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Abstract. We consider a discrete size-structured metapopulation mo-
del with the proportions of patches occupied by n individuals as de-
pendent variables. Adults are territorial and stay on a certain patch.
The juveniles may emigrate to enter a dispersers’ pool from which they
can settle on another patch and become adults. Absence of coloniza-
tion and absence of emigration lead to extinction of the metapopulation.
We define the basic reproduction number R0 of the metapopulation as a
measure for its strength of persistence. The metapopulation is uniformly
weakly persistent if R0 > 1. We identify subcritical bifurcation of per-
sistence equilibria from the extinction equilibrium as a source of multiple
persistence equilibria: it occurs, e.g., when the immigration rate (into
occupied pathes) exceeds the colonization rate (of empty patches). We
determine that the persistence-optimal dispersal strategy which maxi-
mizes the basic reproduction number is of bang-bang type: If the number
of adults on a patch is below carrying capacity all the juveniles should
stay, if it is above the carrying capacity all the juveniles should leave.

1. Introduction

A metapopulation is a group of populations of the same species which
occupy separate areas (patches) and are connected by dispersal. Each sep-
arate population in the metapopulation is referred to as a local population.
Metapopulations occur naturally or by human activity as a result of habitat
loss and fragmentation. An overview of the empirical evidence for the exis-
tence of metapopulation dynamics can be found in [31]. Further ecological
examples of Levins-type metapopulations are also discussed in [23].

The metapopulation concept has gained acceptance in the last fifteen
years and has become a major theoretical tool in population biology. The
rapid increase of citations of “metapopulation” [27], the number of recent
books on the subject [15, 28, 22, 26] and the frequent use of the concept in
genetics, evolutionary biology, conservation biology [41], landscape ecology
and others testify to the rising importance of metapopulation theory.

Date: March 3, 2005.
∗ partially supported by NSF grant DMS-0137687 and DMS-0406119.
¦ partially supported by NSF grants DMS-9706787 and DMS-0314529.

1



2 MAIA MARTCHEVA∗ AND HORST R. THIEME¦

Metapopulation Models with Discrete Size-Structure. Spatially implicit me-
tapopulation models as the one considered here allow for the extinction and
recolonization of patches, but ignore the location of patches. Though patch
area could be incorporated as an independent variable, it is neglected here for
mathematical tractability. As an extension of the classical Levins framework
[37, 38], our model structures the fraction of occupied patches by the local
population size taken as a discrete variable. We assume a finite though
large number of patches, N . Furthermore, all patches are assumed equal and
capable of supporting very large population sizes while the actual number of
occupants may be very small. The vital rates of the local population depend
on the number of individuals living on a patch. Metapopulation models with
discrete patch-size are obtained as approximations of stochastic mean field
metapopulation models [1]. They are indeed generalizations of the Levins
model in the sense that the Levins model can be recovered as a reasonable
approximation [3].

Differently from [1, 2, 3, 5, 45] where all occupants of a patch can em-
igrate with the same probability, we assume that only juveniles emigrate,
while adults stay on their patch [42]. We explicitly model the dispersing
individuals [6, 7, 42]. Dispersing individuals do not reproduce because the
resources necessary for reproduction are only available on patches. If the
dispersal period were very short, the dispersers could be eliminated as an
explicit variable as it has been done in [1, 2, 3, 5, 45].

In both cases, dispersal is modeled under the assumption that all patches
freely exchange individuals and immigration and emigration depend only on
the local population size but not on the distance between the patches or
their area.

From a mathematical point of view, metapopulation models with discrete
patch-size structure as well as host-macroparasite models which differentiate
the hosts by their discrete parasite loads [21, 51, 52] represent a specific class
of infinite systems of ordinary differential equations. We discuss a general
theory of such systems in [40] and derive many properties of the model here
as special cases, including its well-posedness.

Metapopulation models with discrete size structure have continuous ana-
logs in which the local population size is a continuous variable. A procedure
for transition from a discrete to a continuous model is described in [42]. A
continuous size-structured metapopulation model was first derived in terms
of differential equations [16] and then recast in the setting of general deter-
ministic structured population models [17, 12, 13]. Another type of models
which are concerned with patch occupancy, rather than number of individu-
als, are stochastic patch occupancy models (SPOMs) [47]. SPOMs represent
the core of the spatially realistic metapopulation theory.

Size-structured metapopulation models are notably well adept for the
investigation of questions related to the influence of migration and dispersal
on the dynamics of the metapopulation.
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Persistence-extinction dynamics: the impact of colonization. Extinction oc-
curs on two scales in the metapopulation dynamics: local extinction and
extinction of the entire metapopulation [25]. Small local populations are
particularly prone to local extinction. In reality, local extinction can be a
result of demographic stochasticity (e.g. too many individuals die before
reproduction), genetic stochasticity (e.g. loss of fitness due to inbreeding),
environmental stochasticity (sudden drought or freeze) [35, 36, 14], or hu-
man destruction of natural habitats. In our model, local extinction can
occur through a series of deaths or by a “catastrophe” which abruptly turns
a patch occupied by n individuals into an empty patch. Catastrophes are a
result of extreme environmental stochasticity. We assume that they occur
at a rate which depends on the local population size, κn.

Local extinctions may be common without leading to extinction of the
entire metapopulation because patches that have become vacant are often
quickly recolonized. The transfer of individuals from one patch to another
is a key process in metapopulations [34]. The components of the transfer
process are emigration/immigration, dispersal and colonization which are all
incorporated in our model. Dispersing individuals D(t) are modeled through
a separate equation with all relevant vital dynamics. In this respect, our
model is similar to the one discussed in [6] as well as the continuous size-
structured models [16]. We assume that only the juveniles are subject to
emigration: a proportion 1− qn which depends on the local population size
n emigrates and enters the dispersal pool D(t). Dispersers settle on a patch
with n adults with immigration rate σn, n ≥ 1, or colonize an empty patch
at a colonization rate σ0.

Concerning the interplay between local extinction and migration/coloniza-
tion, our main result shows that the metapopulation eventually goes extinct
if there is no colonization of empty patches, σ0 = 0. This is independent
of whether or not dispersers settle on already occupied patches and even
holds when the effect of local catastrophes is ignored, κn = 0. Two other
scenarios lead to obligatory extinction of the metapopulation as well: the
case when all juveniles stay in the patch where they were born, qn = 1 for
all n ≥ 1, and the case when for all local populations the birth rate, βn, is
strictly smaller than the death rate, µn.

