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Abstract

Treatment of hepatitis C virus (HCV) is lengthy, expensive and fraught with side-effects,
succeeding in only 50% of treated patients. In clinical settings, short-term treatment response
(so-called sustained virological response [SVR]) is used to predict prolonged viral suppression.
Although ordinary differential equation (ODE) models for within-host HCV infection have illu-
minated the mechanisms underlying treatment with interferon (IFN) and ribavirin (RBV), they
have difficulty producing SVR without the introduction of an external extinction threshold.
Here we show that bistability in an existing ODE model of HCV, which occurs when infected
hepatocytes proliferate sufficiently much faster than uninfected hepatocytes, can produce SVR
without an external extinction threshold under biologically relevant conditions. The model can
produce all clinically observed patient profiles for realistic parameter values; it can also be used
to estimate the efficacy and/or duration of treatment that will ensure permanent cure for a
particular patient.

Keywords: Hepatitis C, HCV, sustained virological response, SVR, bistability, backward
bifurcation.
Abbreviations: HCV, Hepatitis C virus, SVR, sustained virological response, DFE, disease
free equilibrium, EE, endemic equilibrium.

1 Introduction

Chronic Hepatitis C virus (HCV) infection is a global health problem affecting 3.2 million people
in the United States alone. HCV infection, which causes insidious liver damage including chronic
hepatitis, cirrhosis and liver cancer [23], is projected to generate medical costs of $10.7 billion in
adults in the US between 2010 and 2019 [30]. Treatment of HCV is sub-optimal, succeeding in only
50% of treated patients and causing several side-effects [15]. Chronic HCV infection can continue
for decades, with or without treatment; thus, while treatments for HCV exist, it is hard to know
whether they provide an absolute cure for the virus. Rather, the goal of treatment is to achieve
sustained virological response (SVR), defined as undetectable HCV viral loads six months after the
cessation of therapy (Figure 1). SVR is considered a “virological cure” and is usually followed by
many years of stable liver function [27].
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Figure 1: Qualitative viral load (HCV-RNA) dynamics in treated patients, modified from [15]. The
detection level is set at 100 copies/mL as stated in [24].

It is becoming increasingly clear that setting universal, fixed treatment durations is impractical.
To establish ‘response guided therapy’ [22], clinicians have defined criteria that can be measured
during treatment to modify ongoing treatment, as well as to predict the long-term goal of SVR
(Figure 1). End-of-treatment response (ETR), which is necessary but not always sufficient to achieve
SVR, is defined by undetectable viral load at the end of a 24- or 48-week course of therapy. Rapid
virological response (RVR), which predicts SVR with high probability, is defined as undetectable
viral load four weeks into treatment [31, 19]. Early virological response (EVR), characterized by
≥ 2 log reduction or undetectable viral load at week 12 of therapy, is considered necessary for
achievement of SVR [9, 14]. Relapse denotes the reappearance of HCV RNA in serum after the
end of therapy; null responders are patients who fail to achieve a decrease in HCV RNA by 2 logs
after 24 weeks of therapy; and partial non-responders are those who exhibit 2 log decrease in HCV
RNA but are still HCV RNA positive at week 24 [15].

One role of mathematical models is to clarify how variation among patients, and among HCV
genotypes, can lead to this array of treatment responses, with the ultimate goal of improving
prediction and treatment. Previous immunological models of HCV such as those by Dahari et al.
[5] and Dixit et. al. [11] have made valuable contributions, exploring the factors that determine
the efficacy of peg-interferon and ribavirin treatment of HCV. Owing to the short-term nature
of available treatment data, initial modeling efforts were geared towards producing short-term
responses that accurately mimicked observed data [5, 6]. Although the short-term responses are
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good indicators of future cure, there is an increasing need for models to provide more definite
predictions of medium- and long-term viral response. Here, we explore the fact that an existing
model of HCV with regeneration (from [5, 26]) has the intrinsic mathematical property of bistability
under biologically relevant conditions, so that the system can produce SVR; in fact, we demonstrate
that this model can produce all the qualitative treatment profiles shown in Figure 1.

