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Abstract 

To better understand the mechanisms involved in the dynamics of Johne’s disease in dairy
cattle, this paper illustrates a novel way to link a within-host model for Mycobacterium avium
ssp. paratuberculosis with an epidemiological model. The underlying variable in the within-
host model is the time since infection. Two compartments, infected macrophages and T cells,
of the within-host model feed into the epidemiological model through the direct transmission
rate, disease-induced mortality rate, the vertical transmission rate, and the shedding of MAP
into the environment. The epidemiological reproduction number depends on the within-host
bacteria load in a complex way, exhibiting multiple peaks. A possible mechanism to account
for the switch in shedding patterns of the bacteria in this disease is included in the within-host
model, and its effect can be seen in the epidemiological reproduction model. 

Introduction

Johne’s disease (JD) in dairy cattle is a chronic infectious disease in the intestines caused by
the bacillus,  Mycobacterium avium  ssp. paratuberculosis (MAP). MAP in a  contaminated
environment infects cattle through oral route. Contaminated colostrum and milk from infected
cows are important sources of infection for calves. Actual infection occurs when MAP bacilli
are phagocytosed by M-cells covering the dome of the Peyer’s patches [1] and transported to
macrophages. In the early stages of the infection, some of the MAP will not be destroyed by
macrophages  and  will  grow in  those  cells  until  cellular  immunity  will  be  generated.  To
develop specific cellular immunity, macrophages differentiate into epithelioid cells and then
intracellular growth of the MAP will be suppressed. Epithelioid cells form specific structures,
granulomas, which act to restrict MAP growth inside and destroy them gradually. Some of the
MAP in  the  granuloma  will  survive  and  enter  a  period  of  dormancy  until  reactivation.
Reactivation of MAP will start slowly in the subclinical stage in which intermittent shedding
of  MAP  will  start.  Granulomatous  enteritis develops  during  the  subclinical  stage  and
accelerates in the clinical stage. Histological studies of infected areas reveal the presence of
many infected macrophages, but very little extracellular bacteria have been observed [2]. 

This disease exhibits a variety of shedding patterns of MAP into feces, usually with a brief
initial  shedding  period  and  then  followed  by a  long  latent  period.  In  later  stages,  some
infected  cattle  progress  to  weight  loss,  diarrhea,  and  reduced  milk  production.  The
mechanisms of the pathogen and the reaction of the immune system that cause this long latent
period are not well understood. Also the connection of underlying immunology responses and
the variable shedding patterns is difficult to explain. See the following papers in this issue
related to these mechanisms and their relationship with data on shedding patterns, the growth
of granulomas, and the length of the latent period [3,4]. 

To better understand the mechanisms of this disease and to later choose control strategies, we
will  illustrate through modeling how the immune system of infectious cows may have an
effect at the epidemiological herd level. In particular, we are interested in understanding how
the host immune responses influence the epidemiological reproduction number of JD in a
farm or  a  geographical  region.  We will  study the  complex  immuno-epidemiology of  JD
through explicitly linking of epidemiological processes to the immune system dynamics. 

Linking models at the two scales, immunological and epidemiological, has been done recently
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[5,6].  Different  approaches  have  been  used  for  such  models,  and  some  work  has  used
decoupling assumptions to deal with the two scales separately [7-9]. In this paper, we are
following the nested approach, introduced by Gilchrist, Coombs and Sasaki [10,11], in which
the within-host model is independent of the between-host model but feeds into the between-
host model. Our immuno-epidemiological model consists of two components: a time-since-
infection  dependent  immunological  model  (within-host)  and  an  epidemiological  model
(between hosts) whose transmission rates and virulence depend on the within-host variables.
We will illustrate the basic ideas of linking a within-host model with a between-host model.
For this illustration, we use a relatively simple model for the epidemiological dynamics. The
representation  of  epidemiological  reproduction  number  shows the  dependence  on specific
within-host populations. Since there may be a type of switch in the within-host system that
accounts for the variability of the shedding patterns, we give a way to illustrate a possible
switching mechanism and show its effect on the epidemiological reproduction number. We
use the stimulation rate of the immune response from infected macrophages as this switch.

In the next section, we introduce our within-host model, and then we discuss its estimated
parameter values and stability analysis. We include a mechanism to switch from low bacterial
load to  high bacterial  load.  The third section gives  the between-host  model  linked to  the
within-host  model.  We  show  how  the  epidemiological  reproduction  number  can  be
represented in terms of the equilibrium points of the within-host model. 

Materials and methods

A within-host immunological model of JD

We give some brief background of immunology of MAP leading to the within-host model. 