In analogy with epidemiology and single-population dynamics, we deter-
mine a basic reproduction number of the metapopulation, R0, in the case
with no catastrophes, κn = 0. In the context of our model, R0 gives the
number of secondary dispersing individuals that one dispersing individual
will produce if all patches are empty initially. The immigration rates into
occupied patches, σn, n ≥ 1, have no impact on the basic reproduction
number.
R0 may have different interpretations in other metapopulation models;

some can be found in [25, 33]. In our case, as well as in the continuous
size-structured models, the basic reproduction number is a measure for the
strength of persistence of the metapopulation. If R0 > 1, under reasonable
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extra assumptions, the total population size remains bounded away from
zero for all initial configurations (except the one where the metapopulation
is extinct). If R0 < 1, the metapopulation necessarily dies out if its total
populations size is sufficiently small.

Dispersal is a key element of metapopulation dynamics and is one of the
central concepts in ecology and evolutionary biology [9]. The evolution of
dispersal in metapopulations has received significant attention in the litera-
ture recently [32] and particularly in the setting of structured metapopula-
tion models (see [46, 48, 49, 18, 50] and the references therein). In this paper,
we investigate which dispersal strategies maximize the basic reproduction
number, and therefore, the strength of persistence of the metapopulation.
We call those persistence-optimal dispersal strategies. It turns out that there
always are persistence-optimal strategies of bang-bang type: If the number
of adults on a patch is below carrying capacity all juveniles should stay, if
it is above the carrying capacity all juveniles should leave.

Analogous considerations in epidemics teach that a persistence-optimal
strategy may [4] or may not [10] be an evolutionarily stable strategy. The
basic reproduction number only measures how a metapopulation performs
in an almost empty habitat. It does neither a priori indicate whether or
not a mutant strain can invade a well-established existing strain which has
a lower basic reproduction number, nor whether or not a well-established
strain can be invaded by a strain which has a higher basic reproduction
number. Invasion studies for this model have been done in [42], but while it
is shown that evolutionarily stable strategies are of bang-bang type, indeed,
for continuously structured metapopulations, this question seems to be still
open for discrete structure.

Subcritical bifurcation and multiple equilibria. There are scenarios in which
the basic reproduction number satisfies R0 < 1 but the metapopulation
can survive provided that it starts out from a sufficiently large size. This
can occur as a result of subcritical bifurcation of persistence equilibria from
the extinction equilibrium. The phenomenon of subcritical bifurcation with
multiple equilibria of alternating stability was first discovered in a metapop-
ulation model in the setting of continuous size-structured models [16]. It
was also observed in a much simpler model of Levins type [29] with spatial
variation in the patch size. The simple model consists of a single equation
and exhibits subcritical bifurcation if a “rescue effect” is introduced in the
form of a decreasing rate of extinction of local populations. The observation
that the rescue effect leads to multiple stable equilibria was used to form
a core-satellite hypothesis - a hypothesis that provides a possible metapop-
ulation dynamic explanation of the bimodal distribution of site occupancy
frequencies which has been observed for plants or animals in nature [29]. A
rescue effect was also found to lead to multiple stable equilibria (see [22],
section 4.3) in a model with a small and a large population first introduced
in [24]. The theoretical predictions of the mathematical models were tested
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against the extensive data on the butterfly Melitaea cinxia where a striking
bimodal distribution of the fraction of occupied patches was found [30].

Subcritical bifurcation and multiple stable equilibria have caused signifi-
cant interest in the mathematical epidemiology literature, too, in the last ten
years (see [39] and the references therein), despite the fact that their practi-
cal confirmation in that setting remains elusive. Models of macro-parasitic
diseases share with the metapopulation models not only the general math-
ematical structure [40] but also the presence of multiple equilibria [20].

The possibility that discrete size-structured metapopulation models may
be able to support multiple persistence equilibria was conjectured in [42].
We establish this fact rigorously here by providing a necessary and suffi-
cient condition for subcritical bifurcation of persistence equilibria from the
extinction equilibrium. Conditions for the existence and global stability of
a unique nontrivial equilibrium is established in [2] for a model without
explicit dispersal. We also show that in the case of multiple persistence
equilibria, every other equilibrium is unstable.

It has been established in size-structured metapopulation models [17] that
subcritical bifurcation occurs if the impact of migration on local dynamics
is sufficiently large. In this paper we confirm this observation in the frame-
work of discrete size-structured models. Furthermore, in the special case of
obligatory juvenile emigration, we show that this phenomenon occurs if and
only if the immigration rate is sufficiently larger than the colonization rate
σ0 << σn, n ≥ 1.

The paper is structured as follows:

2. The model and its well-posedness
3. Extinction and persistence equilibria
4. Subcritical bifurcation and multiple persistence equilibria
5. Obligatory juvenile emigration
6. Conditions for persistence and extinction of the metapopulation
7. A bang-bang principle of persistence-optimal emigration
A. Proofs of the results in Section 7

2. The model and its well-posedness

We consider a population living in a patchy habitat. We ignore gender
and genetics. Adult individuals are territorial and live on a fixed patch.
Juvenile individuals may leave the patch on which they are born, disperse
between patches and finally settle on a new patch (from which moment they
are also considered adults). Rather than considering the population sizes
on the various patches, we consider the proportion of patches which have a
certain population size.
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List of symbols

Independent variables
t time
n number of individuals on a patch

Dependent variables
D(t) number of dispersing individuals at time t
un(t) proportion of patches with n individuals at time t

Parameters and parameter functions
N number of patches
δ per capita death rate of a dispersing individual
ρ = δ/N

qn probability that a newborn individual stays
on its birth patch with n adult individuals

βn rate at which a patch with n adult individuals
produces one offspring

µn rate at which an adult dies in a patch with n adults
κn rate at which catastrophes hit a patch with n adults
σn rate at which a dispersing individual settles

on a patch with n adults (immigration rate)
σ0 rate at which a dispersing individual

settles on an empty patch (colonization rate)

Model equations. We write N for the set of natural numbers 1, 2, 3, . . . , and
Z+ for the set of non-negative integers, Z+ = N ∪ {0}. There is a constant
number of patches, N ∈ N. The proportion of patches with n occupants, at
time t, is denoted by un(t).