A useful mathematical definition of cure is that after the cessation of treatment the density of
the pathogen (defined here as viral load) converges to a stable disease free equilibrium, (DFE). That
is, while the pathogen is still present at a positive density, that density is continuously decreasing
toward zero. In contrast, we characterize chronic infection or failure to cure as convergence toward a
stable endemic equilibrium (EE) with positive pathogen density. Most current models of within-host
dynamics have a single stable equilibrium. In these models, a successful treatment (one to which
the patient responds) is characterized by a switch in stability from the EE to the DFE. In this case,
pathogen density declines during treatment (sometimes rapidly) toward zero from its pre-treatment
equilibrium level. (In other diseases, such as HIV, factors such as the emergence of drug-resistant
variants make the switch to a DFE elusive, and the goal switches instead toward lowering the size
of the EE to a level which minimizes the effects of disease on the patient.) However, these models
typically assume that treatment is lifelong. When treatment stops, these models always predict a
rebound, sometimes rapid, back to the pre-treatment EE — that is, they do not predict a cure.

How can we reconcile the observation of effective short-term treatment with the behavior of
mathematical models? First, and probably most often cited by mathematical modelers, are the
effects of discreteness and stochasticity missing from standard deterministic models. At very low
within-host pathogen densities (and numbers), chance events can lead to the pathogen’s complete
extinction. Snoeck et. al. [29] have recently taken this approach, using an HCV model [6] with
regeneration that distinguishes between infectious and non-infectious virions. The threshold cri-
terion they define, based on an expected total of < 1 infected hepatocytes in the patient’s body,
allows them to produce all long-term patient responses including SVR.

Second, the post-treatment rebound towards the EE may be so slow that viral levels remain
undetectable even beyond the host’s natural lifespan. (This possibility proves to be unlikely for our
system, but could be applicable to the within-host dynamics of other pathogens.)

A third possibility, less often explored by modelers (although see [16]), is that the host-pathogen
system is bistable, meaning that the system could converge to either the DFE or the EE, depending
on initial conditions. In this scenario, the patient begins treatment at or near the (stable) EE.
While treatment may or may not change the stability of the EE, it can push pathogen densities
(and densities of host cells or immune factors) over a threshold, into the so-called basin of attraction
of the DFE, where the system will naturally approach the DFE in the long run. When treatment
ceases, the system remains in basin of attraction of the DFE, the pathogen density continues to
decline towards the DFE, and the patient is both clinically and mathematically cured.

A well-established mathematical model of the interaction between treatment, HCV, and host
cells is known to allow bistability [26]; however, the implications of this behavior for treatment
have not been previously explored in detail. In this paper, we analyze the system of equations to
establish mathematical criteria that define when this behavior occurs and show that it does occur
for realistic parameter values. In addition, we explore the parameter space numerically to show
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that the intrinsic property of bistability allows the model to reproduce all of the patient profiles
(null responder, partial responder, SVR, etc.) displayed in Figure 1, without external stimulation.
For a particular patient/HCV genotype combination (i.e., a set of model parameters), we can use
the model to find the boundaries of the basin of attraction — that is, to define combinations of
state variables (viral load and number of uninfected hepatocytes) reached during treatment that
will ensure SVR. We use these estimates in turn to predict the minimum treatment time for a
particular fixed drug efficacy, or the minimum treatment efficacy for a fixed treatment time.

2 Model definition

We use a standard ODE model of the interaction between hepatocytes and HCV [5, 6]:

dT

dt
= s+ r1T

(
1− T + I

Tmax

)
− dT − βTV

dI

dt
= βTV + r2I

(
1− T + I

Tmax

)
− δI

dV

dt
= (1− ε)pI − cV (1)

The three continuous state variables in the model represent the number of uninfected hepato-
cytes (T ), infected hepatocytes (I) and free virus, or viral load (V ). Time is measured in days.
The model assumes a baseline (absolute) recruitment rate of uninfected hepatocytes at rate s and
a baseline (per capita) mortality rate d. Hepatocytes proliferate in a density-dependent, or home-
ostatic, way with a maximum proliferation rate r1 and r2 for uninfected and infected hepatocytes
respectively (as discussed below, this difference is critical for the occurrence of bistability), while
the maximum hepatocyte density or ‘carrying capacity’ Tmax, is based on both uninfected and in-
fected hepatocytes. Uninfected hepatocytes are infected by free virus at a per-virus, per-hepatocyte
rate of β; thus, βTV is the rate of hepatocyte infection. Infected hepatocytes are cleared, due to
natural death, immune response, or drug action, at a per capita rate δ. Finally, the dynamics of
free virus particles in the absence of treatment are determined by p (rate of production per infected
hepatocyte) and c (clearance rate).

