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Abstract. In this paper, we formulate an age-structured epidemic model with two compet-
ing strains. The model incorporates disease-induced mortality so that the population can not
be assumed to be in a stationary demographic state. We derive explicit expressions of the
basic and invasion reproduction numbers for strain one and two, respectively. Analytical
results of the model show that the existence and local stability of boundary equilibria can
be determined by the reproduction numbers to some extent. Subsequently, under the con-
dition that both invasion reproduction numbers are larger than one, the coexistence of two
competing strains is rigorously proved by the theory of uniform persistence of infinite di-
mensional dynamical systems. However, the results for the corresponding age-independent
model show that the two competing strains can not coexist. This implies that age structure
can lead to the coexistence of the strains. Numerical simulations are further conducted to
confirm and extend the analytic results.
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1 Introduction

Epidemiological studies have shown that the susceptibility to many diseases often varies with

age. For example, children of school age usually exhibit higher susceptibility to influenza than

adults [1]. Host age structure is often an important factor which affects the dynamics of disease

transmission. In this article we incorporate age structure into an epidemic model and study its

impact on the competition of two strains.

During the past decades, the age-structured epidemic models have been extensively studied by

many authors (see, for example, [2, 3, 4, 5] and references therein). These studies have enriched
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our knowledge of epidemic models with age-structure. However, most of the models neglect the

disease-induced death rate so that the population can be assumed to be in a stationary demographic

state. It is this assumption that simplifies significantly the analysis of the models. Actually, the

disease-induced mortality is inevitable component of many diseases, especially deadly infectious

diseases, such as pandemic influenza [6], West Nile virus[7], dengue virus[8], HIV and others.

Investigating the impact of the disease-induced mortality on the dynamics of diseases, particularly

multi-strain diseases is a neglected activity of significant importance.

Few papers have investigated the impact of host age and disease-induced mortality on the

dynamics of multi-strain interactions. In reality, however, many of the diseases which are still

significant public health problem, are caused by more than one antigenically different strains of

the causative agent [9]. These diseases include killer-diseases such as malaria, tuberculosis and

HIV/AIDS. Therefore, it is necessary to study age-structured epidemic model with multiple strains.

In this paper we formulate an age-structured model with two competing strains, and we incorporate

the disease-induced mortality into the model. Then we study the dynamics of the model, and further

investigate how the age-structured affects the interactions between two competing strains.

The dynamics of the pathogen-host interactions involving multiple strains has fascinated re-

searchers for a long time [9]. The competitive exclusion principle is a classic result in this field,

which states that no two species can indefinitely occupy the same ecological niche [10]. Using a

multiple-strain ODE epidemic model, Bremermann and Thieme [11] proved that the principle of

competitive exclusion is valid under the assumption that infection with one strain precludes addi-

tional infections with the other strains. However, it is a common phenomenon that multiple strains

coexist in nature. For instance, dengue fever has four different serotypes, often coexisting in the

same geographical region [9]. It follows from the competitive exclusion principle that there must

be some heterogeneity in the ecological niche. Identifying the factors that allow multiple strains to

coexist is an important topic in theoretical biology. Studies have pointed out to a number of mech-

anisms, such as superinfection [8, 12], co-infection [13, 16], partial cross-immunity [17], density

dependent host mortality [18], that can lead to coexistence of strains. In a recent article Martcheva

et. al. [14] suggested that host age-structure coupled with disease-induced mortality may lead to

coexistence of competing pathogens. This result was obtained numerically. In this article we in-

vestigate a similar scenario but we prove rigorously that if both invasion reproduction numbers are

larger than one the two strains will persist in the age-structured model. To our knowledge this is

the first result on persistence of multiple strains in a partial differential equation model. Persistence

of a single pathogen has been addressed in multiple articles and it follows from the fact that the

reproduction number is greater than one [15].

This paper is organized as follows. In the next section, we introduce our age-structured epidemic
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model with two competing strains. In Section 3 we consider the age independent case. In Section 4,

we discuss the existence of equilibria for the age-structured model and investigate the local stability

of boundary equilibria. Section 5 is devoted to deriving sufficient conditions for the persistence of

the two competing strains. In section 6, we present several numerical simulations which support

and extend our theoretical results. In the conclusions (section 7) we discuss our results.

2 Model formulation

In this section, we formulate an age structured epidemic model with two competing strains.

We start with a typical Gurtin-MacCamy model which describes the dynamics of an age-structured

population without disease.

Let n(a, t) denote the age density of the total population at age a and time t. Without the

disease, we always assume that n(a, t) is described by the following Gurtin-MacCamy equation

[19]:






























∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ(a)n(a, t),

n(a, 0) = n0(a),

n(0, t) = Rd
0Φ(Q(t))

∫ a+

0
β(a)n(a, t)da.

(2.1)

In (2.1), n0(a) is a given function. Furthermore, a+ represents the maximum life span of the

individuals; µ(a) is the age-specific death rate, which satisfies µ(·) ∈ L1
loc(0, a

+), µ(a) ≥ 0 in

(0, a+) and
∫ a+

0
µ(σ) = +∞;

β(a) is the age-specific per capita birth rate, with β(·) ∈ L∞(0, a+), β(a) ≥ 0 in (0, a+) and β(a)

normalized to satisfy
∫ a+

0
β(σ)π(σ)dσ = 1. (2.2)

In the expression above π(σ) is the survival probability which gives the probability at birth of

surviving to age σ. The probability of survival is defined as π(σ) = e−
∫ σ

0
µ(τ)dτ , σ ∈ (0, a+). Q(t)

is a weighted average of the population density defined as

Q(t) =

∫ a+

0
r(σ)n(σ, t)dσ,

where r(σ) is a weight kernel and r(·) ∈ L∞(0, a+), r(σ) ≥ 0, σ ∈ (0, a+). Furthermore, Φ(x) is

a function describing density-dependence of births and satisfying the following properties:

(P1) Φ(x) is continuously differentiable;
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(P2) Φ(x) is strictly decreasing;

(P3) Φ(0) = 1, lim
x→+∞

Φ(x) = 0.