∑∞
j=1 juj(t) is the average number of occupants

per patch,

R(t) = N

∞∑

j=1

juj(t)

the total number of patch occupants. D(t) denotes the average number of
dispersing individuals at time t,

D(t) =
∞∑

j=1

jπj(t),

where πj(t) is the probability that j is the number of dispersing individuals
at time t. P = R +D is the average total number of individuals. The patch
emigration rate is given by

E(t) = N

∞∑

n=1

(1− qn)βnun(t),
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the per capita rate of a disperser to settle on a patch by

I(t) = N
∞∑

n=0

σnun(t).

We obtain the following relations:

u′0(t) = µ1u1(t) +
∞∑

n=1

κnun(t)− σ0D(t)u0(t),

u′n(t) =
[
qn−1βn−1 + σn−1D(t)

]
un−1(t) + µn+1un+1(t)

− [
qnβn + σnD(t) + µn + κn

]
un(t), n = 1, 2, . . .

D(t) =
∞∑

j=1

jπj(t),

π′0(t) = (δ + I(t))π1(t)−E(t)π0,

π′n(t) = E(t)πn−1 + (δ + I(t))(n + 1)πn+1(t)

− (
E(t) + [δ + I(t)]n

)
πn(t), n = 1, 2, . . .

We substitute the differential equations for πn into D and obtain

D′ = N
∞∑

n=1

(1− qn)βnun(t)−
[
δ + N

∞∑

n=0

σnun(t)

]
D.

So the system can be condensed into the following form,

(2.1)





u′0(t) = µ1u1(t) +
∞∑

n=1

κnun(t)− σ0D(t)u0(t),

u′n(t) =
[
qn−1βn−1 + σn−1D(t)

]
un−1(t) + µn+1un+1(t)

−[
qnβn + σnD(t) + µn + κn

]
un(t), n = 1, 2, . . . ,

D′ = N
∞∑

n=1

(1− qn)βnun(t)−
(

δ + N
∞∑

n=0

σnun(t)
)

D.

The system is equipped with initial conditions,

uj(0) = ŭj ∀j ∈ N, and D(0) = D̆ ≥ 0.

In addition, since ŭj are proportions, they satisfy

0 ≤ ŭj ≤ 1 ∀j ∈ N
and they all add to one,

(2.2)
∞∑

j=0

ŭj = 1.
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Adding all equations for the proportions in system (2.1), we obtain
∞∑

j=0

u′j = 0,

which implies that the sum of all uj is a constant, namely,

(2.3)
∞∑

j=0

uj(t) = 1 ∀t ≥ 0.

This property reflects the biological meaning of uj(t), namely the proportion
of patches occupied by j individuals.

We introduce some reasonable assumptions concerning the parameters of
the system.

Assumption 2.1. Throughout this paper we assume the following

(a) βn, κn ≥ 0, µn > 0 for all n ∈ N, sup∞n=1
βn

n < ∞.
(b) 0 ≤ qn ≤ 1 for all n ∈ N.
(c) σn ≥ 0 for all n ≥ 0, sup∞n=0 σn < ∞.

Since our system consists of infinitely many differential equations, it can-
not be solved as such. If we integrate both sides of each equation in sys-
tem (2.1), we obtain an infinite system of integral equations the solutions of
which are called integral solutions of (2.1). The theorem below demonstrates
that system (2.1) together with the appropriate initial conditions always has
a unique integral solution. The biological interpetation suggests the state
space R× `11 where `11 is the Banach space of sequences u = (un)∞n=0 whose
norm ‖u‖ = |u0|+

∑∞
n=1 n|un| is finite.

Theorem 2.2 ([40]). Let the Assumptions 2.1 be satisfied. Then, for every
nonnegative initial condition satisfying

∑∞
j=1 jŭj < ∞, there exists a unique

non-negative continuous integral solution (D, u) : [0,∞) → R× `11 of (2.1),
u(t) = (un(t)).

3. Extinction and persistence equilibria

There is one obvious equilibrium, the extinction (trivial) equilibrium
which is given by u0 = 1, un = 0 for n ≥ 1, D = 0. In the remainder
of this section, we discuss the persistence (nontrivial) equilibria. In order
to get explicit expressions which can be interpreted biologically, we con-
sider the case without catastrophes, κn = 0 for all n ∈ N. Let un(t) = u∗n,
D(t) = D∗ be an equilibrium solution. First we notice that an equilibrium
solution must satisfy

(3.1)
∞∑

n=0

u∗n = 1.
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By setting the time derivatives equal to zero in (2.1), we obtain

0 = µ1u
∗
1 − σ0D

∗u∗0,(3.2)

0 = [qn−1βn−1 + σn−1D
∗] u∗n−1 + µn+1u

∗
n+1

− [qnβn + σnD∗ + µn] u∗n, n ≥ 1.

For the number of dispersers, D∗, setting

δ = Nρ,

we obtain

(3.3) 0 =
∞∑

n=1

(1− qn)βnu∗n −
[
ρ +

∞∑

n=0

σnu∗n

]
D∗.

Recalling β0 = 0 we can rewrite (3.2) as

µ1u
∗
1 − σ0D

∗u∗0 = 0,

µn+1u
∗
n+1 − [qnβn + σnD∗] u∗n

= µnu∗n − [qn−1βn−1 + σn−1D
∗]u∗n−1, n ≥ 1.

By complete induction,

0 = µnu∗n − [qn−1βn−1 + σn−1D
∗] u∗n−1, n ≥ 1,

that is,
u∗n

u∗n−1

=
1
µn

[qn−1βn−1 + σn−1D
∗] , n ≥ 1.

We notice that we obtain a non-trivial equilibrium if and only if D∗ > 0,
u∗n > 0. Actually,

(3.4)
u∗n
u∗0

= γ(n,D∗)
σ0

µn
D∗,

with

(3.5)

γ(1, D∗) = 1,

γ(n, D∗) =
n−1∏

j=1

qjβj + σjD
∗

µj
, n ≥ 2.

We notice that

(3.6) γ(n + 1, D) = γ(n,D)
qnβn + σnD

µn
.

We make the following assumption.

Assumption 3.1. The sequence (σn) is bounded and κn = 0 for all n ∈ N;
further

µn →∞, n →∞; lim sup
n→∞

βn

µn
< 1.
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The quotient criterion then guarantees that the forthcoming series con-
verge. From (3.1),

(3.7)
1
u∗0

=
∞∑

n=0

u∗n
u∗0

= 1 +
∞∑

n=1

γ(n,D∗)
σ0

µn
D∗.