Neumann et. al.[24] studied the effect of interferon and ribavirin treatment on HCV patients
by fitting a simple dynamical model to data from patients undergoing therapy. This seminal article
in modeling the treatment of HCV estimated that treatment had negligible effects on the clearance
rates of infected hepatocytes (δ) and free virus (c). When the efficacy of treatment on p was close
to 100%, the efficacy of treatment on β was approximately zero. In [5], although the authors
incorporate the effect of treatment on both production (p) and infection (β) for mathematical
analysis, their numerical solutions combine the efficacies into a single effect acting on p alone. Here,
we analyze the model in absence of treatment and explore the effects of treatment numerically;
following [5], we include the effect of treatment on production (p) alone, through the efficacy
parameter ε.

This model has been thoroughly analyzed and fitted to available data on patient profiles under
treatment [5, 26, 4, 7]. The model appears to be appropriate for understanding the dynamics of in
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vivo HCV infection and possibly hepatitis B (HBV) infection [8]. Dahari et al [7] have also studied
the relationship among drug efficacy, infected hepatocyte death rate, rate of final phase decline and
the baseline fraction of infected hepatocytes before treatment. Another article by Dahari et al [4]
used the same model to show that a high baseline viral load reduces the chances of achieving SVR.
This extensive effort has estimated realistic ranges for all of the parameters which we use hereafter.

The basic reproduction number (R0) is a standard metric in epidemiology and in within-host
dynamics that describes the ability of a pathogen to spread after its initial introduction. In this case,
R0 can be interpreted as the total number of secondary hepatocyte infections caused by a single
infected hepatocyte when it is introduced into a completely susceptible population of hepatocytes.

The R0 of (1) without treatment is given by

R0 =
βp

cδ
T0 +

r2
δ

(
1− T0

Tmax

)
, (2)

where T0 is the concentration of uninfected hepatocytes at the DFE, (T0, 0, 0), given by

T0 =
Tmax

2r1

(
(r1 − d) +

√
(r1 − d)2 + 4s

r1
Tmax

)
[5]. The first term in (2) accounts for the fact that the infected hepatocyte can produce up to p
virions in its lifetime of 1

c days and each virus can infect a uninfected hepatocyte at the rate β over
its lifetime of 1

δ days. The second term accounts for the number of infected hepatocytes produced
by proliferation from the introduced infected hepatocyte.

3 Bistability: mathematical analysis

A bifurcation is a set of parameter values where equilibria appear, disappear or change stability.
The bifurcation curve maps this change with respect to a bifurcation parameter [2]: for example,
the bifurcation curve shown in Figure 2 depicts changes in the value and stability of equilibria as
a result of changes in the clearance parameter δ, holding all other parameters fixed (equivalent to
changing R0). The DFE is locally stable for R0 < 1 and unstable for R0 > 1. Thus R0 = 1 is a
bifurcation point.

If a stable EE exists for some range of R0 < 1 as well as in the region with R0 > 1, the model is
said to exhibit backward bifurcation [20]. In this case both the DFE and the EE can be stable in a
region with R0 < 1 (bistability). Which equilibrium the system approaches depends on the starting
values of the state variables (T , I, and V ). Figure 2 shows the bifurcation curve for model 1, without
treatment, with biologically relevant values of parameters, showing the equilibrium quantities per
mL of free virus (V ∗) as a function of R0 as the bifurcation parameter δ varies. We use Rc to
denote the left-most point on the bifurcation curve where the EE exists (i.e. lowest R0, and the
highest δ; low values of R0 correspond to high values of δ).

When a backward bifurcation occurs, there are at least three equilibria in the region Rc <
R0 < 1: the stable DFE, a large stable EE and a smaller unstable EE which separates the basins
of attraction of the two stable equilibria [20]. In this model we observe that a backward bifurcation
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can occur only if r2 > r1, i.e., if the rate of proliferation of infected hepatocytes is greater than the
proliferation rate of uninfected hepatocytes. Although one might expect that infected hepatocytes
would always proliferate slower rather than faster than uninfected ones because their function would
be impaired by viral infection, studies of tissues from hepatocellular carcinoma patients show that
HCV can enhance infected hepatocyte turnover in order to replace cells destroyed by immunological
attack [1].
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Figure 2: A bifurcation curve for the model with bifurcation parameter δ. Clearance rate δ ranges from 16.56–1.1
while R0 ranges from 0.1–1.5 (the realistic range for δ is between 1.4× 10−3 and 3.0 day−1 [7]). Other parameters:
s = 3661.7, Tmax = 6.33 × 106, d = 1.4 × 10−3, β = 7.4 × 10−8, p = 40.5, c = 11.5, r1 = 0.31, r2 = 4.4. Unrealistic
(i.e. negative) equilibria are not shown.

