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Abstract14

Vector-borne diseases are a global health priority disproportionately affecting low-income populations15

in tropical and sub-tropical countries. These pathogens live in vectors and hosts that interact in spa-16

tially heterogeneous environments where hosts move between regions of varying transmission intensity.17

Although there is increasing interest in the implications of spatial processes for vector-borne disease dy-18

namics, most of our understanding derives from models that assume spatially homogeneous transmission.19

Spatial variation in contact rates can influence transmission and the risk of epidemics, yet the interaction20

between spatial heterogeneity and movement of hosts remains relatively unexplored. Here we explore,21

analytically and through numerical simulations, how human mobility connects spatially heterogeneous22

mosquito populations, thereby influencing disease persistence (determined by the basic reproduction23

number R0), prevalence and their relationship. We show that, when local transmission rates are highly24

heterogeneous, R0 declines asymptotically as human mobility increases, but infection prevalence peaks25

at low to intermediate rates of movement and decreases asymptotically after this peak. Movement can26

reduce heterogeneity in exposure to mosquito biting. As a result, if biting intensity is high but uneven, in-27

fection prevalence increases with mobility despite reductions in R0. This increase in prevalence decreases28
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with further increase in mobility because individuals do not spend enough time in high transmission29

patches, hence decreasing the number of new infections and overall prevalence. These results provide30

a better basis for understanding the interplay between spatial transmission heterogeneity and human31

mobility, and their combined influence on prevalence and R0.32

Introduction33

More than half of the world’s population is infected with some kind of vector-borne pathogen [1–3],34

resulting in an enormous burden on human health, life, and economies [4]. Vector-borne diseases are35

most common in tropical and sub-tropical regions; however, their geographic distributions are shifting36

because of vector control, economic development, urbanization, climate change, land-use change, human37

mobility, and vector range expansion [5–9].38

Mathematical models continue to play an important role in the scientific understanding of vector-39

borne disease dynamics and informing decisions regarding control [10–14] and elimination [15–17], owing40

to their ability to summarize complex spatio-temporal dynamics. Although there is increasing interest in41

the implications of spatial processes for vector-borne disease dynamics [18–22], most models that describe42

these dynamics assume spatially homogeneous transmission, and do not incorporate host movement43

[23–25]. Yet, heterogeneous transmission may be the rule in nature [26–28], where spatially heterogeneous44

transmission may arise due to spatial variation in mosquito habitat, vector control, temperature, and45

rainfall, influencing vector reproduction, vector survival and encounters between vectors and hosts [29,30].46

Movement of hosts among patches with different transmission rates links the pathogen transmission47

dynamics of these regions [31]. In the resulting disease transmission systems some patches may have48

environmental conditions that promote disease transmission and persistence (i.e., hotspots), while other49

patches may not be able to sustain the disease without immigration of infectious hosts from hotspots [32].50

Control strategies often focus on decreasing vectorial capacity in hotspots [33, 34] with some successes,51

such as malaria elimination from Puerto Rico [35], and some failures [36, 37], such as malaria control52

efforts in Burkina Faso [38]. An often overlooked factor when defining sites for control efforts is a patch’s53

connectivity to places of high transmission. For example, malaria cases during the 1998 outbreak in the54

city Pochutla, Mexico were likely caused by human movement into the city from nearby high transmis-55

sion rural areas, despite active vector control in Pochutla [39]. Understanding the interaction between56
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connectivity—defined by the rate of movement of hosts among patches—and spatial heterogeneity in57

transmission via mathematical models has the potential to better inform control and eradication strate-58

gies of vector-borne diseases in real-world settings [37,40].59

In this study, we ask, how host movement and spatial variation in transmission intensity affect disease60

long-term persistence and prevalence. First, we show analytically that transmission intensity is an in-61

creasing function of spatial heterogeneity in a two-patch system, where the patches are connected by host62

movement. Second, we apply a multi-patch adaptation of the Ross-Macdonald modeling framework for63

malaria dynamics to explore the implications of spatial heterogeneity in transmission intensity and human64

movement for disease prevalence and persistence. The mosquitoes that transmit malaria typically move65

over much smaller spatial scales than their human hosts. Thus, we assume that mosquito populations are66

focally distributed and comparatively isolated in space. The varying size of mosquito populations across67

a landscape introduces spatial heterogeneity in transmission intensity. This heterogeneity, coupled with68

the fact that humans commonly move among areas with varying degrees of malaria transmission, makes69

malaria an ideal case study.70

Materials and Methods71

The Ross-Macdonald modeling approach describes a set of simplifying assumptions that describe mosquito-72

borne disease transmission in terms of epidemiological and entomological processes [41]. Although it was73

originally developed to describe malaria dynamics, the modeling framework is simple enough to have74

broad applicability to other mosquito-borne infections. One of the most important contributions of the75