Finally, Rd
0 is the demographic basic reproduction number.

Now we are able to formulate our model. In order to formulate an age-structured epidemic

model with two competing strains, we need to introduce some additional notation. We consider an

age-structured SI epidemic model so that the population n(a, t) is divided into three classes: suscep-

tible, infected with strain one, and infected with strain two. Let s(a, t), i1(a, t) and i2(a, t) denote

the associated density functions with these respective epidemiological age-structured classes, then

we have

n(a, t) = s(a, t) + i1(a, t) + i2(a, t).

We assume that all newborns are susceptible and the extra-mortality at age a due to the infection

of strain j is γj(a), j = 1, 2. We take the transmission rate λj(a, t), j = 1, 2 in the separable

inter-cohort constitutive form for the force of infection generated by ij(a, t):

λj(a, t) = Kj(a)

∫ a+

0
qj(σ)ij(σ, t)dσ, j = 1, 2,

where qj(a) is the age-specific infectiousness for strain j, Kj(a) is the age-specific susceptibility

of susceptible individuals, and qj(a),Kj(a) ≥ 0 in [0, a+], qj(·),Kj(·) ∈ L∞(0, a+).

Based on the above assumption, the joint dynamics of the age-structured epidemiological model

are governed by the following partial differential equations


































∂s(a, t)

∂t
+
∂s(a, t)

∂a
= −(µ(a) + λ1(a, t) + λ2(a, t))s(a, t),

∂i1(a, t)

∂t
+
∂i1(a, t)

∂a
= λ1(a, t)s(a, t) − (µ(a) + γ1(a))i1(a, t),

∂i2(a, t)

∂t
+
∂i2(a, t)

∂a
= λ2(a, t)s(a, t) − (µ(a) + γ2(a))i2(a, t),

(2.3)

with initial and boundary conditions

s(0, t) = Rd
0Φ(Q(t))

∫ a+

0
β(a)n(a, t)da, i1(0, t) = i2(0, t) = 0;

s(a, 0) = s0(a), i1(a, 0) = i10(a), i2(a, 0) = i20(a).

(2.4)

In the following sections we mainly analyze the dynamics of system (2.3) to investigate how

the age-structure affects the interactions between the two competing strains. In order to study this

question, we consider in the next section the dynamical properties of the age-independent model.
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3 The age-independent case

In this section we present some results on model (2.3) for the age independent case. Here we

always assume that a+ = ∞. If the parameters µ(a), β(a), r(a),Ki(a), qi(a), γi(a), j = 1, 2 in

the model (2.3) do not depend on age, i.e,

µ(a) ≡ µ, β(a) ≡ β, r(a) ≡ r,Ki(a) ≡ Ki, qi(a) ≡ qi, γi(a) ≡ γi, j = 1, 2,

then condition (2.2) implies that β = µ, and without the disease, i.e., i1(a, t) = i2(a, t) = 0, the

corresponding equation for the total population size N(t), where

N(t) =

∫ a+

0
n(a, t)da,

can be obtained by integrating (2.1) from a = 0 to a+, using the initial condition, and n(a+, t) = 0.

The last condition simply means that no individual in the population can survive to age a+. Then

the total population N(t) develops according to the equation

dN(t)

dt
= Rd

0Φ(rN(t))βN(t) − µN(t). (3.1)

It follows from the properties (P1)-(P3) that if Rd
0 ≤ 1 all solutions of the system (3.1) converge

towards zero, and if Rd
0 > 1 all solutions of (3.1) converge towards 1

r
Φ−1( 1

Rd
0
). In fact, 1

r
Φ−1( 1

Rd
0
)

is the environmental carrying capacity for the population.

Let

S(t) =

∫ a+

0
s(a, t)da, I1(t) =

∫ a+

0
i1(a, t)da, I2(t) =

∫ a+

0
i2(a, t)da.

Then the corresponding equations for S(t), I1(t) and I2(t) can also be obtained by integrating (2.3)

from a = 0 to a+, and using the conditions (2.4) and s(a+, t) = i1(a
+, t) = i2(a

+, t) = 0. The

resulting equations are


































dS(t)

dt
= Rd

0Φ(rN(t))βN(t) − µS(t) −K1q1I1(t)S(t) −K2q2I2(t)S(t),

dI1(t)

dt
= K1q1S(t)I1(t) − (µ+ γ1)I1(t),

dI2(t)

dt
= K2q2S(t)I2(t) − (µ+ γ2)I2(t).

(3.2)

It is easy to see that system (3.2) is the standard SI epidemic model with two strains. The system

(3.2) has been analyzed in [11]. The reproduction number of system (3.2) for strain j, j = 1, 2 is

established in paper [11], which can be expressed as

R̃j =
Kjqj

µ+ γj

1

r
Φ−1(

1

Rd
0

).