We rewrite (3.3) as

(3.8) 0 =
∞∑

n=1

(1− qn)βn
u∗n

u∗0D∗ −
ρ

u∗0
−

(
σ0 +

∞∑

n=1

σn
u∗n
u∗0

)
.

Fitting (3.4) and (3.7) into (3.8) we obtain

0 =
∞∑

n=1

(1− qn)βnγ(n,D∗)
σ0

µn
− ρ

(
1 +

∞∑

n=1

γ(n,D∗)
σ0

µn
D∗

)

− σ0 −
∞∑

n=1

σnγ(n,D∗)
σ0

µn
D∗.

We rewrite this equation as

(3.9)
(

ρ

σ0
+ 1

)
=

∞∑

n=1

γ(n,D∗)
µn

[(1− qn)βn −D∗(ρ + σn)] =: f(D∗).

It is instructive to also consider

f(D∗)− 1 =
∞∑

n=1

γ(n,D∗)
[
βn

µn
− ρD∗

µn
− qnβn + σnD∗

µn

]
− 1.

By (3.6),

f(D∗)− 1 =
∞∑

n=1

(
γ(n,D∗)

[
βn

µn
− ρD∗

µn

]
− γ(n + 1, D∗)

)
− 1.

After separating the sums and changing the summation index in the second
sum,

f(D∗)− 1 =
∞∑

n=1

(
γ(n, D∗)

[
βn

µn
− ρD∗

µn

])
−

∞∑

n=2

γ(n,D∗)− 1.

Since γ(1, D∗) = 1,

f(D∗)− 1 =
∞∑

n=1

(
γ(n,D∗)

[
βn

µn
− ρD∗

µn

])
−

∞∑

n=1

γ(n, D∗).

So we can rewrite (3.9) as

(3.10)
ρ

σ0
= f(D∗)− 1 =

∞∑

n=1

γ(n,D∗)
µn

[βn − µn − ρD∗].

Before we continue, it is convenient to introduce the notion of the carry-
ing patch-capacity. Recall that βn/µn is the average amount of offspring
an individual begets during its life-time on a patch with n individuals. If
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βn/µn ≤ 1 for all n ≥ 0 we define the carrying patch-capacity to be zero.
In other words: If the carrying patch-capacity is zero, then on patches of
all sizes, the birth rates do not exceed the death rates. If there exists some
n ∈ N such that βn/µn > 1, then the carrying patch-capacity is the uniquely
determined number k such that

(3.11)
βk

µk
> 1, but

βn

µn
≤ 1 ∀n > k.

Such k exists because of Assumptions 3.1.
If the carrying patch-capacity k is not zero, we introduce

(3.12) D̄ =
1
ρ

max{βn − µn; n = 1, . . . , k}.

Apparently f(D) − 1 ≤ 0 for all D ≥ D̄. Hence we know that necessarily
D∗ < D̄ for any non-trivial equilibrium solution.

Theorem 3.2. Let the Assumptions 3.1 be satisfied.
a) If βn ≤ µn for all n ∈ N, then there exists only the trivial equilibrium

(the extinction equilibrium).
b) If

ρ

σ0
≥

∞∑

n=1

γ(n, D̄)
µn

[βn − µn],

then there exists only the extinction equilibrium.
c) If

ρ

σ0
< f(0)− 1,

then there exists a non-trivial equilibrium solution (persistence equi-
librium). This solution necessarily is strictly smaller than D̄ in
(3.12).

Part (c) follows from the intermediate value theorem and the fact that
f(D)− 1 ≤ 0 for D ≥ D̄. The condition in part (c) can be rewritten as

1 <
σ0

σ0 + ρ
f(0) =: R0.

By (3.9),

(3.13) R0 =
σ0

σ0 + ρ
(1− q1)

β1

µ1
+

σ0

σ0 + ρ

∞∑

n=2




n−1∏

j=1

qj
βj

µj


 (1− qn)

βn

µn
.

In order to interpret R0 let us assume that all patches are empty and that
we introduce a few dispersing individuals at a very small constant rate ε.
The probability for any of these individuals to survive and settle on a patch
is

σ0

σ0 + ρ
.
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The rate at which these individuals settle is σ0D
∗ with D∗ = ε/(σ0 +ρ). By

(3.4) and (3.7), the resulting patch distribution is approximately given by

γ(n, 0)
µn

σ0

σ0 + ρ
ε

with γ(n, 0) given by (3.5). A patch with n adult individuals produces
dispersers at the rate (1−qn)βn. So the first generation of dispersers that has
been introduced at the rate ε produces the second generation of dispersers
at the rate R0ε. For this reason, we call R0 the basic reproduction number
of the metapopulation and obtain the following corollary.

Corollary 3.3. Assume that Assumptions 3.1 are satisfied and that the
basic reproduction number, R0, exceeds one. Then there exists a non-trivial
equilibrium.

4. Subcritical bifurcation and multiple persistence equilibria

Subcritical bifurcation is a frequent source of multiple equilibria. We
choose ρ as a bifurcation parameter. Another natural choice would be the
colonization rate σ0. This is the quantity used as a bifurcation parameter in
some of the simplest metapopulation models leading to subcritical bifurca-
tion (see [29] and also [22], p.62). Our choice is motivated by our interest in
including examples in which the colonization rate σ0 and the immigration
rates σn are all the same.

In equation (3.10), we consider ρ as a function of D∗. Instead of expressing
explicitly ρ in terms of D∗, we rewrite (3.10) in the following form:

(4.1) ρ

(
1
σ0

+ D∗
∞∑

n=1

γ(n,D∗)
µn

)
=

∞∑

n=1

γ(n,D∗)
µn

[βn − µn].

To be able to determine a nonnegative value of the parameter ρ we must
make the following

Assumption 4.1. Assume that κn = 0 for all n ∈ N and that the sequences
(qn), (βn) and (µn) satisfy

∞∑

n=1

γ(n, 0)
µn

[βn − µn] > 0.

If Assumption 4.1 is satisfied, the system has subcritical bifurcation if
and only if ρ′(0) > 0. The subcritical bifurcation in ρ is actually forward,
but it is a backward bifurcation in the reproduction number because, by
(3.13), R0 depends on ρ in a strictly decreasing way. Before computing the
derivative, we evaluate ρ when D∗ = 0:

(4.2) ρ(0) = σ0

∞∑

n=1

γ(n, 0)
µn

[βn − µn].