Essential immunology of MAP

MAP enters the body of a cow from environmental sources, including fecal material, at birth
or early in life through milk. After entry, MAP travels to the intestines of the affected animal
and infects the macrophages located in the Peyer’s patches [1]. In the early stages of the
disease  the  bacterium  prevents  the  macrophages  from  destroying  it  and  the  infected
macrophages are kept dormant. The infection persists in the affected animal in the subclinical
stage. Histological studies of infected areas reveal the presence of many infected macrophages
but the amount of free bacteria has not been clearly documented. It appears that bacteria, that
are released when an infected macrophage is destroyed, are immediately engulfed by new
macrophages.  To  account  for  this  observation,  we  include  in  the  model  uninfected
macrophages and infected macrophages but no free bacteria. Immune responses to MAP are
reviewed more thoroughly in [2] in this special issue. Early in the infection, a cellular immune
response  is  activated  through  T  cells  and  other  cells.  The  cellular  immune  response  is

accompanied by proinflammatory cytokines, such as interferon-
γ

 (IFN-
γ

) [12]. The cellular
immune response is effective in controlling the infection, so that during the subclinical stage
the shedding is  often minimal  or  intermittent  [13-16].  In  the later  stages of  infection the
cellular immune response wanes and a humoral response is activated in the form of B-cells
and antibodies [17]. This response appears to be less effective in the controlling the infection
and often increased shedding is observed at this stage of the infection. For this reason we
include in the model the cellular immune response only. 
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The immunological model

Within-host  mathematical  models  describe  the  dynamics  of  cells  that  participate  in  the

infection process within a single individual. In our system of differential equations with 
τ

 as

the underlying variable for time since infection, we denote by 
uM
 the number of uninfected

macrophages in the infected area,  
iM
 the number of infected macrophages in the infected

area,  and  C the number of T cells  in the infected area.  The rate of change of uninfected

macrophages  increases  by  the  total  recruitment  rate  
r

 of  new macrophages  to  the  area.
Furthermore, it decreases by the new infections and by the uninfected macrophages’ per capita

death rate 
1d
. The uninfected macrophages become infected by the bacteria that come out of

infected macrophages that are bursting. We represent this as direct transmission from infected
to  uninfected  macrophages.  To  account  for  possible  saturation  as  the  number  of  infected
macrophages  increases,  we  incorporate  per  capita  infection  rate  that  levels  off  with  the

increase in 
iM
. The proposed form of new infections per unit of time is a generalization of

the mass action law, typically assumed in within-host models [18]. 
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The  rate  of  change  of  infected  macrophages  increases  by  the  rate  of  newly  infected
macrophages and decreases through the killing rate of cellular immunity and the death rate of
infected macrophages . In the  Mi differential equation, this double-saturation form is based
on the assumption that one killer T-cell can kill only finitely many infected macrophages,

independently of how many are present [19]. In the special case when 
0=1ε

 and 
0=3ε

, the
killing rate is a mass action law. The per capita killing rate of T-cells is saturating in infected
macrophages.  Saturating force of infection and killing rates have been previously used in
modeling human tuberculosis [20]. The rate of change of C is increasing in saturating fashion
with respect to infected macrophages and is decreasing at per capita death rate of T-cells d2.
We  assume  that  in  the  presence  of  infected  macrophages  the  immune  response  will  be
automatically  activated,  no  additional  conditions  on  the  parameters  are  necessary.  The
dependent variables and the parameters are listed in Table 1. 

Fitting the immune model to calf data and parameter estimation

Estimating parameters in within-host models can be achieved through fitting to time series
data and estimates of lifespans. We use calf data and procedures reported in [21,22]. Neonatal
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Holstein dairy calves were obtained from status level 4 herds with no reportable incidence of
JD in Minnesota at 1–2 days of age. Calves were housed in Biosafety Level-2 containment
barns for the duration of the study and experimentally inoculated by feeding milk replacer
containing  2.6 × 1012 live  MAP obtained  by  scraping  the  ileal  mucosa  from a  clinically
infected cow as previously described in [21]. Calves were dosed on days 0, 7, and 14 of the
study. All procedures performed on the calves were approved by the Institutional Animal Care
and Use Committee (National Animal Disease Center (NADC), Ames, Iowa). The clinical
isolate of MAP was obtained from the ileum of a clinical cow at necropsy that had shed high
numbers of MAP in the feces. 

Infection of calves was determined by measurement of shedding viable MAP in the feces and
recovery of MAP from tissues as described in [21]. After 12 weeks of incubation at 39 °C,
viable organisms were determined by counting the number of colonies on the agar slants.