A particular choice of model parameters describes the characteristics of a particular patient
phenotype infected with a particular viral genotype: we refer interchangeably to “parameter sets”
and simulated (in silico) “HCV patients”. Each patient/set of parameters corresponds to a partic-
ular R0 in Figure 2. Depending on a patient’s R0 and the corresponding EE (represented in the
Figure by viral load), a patient can fall in any of the four distinct regions shown in the Figure 2.

• Patients with low R0 (Figure 2, region 1) should spontaneously clear the virus, because the
DFE is stable and the EE does not exist. These patients would probably never require medical
intervention.

• When R0 ≥ 1 (region 4) the natural dynamical properties of the model will not predict SVR
(in [29] this is achieved by reducing the density of infected hepatocytes to zero when it goes
below a critical quantity corresponding to a single hepatocyte per patient). Here the DFE
exists but is unstable, while the EE is stable. Patients in this region will always rebound to
their original viral load once treatment stops — they will never achieve SVR.
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• In the central (shaded) region, the model is bistable. Three equilibria viz.,a stable DFE, a
stable EE, and an unstable equilibrium between them, exist. Patients whose pre-treatment
state (viral load) falls in region 3 will behave like those in region 1, exhibiting spontaneous
cure. Those who fall within region 2 will establish a stable EE in the absence of treatment,
similar to those in region 4. Unlike patients in region 4, however, treatment may push the
viral load down into region 3, leading to SVR. Regions 2 and 3 are separated by the unstable
endemic equilibrium which represents as a viral load threshold for permanent cure.

We first analytically define the conditions that determines if a parameter set lies in the bistable
region (2 and 3).

Bistability occurs under the following conditions (derived in Appendix A):

R0 < 1 (3)

r2 − r1 >
s

T 2
0

r2

β̃
+ β̃Tmax, (4)

where β̃ = β pc . The second condition implies that r2 > r1; the proliferation rate of infected
hepatocytes must be greater than that of uninfected hepatocytes. When r2 is sufficiently greater
than r1, even when R0 <1, the system can keep producing enough new infected hepatocytes and
in turn enough free virus that a non-zero EE can be stable.

The bistability criteria also allows us to determine the region of bistability defined by the range
of values of the bifurcation parameter for which bistability occurs. The criterion R0 = 1 allows us
to determine δ0, which defines the upper boundary of the bistable region. Following the calculation
process in [16], we can then determine the critical value of δc corresponding to Rc, the lower
boundary of the bistable region (Appendix A).

4 Numerical exploration of parameter space: patient profiles

4.1 Observed Patient Profiles

With the properties of bistability behavior in model 1 we first show that it is possible to simulate
all the four distinct types of patient profiles shown in Figure 2 (Figure 3). We took parameters
from the literature [5, 6] to represent patient profiles where short-term treatment responses, but
not SVR, are possible (R0 > 1) to produce naturally. To find realistic parameter sets which satisfy
the criteria for backward bifurcation (Rc < R0 < 1: 4), and hence SVR can be simulated in the
model, we randomly drew parameters from uniform distributions with the criterion r2 > r1, and
within the ranges given in Dahari et al [4, 7] (details in Appendix B).

As noted before, a mathematical representation of cure, such that the viral load decreases con-
tinuously to zero even after the cessation of treatment, is impossible for R0 > 1. Even if the patient
is treated with a highly effective regimen for a long time, relapse occurs almost instantaneously
after therapy cessation. For patients in this category we can generate profiles for null and partial
responders, EVR, and RVR. However SVR (see Figure 3(a)) cannot be produced without imposing

7



0 100 200 300 400 500 600

2

3

4

5

6

7

(a)R0 > 1

Time (days)

V
ira

l l
oa

d,
 V

 (l
og

10
 c

op
ie

s/
m

L)

detection limit

RVR
check

EVR
check

ETR
check

SVR
check

0 100 200 300 400 500 600

2

3

4

5

6

7

(b)Rc < R0 < 1

Time (days)