By the results in [11], we can obtain the following theorem.
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Theorem 3.1. The disease-free equilibrium E0 = (1
r
Φ−1( 1

Rd
0
), 0, 0) of system (3.2) is globally

asymptotically stable if R̃1 ≤ 1 and R̃2 ≤ 1. If R̃j > 1 for at least one j ∈ {1, 2}, then the strain

with the larger reproduction number uniformly persist and the other one dies out. Coexistence of

the two strains is no possible except for the degenerate case R̃1 = R̃2.

Theorem 3.1 implies that if the system (2.3) does not depend on the age structure the competitive

exclusion principle holds, i.e, two competing strains can not coexist. In the following sections we

will prove that the coexistence of two competing strains is possible if the system depends on age

structure. Accordingly, this indicates that the age-structure of the host is one of the mechanisms

which can lead to the coexistence of two competing strains.

4 Boundary equilibria and local analysis

We now study the dynamics of the model (2.3) to investigate the impact of the age structure on

strain competition and coexistence. We start with some notations and some results on the subsystem

of model (2.3). Let

L1
+(0, a+) = {φ ∈ L1(0, a+) : φ(a) ∈ R1

+ for almost all a ∈ (0, a+)};

ã = min{a :
∫ a+

a
β(σ)dσ = 0};

βmax = ess sup
a∈(0,a+)

β(a);

βmin = ess inf
a∈(0,a+)

β(a);

qj min = ess inf
a∈(0,a+)

qj(a);

Kj min = ess inf
a∈(0,a+)

Kj(a);

rmin = ess inf
a∈(0,a+)

r(a);

x ∨ y := max{x, y}, x, y ∈ R;

x ∧ y := min{x, y}, x, y ∈ R.

The relation ϕ ≤ φ, ϕ, φ ∈ L1
+(0, a+) indicates that ϕ(a) ≤ φ(a) for almost all a ∈ (0, a+). The

biological interpretation of the variables requires us to consider the phase space of the model (2.3)

to be the space

X+ := {(s0(·), i10(·), i20(·)) : s0(·) ∈ L1
+(0, a+), ij0(·) ∈ L1

+(0, a+), j = 1, 2}.

By standard methods [20], it is possible to prove existence and uniqueness of solutions to system

(2.3). Moreover, it is easy to show that all the solutions remain nonnegative and bounded for t > 0.

Furthermore, in the following two sections, we always assume that
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(H1) There exists ã0 < ã such that β(a) > 0 if a ∈ (ã0, ã);

(H2) Kj(a) > 0, qj(a) > 0, j = 1, 2 for all a ∈ [0, a+)

The dynamics of the Gurtin-MacCamy system has been extensively studied by many authors

[19, 21, 22]. In the paper, in order to ensure that the system (2.1) is dissipative we assume the

following:

(H3) rmin > 0 and there exists a constant M > 0 such that Φ(rminx)βmaxx < M for all

x ∈ [0,+∞).

Then we have the following theorem:

Theorem 4.1. 1) If Rd
0 < 1, then lim

t→+∞
n(·, t, n0(a)) = 0 for each n0(·) ∈ L1

+(0, a+).

2) Assume Rd
0 > 1. Then

i) if
∫ ã

0 n0(a)da = 0 we have

lim
t→+∞

n(·, t, n0(a)) = 0;

ii) if (H1),(H3) hold, then there exists a constant ε > 0, which does not depend on the initial

conditions, such that every solution n(a, t) with initial condition n0(·) ∈ Γ0 satisfies

lim inf
t→+∞

∫ a+

0
n(a, t, n0(·))da ≥ ε,

where

Γ0 := {n0(·) ∈ L1
+(0, a+) :

∫ ã

0
n0(a)da > 0}.

The proof of Theorem 4.1 can be found in the Appendix. In the case Rd
0 < 1, Theorem 4.1 tells

us that the global behavior of system (2.1) is clear: the population dies out. So in the following

we always assume that Rd
0 > 1. When Rd

0 > 1, it is easy to see that system (2.1) has a unique

nontrivial equilibrium, given by

n∗(a) =
π(a)

∫ a+

0 r(σ)π(σ)dσ
Φ−1(

1

Rd
0

).

In order to make the mathematics tractable, we make the following additional assumption:

(H4) If Rd
0 > 1, then the unique nontrivial steady state n∗(a) of system (2.1) is globally

asymptotically stable in Γ0.

Now let us consider the dynamical properties of a reduced system of system (2.3) in which only
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one strain is present. The reduced system is governed by the equations:














































∂s(a, t)

∂t
+
∂s(a, t)

∂a
= −(µ(a) + λj(a, t))s(a, t),

∂ij(a, t)

∂t
+
∂ij(a, t)

∂a
= λj(a, t)s(a, t) − (µ(a) + γj(a))ij(a, t),

s(0, t) = Rd
0Φ(Q(t))

∫ a+

0
β(a)(s(a, t) + ij(a, t))da,

ij(0, t) = 0, s(a, 0) = s0(a), ij(a, 0) = ij0(a).

(4.1)

The existence and local stability of endemic equilibria for the subsystem (4.1) has been analyzed in

paper [23] where γj(a) is constant, but the analysis method can be used to analyze the subsystem

(4.1). As in paper [23], we define the basic reproduction number for strain j, j = 1, 2 as

Rj =

∫ a+

0
Kj(a)n

∗(a)

∫ a+

a

qj(σ)e−
∫ σ

a
(µ(θ)+γj (θ))dθdσda, j = 1, 2.