We compute the derivative ρ′(D∗) (ρ = ρ(D∗)):
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(4.3)
ρ′

σ0
+ (ρ′D∗ + ρ)

∞∑

n=1

γ(n,D∗)
µn

=
∞∑

n=1

∂γ(n,D∗)
∂D∗

[
βn − µn − ρD∗

µn

]
.

Since ∂γ(1,D∗)
∂D∗ = 0, the sum in the right hand side actually starts at n = 2.

The explicit form of the derivatives is given by

(4.4)
∂γ(n,D∗)

∂D∗ =
n−1∑

k=1

σk

µk

n−1∏

j=1,j 6=k

qjβj + σjD
∗

µj
n ≥ 2.

We note that this derivative is nonnegative which implies that γ(n,D∗) is a
nondecreasing function of D∗. If qnβn 6= 0 for all n ≥ 1, the above expression
can be rewritten in the following form which is also defined for D∗ = 0.

(4.5)
∂γ(n,D∗)

∂D∗ = γ(n,D∗)
n−1∑

k=1

σk

qkβk + σkD∗ .

For D∗ = 0, the expression above becomes

(4.6)
ρ′(0)
σ0

=
∞∑

n=1

∂γ(n, 0)
∂D∗

[
βn − µn

µn

]
− ρ(0)

∞∑

n=1

γ(n, 0)
µn

,

where ρ(0) is given by (4.2). The condition ρ′(0) > 0 reduces to the in-
equality in the following proposition which gives a necessary and sufficient
condition for subcritical bifurcation.

Proposition 4.2. Let Assumption 4.1 be satisfied. The system (2.1) ex-
hibits subcritical bifurcation and has nontrivial equilibria in the case R0 < 1
if and only if σ0 > 0 and

∞∑

n=1

∂γ(n, 0)
∂D∗

[
βn − µn

µn

]
> σ0

( ∞∑

n=1

γ(n, 0)
µn

[βn − µn]

)( ∞∑

n=1

γ(n, 0)
µn

)
.

We notice that the right hand side of this inequality is nonnegative by As-
sumption 4.1. The example in the next section shows that the assumptions
of this proposition are feasible.

Theorem 3.1 shows that system (2.1) has at least one nontrivial equilib-
rium if R0 > 1. Condition (4.2) implies that the system has at least one
nontrivial equilibrium even if R0 < 1 for sufficiently large values of R0 < 1.
Each nontrivial equilibrium is given by (3.4) where D∗ is a solution of the
equation (3.9) (or, equivalently (3.10)). We call a nontrivial equilibrium
simple if D∗ is a simple root of (3.9). If D∗ is a root of (3.9), a necessary
and sufficient condition D∗ to be simple is f ′(D∗) 6= 0.

If R0 < 1, then

f(0) <
ρ + σ0

σ0
.
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We also have f(D) < 1 for all D ≥ D̄, hence the equation (3.9) has no
solutions for D ≥ D̄ and

f(D̄) <
ρ + σ0

σ0
.

Thus, in the case R0 < 1, if all solutions of the equation are simple, their
number is even, possibly zero. We number the equilibria in increasing order
of D∗. At each odd-numbered equilibrium D∗, the function f(D) crosses the
horizontal line f = ρ+σ0

σ0
in a locally increasing fashion such that f ′(D∗) > 0.

It is shown in [40] that this implies that the instability of the equilibrium. At
each even-numbered equilibrium D∗, the function f(D) crosses this line in a
locally decreasing fashion and f ′(D∗) < 0. In this case, a stability statement
is only possible under extra assumptions which will be explored elsewhere.

Proposition 4.3. Let R0 < 1 and Assumption 4.1 be valid. If condition
(4.2) is satisfied, then the system has multiple persistence equilibria for suffi-
ciently large values of R0 < 1. If all equilibria are simple, then their number
is even. Moreover, every odd-numbered equilibrium satisfies f ′(D∗) > 0 and
is unstable, while every even-numbered equilibrium satisfies f ′(D∗) < 0.

A similar result is satisfied for the values of the reproductive number
R0 > 1. We note that Assumption 4.1 is automatically satisfied in this case.

Proposition 4.4. Let R0 > 1 and the Assumptions 3.1 be valid. Then the
system has at least one nontrivial equilibrium. If there are more equilibria
and they are all simple, then their their number is odd. Moreover, every
odd-numbered equilibrium satisfies f ′(D∗) < 0, and every even-numbered
equilibrium satisfies f ′(D∗) > 0 and is unstable.

5. Obligatory juvenile emigration

As an example, we consider the extreme but reasonable special case that
all juveniles have to leave their birth patch, qn = 0 for all n ∈ N. We
continue to assume that there are no catastrophes, κn = 0 for all n ∈ N. By
(3.5),

γ(n,D) =

n−1∏
1

σj

n−1∏
1

µj

Dn−1, n ≥ 2.

We start from equation (3.10),

ρ

σ0
=

∞∑

n=1

γ(n, D∗)
µn

(βn − µn − ρD∗).



A METAPOPULATION MODEL WITH DISCRETE SIZE STRUCTURE 15

We multiply by σ0 and write w for D∗,

ρ =
∞∑

n=1

n−1∏
0

σj

n∏
1

µj

wn−1(βn − µn − ρw).

We solve for ρ,

(5.1) ρ = g(D∗), g(w) =

∞∑
n=1

n−1∏
0

σj

n∏
1

µj

wn−1(βn − µn)

1 +
∞∑

n=1

n−1∏
0

σj

n∏
1

µj

wn

.

g(0) ≥ 0 if and only if σ0

(
β1

µ1
− 1

)
> 0. g′(w) has the same sign as

( ∞∑

n=2

n−1∏
0

σj

n∏
1

µj

(n− 1)wn−2(βn − µn)
)(

1 +
∞∑

n=1

n−1∏
0

σj

n∏
1

µj

wn

)

−
( ∞∑

n=1

n−1∏
0

σj

n∏
1

µj

wn−1(βn − µn)
)( ∞∑

n=1

n−1∏
0

σj

n∏
1

µj

nwn−1

)
.

For w = 0, we obtain that g′(0) has the same sign as

σ0σ1

µ1µ2
(β2 − µ2)− σ0

µ1
(β1 − µ1)

σ0

µ1
.

So the direction of the bifurcation is determined by

σ1

(β2

µ2
− 1

)
− σ0

(β1

µ1
− 1

)
.