IFN-
γ

 and interleukin-10 (IL-10) were measured in cell-free supernatants to assess immune
response to  infection.  Briefly,  periperhal  blood mononuclear  cells  (PBMCs) were isolated
from the  buffy  coat  fractions  of  whole  blood  and  cultured  at  2.0 × 106/mL in  complete
medium at 39 °C in 5% CO2 in a humidified atmosphere. In vitro treatments consisted of no
stimulation (medium only), concanavalin A (10 µg/mL), and a whole-cell sonicate of MAP
(10 µg/mL) [22]. 

Macrophages have a lifespan of several months. Wigginton and Kirschner [20] uses three
months for lifespans of both uninfected and infected macrophages. We set d1 = 0.25 months-1

and  
0.3=δ

 months-1.  We take  a  longer  lifespan  of  infected  macrophages  because  MAP

prevents  the  self-destruction  of  infected  macrophages  [23].  We  also  fix  
5=(0)uM

and
2=(0)iM

 so that they are consistent with the available data. We fit the remaining parameters

to data. The data we use are colony forming unit (CFU) data and IFN-
γ

 data for three calves
(denoted by calf 9, calf 10 and calf 11). We complete one fit of the parameters for each data

set for an individual calf. Since the model (1) does not have CFU or INF-
γ

, we fit 
)(1 τiMc

 to

the CFU data and 
)(2 τCc

 to the IFN-
γ

 data, where c1 and c2 are constants to be determined

by the fitting. To reduce the number of parameters to be fitted we set 
0=3ε

 and 
21 = εε
. The

parameter values are given in Table 2 which were obtained by fitting with Mathematica. Since
we were fitting more parameters than data points, proper identification of the parameters was
not feasible and potentially more than one set of parameters may match the data with good fit.
However, the parameters in Table 2 are consistent with the available data and similar between
the calves. They identify sensible parameter ranges for simulations to illustrate the key points
of linking with the epidemiological model. 

Multiple equilibria and significance in terms of shedding

One of the key features of JD in cattle is that animals, when infected, may switch between
shedding and non-shedding, thus identified because shedding data are collected as a positive
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(shedding) or negative (non-shedding) status. As an illustration, the shedding pattern for one
of the calves in our data-set is depicted in Figure 1. This figure shows that animals may spend
a significant amount of time in each status, during which the shedding is relatively constant.
Such a pattern is characterized by the presence of long, stable periods of indefinite lengths,
and possibly multiple stable periods with switching between. Mathematically such dynamical
behavior is captured by the presence of multiple steady states in the dynamical model, at least
two of which should be locally stable (solutions that start close to them, converge to them). In
this section we show that the immunological model (1) exhibits such multiple steady states. 

To understand the presence and absence of steady states (equilibria) and how their stabilities
change we need to define the immunological reproduction number 

.=
1

0 d

r⋅ℜ
δ
α

The reproduction number gives the numbers of secondarily infected macrophages that one
infected macrophage will produce in an entirely uninfected macrophage population during its
lifespan as infected. Since JD is a chronic infection, we expect that for realistic parameter

values  
1>0ℜ

.  Model  (1)  always  has  an  infection-free  equilibrium  
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The solution  

*
iM
 of this equation gives us the infected equilibria. If  

)(xf
 denotes the left-

hand side of this equation with 
x

 instead of 

*
iM
, and 

)(xg
 denotes the right-hand side, the

solutions of the above equation are given by the intersections of the curves  
)(= xfy

 and
)(= xgy
. It can be seen in Figure 2 that if 

1>0ℜ
 for some parameter values, there could be

three intersections when 
0>*

iM
. Each intersection gives one equilibrium value of 

*
iM
, and

each equilibrium value of 

*
iM
 gives one equilibrium 

),,(= *** CMM iuiE
, where 
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We label the equilibria in increasing value of 

*
iM
. It often can be mathematically shown that

the lowest one is locally stable, the middle one is unstable and the upper one is also locally
stable. In biological terms the presence of multiple stable equilibria allows animals to switch
between low bacterial load and no shedding (below the detection limit) to high bacterial load
and shedding and vice versa. If we assume that stressful events may temporarily affect the
immune  system  negatively,  we  can  model  this  temporary  disturbance  by  modifying  the
constant parameter  k (stimulation rate for immune response from infected cells) into a time
dependent function: 





∈
∉

],[

],[
=)(

212

211

τττ
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τ
k

k
k

where 
21 > kk
. This type of 

)(τk
 may model for instance temporary reduction in the immune

response strength due to stress. This minor disturbance may be very short-lived but may move
the animal from a no-shedder to high-shedder, see Figure 3. Multiple equilibria do not occur
for the values in Table 2 but for some modified values of the fitted parameters. However, in

most cases for which  d1 = 0.25 and  
0.3=δ

,  the lower equilibrium appears to be unstable
while the upper one is stable. In this case the bacterial load and the shedding still exhibit a
switch, however, the switch occurs spontaneously, without external disturbance. The length of
the non-shedding phase depends on various factors, including the status of the immune system
at infection. This scenario is illustrated in Figure 4. 