Then we have

Theorem 4.2. Let Rd
0 > 1 and (H1)-(H4) hold. If Rj > 1, the disease free equilibrium Ẽ0 :=

(n∗(a), 0) of system (4.1) is unstable, and

1) if
∫ ã

0 s0(a) + ij0(a)da = 0, then as t→ +∞ we have

s(·, t, (s0(·), ij0(·))) → 0, ij(·, t, (s0(·), ij0(·))) → 0;

2) if
∫ ã

0 s0(a) + ij0(a)da > 0 and ij0(a) ≡ 0 for almost all a ∈ (0, a+), then as t→ +∞ we

have

s(·, t, (s0(·), ij0(·))) → n∗(·), ij(·, t, (s0(·), ij0(·))) → 0;

3) otherwise, (s0(·), ij0(·)) ∈ Γj and there exists a constant δ > 0 such that every solution

(s(a, t), ij(a, t)) with initial condition (s0(·), ij0(·)) ∈ Γj satisfies

lim inf
t→∞

∫ a+

0
ij(a, t)da ≥ δ,

where

Γj := {(s0(·), ij0(·)) ∈ L1
+(0, a+) × L1

+(0, a+) :

∫ a+

0
ij0(a)da > 0,

∫ ã

0
(s0(a) + ij0(a))da > 0}.

The first and second conclusions can be proved by using a similar way as in the proof of The-

orem 4.1. Similar to the proof of Theorem 4.1 we can also prove the third conclusion of Theorem
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4.2. Here, we omit the detailed proofs of the theorem, and they are left to the reader. It follows

from the results in paper [23] that the system (4.1) has at least one positive equilibrium if Rj > 1.

In this paper we always assume that

(H5) If Rj > 1, the system (4.1) has a unique positive equilibrium, denoted by Ẽ0 :=

(s∗j(a), i
∗
j (a)), which is globally asymptotically stable in Γj .

It is easy to see that if Rd
0 > 1 and Rj > 1, j = 1, 2 the system (2.3) has four boundary

equilibria which we label as E00 = (0, 0, 0), E0 = (n∗(a), 0, 0), E1 = (s∗1(a), i
∗
1(a), 0), E2 =

(s∗2(a), 0, i
∗
2(a)). In order to study the local stabilities of the boundary equilibria, let us introduce

the invasion reproduction number for each of the strains. The invasion reproduction number of

the strain j, j = 1, 2 measures the ability of the strain j to invade an equilibrium of the strain

k, i = 1, 2, k 6= j. We define the invasion reproduction of the strain j as

R
j
k =

∫ a+

0
Kj(a)s

∗
k(a)

∫ a+

a

qj(σ)e−
∫ σ

a
(µ(θ)+γj (θ))dθdσda, j, k = 1, 2, j 6= k.

Then we have

Theorem 4.3. Assume Rd
0 > 1,Rj > 1, j = 1, 2 and (H5) holds. Then

(1) E00, E0 are always unstable;

(2) E1 is locally stable if R2
1 < 1, and E1 is unstable if R2

1 > 1;

(3) E2 is locally stable if R1
2 < 1, and E2 is unstable if R1

2 > 1.

Proof. The proof of the first conclusion is relatively simple, and it is left to the reader. In the follow-

ing we need to prove the second and third conclusions. Here we only pick the second conclusion to

prove, and the third conclusion can be proved in a similar way.

Linearizing the system (2.3) about E1, by defining the perturbation variables

x1(a, t) = s(a, t) − s∗1(a), x2(a, t) = i1(a, t) − i∗1(a), x3(a, t) = i2(a, t),
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we obtain the following system


































































































































































∂x1(a, t)

∂t
+
∂x1(a, t)

∂a
= −

(

µ(a) +K1(a)

∫ a+

0
q1(σ)i∗1(σ)dσ

)

x1(a, t)+

s∗1(a)

2
∑

j=1

Kj(a)

∫ a+

0
qj(σ)xj+1(σ, t)dσ,

∂x2(a, t)

∂t
+
∂x2(a, t)

∂a
= K1(a)

∫ a+

0
q1(σ)x2(σ, t)dσs

∗
1(a) +K1(a)×

∫ a+

0
q1(σ)i∗1(σ)dσx1(a, t) − (µ(a) + γ1(a))x2(a, t),

∂x3(a, t)

∂t
+
∂x3(a, t)

∂a
= K2(a)

∫ a+

0
q2(σ)x3(σ, t)dσs

∗
1(a) − (µ(a) + γ2(a))x3(a, t),

x1(0, t) = Rd
0Φ(Q∗

1)

∫ a+

0
β(σ)(x1(σ, t) + x2(σ, t) + x3(σ, t))dσ

+Rd
0Φ

′(Q∗
1)

∫ a+

0
β(σ)(s∗1(σ) + i∗1(σ))dσ×

∫ a+

0
r(σ)(x1(σ, t) + x2(σ, t) + x3(σ, t))dσ,

x2(0, t) = 0,

x3(0, t) = 0.
(4.2)

where Q∗
1 =

∫ a+

0 r(σ)(s∗1(σ) + i∗1(σ))dσ.