We summarize

Proposition 5.1. The metapopulation model with obligatory juvenile emi-
gration has a subcritical bifurcation of persistence equilibria from the extinc-
tion equilibrium in the parameter ρ = δ

N if and only if

σ1

(β2

µ2
− 1

)
> σ0

(β1

µ1
− 1

)
> 0.

While subcritical bifurcation implies the existence of multiple persistence
equilibria for this model, supercritical bifurcation does not necessarily imply



16 MAIA MARTCHEVA∗ AND HORST R. THIEME¦

the existence of at most one persistence equilibrium. To see this, we choose
σn = 0 for n ≥ 3. Then g takes the form

g(w) =
σ0
µ1

(β1 − µ1) + σ0σ1
µ1µ2

(β2 − µ2)w + σ0σ1σ2
µ1µ2µ3

(β3 − µ3)w2

1 + σ0
µ1

w + σ0σ1
µ1µ2

w2 + σ0σ1σ2
µ1µ2µ3

w3
.

We can choose β3 > 0 so large that g(1) > max{0, g(0)}. Since g(w) → 0 as
w →∞, we have multiple solutions, if ρ is between max{0, g(0)} and g(1).

To find a sufficient condition for the existence of at most one persistence
equilibrium, we assume that σn = σ1 for all n ∈ N. Then g′(w) has the same
sign as

( ∞∑

n=2

σ0σ
n−1
1

n∏
1

µj

(n− 1)wn−2(βn − µn)
)(

1 +
∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

wn

)

−
( ∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

wn−1(βn − µn)
)( ∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

nwn−1

)
.

We assume that µn = nµ1. Then, after dividing by µ1 and σ0, g′(w) has the
same sign as

( ∞∑

n=2

σn−1
1

n−2∏
1

µj

wn−2
(βn

µn
− 1

))(
1 +

∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

wn

)

−
( ∞∑

n=1

σn−1
1

n−1∏
1

µj

wn−1
(βn

µn
− 1

))( ∞∑

n=1

σ0σ
n−1
1

n−1∏
1

µj

wn−1

)
.

We change indices of summation,

( ∞∑

n=1

σn
1

n−1∏
1

µj

wn−1
(βn+1

µn+1
− 1

))(
1 +

∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

wn

)

−
( ∞∑

n=1

σn−1
1

n−1∏
1

µj

wn−1
(βn

µn
− 1

))(
σ0 +

∞∑

n=1

σ0σ
n
1

n∏
1

µj

wn

)
.
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We assume σ1 ≤ σ0 and that βn

µn
is decreasing with the decrease being strict

at least once. For w > 0, this expression satisfies

<

( ∞∑

n=1

σn
1

n−1∏
1

µj

wn−1
(βn

µn
− 1

))(
1 +

∞∑

n=1

σ0σ
n−1
1

n∏
1

µj

wn

)

−
( ∞∑

n=1

σn−1
1

n−1∏
1

µj

wn−1
(βn

µn
− 1

))(
σ1 +

∞∑

n=1

σ0σ
n
1

n∏
1

µj

wn

)
= 0

and g′(w) < 0 for all w > 0. So we have shown the following uniqueness
result for obligatory juvenile emigration.

Proposition 5.2. There exists at most one persistence equilibrium, if σ0 ≥
σ1 = σn, µn = nµ1 for all n ∈ N, qn = 0 for all n ∈ N, and βn

µn
is decreasing

with the decrease being strict at least once.

A result by Barbour and Pugliese for a different model [2] suggests that
a more general result should hold. Analogy suggests the following

Conjecture 5.3. Let qn and σn be independent of n ∈ Z+ and βn be
an increasing concave function of n ∈ Z+ and µn an increasing convex
function in n ∈ Z+, β0 = µ0 = 0. Then there exists at most one persistence
equilibrium.

Our example shows that such a result (if it holds) may be the best possible,
except that it may also hold if σ0 ≥ σ1 = σn for all n ∈ N.

6. Conditions for persistence and extinction of the
metapopulation

The extinction equilibrium is given by

D = 0; u0 = 1; un = 0, n ≥ 1.

The following result gives the local stability of the extinction equilibrium
when R0 < 1. It is established rigorously in [40].

Theorem 6.1. Let the Assumptions 2.1 be satisfied and R0 < 1. Further
assume that κn = 0 for all n ∈ N and that there exist constants c4, ε4 > 0
such that βk − µk ≤ c4 − ε4k for all k ∈ N. Then the extinction equilibrium
is locally asymptotically stable.

The assumption concerning (βk) and (µk) specifies one way in which the
death rate dominates the birth rate on crowded patches. As we showed in
Section 4, R0 < 1 is not sufficient for the global stability of the extinction
equilibrium, as there may be persistence equilibria. The local stability of the
extinction equilibrium implies extinction of the metapopulation only for ap-
propriate, sufficiently close to the extinction equilibrium, initial conditions.
Scenarios which lead to extinction, independently of the initial status of the
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metapopulation (even if there are no local catastrophes, κn = 0) are these:
there is no emigration from the patches into the dispersers’ pool, qn = 1
for all n, or the empty patches are not colonized, σ0 = 0 (whether or not
dispersers settle on already occupied patches, σn ≥ 0 for n ≥ 1).

Theorem 6.2 ([40]). Let the Assumptions 2.1 be satisfied. Further assume
that there exist constants c4, ε4 > 0 such that βk − µk − kκk ≤ c4 − ε4k for
all k ∈ N. If qk = 1 for all k ∈ N or if σ0 = 0, the total population size,
P (t) = D(t) + R(t), converges to 0 as time tends to infinity.

The metapopulation will also become extinct if the birth rate is smaller
than the death rate on every patch.

Corollary 6.3 ([40]). Let the Assumptions 2.1 be satisfied. Assume that
there exists some ε > 0 such that βk − µk ≤ −εk for all k ∈ N. Then the
total population size, P (t), converges to 0 as time tends to infinity.

