvi(τ)

(
Ihi

(t− τ)−
Sv(t)Ihi

(t− τ)

S∗
v1

)
dτ

+ah1

∫ τh

0
gv1(τ)

(
1 +

Sv(t)Ih1
(t− τ)

S∗
v1
I∗h1

−
Iv1(t)

I∗v1
−
Sv(t)Ih1

(t− τ)

S∗
v1
I∗h1

I∗v1
Iv1(t)

)
dτ

+
n∑

i=2

(
ah1

βviSv(t)

βv1S
∗
v1
I∗h1

∫ τh

0
gvi(τ)Ihi

(t− τ)dτ −
µvah1

βv1S
∗
v1
I∗h1

Ivi(t)

)

+

∫ τh

0
ah1

gv1(τ)

(
Ih1

(t)

I∗h1

− ln
Ih1

(t)

I∗h1

−
Ih1

(t− τ)

I∗h1

+ ln
Ih1

(t− τ)

I∗h1

)
dτ

+
n∑

i=2

ah1
βvi

βv1I
∗
h1

∫ τh

0
gvi(τ)(Ihi

(t)− Ihi
(t− τ))dτ

= −
ah1

µv(Sv(t)− S∗
v1
)2

Sv(t)S∗
v1
βv1I

∗
h1

+

∫ τh

0
ah1

gv1(τ)

(
2−

S∗
v1

Sv(t)
−
Iv1(t)

I∗v1
−
Sv(t)I

∗
v1

S∗
v1
Iv1

Ih1
(t− τ)

I∗h1

+
Ih1

(t)

I∗h1

− ln
Ih1

(t)

I∗h1

+ ln
Ih1

(t− τ)

I∗h1

)
dτ +

n∑

i=2

ah1
βvi

βv1I
∗
h1

∫ τh

0
gvi(τ)Ihi

(t)dτ −
n∑

i=2

ah1
µv

βv1I
∗
h1
S∗
v1

Ivi(t).

(5.16)

Similarly, set

WSh
(t) = av1f

(
Sh(t)

S∗
h1

)
, W+Ih1

(t) =

∫ τv

0
av1ϕ1(τ)f

(
Iv1(t− τ)

I∗v1

)
dτ,

WIh1
(t) = av1f

(
Ih1 (t)

I∗
h1

)
, W+Ihi

(t) =

∫ τv

0
av1ϕj(τ)Ivi(t− τ)dτ, i = 2, · · · , n,

(5.17)

where, ϕj(τ) =

∫ τv

τ

ghj
(σ)dσ, j = 1, · · · , n.

Calculating the derivative of the expressions in (5.17), respectively, along system (2.3), we

obtain

dWSh
(t)

dt
=
av1(Sh(t)− S∗

h1
)

Sh(t)

dSh(t)

S∗
h1
dt

= −
µhav1(Sh(t)− S∗

h1
)2

Sh(t)S
∗
h1

+ av1βh1
I∗v1

∫ τv

0
gh1

(τ)

(
1−

Sh(t)

S∗
h1

Iv1(t− τ)

I∗v1
−

S∗
h1

Sh(t)
+
Iv1(t− τ)

I∗v1

)
dτ

−
n∑

i=2

∫ τv

0
av1βhi

ghi
(τ)

(
Sh(t)Ivi(t− τ)

S∗
h1

− Ivi(t− τ)

)
dτ.

(5.18)
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dWIh1
(t)

dt
=
av1(Ih1

(t)− I∗h1
)

Ih1
(t)

dIh1
(t)

I∗h1
dt

=
av1(Ih1

(t)− I∗h1
)

I∗h1
Ih1

(t)
[βh1

Sh(t)

∫ τv

0
gh1

(τ)Iv1(t− τ)dτ − (µh + αh1
)Ih1

(t)]

=
av1(Ih1

(t)− I∗h1
)

I∗h1
Ih1

(t)
[βh1

Sh(t)

∫ τv

0
gh1

(τ)Iv1(t− τ)dτ −
βh1

S∗
h1
I∗v1ah1

I∗h1

Ih1
(t)]

=
βh1

S∗
h1
I∗v1av1

I∗h1

∫ τv

0
gh1

(τ)

(
1 +

Sh(t)Iv1(t− τ)

S∗
h1
I∗v1

−
Ih1

(t)

I∗h1

−
Sh(t)Iv1(t− τ)

S∗
h1
I∗v1

I∗h1

Ih1
(t)

)
dτ.

dW+Ih1
(t)

dt
=

∫ τv

0
av1gh1

(τ)

(
f

(
Iv1(t)

I∗v1

)
− f

(
Iv1(t− τ)

I∗v1

))
dτ

=

∫ τv

0
av1gh1

(τ)

(
Iv1(t)

I∗v1
− ln

Iv1(t)

I∗v1
−
Iv1(t− τ)

I∗v1
+ ln

Iv1(t− τ)

I∗v1

)
dτ.

dW+Ihi
(t)

dt
=

∫ τv

0
av1ghi

(τ)(Ivi(t)− Ivi(t− τ))dτ, i = 2, · · · , n.