The immuno-epidemiological model of Johne’s disease

We imbed the immunological model (1) from the previous section into an epidemiological
model  of  JD. The epidemiological  model  and the immunological  model  of  JD are linked
through the time-post-infection variable as well as the dependence of some epidemiological
parameters on the within-host pathogen load. 

A brief description of JD epidemiology

JD is present in many countries with livestock industry and, in the United States, the causative
agent of the disease,  MAP, was found in about 70% of dairy farms [24,25].  After a long
incubation time [26], dairy cattle infected with MAP start shedding the pathogen into feces,
colostrum and milk [27-29]. MAP bacilli shed into feces can survive longer than a year in the
environment [30] and the fecal-oral route was shown to be the major transmission pathway in
dairy farms [31]. However, there is also evidence for transmission through contaminated milk,
colostrum  and  placenta  (vertical  transmission)  [29,31,32].  Young  animals  are  more
susceptible to MAP infection than adults [33], and therefore, good management practices to
prevent MAP ingestion at young age (< 1 year old) are suggested to be effective to control JD
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in dairy farms [34]. 

The epidemiological component of the JD model

To  account  for  differential  susceptibility  between  calves  and  cows,  we  separate  the  the

number of healthy calves 
)(tSC

 from the number of healthy adults 
)(tSA

, where t is the time
(in  months)  since  some initial  point  called  time zero.  Because  the  infectivity  of  infected
individuals depends more on their shedding and pathogen load, rather than chronological age,
we merge infected calves and infected adults in one class whose density with respect to time-

post-infection is given by 
),( ti τ
. The quantity 

),( ti τ
 is a density since 

ττ dtitI ),(=)(
0∫
∞

is  the  number  of  all  infected  individuals  at  time  t.  The  units  of  
),( ti τ
 are  number  of

individuals  per unit  of time.  The newly infected individuals move to the class  i(0,t).  The
amount  of  bacteria  in  the  environment  is  given  by  B(t).  The  model  below has  ordinary

differential equations for SC, SA and B and a first order partial differential equation for 
),( ti τ
. 
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We assume that bS gives the number of susceptible calves born per unit of time. A proportion
)(BfECγ
 are infected soon after birth through contact with the infected environment. These

move to the newly infected individuals i(0,t). Since newborn calves are separated after birth,
we do not incorporate further environmental transmission of JD for calves. As a result  of
vertical transmission, from the number of calves born to infected individuals, a proportion

)(1 τq−
 are susceptible and remain in the class SC, while a proportion 

)(τq
 are born infected

and appear in the class i(0,t). The dependence of q on 
τ

 will be explained below. Susceptible
calves  can  also  become  infected  through  direct  contact  with  infected  individuals  (with
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coefficient  βC) and also move to  i(0,t).  Susceptible calves progress to adulthood at rate  a.
Healthy adult cows can become infected through direct contact with infected individuals as
well as through contact with the contaminated environment. In both cases the newly infected
individuals move to i(0,t). We recall that calves are more susceptible to direct infection than
adult cows. That fact implies that we need to have βC > βA. Infected individuals shed bacteria

into the environment at rate 
)(τη

, and bacteria are cleared from the environment at a rate d.
See Table 3 for the parameters and the dependent variables for the epidemiological model. 

For the general function of environmental bacteria infectiousness 
)(BfE

, we assume that
1)(0 ≤≤ BfE

. We consider the following specific form of the function 

1
2

1

1

1
=)(

K

B

K

B

E

eK

e
Bf

−

−

+

−

Where K1 and K2 are given constants. This function is chosen because it has a threshold effect:
it is low for low values of B and at some threshold value of B increases fast to one. 

Linking the immunological and the epidemiological models

Understanding  the  impact  of  within-host  pathogen  dynamics  on  the  spread  of  JD  in  a
population of cattle requires proper linking of the epidemiological parameters to the within-

host  dynamic  variables  
)(τiM

 and  
)(τC
.  The  epidemiological  parameters  linked  to  the

within-host  parameters  are  the  
τ

-dependent  birth  rate  of  infected  cattle  
)(τIb

,  the

transmission rate of infected cows 
)(τκ

, the disease-induced death rate 
)(τν
, the proportion

of calves born infected 
q(τ )

 and the shedding into the environment 
)(τη

. We assume that

the cow’s birth rate decreases slightly with the progression of the disease as the weight loss
and milk reduction lead to suboptimal conditions [35,36]. We model the effect of the disease-
progression through the following relationship between birth rate and infected macrophage
load: 