Let

x1(a, t) = x0
1(a)e

λt, x2(a, t) = x0
2(a)e

λt, x3(a, t) = x0
3(a)e

λt, (4.3)

where x0
1(a), x

0
2(a), x

0
3(a) are to be determined. Substituting (4.3) into (4.2), we obtain

10





























































λx0
1(a) +

∂x0
1(a)

∂a
= −

(

µ(a) +K1(a)

∫ a+

0
q1(σ)i∗1(σ)dσ

)

x0
1(a)+

s∗1(a)

2
∑

j=1

Kj(a)

∫ a+

0
qj(σ)x0

j+1(σ)dσ,

x0
1(0) = Rd

0Φ(Q∗
1)

∫ a+

0
β(σ)(x0

1(σ) + x0
2(σ) + x0

3(σ))dσ +Rd
0Φ

′(Q∗
1)×

∫ a+

0
β(σ)(s∗1(σ) + i∗1(σ))dσ

∫ a+

0
r(σ)(x0

1(σ) + x0
2(σ) + x0

3(σ))dσ,

(4.4a)































λx0
2(a) +

∂x0
2(a)

∂a
= K1(a)

∫ a+

0
q1(σ)x0

2(σ)dσs∗1(a) +K1(a)×

∫ a+

0
q1(σ)i∗1(σ)dσx0

1(a) − (µ(a) + γ1(a))x
0
2(a),

x0
2(0) = 0,

(4.4b)











λx0
3(a) +

∂x0
3(a)

∂a
= K2(a)

∫ a+

0
q2(σ)x0

3(σ)dσs∗1(a) − (µ(a) + γ2(a))x
0
3(a),

x0
3(0) = 0.

(4.4c)

Integrating the first equation of (4.4c) from 0 to a yields

x0
3(a) =

∫ a

0
K2(σ)s1(σ)e−

∫ a

σ
(λ+µ(θ)+γ2(θ))dθdσ

∫ a+

0
q2(a)x

0
3(a)da. (4.5)

Multiplying both sides of (4.5) by q2(a), and integrating, we obtain

∫ a+

0
q2(a)x

0
3(a)da =

∫ a+

0
q2(a)

∫ a

0
K2(σ)s∗1(σ)e−

∫ a

σ
(λ+µ(θ)+γ2(θ))dθdσda

∫ a+

0
q2(a)x

0
3(a)da.

This leads to the following characteristic equation:

1 =

∫ a+

0
q2(a)

∫ a

0
K2(σ)s∗1(σ)e−

∫ a

σ
(λ+µ(θ)+γ2(θ))dθdσda. (4.6)

Let

H (λ) :=

∫ a+

0
q2(a)

∫ a

0
K2(σ)s∗1(σ)e−

∫ a

σ
(λ+µ(θ)+γ2(θ))dθdσda

=

∫ a+

0
K2(a)s

∗
1(a)

∫ a+

a

q2(σ)e−
∫ σ

a
(λ+µ(θ)+γj (θ))dθdσda.

Then H (λ) is a continuously differentiable function with lim
λ→+∞

H (λ) = 0, lim
λ→−∞

H (λ) = +∞.

Furthermore, we have H ′(λ) < 0. It then follows that H (λ) is a decreasing function. So the

equation (4.6) has a unique real root λ∗. Noting that

H (0) = R
2
1 ,
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we have λ∗ < 0 if R2
1 < 1, and λ∗ > 0 if R2

1 > 1. Let λ = ξ + ηi be an arbitrary complex root to

equation (3.1). Then

1 = H (λ) = |H (ξ + ηi)| ≤ H (ξ),

which implies that λ∗ > ξ. Thus, all the roots of the equation (4.6) have negative real part if

R2
1 < 1. In addition, if R2

1 > 1 we can easily see that 1 = H (λ) has a positive real root and E1 is

unstable.

However, if R2
1 < 1 the stability of E1 is completely determined by the equations (4.4a) and

(4.4b) under the condition that x3(a) ≡ 0. Assumption (H5) implies that E1 is locally stable if

x3(a) ≡ 0. Thus if R2
1 < 1 then E1 is locally stable. This completes the proof of Theorem 4.3.

5 Persistence of the pathogens

In this section we present our main result: sufficient conditions for the persistence of two com-

peting strains. One consequence of the persistence of the strains is that they coexist. Our principal

result in this section can be stated as follows.

Theorem 5.1. Assume Rd
0 > 1,Rj > 1, j = 1, 2 and (H1)-(H5) hold. If R2

1 > 1 and R1
2 > 1,

then there exists a constant ε > 0 such that every solution (s(a, t), i1(a, t), i2(a, t)) with initial

condition (s0(·), i10(·), i20(·)) ∈ Γ satisfies

lim inf
t→∞

∫ a+

0
i1(a, t)da ≥ ε, lim inf

t→∞

∫ a+

0
i2(a, t)da ≥ ε,

where
Γ := {(s0(·), i10(·), i20(·)) ∈ X+ :

∫ a+

0
i10(a)da > 0,

∫ a+

0
i20(a)da > 0,

∫ ã

0
s0(a)da > 0}.

In order to prove Theorem 5.1, we need the following lemmas:

Lemma 5.2. Assume (H1) holds, then the system (2.3) is dissipative.