(5.19)

Set

Wh(t) =
1

βh1
I∗v1

f

(
Sh(t)

S∗
h1

)
+

I∗h1

βh1
S∗
h1
I∗v1

f

(
Ih1

(t)

I∗h1

)
+

n∑

i=2

1

βh1
S∗
h1
I∗v1

Ihi
(t) +W+Ih1

(t)

+

n∑

i=2

βhi

βh1
I∗v1

W+Ihi
(t).

(5.20)

By (5.18)-(5.20) and the system (2.3), we obtain

dWh(t)

dt
= −

av1µh(Sh(t)− S∗
h1
)2

βh1
S∗
h1
I∗v1Sh(t)

+

∫ τv

0
av1gh1

(τ)

(
2−

S∗
h1

Sh(t)
−
Ih1

(t)

I∗h1

−
Sh(t)I

∗
h1

S∗
hIh1

Iv1(t− τ)

I∗v1
+
Iv1(t)

I∗v1

− ln
Iv1(t)

I∗v1
+ ln

Iv1(t− τ)

I∗v1

)
dτ +

n∑

i=2

av1βhi

βh1
I∗v1

∫ τv

0
ghi

(τ)Ivi(t)dτ −
n∑

i=2

av1(µh + αhi
)

βh1
S∗
h1
I∗v1

Ihi
(t).

(5.21)

Set

W (t) =Wv(t) +Wh(t).

From (5.16) and (5.21), we obtain

dW (t)

dt
= −

µvah1
(Sv(t)− S∗

v1
)2

βv1S
∗
v1
I∗h1

Sv(t)
−
µhav1(Sh(t)− S∗

h1
)2

βh1
S∗
h1
I∗v1Sh(t)

+

∫ τh

0
ah1

gv1(τ)

(
2−

S∗
v1

Sv(t)
−
Iv1(t)

I∗v1

−
Sv(t)I

∗
v1

S∗
v1
Iv1

Ih1
(t− τ)

I∗h1

+
Ih1

(t)

I∗h1

− ln
Ih1

(t)

I∗h1

+ ln
Ih1

(t− τ)

I∗h1

)
dτ +

∫ τv

0
av1gh1

(τ)

(
2−

S∗
h1

Sh(t)

−
Ih1

(t)

I∗h1

−
Sh1

(t)I∗h1

S∗
h1
Ih1

Iv1(t− τ)

I∗v1
+
Iv1(t)

I∗v1
− ln

Iv1(t)

I∗v1
+ ln

Iv1(t− τ)

I∗v1

)
dτ

+
n∑

i=2

ah1
βhi

βh1
I∗v1

∫ τv

0
ghi

(τ)Ivi(t)dτ −
n∑

i=2

av1(µh + αhi
)

βh1
S∗
h1
I∗v1

Ihi
(t) +

n∑

i=2

av1βvi
βv1I

∗
h1

∫ τh

0
gvi(τ)Ihi

(t)dτ

−
n∑

i=2

ah1
µv

βv1I
∗
h1
S∗
v1

Ivi(t).

(5.22)
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It follows from equation (5.22) that

dW (t)

dt
= −

µvah1
(Sv(t)− S∗

v1
)2

βv1S
∗
v1
I∗h1

Sv(t)
−
µhav1(Sh(t)− S∗

h1
)2

βh1
S∗
h1
I∗v1Sh(t)

−

∫ τh

0
ah1

gv1(τ)

[
S∗
v1

Sv(t)
− 1

− ln
S∗
v1

Sv(t)
+
Sv(t)I

∗
v1

S∗
v1
Iv1

Ih1
(t− τ)

I∗h1

− 1− ln
Sv(t)I

∗
v1

S∗
v1
Iv1

Ih1
(t− τ)

I∗h1

+
Ih1

(t)

I∗h1

−
Iv1(t)

I∗v1

]
dτ

+

∫ τh

0
ah1

gv1(τ)

(
ln
Ih1

(t)

I∗h1

− ln
I∗v1
Iv1(t)

)
dτ −

∫ τv

0
av1gh1

(τ)

[
S∗
h1

Sh(t)
− 1

− ln
S∗
h1

Sh(t)
+
Sh(t)Iv1(t− τ)I∗h1

S∗
h1
I∗v1Ih1

− 1− ln
Sh(t)Iv1(t− τ)I∗h1

S∗
h1
I∗v1Ih1

]
dτ

+

∫ τv

0
av1gh1

(τ)

(
Iv1(t)

I∗v1
−
Ih1

(t)

I∗h1

+ ln
Iv1(t)

I∗v1
− ln

I∗h1

Ih1
(t)

)
dτ

+
n∑

i=2

(
av1aviβvi
βv1I

∗
h1

−
a2v1(µh + αhi

)

(µh + αh1
)I∗h1

)
Ihi

(t) +
n∑

i=2

a2h1

I∗v1

(
ahi

βhi

ah1
βh1

− 1

)
Ivi(t).