Ross-Macdonald model is the identification of the threshold parameter for invasion R0, or the basic76

reproductive number. Threshold quantities, such as R0, often form the basis of planning for malaria77

elimination. In some cases R0 also determines the long-term persistence of the infection. Here, we define78

persistence to mean uniform strong persistence of the disease; that is whether the disease will remain en-79

demic in the population, and bounded below by some positive value, over the long term. Mathematically,80

a disease is uniformly strongly persistent if there exists some ε > 0 such that lim supt→∞ I(t) ≥ ε for any81

I(0) > 0, where I(t) is the number of infected individuals at time t [42, 43].82

To extend the Ross-Macdonald model to a landscape composed of i = 1, . . . , Q patches we need to83

account for the rate of immigration and emigration of humans among the Q patches. The full mathe-84
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matical derivation of the multi-patch extension (eqn 1) from the original Ross-Macdonald model can be85

found in the Supplementary Information S1.86

For each patch i, the rates of change in the proportion of infected mosquitoes, the number of infected

hosts, and the total number of humans are calculated as

dzi
dt

= aici
Ii
Ni

(e−gini − zi)− gizi

dIi
dt

= miaibizi(Ni − Ii)− riIi − Ii
Q∑
j 6=i

kji +

Q∑
j 6=i

kijIj

dNi

dt
= −Ni

Q∑
j 6=i

kji +

Q∑
j 6=i

kijNj

where Ni describes the total size of the human population in patch i, Ii represents the number of infected87

hosts in patch i, zi represents the proportion of infected mosquitoes in patch i, and kji represents the88

rate of movement of human hosts from patch i to patch j. Note that 1/kji describes the amount of89

time (days in this particular parameterization) an individual spends in patch i before moving to patch90

j. For simplicity, we assumed that the rate of host movement was symmetric between any two patches,91

and equal amongst all patches, such that k = kij = kji. We further assumed that the initial human92

population densities for each patch were equal. This constraint on the initial condition, along with the93

assumption of symmetric movement, causes the population size of each patch to remain constant, that94

is, dNi/dt = 0 for all i. We also assumed that the only parameter that varies among patches is the95

ratio of mosquitoes to humans, mi. The rate ai at which mosquitoes bite humans, the probability ci a96

mosquito becomes infected given it has bitten an infected human, the probability bi a susceptible human97

is infected given an infectious mosquito bite, the mosquito death rate gi, the human recovery rate ri, and98

the extrinsic incubation period (the incubation period for the parasite within the mosquito) ni, are all99

assumed constant across the landscape. Consequently, for all i = 1, . . . , Q, ai = a, bi = b, ci = c, gi = g,100

ri = r, and ni = n.101

In this model there is no immunity conferred after infection. Furthermore, although host demography102

(births and deaths) can play an important role in transient disease dynamics, because our focus is the103

relationship between equilibrium prevalence and R0 under the assumption of constant patch population104

sizes, we have chosen to omit host demography here. Choosing constant birth rates Λ = µN and natural105

host mortality rates µ in each patch yields identical R0 and equilibria to our model, with the exception106
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that r is replaced by r + µ. Thus, including host demography in this way would result in a slight107

decrease in R0 and prevalence by decreasing the infectious period. How host demography influences the108

relationship between R0 and prevalence when patch population sizes are not constant, and moreover,109

when host demography is heterogeneous, is an interesting question that remains to be explored. These110

simplifying assumptions yield the following system of 2Q equations,111

dzi
dt

= ac
Ii
N

(e−gn − zi)− gzi

dIi
dt

= miabzi(N − Ii)− rIi − Ii
Q∑
j 6=i

k +

Q∑
j 6=i

kIj (1)