Proof. Since n(a, t) = s(a, t)+ i1(a, t)+ i2(a, t), it follows from system (4.1) that n(a, t) satisfies

the following differential equation:






























∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ(a)n(a, t) −

2
∑

j=1

γj(a)ij(a, t),

n(0, t) = Rd
0Φ(Q(t))

∫ a+

0
β(a)n(a, t)da,

n(a, 0) = n0(a),

(5.1)
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where n0(a) = s0(a)+
2

∑

j=1
ij0(a). Integrating the system (5.1) along the characteristic lines we get

n(a, t) =























Rd
0Φ(Q(t− a))

∫ a+

0
β(σ)n(σ, t− a)dσe

−
∫ a

0
(µ(θ)+

2
∑

j=1
γj(θ)

ij (θ,θ+t−a)

n(θ,θ+t−a)
)dθ

, t > a,

n0(a− t)e
−

∫ a

a−t
(µ(θ)+

2
∑

j=1
γj(θ)

ij (θ,θ+t−a)

n(θ,θ+t−a)
)dθ

, t < a.

Since Φ(x) is strictly decreasing, it follows that

n(a, t) ≤











Rd
0Φ(rmin

∫ a+

0
n(σ, t− a)dσ)βmax

∫ a+

0
n(σ, t− a)dσe−

∫ a

0 µ(θ)dθ, t > a,

n0(a− t)e−
∫ a

a−t
µ(θ)dθ , t < a.

Moreover, (H1) implies that

n(a, t) ≤







Me−
∫ a

0 µ(θ)dθ, t > a,

n0(a− t)e−
∫ a

a−t
µ(θ)dθ , t < a.

(5.2)

It is easy to see that n(a, t) ≤ M for almost all a ∈ (0, a+) and t > a+. Thus the system (2.3) is

dissipative.

Lemma 5.3. Assume (H1)-(H3) hold, then Γ is positively invariant for system (2.3).

Proof. Let (φ, ϕ, ψ) ∈ Γ, and (s(a, t), i1(a, t), i2(a, t)) be the solution to system (2.3) with the

initial conditions s(·, 0) = φ, i1(·, 0) = ϕ, i2(·, 0) = ψ. First, we prove that
∫ ã

0 s(a, t)da > 0 for

all t > 0. To this aim, let us prove that the following assertion:

Assertion: If s(0, t) > 0 for t ∈ (t1, t2) then s(0, t) > 0 for t ∈ (t1 + ã0, t2 + ã).

In fact, if t ∈ (t1 + ã0, t2 + ã), then ã0∨(t−t2) < ã∧(t−t1), and (ã0∨(t−t2), ã∧(t−t1)) ⊆

(ã0, ã), {t − (ã0 ∨ (t− t2), ã ∧ (t− t1))} ⊂ (t1, t2). It follows from (2.3) that we have

s(0, t) = Rd
0Φ(Q(t))

∫ a+

0
β(a)n(a, t)da

> Rd
0Φ(M

∫ a+

0
r(σ)dσ)

∫ ã∧(t−t1)

ã0∨(t−t2)
β(a)s(a, t)da

= Rd
0Φ(M

∫ a+

0
r(σ)dσ)

∫ ã∧(t−t1)

ã0∨(t−t2)
β(a)s(0, t − a)e

−
∫ a

0
(µ(θ)+

2
∑

j=1
λj(θ,θ+t−a))dθ

da

> 0.

The proof of the assertion is completed.
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Because
∫ ã

0 φ(a)da > 0 and the way ã is defined, it follows that there exists a t̄ ∈ (0, ã) such

that
∫ ã

t̄
β(a)φ(a − t̄) > 0. Then we have

s(0, t̄) = Rd
0Φ(Q(t))

∫ a+

0
β(a)s(a, t̄)da

> Rd
0Φ(M

∫ a+

0
r(σ)dσ)

∫ ã

t̄

β(a)φ(a − t̄)e
−

∫ a

a−t̄
(µ(θ)+

2
∑

j=1
λj(θ,θ+t−a))dθ

da

> 0.

By the continuity of the function s(0, t), we can conclude that there exists an interval (t1, t2) such

that t̄ ∈ (t1, t2) and s(0, t) > 0 for all t ∈ (t1, t2). Iterating the above assertion, we have for any

integer m

s(0, t) > 0 t ∈ (t1 +mã0, t2 +mã). (5.3)

We now are able to prove that
∫ ã

0 s(a, t) > 0 for all t > 0. If t ∈ [0, t̄], then we have

∫ ã

0
s(a, t) ≥

∫ ã

t

φ(a− t)e
−

∫ a

a−t
(µ(θ)+

2
∑

j=1
λj(θ,θ+t−a))dθ

da

>

∫ ã

t̄

φ(a− t̄)e
−

∫ a

a−t̄
(µ(θ)+

2
∑

j=1
λj(θ,θ+t−a))dθ

da

> 0.

If t ∈ (t1, t2 + ã), then we have

∫ ã

0
s(a, t) ≥

∫ ã∧(t−t1)

0∨(t−t2)
s(a, t)dt

≥

∫ ã∧(t−t1)

0∨(t−t2)
s(0, t− a)e

−
∫ a

0 (µ(θ)+
2
∑

j=1
λj(θ,θ+t−a))dθ

da

> 0.

Similarly, if t ∈ (t1 + ã0, t2 + 2ã) then we have
∫ ã

0 s(a, t)da > 0. Thus, iterating the above

procedure yields that
∫ ã

0 s(a, t)da > 0 for all t ≥ 0.

Second, let us show that
∫ a+

0 ij(a, t)da > 0, j = 1, 2 for all t > 0. To this aim, we divide the

proof into three steps:

Step 1. Define

ijc(a) := ij(a, a+ c) a ∈ [0 ∨ (−c), a+)

for c > −a+. Then

dijc(a)

da
= λj(a, a+ c)s(a, a+ c) − (µ(a) + γj(a))ijc(a)

≥ −(µ(a) + γj(a))ijc(a).