)(1
=)(

τ
τ

i

S
I bM

b
b

+
′

where 
Sb′
 is the per capita birth rate of healthy cows and b has to be specified. The constant b

controls the change in birth rate due to bacterial load and illness. Furthermore, the proportion
of calves born infected also depends on the mother’s pathogen load and is represented by an
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increasing saturating function: 
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Where  Q is the half-saturation constant. The half-saturation constant controls how fast the

curve reaches half-saturation level. Direct transmission rate  
)(τκ

 is assumed to be small in
JD.  We  surmise  that  it  occurs  when  shedded  feces  become  immediately  infectious  to
susceptible  calves  or  cows  without  having  to  stay  in  the  environment  and  be  subject  to
degradation. In this case the direct transmission rate is directly correlated with the CFU shed
in the environment. Prior research suggests that in the case of HIV [37] the dependence of the
transmission  rate  on  the  pathogen  is  saturating  at  high  pathogen  loads,  and  we  use  the
simplest saturation function: 
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τκ
ττκ
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i
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+

where 
Tκ

 is the half-saturation constant. 

The disease-induced mortality is linked to the bacterial load as well as the immune response, 

),()(=)( τττν vCmM i +

Where  m and  v are  scaling  constants.  The  immune  response  leads  to  inflammation  and
thickening of the intestinal wall which causes diarrhea and malnutrition. Finally, the shedding

into the environment 
)(τη

 is given by the CFU and is taken to be proportional to the bacterial
load: 

)(=)( 1 ττη iMc

Where c1 is estimated from fitting. 

The linking above describes how the epidemiological parameters change with the within-host
bacterial  load.  The resulting  immuno-epidemiological  model  assumes that  the  within-host
progression of the disease is averaged among all individuals and gives the population-level
spread which results from the averaged immune dynamics. 

Reproduction number of the immuno-epidemiological model

Whether JD persists on epidemiological level depends on the epidemiological reproduction
number  R0 which  gives  the  number  of  secondary  infections  one  infected  individual  will
produce  in  an  entirely susceptible  cattle  population.  If  R0 > 1 then  JD will  persist  in  the
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population; if however, R0 < 1, JD may be eliminated from the population, even in the case
when the infection persists in some individual infected animals. 

To  derive  the  epidemiological  reproduction  number,  we  first  compute  the  disease-free

equilibrium 
,0,0),(= 00
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is the probability of survival in the infectious class. Each term of the reproduction number
corresponds to a different mode of transmission of JD. The first two terms give the number of
secondary infections of calves and adults who get infected through the direct transmission
route.  The  third  term  gives  the  number  of  secondary  infections,  generated  through
environmental transmission. The integral in this term gives the amount of bacteria shedded by

one infectious individual, 1/d gives the survival time of bacteria in the environment and 
(0)Ef ′

gives the rate of infection when the bacteria in the environment are rare. The last term gives
the number of secondary infections generated through vertical transmission. 

The epidemiological reproduction number depends on the immune system parameters through
its dependence on Mi and C. It is instructive to see this dependence explicitly at least in the
case when the immune system (1) is at equilibrium. In this case the solution of the system is

given by  
),,(= **** CMM iuiE
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*
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Estimation of epidemiological parameters

To  illustrate  the  impact  of  within-host  prevalence  of  MAP  on  the  epidemiological
reproduction number, we need estimates for some of the epidemiological parameters involved
in the model. Reference [30] gives a detailed account of the survival properties of MAP in
various  environments.  This allows us to  estimate  d which we take in  the range 1/15−1/3
months-1. We also derive the shedding rate from the fits of the immune model to CFU data.
The constant that links the MAP amount within a host Mi to the CFU is given by c1, and we
set c1 = 0.01. 

Reference [38] states that up to 25% of the calves may be infected  in utero if the mother
shows clinical signs. The removal rates µC, µA and the age-progression rate a are well known
for cattle [39]. The natural death rate µ is also known from [39]. The transmission parameters

βC, βA,  
Cγ

,  
Aγ

 are assumed based on the expectation for an epidemiological reproduction
number  of  about  2.  The rate  of  infection of  healthy adults  from the  environment  can  be
obtained from [40]. The clearance rate of MAP d is taken from [30]. The epidemiological
parameters are given in Table 4. 