112

Analyses113

Differences in the ratio of mosquitoes to humans, mi results in a network of heterogeneous transmission,114

where each patch in the network is characterized by a different transmission intensity. The basic repro-115

duction number for an isolated patch (i.e., one not connected to the network through human movement)116

is defined by R0,i =
αiβ

rg
, where αi := miabe

−gn and β := ac, and is a measure of local transmission117

intensity. Furthermore, R0,i is a threshold quantity determining whether disease will persist in patch i118

in the absence of connectivity. In particular, if R0,i > 1, malaria will persist in patch i, while if R0,i ≤ 1,119

it will go extinct in the absence of connectivity with other patches. R0,i (local transmission) increases120

with the ratio of mosquitoes to humans mi, and if more transmission occurs, more people are infected121

at equilibrium. These results, however, do not necessarily hold in a network where hosts move among122

patches [20]. Indeed, movement can cause the disease to persist in a patch where it would otherwise die123

out [20,44].124

To address this limitation of the isolated patch reproduction number, we used the next generation125

approach [45, 46] to calculate R0 for the whole landscape. This approach requires the construction of a126

matrix K = FV −1, where J = F − V is the Jacobian of the 2Q-dimensional system evaluated at the127

disease-free equilibrium, F is nonnegative, and V is a nonsingular M-matrix. F contains terms related128

to new infection events, and V contains terms of the Jacobian related to either recovery or migration129

events. This choice satisfies the conditions for the theory to hold, and the important consequence of this130
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approach is that the spectral radius of the next generation matrix ρ(K) is less than one if and only if the131

disease-free equilibrium is locally asymptotically stable. Defining R0 = (ρ(K))2, we have that the disease-132

free equilibrium is locally asymptotically stable when R0 < 1 and unstable when R0 > 1. We proved (see133

Supplementary Information S2) that System (1) exhibits uniform weak persistence of the disease when134

R0 > 1; that is, when R0 > 1, there exists an ε > 0 such that lim supt→∞
∑Q

i=1 Ii(t) + zi(t) ≥ ε, for any135

initial condition for which
∑Q

i=1 Ii(0) + zi(0) > 0. Furthermore, because our model is an autonomous136

ordinary differential equation, uniform weak persistence implies uniform strong persistence. Consequently,137

when R0 > 1, there exists an ε > 0 such that lim inft→∞
∑Q

i=1 Ii(t) + zi(t) ≥ ε, for any initial condition138

for which
∑Q

i=1 Ii(0) > 0 [42, 43]. A generalization of our multi-patch system (see System (8) in [47])139

exhibits a unique endemic equilibrium when R0 > 1 which is globally asymptotically stable. Likewise,140

the disease-free equilibrium for their model is globally asymptotically stable when R0 ≤ 1. In fact, Auger141

et al. [47] proved this result even when migration is neither constant across the landscape, nor symmetric.142

Because R0,i defines a threshold for disease persistence in an isolated patch and R0 defines a threshold143

for disease persistence in the connected network, we use these two quantities as surrogates for local patch144

persistence when patches are isolated, and persistence in the connected network as a whole, respectively.145

Prevalence, on the other hand, was calculated as the total proportion of infected hosts in the landscape146

at equilibrium.147

Heterogeneity in transmission intensity was quantified using the coefficient of variation (CV) of the

ratio of mosquito to humans (m) such that

CV =
sm̄
m̄
, (2)

where m̄ describes the average ratio of mosquito to humans and sm̄ represents the standard deviation148

associated with this average. This coefficient of variation is a simple measure commonly used in landscape149

ecology to quantify landscape heterogeneity [48].150

We analyze two cases: (1) a simple two-patch system (Q = 2) where we study analytically the151

relationship between spatial heterogeneity, R0 and prevalence. Then, (2) we address a similar question in152

a multi-patch system (Q = 10) where each patch is characterized by their unique transmission intensity153

(see below).154
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Two-patch Analysis155