V
ira

l l
oa

d,
 V

 (l
o g

10
 c

op
ie

s/
m

L)

detection limit

RVR
check

EVR
check

ETR
check

SVR
check

Figure 3: Patient profiles. In all cases, patients start from the stable EE in the absence of treatment. Treatment
begins at time t = 0 and lasts for the standard period of 48 weeks = 336 days. (a) Patients where only short-
term treatment response is possible (R0 > 1), without the achievement of SVR. Null responder: s = 2.6 × 104,
Tmax = 1 × 107, d = 2.6 × 10−3, β = 2.25 × 10−7, p = 2.9, c = 6.0, r1 = 4.2, r2 = 4.2, δ = 0.26 [5] and ε = 0.5.
Partial responder: s = 4, Tmax = 9.13× 106, d = 1.3× 10−2, β = 3.5× 10−7, p = 4.3, c = 3.5, r1 = 0.5, r2 = 0.25,
δ = 0.22 [6] and ε = 0.945. RVR (with relapse): as null responder, but with higher treatment efficacy (ε = 0.998).
EVR (with relapse): s = 7.3, Tmax = 0.51 × 107, d = 12.9 × 10−3, β = 3.5 × 10−7, p = 4.4, c = 3.5, r1 = 0.5,
r2 = 0.25, δ = 0.22 [6], and ε = 0.94. (b) Patients where SVR is possible to produce dynamically (Rc < R0 < 1).
Null responder: s = 3661.7, Tmax = 6.33 × 106, d = 1.4 × 10−3, β = 7.4 × 10−8, p = 40.5, c = 11.5, r1 = 0.31,
r2 = 4.4, δ = 2.8 and ε = 0.5. Partial responder: s = 4.1× 103, Tmax = 1.2× 107, d = 1.3× 10−3, β = 7× 10−7,
p = 5.8, c = 19.46, r1 = 2.1×10−1, r2 = 5.1, δ = 2.5 and ε = 0.9. RVR: as null responder, but with higher treatment
efficacy (ε = 0.95). EVR: s = 5133, Tmax = 9.9× 106, d = 1.3× 10−3, β = 1.57× 10−08, p = 43, c = 5.09, r1 = 1.4,
r2 = 4.8, δ = 1.35 and ε = 0.62.

further external criteria. Furthermore, even the patients who are able to show RVR do not achieve
SVR in our model simulations, although RVR is a very good indicator of SVR in reality. Thus
model 1 never predicts cure for patients with such parameter combinations when allowed to run
normally.

We have not ruled out the possibility that there exist parameters where treatment for the
standard duration could lead to realistic short-term dynamics and a long-term rebound that is
so slow that, despite the eventual theoretical return to the EE, the viral load does not increase
above the detection level (100 copies/ml) during the expected lifetime of the patient t� 600days.
Similarly, there may be parameter combinations for the bistability case (Figure 3(b)) that display
relapse: i.e. the viral load drops below detection level during treatment, but not into the basin
of attraction of the DFE, so that the viral load returns to pre-treatment levels once treatment is
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stopped. However, we were unable to find parameter sets that satisfied either of these profiles (SVR
for R0 > 1 or relapse for Rc < R0 < 1) for realistic parameter values.

4.2 Estimating critical treatment efficacy and duration

In this section, we explore the effects of different treatment strategies for a fixed parameter set in
the bistability regime. Here we provide a ”proof of concept” example of what can be achieved using
this model for a specific class of patients whose parameters might exhibit bistability. We define a
“Patient I” according to the parameter set shown in Figure 2 with δ fixed at 2.8 day−1. We assume
that a chronic patient who requires treatment (will not clear the virus spontaneously) has the state
variables at the stable EE. In that case we study the regions of attraction of the EE and DFE, and
what combinations of treatment efficacy and duration will be sufficient to drive a patient from the
EE into the basin of attraction of the DFE where permanent cure will occur.

For illustrative purposes, we reduce the three-dimensional {T, I, V } system to a planar ({T, V })
system with very similar dynamical properties. Because free virus V has very rapid dynamics
relative to those of T and I, free virus will quickly equilibrate to a quasi-equilibrium level, and thus
if we know V we can estimate the current density of infected hepatocytes. Substituting this value
Î = c

pV , the model 1 reduces to:

dT

dt
= s+ r1T

(
1−

T + c
pV

Tmax

)
− dT − βTV

dV

dt
= β̃TV + r2V

(
1−

T + c
pV

Tmax

)
− δV. (5)

The reduced model (5) has the same equilibria and similar bifurcation properties as the original
model (1). We first plot the dynamics for Patient I in the phase plane with V (viral load) and T
(uninfected hepatocytes) on the axes, to visualize the basins of attraction of the DFE and the EE
(Figure 4). The figure is an expanded representation of the marked point in Figure 2 that indicates
the parameters corresponding to Patient I (δ = 2.8, R0 = 0.59), showing the full phase plane
rather than just the equilibrium values of viral load; the qualitative picture is the same throughout
the bistability regime. The figure shows the trajectory of Patient I, starting from the EE before
treatment, during and after treatment. The viral load initially falls very rapidly, then more slowly
as the patient’s uninfected hepatocyte population recovers toward the DFE. When treatment stops,
there is an immediate, rapid, but also temporary rebound of the viral load. After a brief increase,
the viral load again begins to decrease toward zero as the hepatocyte population continues to
recover toward the DFE. Thus, the patient can maintain SVR without further treatment.