Results

Implications of the within-host dynamics to the epidemiology of JD

Immuno-epidemiological models allow us to evaluate the impact of the within-host bacterial
load on the epidemiological reproduction number. As we show, this dependence in the case of
JD  may  be  quite  complicated.  Intuitively,  we  may  surmise  that  the  epidemiological

reproduction number is an increasing function of the bacterial load  

*
iM
. That is indeed the

case when 

*
iM
 is small. When internal bacterial load is larger, then “trade off” effects come

into play, and host mortality due to illness takes precedence. As a result the epidemiological
reproduction number starts decreasing. This creates the typical “hump”-shaped form of the
reproduction number as a function of the pathogen load [41]. We observe that shape in the
epidemiological reproduction number of JD in the case when the transmission occurs only
directly (c1 = 0,  q = 0) in Figure 5. Figure 5 also shows that the stronger the impact of the
immune response on host  mortality,  that  is  the larger  the  v,  the  smaller  the  reproduction
number. Furthermore, for larger  v the peak in R0 is less pronounced and occurs for larger
values of the bacterial  load.  This rather surprising effect that increasing  v requires higher
bacterial load for the maximum R0 to occur is produced by the saturation effect of the immune

response in killing 

*
iM
 given by 

2ε
. If 

2ε
 is small the maximum occurs at smaller values for

*
iM
 as 

v
 increases but as 

2ε
 becomes larger, the immune response plays a smaller role. When

transmission occurs only environmentally, that is βC = βA = 0 and q = 0, the epidemiological

reproduction number is an increasing function of  

*
iM
 and there is no maximum of R0 for

intermediate values of 

*
iM
. We surmise that this is a result of the fact that shedding is directly
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proportional to the internal bacterial load and there is no saturation in the infection rate. When
transmission occurs only vertically, then the epidemic reproduction number again rises for
small internal bacterial load but reaches a peak quickly and then declines, see Figure 6. In this

case the peak occurs for very small value of 

*
iM
. Furthermore, the weaker the impact of the

immune response,  the peak occurs for a larger value of  

*
iM
.  When all  three transmission

mechanisms  are  combined,  the  reproduction  number  can  experience  several  rises  and

declines,  with  several  maximums for  various  values  of  the  bacterial  load  

*
iM
.  For  small

values of 

*
iM
, vertical transmission dominates and leads to an early peak of R0 at small values

of  

*
iM
.  The survival  trade-offs compensate,  but  as  

*
iM
 increases,  the role  of  the vertical

transmission declines and direct transmission takes on the dominant role, leading to a second
peak in the reproduction number. Eventually the survival trade-off effect compensates for this
increase also and R0 declines. The behavior of R0 with all three modes of transmission is
given in Figure 7. This figure shows that as the effect of the immune system on the host  v
becomes smaller, the second peak becomes less pronounced and perhaps will disappear. To

see the impact of the multiple within-host equilibria, we denote by 

(1)
iM

 the lower stable one

and by 

(3)
iM

 the upper stable one. If the switch between the lower and the upper occurs at
time T, we have 





TM

TM
M

i

i
i

>

<<0
=)(

(3)

(1)

τ
τ

τ

This step-wise dynamics, approximates the actual dynamics which is continuous with a fast

transition. We can define 

(1)
0R

 and 

(3)
0R

 to be given by (8) with Mi replaced by 

(1)
iM

 or 

(3)
iM

respectively. Substituting (9) in the reproduction number (7), we obtain: 

.)(1=
)(1)(1)((3)

0

)(1)(1)((1)
00

TvCimMTvCimM
ee

µµ ++−++− +− RRR

From this expression, we can tell that if  

(3)
0

(1)
0 < RR

, then R0 is decreasing as  
T

 increases.

However, this relationship between  

(1)
0R

 and  

(3)
0R

 is not guaranteed since the reproduction
number could be large for small values of the within-host bacterial load and smaller for larger

values of the bacterial load. We plot the reproduction number as a function of 

(1)
iM

 or 

(3)
iM

with 

(3)(1) < ii MM
 and we see that it is changing dramatically (see Figure 8). Note that R0 is
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large for small 

(1)
iM

 but is very small for very large 

(3)
iM

. For slightly higher values of 

(1)
iM

it sharply dips but then increases and subsequently decreases. Computing the prevalence in
the case including all three modes of transmission is too complicated to be useful but typically
prevalence increases with the increase of the reproductive number.  That  suggests that the
prevalence may be high when most cattle appears nearly healthy and it may be decreasing
when all infected cattle seems sick. This last fact is most likely due to increased culling in that
case and reduced fertility. 

Discussion

Mathematical modeling is an important tool in learning about infectious diseases. We believe
that  linking  immunological  and  epidemiological  models  will  give  further  important
contributions to understanding of multi-scale biological processes and to leading the way in
disease control. 