We use an analytical approach (see Supplementary Information S3) to study the relationship between R0,156

prevalence, and spatial heterogeneity in the special case where the network is composed of two connected157

patches (Q = 2). Transmission heterogeneity in the system is created by choosing different values for158

m1 and m2, the ratio of mosquitoes to humans in the two patches, and quantified by the coefficient of159

variation, CV. We define m̄ to be the average of m1 and m2, and study the behavior of R0 and prevalence160

as CV increases.161

Multi-patch Simulation162

To study the implications of spatial heterogeneity in transmission intensity, in the presence of host163

movement, for disease prevalence and persistence, we generated a landscape composed of Q = 10 discrete164

patches connected by movement (Fig. 1). We used this landscape to simulate a spatially homogeneous165

configuration in transmission intensity (Fig. 1a) and four heterogeneous configurations (Fig. 1b – e).166

As with the two-patch analysis, the variation in transmission intensity was attained by varying the167

ratio of mosquitoes to humans mi, while keeping all other parameters constant (Table 1). The ratio of168

mosquitoes to humans in each patch was drawn from a normal distribution such that in the homogeneous169

configuration mi = 60, and in the heterogeneous configurations mi
iid∼ N(60, 10), mi

iid∼ N(60, 20),170

mi
iid∼ N(60, 30), and mi

iid∼ N(60, 40). Therefore, in the most heterogeneous scenario, transmission171

intensity ranged from R0,i = 0.03 to R0,i = 6.83 with a mean transmission intensity of R̄0,i = 2.17 for172

all landscape configurations. This resembles, in part, variation in malaria transmissibility reported in173

South America and Africa [2]. To determine how host movement affected persistence and prevalence,174

and how their relationship depended upon variation in patch transmissibility, we varied the rate of host175

movement between all patches (k) from 0 to 0.5 (days−1) in 1 × 10−2 increments. This rate was equal176

among all patches. Given that population size was also equal among patches we are evaluating the simple177

case where population size is constant and movement is symmetric among patches. We replicated this178

simulation 100 times for each configuration.179
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Results180

Two-patch analysis181

To evaluate the effect of heterogeneity in transmission intensity on disease dynamics, we first proved182

analytically for the two-patch model that the network reproduction number R0, and the total disease183

prevalence limt→∞(I1(t)/N + I2(t)/N) increase with variance V = 1
2

(
(m1 − m̄)2 + (m2 − m̄)2

)
, even if184

m̄ = mean{m1,m2}, and consequently the average transmission intensity (R01 + R02)/2 between the185

two regions, remains constant (see Theorems 0.0.2 and 0.0.4 in the Supplementary Information S3).186

Because CV is proportional to the square root of the variance V , this implies that disease persistence187

and prevalence increase with CV. However, the influence of heterogeneity on R0 becomes less profound as188

connectivity between the two patches increases (see Proposition 0.0.3 in the Supplementary Information189

S3).190

Multi-patch analysis191

Spatial heterogeneity in transmission intensity increased long-term persistence of infection (R0) in the192

multi-patch system (Fig. 2a). Yet, increasing host movement-rate decreased R0 in the spatially heteroge-193

neous scenarios (i.e., multi-patch system with patch specific variations in transmission intensity). Spatial194

homogeneity resulted in the lowest R0 of all landscape configurations (Fig. 2a), which is consistent with195

our conclusions derived analytically from the two-patch system (see above). R0 in this homogeneous case196

was also independent of movement because the system was effectively a one patch system. In contrast,197

in all heterogeneous configurations, increasing host movement-rate resulted in a decrease in R0 that ap-198

proached an asymptote. The value of this asymptote increased with increasing spatial heterogeneity (Fig.199

2a), which is also consistent with our analytic results for the two-patch case.200

Similarly, spatial heterogeneity in transmission intensity increased disease prevalence in the multi-201

patch system. Spatial homogeneity in transmission intensity resulted in the lowest prevalence of all202

landscape configurations (Fig. 2b). Maximum prevalence and the asymptote increased with increasing203

spatial heterogeneity in transmission intensity, which again, agrees with our conclusions derived for204

the two-patch case. Disease prevalence was maximized at low movement rates (the peak in prevalence205

varied from k = 0.0018 for CV=0.17 to k = 0.0054 for CV=0.67) and later decreases. This represents206

movements every 1.5 years to 0.5 years. This suggests that the rate of movement required to maximize207
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disease prevalence increases with increasing spatial heterogeneity in transmission intensity. Note that, in208

the simulation, mean R0,i remained the same for all scenarios while variance increased with increasing209

coefficient of variation, as expected (Fig. 2c). In all heterogeneous configurations prevalence and R0210

followed a non-monotonic relationship in the presence of host movement (Fig. 3).211