The continued recovery of the patient is entirely due to the fact that treatment was continued
long enough to drive the patient’s state from the stable EE across the boundary into the basin of
attraction of the DFE. If treatment were less effective or applied for a shorter period, the viral
load would instead have increased (and the uninfected hepatocyte population decreased) back to
the stable EE after the end of treatment.

Figure 4 shows that one must increase the population of uninfected hepatocytes as well as
lower the viral load in order to attain SVR (i.e., move to the right [increasing T ] as well as down
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Figure 4: Phase plot for Patient I based on the reduced model (5). The purple line shows the trajectory through
{T, V } space of Patient I during treatment (with ε = 0.65), starting at the stable EE (upper left corner), simulated
using the original model (1). When treatment stops after 130 days, the viral load follows the green dashed line and
returns to the stable EE and the patient is not cured. Whereas, if the treatment is allowed to continue for 135 days,
the trajectory continues along the (magenta line) to converge to the (stable) DFE. Blue points represent equilibria;
the red line (the separatrix ) shows the threshold in phase space dividing states from which the patient will relapse
(upper left side) or recover (lower right side); the black line shows the stable manifold, along which the system will
tend to travel in the absence of treatment.

[decreasing V ] in order to cross the threshold). This phenomenon can explain the fact that cirrhotic
patients of lower viral load are harder to treat, than non-cirrhotic patients with higher viral loads,
as observed by Dahari et al [4]. Since the concentration of uninfected hepatocytes is considerably
lower in a cirrhotic patient (and their recruitment and proliferation rates may be impaired as well),
treating to reach the basin of attraction of the DFE where SVR will occur is harder.

In the bistable regime, the model allows us to numerically explore the effectiveness and duration
of treatment necessary to push the state variables into the the basin of attraction of the DFE, so
that the patient will spontaneously clear the virus. We shall modulate the effects of treatment by
changing the efficacy (ε) and the duration of treatment (t1).

Figure 5(a) shows the same basic dynamics as Figure 4, but with differing levels of efficacy so
that the treatment time of t1 = 48 weeks may or may not be sufficient to drive the patient into the
basin of attraction of the DFE and induce SVR. For low ε, the patient returns to pre-treatment
viral load after cessation of therapy, while for high ε (and the same treatment period) they achieve
SVR.

We can use the same general approach to adjust the time of treatment, rather than the efficacy.
While one would always like to treat with as close to 100% efficacy as possible, in fact different
patients experience different efficacies (typically due to weak immune responses). In this case, one
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SVR for a range of εs lies on the black curve. The ε and t1 combinations to the right of this curve will result in SVR,
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trajectories in figure 4.

can increase the duration of treatment to facilitate SVR. Jensen et. al. [18] found that increasing
the treatment duration to 72 weeks when re-treating previous non-responders yielded more SVR.

Figure 5(b) shows the relationship between critical efficacy ε and treatment time t1 to achieve
SVR for the same parameters (Patient I) explored previously. Below an efficacy of ≈ 0.62, the
required treatment time increases rapidly beyond the treatment time of 48 weeks (336 days). Since
the general intention of the doctors is to reduce the treatment duration, most patients do not get
treated for more than 48 weeks. With an efficacy of ≈ 0.74, the treatment time can be reduced to
50 days, but further increases in treatment efficacy do not further decrease the required treatment
time.

5 Discussion

Mathematical models of HCV dynamics in vivo [21, 24, 5] have improved our understanding of
several aspects of this disease.

Due to the nature of the available data, most existing models of HCV dynamics in vivo have
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focused on the short term effects of treatment. While standard ODE models do a reasonably good
job predicting long-term results like SVR (itself a proxy for indefinite suppression of virus and
maintenance of liver function), they are unable to produce SVR from direct model simulations.
Thus, a disconnect remains between the long-term behavior of models and real patients. Snoeck
et al. [29] bridge this gap by imposing an external extinction threshold; here, in contrast, we have
explored the implications of bistability in a simple ODE for long-term cure of treated patients.