Overview of insights of immunological model

The immunological model in the system describes the within-host dynamics of MAP. We
fitted the model to CFU data of three calves. The fitting resulted in the estimation of a number
of key quantities in the within-host dynamics of MAP. In particular we obtain values of the
infection rate of uninfected macrophages, the stimulation rate of the immune response and
others.  These  results  are  given  in  Table  2.  The  immunological  model  also  reveals  that
saturating incidence in infected macrophages leads to multiple steady states of the bacterial

load when  
1>0ℜ

. In particular for some parameter regimes close to the estimated values,
there are three nonzero equilibria, two of which are typically attracting. That allows for the
MAP bacterial load to stabilize at two non-zero values, mimicking stable nonshedding and
stable  shedding.  Switching between shedding andnon-shedding can occur  as  a  result  of  a
short-term disturbance that a cow may experience. This suggests that prolonged no shedding,
followed by prolonged shedding are two stable regimes where the switching occurs as a result
of  a  stressor.  Simulations  show,  however,  that  for  some  parameter  regimes  close  to  the
estimated  values,  the  lower  equilibrium  can  be  unstable  and  the  switching  between  no
shedding and shedding may occur spontaneously without any external disturbance. In this
case the duration of the non phase depended on the initial infection and other factors. 

Overview of insights of immuno- epidemiological model

The epidemiological reproduction number R0, computed in terms of the within-host bacterial
load, allows us to potentially infer when JD will persist or die out in a herd from the within-
host  bacterial  load  or  shedding.  At  the  very  least,  we  can  observe  how  the  within-host
bacterial load impacts the reproduction number, and hence, the prevalence of JD in a herd. JD
is spread through three modes of transmission: environmental, vertical and direct. In general
for directly transmitted diseases it is known that the epidemiological R0 exhibits a humped
shaped dependence with respect to the pathogen load. Surprisingly, we find that the stronger
the virulence caused by the immune response, the larger the pathogen load needed for the
maximum to occur. Furthermore, we find that R0 also exhibits such a humped shape if the
transmission is only vertical. In contrast with direct transmission, the peak in this case is more
pronounced and occurs for lower pathogen load. The decline of R0 in both cases is attributed
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to the virulence. As JD is spread via all three modes of transmission, JD’s epidemiological R0

exhibits complex dependence on the within-host bacterial load with two peaks – the first one
caused by vertical transmission and the second one caused by direct transmission. The non-
monotone dependence of R0 on the within-host bacterial load does not allow us to infer in
general that if the shedding of all cows in a herd is non-detectable, R0 and prevalence of JD
will be low. In fact, no shedding (low pathogen load) in all cows may very well lead to high
prevalence of JD in the herd. Because of that, control measures that reduce shedding or extend
the time of the cows in a herd being non-shedders may not reduce the prevalence of JD. 

Significance of results

We introduce a new way to model long periods of shedding and no shedding as well as the
switching between the two. This leads to understanding that these are due to stable stationary
patterns of the within-host bacterial load. Furthermore, most likely the switching occurs due
to  temporary  disturbance  of  the  infected  cow.  Furthermore,  the  new  model  extends  the
modeling techniques to immuno-epidemiological models with multiple within-host equilibria
and their  impact  on the epidemiology of  disease.  Finally,  we uncover  that  in  the case of
multiple modes of transmission, as with JDs, the epidemiological reproduction number can
depend on the pathogen load in a complex fashion, experiencing multiple peaks. Ultimately
we  conclude  that  no  shedding  (low  pathogen  load)  does  not  necessarily  imply  low
epidemiological reproduction number or low prevalence in the herd. 
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Figure legends

Figure 1 Shedding pattern for an artificially infected calf. The x-axis shows time-post-
infection in days. Non-shedding is plotted as zero, shedding as one.

Figure 2 Multiple equilibria. Figure shows multiple intersections of the functions 
)(xf

 (in

red)  and  
)(xg

 (in  blue).  Each  intersection  gives  one  value  of  

*
iM
 and  therefore  one

equilibrium.

Figure 3 Multiple equilibria. Figure shows dynamic switch between the lower and upper
equilibrium.

Figure 4 Multiple equilibria. Figure shows dynamic spontaneous switch between the lower
and upper equilibrium.

Figure 5 R0 of direct transmission. Figure shows the epidemiological reproduction number

R0 as a function of the internal bacterial load 

*
iM
 when the only mechanism of transmission is

direct transmission.

Figure 6 R0 of vertical transmission. Figure shows the epidemiological reproduction number

R0 as a function of the internal bacterial load 

*
iM
 when the only mechanism of transmission is

vertical transmission.

Figure 7 R0 with all transmission modes. Figure shows the epidemiological reproduction

number R0 as a function of the internal bacterial load  

*
iM
 when all transmission modes are

included.