Discussion212

We have explored the way that disease prevalence and R0 — two important measures of mosquito-213

borne pathogen transmission — display a complex non-monotonic relationship as a result of spatial214

heterogeneity in mosquito density and human mobility. Heterogeneity in mosquito density and mosquito215

bionomic patterns affecting vectorial capacity drive spatially heterogeneous biting patterns, while human216

mobility connects isolated areas that can have very different mosquito populations. We illustrated these217

patterns analytically in a two-patch system, and numerically in a multi-patch extension of the Ross-218

Macdonald modeling framework. We showed that prevalence was maximized at low rates of movement,219

whereas R0 always decreased with increasing movement rates. These results suggest that the relationship220

between R0 and prevalence is intimately intertwined with the interaction between host movement and221

the degree of spatial heterogeneity in a region.222

Transmission heterogeneity generally promotes persistence in host-parasite systems [18, 49–52]. This223

heterogeneity may have a spatial component arising from spatial variation in factors affecting vector224

ecology such as habitat distribution or host finding ability [25, 52]. Our results showed that disease225

persistence decreased with increasing rates of movement even in highly spatially heterogeneous landscapes226

with multiple transmission hotspots (Fig. 1e and 2b). At low rates of movement, transmission was highly227

heterogeneous, with high rates of transmission in some patches and low in others. R0 was higher in this228

scenario, because our calculation of R0 describes the average number of potential infections that arise229

from an average infected host in the system and thus its magnitude is being influenced by conditions230

in high transmission patches (Fig. 4). Transmission becomes more homogeneous with increasing rate of231

movement resulting in individual patch transmissibility more similar to the overall average (Fig. 4). A232

similar result was found in a study of the metapopulation dynamics of Schistosomiasis (bilharzia) [53],233

where increased social connectivity sometimes reduced large-scale disease persistence because as mobility234

increases infectious individuals spent less time in areas of high transmission distributing infection away235
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from hotspots. Thus, acknowledging host movement patterns is required to better understand disease236

persistence in heterogeneous landscapes.237

Results from our numerical simulations support previous theoretical and empirical work showing that238

disease prevalence is generally maximized at low to intermediate levels of movement [31, 54, 55]. Our239

results add to this body of theory by showing that the amount of movement required for this prevalence240

peak increases with increasing spatial transmission heterogeneity. At very low rates of movement, individ-241

uals spend most of their time in a single patch. In transmission hotspots most hosts are already infected242

at equilibrium and most bites do not yield new infections. A relatively small increase in movement will243

significantly increase the number of hosts exposed to very intense transmission (Fig. 4). Therefore, as244

connectivity increases, the number of infectious bites in high transmission patches decrease, yet, this245

decrease is offset by the increase in the number of susceptibles that visit these patches. As connectivity246

continues to increase, hosts spend less time in high transmission patches resulting in a decrease in the247

number of hosts that become infected in high transmission patches. This causes the number of infectious248

bites in high transmission patches to decline, ultimately causing fewer people to be infected, and preva-249

lence decreases. The different behaviors of prevalence and R0 in the presence of spatial heterogeneity and250

mobility suggest a role for models including mobility and spatial scale in the estimation of prevalence251

based on R0 estimates, because the assumed positive relationship between the two is disrupted [21].252

Reproduction numbers (R0) are useful to understand the intensity of transmission in a region and are253

often used to design and evaluate control measures of vector-borne diseases. The estimation of R0 can254

be done using several different methods, including estimating number of infectious bites on a person per255

year [1,52,56,57]. Generally, depending on the assumptions about superinfections and density dependence256

among parasites, R0 is proportional to the inverse of the fraction of uninfected individuals at equilibrium257

(i.e. R0 and prevalence are positively correlated) [58, 59]. Yet, this relationship between prevalence258

and R0 has been shown to be disrupted by heterogeneous biting [18, 49, 52, 58–60]. Our analysis of the259

two-patch system illustrated that increasing heterogeneity increases both prevalence and R0, but the260

multi-patch numerical simulations show this effect is diminished as connectivity increases suggesting that261

the human“activity space” — or how humans spend time between areas of varying mosquito densities262