Most previous analyses of bistability have focused at the population, or epidemiological, level
[20, 12, 13]. In one of the few previous studies to explore bistability in an immunological (in vivo)
model, Gomez-Acevedo and Li [16] used backward bifurcation to explain the viral dynamics of
HTLV-I infection and encourage treatment measures to consider the more difficult threshold that
needs to be overcome to achieve cure in case of bistability. Qesmi et al. [25] have also interpreted
bistability as posing a higher threshold for successful treatment, when HCV and HBV (hepatitis B
virus) infection is considered in both blood and liver. In most models of disease control, at either
the within-host or within-population level, controls are introduced (e.g. vaccination given to TB
patients: [20]) to permanently change a population parameter such that R0 < Rc.The disease is
then driven to DFE. In the case of HCV, the effect of treatment is only temporary and thus the
viral system of a single patient cannot move horizontally in Figure 2; we can only permanently
change the state variables, not the system parameters. Thus, in contrast to previous studies, we
interpret bistability as a benefit — only in the bistable case can we use a temporary period of
treatment to achieve permanent control of a disease in vivo.

The bistability property of model 1 allows us to simulate all the distinct patient profiles that are
observed under treatment (Figure 1). For disease parameters that do not imply spontaneous viral
clearance (i.e. R0 > Rc), we can reproduce the qualitative outcomes of null responders, partial
responders, EVR, and RVR whether one or two stable equilibria exist. However, SVR occurred
only under bistability (Rc < R0 < 1) and relapse occurred only with a single stable equilibrium
(R0 > 1).

We cannot rule out the possibilities of producing long term viral suppression for R0 > 1 by
stochastic extinction [29] or slow rebound (the former seems unlikely on the basis of our numerical
exploration, although [29] et al. did see realistic rebound patterns in their model). Further inves-
tigation will be necessary to differentiate these hypotheses. Our aim in this article is to introduce
bistability as a plausible alternative hypothesis to understand HCV treatment dynamics.

In order for bistability to occur in this model, the rate of proliferation of infected hepatocytes
must be greater than that of the uninfected hepatocytes; in vivo studies [1] have shown that this
counterintuitive condition is biologically plausible. Given the disease parameters of a patient we
can (1) establish whether bistability occurs and (2) establish bounds on efficacy and duration of
treatment. Thus, we can determine the treatment thresholds for sustained clearance of the virus, or
predict the qualitative response for any particular combination of efficacy and duration of treatment.
These kinds of numerical investigations (ideally with better bounds on the parameter values and
more realistic models) could be especially valuable in the context of recent suggestions to adjust
the duration of treatment on the basis of patient responses [22]. Our approach, which finds the
shortest treatment or lowest drug efficacy that will lead to long-term cure, is complementary to
other modeling efforts that have focused on minimizing side-effects by optimally controlling the

12



reduction of viral load [3] or by treating with epoeitin to increase red blood cell count [10].
Our very simple mathematical representation of viral infection in the human liver neglects

many of the complexities of human physiology and the immunobiology of the hepatitis C virus.
Furthermore, since parameters must be estimated from short-term patient data, the uncertainty on
parameter ranges are very wide [7, 4]. To make useful predictions for individual patients, disease
parameters will need to be estimated from even shorter periods of treatment response, perhaps with
the assistance of information based on clinical biomarkers. Use of within-host models as diagnostic
and management tools is well known by now [17], but still presents many practical challenges even
in established areas like HIV treatment [28].

However, we have demonstrated a new way to think about the long term dynamics of HCV
infection within hosts. In principle this model could ultimately develop into a clinical predictive or
management tool.
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A Appendix: Analysis

We first explore the conditions under which the model, without treatment, will have multiple
equilibria. We define (T ∗, I∗, V ∗) as an equilibrium point, satisfying

0 = s+ r1T
∗
(

1− T ∗ + I∗

Tmax

)
− dT ∗ − βT ∗V ∗ (6)

0 = βT ∗V ∗ + r2I
∗
(

1− T ∗ + I∗

Tmax

)
− δI∗ (7)

0 = pI∗ − cV ∗ (8)

Equation 8 leads to V ∗ = p
c I
∗, which allows us to reduce (6–8) to two equations. Defining

T ∗ = f(I∗), we (6) as

s+ r1f(I∗)
(

1− f(I∗) + I∗

Tmax

)
− df(I∗)− β̃f(I∗)I∗ (9)

where β̃ = β pc . To compute the disease-free equilibrium (DFE) we assume I∗ = V ∗ = 0, giving the

concentration of uninfected hepatocytes without infection T0 := f(0) = Tmax
2r1

(
(r1 − d) +

√
(r1 − d)2 + 4s r1

Tmax

)
.
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If we specify that the equilibrium considered is an endemic equilibrium, then I∗ > 0. We
simplify and redefine (7) as a function F (I∗):