(5.23)

Using the equality

∫ τv

0
gh1

(τ)dτ = ah1
,

∫ τh

0
gv1(τ) dτ = av1 , we obtain

(∫ τh

0
ah1

gv1(τ)dτ −

∫ τv

0
av1gh1

(τ)

)(
Ih1

(t)

I∗h1

−
Iv1(t)

I∗v1

)
= 0,

(∫ τh

0
ah1

gv1(τ)−

∫ τv

0
av1gh1

(τ)dτ

)(
ln
Ih1

(t)

I∗h1

− ln
I∗v1
Iv1(t)

)
= 0.

(5.24)

Using f(x) = x− 1− lnx, x > 0 and the expression of Ri
h and Ri

v, from (5.23) we obtain

dW (t)

dt
= −

µvah1
(Sv(t)− S∗

v1
)2

βv1S
∗
v1
I∗h1

Sv(t)
−
µhav1(Sh(t)− S∗

h1
)2

βh1
S∗
h1
I∗v1Sh(t)

−

∫ h

0
ah1

gv1(τ)

[
f

(
S∗
v1

Sv(t)

)

+f

(
Sv1(t)I

∗
v1

S∗
v1
Iv1

Ih1
(t− τ)

I∗h1

)]
dτ −

∫ h

0
av1gh1

(τ)

[
f

(
S∗
h1

Sh(t)

)
+ f

(
Sh(t)I

∗
h1

S∗
h1
Ih1

Iv1(t− τ)

I∗v1

)]
dτ

+

n∑

i=2

a2h1

I∗v1

(
Ri

v

R1
v

− 1

)
Ivi(t) +

n∑

i=2

a2v1(µh + αhi
)

(µh + αh1
)I∗h1

(
Ri

h

R1
h

− 1

)
Ihi

(t).

Since f(x) ≥ 0 for x > 0, Ri
h < R1

h and Ri
v < R1

v, i 6= 1 we have
dW (t)

dt
≤ 0. Let

Ω̄ = {(Sv , Iv1 , · · · , Ivn , Sh, Ih1
, · · · , Ihn

) ∈ X|
W (t)

dt
= 0}.

It is easy to verify that dW (t)
dt

= 0 if and only if Sv(t) = S∗
v1
, Iv1(t) = S∗

v1
, Sh(t) = S∗

h1
, Ih1

(t) =

I∗h1
, Ivi(t) = 0, Ihi

(t) = 0, i = 2, · · · n. Hence, the largest invariant set in Ω̄ is the singleton

{E1}. By LaSalle invariance principle and Theorem 3.2, we show that equilibrium E1 is globally

asymptotically stable. �

6 Discussion

In this paper we introduce a multi-strain model of a vector-borne disease with distributed delay in

the vector and the host. We define the basic reproduction number of the disease as the maximum
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of the reproduction numbers of each strain. We show that if R0 < 1 the disease-free equilibrium is

locally and globally stable, that is the number of infected with each strain goes to zero. Furthermore,

we show that if R0 > 1, then the disease persists.

Our main objective with the article was to extend the competitive exclusion result established

by Bremermann and Thieme [2]. This principle states that in the basic ODE model when multiple

strains compete only the strain with the largest reproduction number persists, if its reproduction

number is larger than one, and the other strains die out. In this case coexistence is not possible

outside of the trivial scenario when the reproduction numbers of two different strains are equal.

To prove the competitive exclusion result for the multi-strain vector-borne model with dis-

tributed delay, we need to prove global stability of the a single-strain equilibrium. We approached

the problem using a Lyapunov function. However, we were able to establish only the following

weaker result: It is well known that the reproduction number in vector-borne diseases splits into a

vector reproduction number and host reproduction number, namely Ri
0 = Ri

hR
i
v. Our result states

the the strain that maximizes both the vector reproduction number and the human reproduction

number will dominate in the population and eliminate the rest. In particular, if we assume that

Ri
h < R1

h and Ri
v < R1

v for i = 2, . . . , n then strain one will dominate and eliminate the rest. In

this case coexistence does not occur. In fact, it can be shown that model (2.3) does not have a

coexistence equilibrium if all strain reproduction numbers are different.

Our result does not resolve the competition outcome in the case when different strains maximize

the human and the vector reproduction numbers. In this sense the question whether complete com-

petitive exclusion holds in the vector-host model is still an open question. We surmise that because

coexistence equilibrium is not present, competitive exclusion in this case also occurs with the strain

with maximal reproduction number eliminating the rest. Establishing this result, however, may

need a different approach.

From the prospective of public health, public health efforts will work best if directed to moni-

toring the vector and host reproduction numbers of the multiple strains in vector-borne diseases.

Control measures may need to be applied to the strain(s) that maximize the vector and the host

reproduction numbers.
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