(5.4)
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It follows from (5.4) that if ijc(a0) > 0 we have ijc(a) > 0, i.e., ij(a, a+ c) > 0, for all a > a0.

Step 2. Since
∫ ã

0 s(a, 0)da > 0, there exists ā < ã0 + ã−ã0
2 such that

∫ (ā+
ã−ã0

2
)

ā
s(a, 0)da > 0.

In this step, we prove that dijc(a)
da

|a=0 > 0 for all c ∈ (ã0 − ā, ã+ã0
2 − ā).

For ease of presentation, we assume that ā < ã0, and if ā ≥ ã0 we can analyze in a similar way.

Integrating the system (2.3) along the characteristic lines yields

ij(a, t) =































∫ a

0
λj(θ, θ + t− a)s(θ, θ + t− a)e−

∫ a

θ
(µ(ξ)+γj (ξ))dξdθ, t > a,

ij0(a− t)e−
∫ a

a−t
(µ(θ)+γj (θ))dθ+

∫ a

a−t

λj(θ, θ + t− a)s(θ, θ + t− a)e−
∫ a

θ
(µ(ξ)+γj (ξ))dξdθ, t < a.

(5.5)

Let c ∈ (ã0−ā,
ã+ã0

2 −ā), and consider two cases:
∫ ā+

ã−ã0
2

ā
ij0(a)da > 0 and

∫ ā+
ã−ã0

2
ā

ij0(a)da =

0.

Case 1)
∫ (ā+

ã−ã0)
2

ā
ij0(a)da > 0. Then it follows from (5.5) that

∫ c+ā+
ã−ã0

2

c+ā

ij(a, c)da >

∫ c+ā+
ã−ã0

2

c+ā

ij0(a− c)e−
∫ a

a−c
(µ(θ)+γj (θ))dθda

=

∫ ā+
ã−ã0

2

ā

ij0(a)e
−

∫ a+c

a
(µ(θ)+γj (θ))dθda

> 0.

Consequently, we have (c+ ā, c+ ā+ ã−ã0
2 ) ⊂ (ã0, ã) and for all c ∈ (ã0 − ā, ã+ã0

2 − ā)

dijc(a)

da
|a=0 = λj(0, c)n(0, c)

= Kj(0)

∫ a+

0
qj(σ)ij(σ, c)dσn(0, σ)

≥ Kj(0)

∫ c+ā+
ã−ã0

2

c+ā

qj(σ)ij(σ, c)dσR
d
0Φ(M

∫ a+

0
r(σ))

∫ c+ā+
ã−ã0

2

c+ā

β(σ)ij(σ, c)dσ

≥ Kj(0)qj minβminR
d
0Φ(M

∫ a+

0
r(σ))(

∫ c+ā+
ã−ã0

2

c+ā

ij(σ, c)dσ)2

> 0.
(5.6)

Case 2)
∫ (ā+

ã−ã0
2

)
ā

ij0(a)da = 0, i.e.,
∫ (ā+

ã−ã0
2

)
ā

φ(a)da > 0. It follows from (5.5) that

∫ c+ā+
ã−ã0

2

c+ā

ij(a, c)da

>

∫ c+ā+
ã−ã0

2

c+ā

∫ a

a−c

λj(θ, θ + c− a)s(θ, θ + c− a)e−
∫ a

θ
(µ(ξ)+γj (ξ))dξdθda

≥

∫ c+ā+
ã−ã0

2

c+ā

Kj minqj mins(a, c)

∫ a

a−c

∫ a+

0
ij(σ, θ + c− a)dσe−

∫ a

θ
(µ(ξ)+γj (ξ))dξdθda.
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From the fact
∫ a+

0 ij(σ, 0)dσ > 0 and the continuity of solutions, we have

f(a) :=

∫ a

a−c

∫ a+

0
ij(σ, θ + c− a)dσe−

∫ a

θ
(µ(ξ)+γj (ξ))dξdθ > 0

for all a > c. Integrating the first equation of system (2.3) along the characteristic lines, we get the

form

s(a, c) = φ(a− c)e
−

∫ a

a−c
(µ(ξ)+

2
∑

j=1
λj(ξ,ξ+c−a))dξ

for a ∈ (c+ ā, c+ ā+ ã−ã0
2 ). Since

∫ (ā+
ã−ã0

2
)

ā
φ(a)da > 0, it follows that

∫ c+ā+
ã−ã0

2
c+ā s(a, c)da >

0. Then we have

∫ c+ā+
ã−ã0

2

c+ā

ij(a, c)da

≥ Kj minqj min

∫ c+ā+
ã−ã0

2

c+ā

s(a, c)

∫ a

a−c

∫ a+

0
ij(σ, θ + c− a)dσe−

∫ a

θ
(µ(ξ)+γj (ξ))dξdθda.

> 0.

Using a similar way as in the proof of the Case 1), we can conclude that (c+ ā, c+ ā+ ã−ã0
2 ) ⊂

(ã0, ã) and ijc(a)
da

|a=0 > 0 for all c ∈ (ã0 − ā, ã+ã0
2 − ā).