F (I∗) =
β̃

δ
f(I∗) +

r2
δ

(
1− f(I∗) + I∗

Tmax

)
. (10)

Note that f(0) = T0, and

F (0) =
β̃

δ
T0 +

r2
δ

(
1− T0

Tmax

)
= R0

R0 =
D

δ
,

where D = 1
δ

(
β̃T0 + r2

(
1− T0

Tmax

))
The non-negative real roots of F (I∗) = 1 give the concentration of infected hepatocytes at

endemic equilibria. Geometrically, we can interpret this as the number of times the parabola F (I∗)
intersects F (I∗) = 1 in the first quadrant of the F − I∗ plane. Clearly, if R0 = F (0) > 1, there is
only one endemic equilibrium. If R0 = F (0) < 1, then the parabola can intersect the line, zero,
once or twice, leading to the corresponding number of endemic equilibria. To ensure at least one
intersection/equilibrium, the slope of the curve at I∗ = 0 should be positive. Thus we proceed to
calculate F ′(I∗).

F ′(I∗) = (β̃ − r2
Tmax

)
f ′(I∗)
δ
− r2
δTmax

. (11)

F ′(I∗) depends on f ′(I∗), so we calculate

f ′(I∗) = −
(

r1
Tmax

+ β̃

)(
r1

Tmax + s
f(I∗)2

)−1

. (12)

Since f ′(I∗) is always < 0, the sign of F ′(I∗) depends on (β̃ − r2). Hence:

Observation 1. For R0 > 1, a unique endemic equilibrium exists. For R0 < 1, either

1. when (β̃ − r2
Tmax

) > 0, there is no non-negative Endemic Equilibrium.

2. when (β̃ − r2
Tmax

) < 0, at most 2 non-negative Endemic Equilibria may exist.

Since we are primarily interested in the case when 2 endemic equilibria are present, we impose
the necessary condition, (β̃− r2

Tmax
) < 0, on our parameters henceforth. We take δ as the bifurcation

parameter, and define F (I∗) as a function of R0 from equation F (I∗) = 1 as

F (I∗) =
R0

D

[
β̃f(I∗) + r2

(
1− f(I∗) + I∗

Tmax

)]
.
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For a backward bifurcation to occur we require the gradient ∂R0
∂I∗ |{I∗=0} < 0. From (10) we get

∂F (I∗)
∂I∗

=
∂F (I∗)
∂I∗

+
∂F (I∗)
∂R0

∂R0

∂I∗

= 0

∂R0

∂I∗
|{I∗=0} = R0

r2
Tmax

−
(
β̃ − r2

Tmax

)
f ′(0)

β̃T0 + r2

(
1− T0

Tmax

) (13)

On the right hand side of (13), both R0 and the denominator are always positive. Hence for the
expression to be negative we require r2

Tmax
−
(
β̃ − r2

Tmax

)
f ′(0) < 0. That is,

r2
Tmax

(
s

T 2
0

+
r1
Tmax

)
+
(
β̃ − r2

Tmax

)(
β̃ +

r1
Tmax

)
< 0. (14)

This inequality can be re-written as

r2 − r1 >
s

T 2
0

r2

β̃
+ β̃Tmax (15)

Note that, the right hand side of the above inequality is a positive quantity. Hence we conclude
that r2 has to be sufficiently larger than r1 for bistability to occur.

B Appendix: Parameter Selection

To ensure that the bistability condition could be satisfied with a realistic parameter set, we used
parameter ranges from the literature as tabulated in Table 1. We first drew the parameters
Tmax, d, s, r1, β, p and c from an uniform distribution. We then drew r2 such that the second of
the conditions (4) were satisfied. Based on these parameters, we then calculate a range for the
bifurcation parameter δ: R0 = 1 gives us δ0, and the calculation of [16] gives us the value of δc.
All values such that δ0 < δ < δc generate bistability. We drew δ from an uniform distribution in
the intersection between (δ0, δc) and (d, 3) as given in Table 1.

Once we have defined a parameter set, we determine whether the corresponding patient would
spontaneously be cured, or the range of efficacy ε that can generate SVR over a range of treatment
duration t1, and create figures analogous to 5(a & b) and 4 for inspection. We selected a parameter
set that produced good illustrations as Patient I. Extreme cases where very high efficacy was
required for a long time, to achieve SVR were also observed.
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