In the remaining part of this section we examine the problem of the per-
sistence of the metapopulation. Intuitively, the metapopulation persists if
it does not die out. We will consider two types of persistence. The stronger
type of persistence, called uniformly strong persistence, means that the pop-
ulation size remains bounded away from zero, at a mimumum level that does
not depend on the initial state if enough time has passed. Formally, we call
the metapopulation uniformly strongly persistent if there exists an ε > 0
independent of the initial conditions such that

lim inf
t→∞ P (t) > ε whenever P (0) > 0,

for all solutions of the system (2.1). The weaker type, called uniform weak
persistence, means that, while the population size may become very close to
0 every now and then, it always bounces back to a positive level that does
not depend on the initial status provided one waits long enough. Formally,
we call the metapopulation uniformly weakly persistent if there exists some
ε > 0 independent of the initial conditions such that

lim sup
t→∞

P (t) > ε whenever P (0) > 0,

for all solutions of the system (2.1). Here P (t) = R(t) + D(t).
As uniform weak persistence implies that the extinction equilibrium is

unstable, the metapopulation cannot be uniformly weakly persistent when
R0 < 1, in spite of the fact that there may be persistence equilibria some of
which could be even locally stable. This fact demonstrates that the presence
of locally stable persistence equilibria in itself does not guarantee the uniform
weak persistence of the population. We need the following assumptions.

Assumption 6.4. (a) σ0 > 0, κn = 0 for all n ∈ N.

(b) lim sup
n→∞

qnβn

µn
< 1.

(c) Further let one of the following be satisfied:
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(c1) qjβj > 0 for all j ∈ N and (1− qk)βk > 0 for some k ∈ N.
or

(c2) There exists some k0 ∈ N such that qjβj > 0 for j = 1, . . . , k0−1,
qjβj = 0 for all j ≥ k0, and that (1 − qj)βj > 0 for some
j ∈ {1, . . . , k0}.

Proposition 6.5 ([40]). Let Assumptions 2.1 and 6.4 be satisfied. If R0 >
1, the metapopulation is uniformly weakly persistent.

Clearly, if the population is uniformly strongly persistent, it is also uni-
formly weakly persistent. The other way around is not always true; but if
the metapopulation is uniformly weakly persistent and the solutions of the
system (2.1) have a global compact attractor (see [40] for definition), then
the metapopulation is also uniformly strongly persistent [40].

7. A bang-bang principle of persistence-optimal emigration

As we have seen in Sections 4 and 5, the following number plays a signif-
icant role. If q = (q1, q2, . . . )

(7.1) D = D(q) = (1− q1)
β1

µ1
+

∞∑

n=2




n−1∏

j=1

qj
βj

µj


 (1− qn)

βn

µn
.

D can be interpreted as the average number of dispersers a typical individual
which has settled on an empty patch produces during its life-time.

(7.2) R0 =
σ0

σ0 + ρ
D

is the basic reproduction number of the metapopulation, that is, the average
number of secondary dispersing individuals that one dispersing individual
will produce if all patches are empty initially. The factor σ0

σ0+ρ is the prob-
ability to survive the dispersal state if all patches are practically empty.

If R0 > 1, then the extinction state of the metapopulation is unstable,
there exists a persistence equilibrium, and, under the reasonable extra As-
sumptions 6.4, the metapopulation is uniformly weakly persistent. For this
reason, D can be considered a measure for the ability of the metapopulation
to persist. We try to find an emigration strategy - expressed in terms of
the probabilities qn of staying on a patch - which maximizes D(q). We call
such a strategy persistence-optimal (though it does not necessarily lead to
persistence of the metapopulation). We assume that

(7.3) β1 > 0,

otherwise D = 0 no matter how we choose the other parameters. We further
assume that

(7.4)
βn

µn
→ 0, n →∞.
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Recall the definition of the carrying patch-capacity. If βn

µn
> 1 for some

n ∈ N, there exists a unique number k ∈ N such that βk
µk

> 1, but βn

µn
≤ 1

for all n > k. We call k the carrying patch-capacity. If βn

µn
≤ 1 for all n ∈ N,

then we say that the carrying patch-capacity is zero.

Theorem 7.1. Let k = 0 or k = 1. Then a persistent-optimal strategy is
given by

qn = 0 ∀n ≥ 1.

If k ≥ 2, then there exists a persistence-optimal strategy satisfying

qn = 0 ∀n ≥ k, qk−1 = 1.

One cannot expect persistence-optimal strategies to be unique. Once
qm = 0 for some m, qn can be arbitrary chosen for n > m. Under specific
circumstances, certain uniqueness statements can be made, however. In
order to obtain more precise information in case that k ≥ 2 we assume that
the metapopulation is of Verhulst or Allee type. We call the metapopulation
to be of Verhulst or logistic type if the sequence βn

µn
is monotone decreasing

(not necessarily strictly). We call it of Allee type if the sequence βn

µn
is

unimodal, i.e., the sequence is first increasing and then decreasing.
If the population is of either Verhulst or Allee type, there always is a

persistence-optimal strategy which has one of the following forms:

qn = 0 ∀n ≥ 1,

or

qn =

{
1; n = 1, . . . , k − 1,

0; n ≥ k.

In the first case k = 0 or k = 1, in the second we necessarily have k ≥ 2. In
any case these strategies are of bang-bang type: If the number of adults is
below the carrying capacity, all the juveniles should stay; if the number of
adults is at or above the carrying capacity, all the juveniles should leave.

Theorem 7.2. Assume that the metapopulation is of Verhulst type and that
the carrying capacity k satisfies k ≥ 2. Then a persistence optimal strategy
is given by

qn =

{
1; n = 1, . . . , k − 1,

0; n ≥ k,

and, with this strategy,

D =
k∏

n=1

βn

µn
> 1.

Remark 7.3. Under the assumptions of Theorem 7.2, the persistence-opti-
mal strategy is unique in so far as necessarily qn = 1 for n = 1, . . . , k− 1. If
βk+1/µk+1 < 1, then necessarily qk = 0.
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Theorem 7.4. Assume that the carrying capacity k satisfies k ≥ 2 and that
the metapopulation is of Allee type.

a) Let
k∏

n=2

βn

µn
≥ 1.

Then a persistence-optimal dispersal strategy is given by

qn =

{
1; 1 ≤ n ≤ k − 1,

0; n ≥ k.

For this optimizing sequence (qn), we have

D =
k∏

n=1

βn

µn
≥ 1.

b) Let
k∏

n=2

βn

µn
≤ 1.

Then a persistence-optimizing dispersal strategy is given by

qn = 0 ∀n ≥ 1.

Remark 7.5. Under the assumptions of Theorem 7.4 (a), the persistence-
optimal dispersal strategy is unique in so far as necessarily qn = 1 for n =
1, . . . , k − 1.

Our statement concerning persistent-optimal dispersal strategies can be
generalized to metapopulations which are not necessarily of Verhulst or Allee
type at the expense of some terminology. Again the persistence-optimal
emigration strategies will be of bang-bang type.

A natural number k is called weak (carrying patch) capacity if βk/µk > 1
and βk+1/µk+1 ≤ 1.