— is also an important determinant of the relationship between R0 and prevalence [61]. For example,263

assuming that transmission intensity across two regions is the average of the transmission intensity in each264

region will underestimate the disease burden, particularly at low to intermediate levels of connectivity.265
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Therefore our results emphasize the necessity for reasonable estimates of host movement rates, because266

individual patch transmission intensities do not uniquely determine overall transmission intensity and267

prevalence.268

Our findings have important practical implications for vector-borne disease control in heterogeneous269

landscapes in the presence of symmetric host movement. Our results show that the dynamics of spatially270

heterogeneous system are driven primarily by the characteristics of areas with the highest potential for271

transmission by mosquitoes, which supports the idea that hotspots should be targeted for control efforts.272

If control strategies are untargeted these high transmission areas may represent residual areas where the273

disease persists with the potential to re-colonize others [32, 62, 63], or maintain transmission throughout274

the system. This is shown by the persistence of malaria in many landscape scenarios, despite R0,i < 1275

in many patches (Fig. 2a and 2c). Thus, controlling malaria transmission in areas with heterogeneous276

transmission requires a combination of interventions that include vector control, the reduction of human277

infectious reservoirs, and vaccination targeted towards high transmission areas [32].278

Finally, human movement between areas often changes over time, and predicting how these changes279

will affect transmission and prevalence requires understanding the effect of connectivity on prevalence280

and the initial degree of movement. If human movement is very low initially, an increase in movement281

is likely to increase endemic prevalence, while an initially high human movement will likely result in282

a decrease in endemicity if movement increases further. Therefore, knowing the degree of connectivity283

between areas and how connectivity changes over time is also important to management and elimination284

planning [32]. Recent studies are beginning to analyze human movement in relation to mosquito-borne285

pathogen transmission [61,64–66], and these show great promise for improving models of mosquito-borne286

pathogen transmission across geographic scales.287
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Tables472

Table 1. Parameter values for patches in the simulated landscape. The ratio of
mosquitoes to humans varied depending on landscape configuration where s = 0 for the
homogeneous configuration and s = {0.17m, 0.33m, 0.5m, 0.67m} for the spatially
heterogeneous configurations.

Parameter Description Value Units Reference(s)
m Ratio of mosquitoes to humans ∼ N(60, s) mosquitoes/human
a Mosquito biting rate 0.1 bites per mosquito per day [67]
b Effective transmission from mosquito to human 0.1 Probability [68]
c Effective transmission from human to mosquito 0.214 Probability [69,70]
g Mosquito per-capita death rate 0.167 Probability of mosquito dying per day [71,72]
n Incubation period 10 days [73,74]

r Recovery rate 0.0067 days−1 [75]
N Total population size 9× 106 Number of human hosts

k Rate of movement [0,0.5] days−1
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Figure 1. Network representation of simulated landscape configurations. Nodes represent
patches characterized by their randomly generated R0,i, and links represent host
movement. Each configuration represents a particular scenario of spatial heterogeneity in
transmission intensity, which increases with increasing coefficient of variation (CV).
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Figure 2. (a) The basic reproduction number R0 and (b) disease prevalence as a function
of increasing movement rate (k) in a spatial network composed of 10 regions with varying
levels of heterogeneity in transmission intensity. Lines represent means and shaded areas
95% confidence intervals. Spatial heterogeneity in transmission intensity increases with
the coefficient of variation (CV). (c) Box-plots shows the distribution of patch-specific
transmission intensities R0,i in 100 simulations for each level of spatial heterogeneity. Note
how variance increases with CV, while the average remains similar among configurations.
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Figure 3. Non-monotonic relationship between R0 and prevalence in four landscape
configurations with spatial heterogeneity in transmission intensity for increasing rates of
host movement.
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Figure 4. The change in the patch-specific proportion of infected hosts in a high
transmission patch (R0,i = 3.6) and a low transmission patch (R0,i = 0.2) as a function of
increasing rate of movement. The proportion of infected hosts in the low transmission
patch increase with increasing rate of movement because it is receiving infected
immigrants from other patches with high transmission. The proportion of infected hosts
in the high transmission patch decrease with increasing rate of movement because of
increasing emigration of infected hosts to other patches.