Figure 8 R0 with all transmission modes. Figure shows the epidemiological reproduction

number R0 as a function of the internal bacterial load 

(1)
iM

 and 

(3)
iM

 when all transmission
modes are included and switch time T = 4.
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Table 1 Parameters and dependent variables and their interpretation.

Variable or parameter  Meaning
)(τuM
 

 Number of uninfected macrophages at time 
τ

 

)(τiM
 

 Number of infected macrophages at time 
τ

 

)(τC
  Number of immune cells at time 

τ
 

r
 

 Total recruitment rate for uninfected cells 

α
 

 Infection rate of uninfected macrophages by infected macrophages 

1d
 

 Natural death rate for uninfected macrophages 

δ
 

 Death rate of infected macrophages

2d
 

 Clearance rate for immune cells 

k
 

 Stimulation rate of immune response from infected cells

1ε
 

 Reciprocal of half saturation constant for killing of infected macrophages 

2ε
 

 Reciprocal of half saturation constant for immune response stimulation rate 

3ε
 

 Reciprocal of half saturation constant for killing of infected macrophages 

c
 

 Reciprocal of half saturation constant for macrophages infection rate 

p
 

 Killing rate of infected macrophages by immune response.

Table 2 Estimated parameter values.
 

Parameter Calf 9 Calf 10 Calf 11 Units
r
 

114 600 1425 cells/month

α
 

0.47 0.4 0.6 Month-1

2d
 

0.5 0.4 0.3 month-1

k
 

8.0 3.0 13.8 (cells*month) -1

p
 

3.8 1.4 16.1 (cells*month) -1

1ε
 

0.105 0.111 0.65 cells-1

2ε
 

0.105 0.111 0.65 cells-1

3ε
 

0.0 0.0 0.0 cells-1

c
 

0.0001659 0.0001 0.0001 cells-1
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(0)C
 

26.3 15.3 0.1 cells

1c
 

0.005 0.01 0.01 unitless

2c
 

0.048 0.057 0.05 unitless

 
Table 3 Parameters and dependent variables and their interpretation.

 
Variable or parameter  Meaning

)(tSC

 
 Number of healthy calves at time t 

)(tSA

 
 Number of healthy adults at time t 

),( ti τ
  Density of infected cattle with age-post-infection 

τ
 at time t 

)(tB
 

 Number of bacteria in the environment at time t 

Sb
 

 Birth rate for susceptible cattle 

)(τq
 

 Proportion of births of infected calves from infected cows 

Cβ
 

 Susceptibility of calves to infection due to milk 

Cµ
 

 Natural death rate of healthy calves

Aµ
 

 Natural death rate of healthy adults

µ
 

 Natural death rate of infected cattle

a
 

 Rate of progression of calves to adulthood

Aβ
 

 Susceptibility of adults to infection

Cγ
 

 Proportion of newborn calves getting infected from the environment 

Aγ
 

 Rate of infection of healthy adults from the environment 

)(τIb
  Birth rate of infected adults 

τ
 units post infection 

)(τκ
  Infectivity of infectious cattle 

τ
 units post infection 
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Table 4 Parameters and dependent variables and their interpretation.
 

Parameter  Meaning Value Range

Sb  Birth rate for susceptible cattle 100 0.1-1000

Sb′  Per capita birth rate for susceptible cattle 100 0.01-100

b
 Constant in 

)(τIb
 

0.1 0.0001-1

q  Proportion of infected calves born to infected cows 0.25 0-0.25

Q  Half saturation constant 100 0-100000

Cβ  Susceptibility of calves to infection due to milk 0.0183333 10.001−

Cµ  Natural death rate of healthy calves 12)*1/(10 12)*1/(512)*1/(25 −

Aµ  Natural death rate of healthy adults 12)*1/(5 12)*1/(212)*1/(25 −

µ  Natural death rate of infected cattle 12)*1/(3 12)*1/(212)*1/(5 −

a  Rate of progression of calves to adulthood 1/12 12)*1/(0.512)*1/(2 −

Aβ  Susceptibility of adults to infection 0.00733333 10.001−

Cγ  Proportion of newborns infected from environment 0.0001 10 −

Aγ  Rate of infection of healthy adults from environment 0.0000183333 0.0-3

Tκ
 Half-saturation constant for 

)(τκ
 

1000 1000010 −

m

 Proportionality constant for 
)(τν
 

0.3 10.0001−

v

 Proportionality constant for 
)(τν
 

0.01 10.0001−

Eη  Shedding rate of infected individuals 0.01 0.10.001−

d  Clearance rate of MAP from the environment 1/5 1/31/15 −

1K
 Constant in 

Ef
 

1 1-10000

2K
 Constant in 

Ef
 

1 1-10000
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