A weak capacity k is called pervasive if k = 1 or if

k > 1 and
k∏

j=m

βj

µj
≥ 1 ∀m = 2, . . . , k.

Notice that, for two pervasive weak capacities k1 < k2, we have
k1∏

j=1

βj

µj
≤

k2∏

j=1

βj

µj
.

If there exist a pervasive weak capacity we define ` to be the largest pervasive
weak capacity.

Theorem 7.6. Let βn

µn
→ 0 as n →∞.
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a) If no pervasive weak capacity exists or the largest pervasive weak
capacity is 1, then a persistence-optimal emigration strategy is given
by qn = 0 for all n ≥ 1.

b) If ` is the largest pervasive weak capacity and it satisfies ` > 1, then
a persistence-optimal emigration strategy is given by

qn =

{
1; n = 1, . . . , `− 1,

0; n ≥ `.

Appendix A. Proofs of the results in Section 7

We notice from (3.10) that

D − 1 = f(0)− 1 =
∞∑

n=1

γ(n, 0)
(

βn

µn
− 1

)
,

γ(n, 0) = 1, γ(n, 0) =
n−1∏

j=1

qjβj

µj
.

Hence a dispersal strategy (qn) is persistence-optimal if and only if it max-
imizes D − 1.

We first differentiate γ(n, 0) with respect to qm:

∂γ(n, 0)
∂qm

= 0, n ≤ m,

∂γ(n, 0)
∂qm

=
βm

µm

n−1∏
j=1
j 6=m

qjβj

µj
, n > m.

Hence,

∂(D − 1)
∂qm

=
∞∑

n=m+1

βm

µm




n−1∏
j=1
j 6=m

qjβj

µj




(
βn

µn
− 1

)
.

Reorganizing terms,
(A.1)

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj





βm+1

µm+1
− 1 +

∞∑

n=m+2




n−1∏

j=m+1

qjβj

µj




(
βn

µn
− 1

)
 .

Thus
∂D
∂qm

≤ 0 ∀m ≥ k.

Hence we do not decrease D by setting

qn = 0 ∀n ≥ k

if k > 0, and
qn = 0 n ≥ 1,
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if k = 0. This completely settles the question for k = 0, 1. Let us assume
that k ≥ 2. The previous considerations show that it is sufficient to find
a persistence-optimal dispersal strategy with qn = 0 for all n ≥ k. Such a
strategy exists, because D takes a maximum on the compact set of sequences
(qn) with qn = 0 for n ≥ k and 0 ≤ qn ≤ 1 for n = 1, . . . , k − 1.

Let us take a dispersal-optimal strategy with qn = 0 for n ≥ k. Then, for
m ≤ k − 1,

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj





βm+1

µm+1
− 1 +

k∑

n=m+2




n−1∏

j=m+1

qjβj

µj




(
βn

µn
− 1

)
 .

Hence, for m = k − 1,

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj




(
βm+1

µm+1
− 1

)
≥ 0.

Thus we do not decrease D by setting qk−1 = 1. This proves Theorem 7.1.
Now assume that we have m ≤ k − 2,

(A.2)
k∏

j=m+2

βj

µj
≥ 1

and that we have set qn = 1 for n = m + 1, . . . , k − 1. Then

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj





βm+1

µm+1
− 1 +

k∑

n=m+2




n−1∏

j=m+1

βj

µj




(
βn

µn
− 1

)
 .

We reorganize the terms,

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj





βm+1

µm+1
− 1 +

k∑

n=m+2




n∏

j=m+1

βj

µj
−

n−1∏

j=m+1

βj

µj





 .

We change the summation index,

∂D
∂qm

=
βm

µm




m−1∏

j=1

qjβj

µj





βm+1

µm+1
− 1 +

k∑

n=m+2




n∏

j=m+1

βj

µj


−

k∑

n=m+2




n−1∏

j=m+1

βj

µj





 ,

and simplify

∂D
∂qm

=
βm

µm

m−1∏

j=1

qjβj

µj




k∏

j=m+1

βj

µj
− 1


 .
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Then we do not decrease D by setting

(A.3)

qm = 1 if
k∏

j=m+1

βj

µj
≥ 1,

qm = 0 if
k∏

j=m+1

βj

µj
≤ 1.

If the population is of Verhulst type, the second case cannot occur because,
by (A.2), this requires βm+1

µm+1
≤ 1 which contradicts

βm+1

µm+1
≥ βk

µk
> 1.

Hence we do not decrease D by successively setting qn = 1, n = k−2, . . . , 1.
This proves Theorem 7.2.

Let the metapopulation be of Allee type. Assume that
k∏

j=2

βj

µj
≥ 1.

Since βn

µn
is uni-modal, this implies that

k∏

j=m+1

βj

µj
≥ 1, m = 1, . . . , k − 1.

Hence, by (A.3), we do not decrease D by setting qn = 1 for n = 1, . . . , k−1.
Let now assume that

k∏

j=2

βj

µj
< 1.

Then there exists exactly one l ≤ k − 2, l ≥ 1, such that
k∏

j=l+1

βj

µj
< 1,

k∏

j=l+2

βj

µj
≥ 1.

By (A.3), we do no decrease D − 1 by setting ql = 0. But now we can set
qn = 0 for n > l without affecting D − 1 because γ(n, 0) = 0 for n > l

anyway. Moreover βn

µn
< 1 for n = 1, . . . , l + 1. Now, from (A.1),

∂D
∂qm

≤ 0, m = 1, . . . , l − 1.

Hence we do not decrease D by setting qm = 0 for m = 1, . . . , l− 1. Finally
let

k∏

j=2

βj

µj
= 1.
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We have seen that setting qn = 1 for n = 1, . . . , k−1 provides a persistence-
optimal strategy with

D =
k∏

j=1

βj

µj
=

β1

µ1
.

Thus the strategy with qn = 0 for all n ≥ 1 is equally good.
As for the Remarks following Theorem 7.2 and 7.4, let us assume that the

respective assumptions are satisfied. Then a persistence-optimal dispersal
strategy is given by qn = 1 for n = 1, . . . , k − 1 and qn = 0 for n ≥ k. Then
(A.3) holds with qn = 1 for m = 1, . . . , k − 1, and we find that

∂D
∂qm

> 0, m = 1, . . . , k − 1.

Hence making one of the qn, n = 1, . . . , k − 1, strictly smaller than one,
would make D strictly smaller.
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