Step 3. In this step, we prove the following assertion:

If
dijc(a)

da
|a=0 > 0 for c ∈ (t3, t4), then

dijc(a)

da
|a=0 > 0 for c ∈ (t3 + ã0, t4 + ã). (5.7)

In fact, if dijc(a)
da

|a=0 > 0 for c ∈ (t3, t4) then it follows from (5.4) that ij(a, c) > 0 for all a ∈ (0∨

(c−t4), (c−t3)∧a
+) and c ∈ (t3, t4+a+). Let c ∈ (t3+ã0, t4+ã), then ã0∨(c−t4) < ã∧(c−t3),

and (ã0∨(c− t4), ã∧(c− t3)) ⊆ (ã0, ã), (ã0∨(c− t4), ã∧(c− t3)) ⊂ (0∨(c− t4), (c− t3)∧a
+).

Thus we have ij(a, c) > 0 for all a ∈ (ã0 ∨ (c − t4), ã ∧ (c − t3)). It follows from (5.4) and the

fact that ijc(0) = 0 that

dijc(a)

da
|a=0 = λj(0, c)s(0, c)

= Kj(0)

∫ a+

0
qj(σ)ij(σ, c)dσs(0, c)

≥ Kj(0)

∫ a+

0
qj(σ)ij(σ, c)dσs(0, c)

≥ Kj(0)

∫ ã∧(c−t3)

ã0∨(c−t4)
qj(σ)ij(σ, c)dσR

d
0Φ(M

∫ a+

0
r(σ))

∫ ã∧(c−t3)

ã0∨(c−t4)
β(σ)ij(σ, c)dσ

≥ Kj(0)qj minβminR
d
0Φ(M

∫ a+

0
r(σ))(

∫ ã∧(c−t3)

ã0∨(c−t4)
ij(σ, c)dσ)2

> 0.
(5.8)
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Thus, the statement (5.7) is proved. It then follows from (5.4) that ij(a, c) > 0 for all a ∈ (0∨ (c−

(t4 + ã)), (c − (t3 + ã0)) ∧ a
+) and c ∈ (t3 + ã0, t4 + ã+ a+).

Since there exists ā < ã0 + ã−ã0
2 such that dijc(a)

da
|a=0 > 0 for all c ∈ (ã0 − ā, ã+ã0

2 − ā),

iterating (5.7) we have

dijc(a)

da
|a=0 > 0 for all c ∈ (ã0 − ā+ nã0,

ã+ ã0

2
− ā+ nã). (5.9)

If there exists T such that
∫ a+

0 ij(a, T )da = 0, then it is easy to see that ij(a, t) = 0 is also a

solution of (2.3) for t > T . Thus we have dijc(a)
da

|a=0 = 0 for all t > T . This contradicts (5.9)

due to the uniqueness of solutions to (2.3). This contradiction implies that
∫ a+

0 ij(a, t) > 0 for all

t > 0. This completes the proof Lemma 5.3.

Proof. (Theorem 5.1): Define

B0 := {(s(·), i1(·), i2(·)) ∈ X+ :

∫ ã

0
s(a)da > 0, ij(a) ≡ 0, j = 1, 2 for almost all a ∈ (0, a+)};

B11 := {(s(·), i1(·), i2(·)) ∈ X+ :

∫ ã

0
(s(a) + i1(a))da = 0, i2(a) ≡ 0 for almost all a ∈ (0, a+)};

B12 := {(s(·), i1(·), i2(·)) ∈ X+ :
∫ ã

0 (s(a) + i1(a))da > 0,

∫ a+

0
i1(a)da > 0, i2(a) ≡ 0 for almost all a ∈ (0, a+)};

B21 := {(s(·), i1(·), i2(·)) ∈ X+ :

∫ ã

0
(s(a) + i2(a))da = 0, i1(a) ≡ 0 for almost all a ∈ (0, a+)};

B22 := {(s(·), i1(·), i2(·)) ∈ X+ :
∫ ã

0 (s(a) + i2(a))da > 0,

∫ a+

0
i2(a)da > 0, i1(a) ≡ 0 for almost all a ∈ (0, a+)};

∂Γ := B0 ∪B11 ∪B12 ∪B21 ∪B22,

X := Γ ∪ ∂Γ.

In order to show the theorem, it suffices to show that ∂Γ repeals uniformly the solutions of Γ.

We can easily see that B0 and Bij, i, j = 1, 2 are positively invariant for system (2.3). Thus ∂Γ

is positively invariant for system (2.3). It follows from Lemma 5.3 that Γ is positively invariant for

system (2.3). Similar approach as in Proposition 3.16 by Webb [20] can result in the fact that the
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dynamical system is asymptotically smooth. From Theorem 4.1, Theorem 4.3 and the assumptions

(H4) and (H5), we have the following conclusions:

(1) E0 is a global attractor in B0 for system (2.3);

(2) E00 is a global attractor in B11 ∪B21 for system (2.3);

(3) E1 is a global attractor in B21 for system (2.3);

(4) E2 is a global attractor in B22 for system (2.3).

Thus we have
Ã∂ :=

⋃

(s0(·),i10(·),i20(·))∈∂Γ

ω((s0(·), i10(·), i20(·))

= {E00, E0, E1, E2}.

By the above conclusions, it follows that Ã∂ is isolated and has an acyclic coveringM = {E00, E0, E1, E2}.

It follows from Lemma 5.2 that the system (2.3) is dissipative and the orbit of any bounded set is

bounded. By Theorem 4.2 in [24], in order to show that ∂Γ repeals uniformly the solutions of Γ we

only need to show that W s(E00) ∩ Γ = ∅,W s(E0) ∩ Γ = ∅,W s(E1) ∩ Γ = ∅,W s(E2) ∩ Γ = ∅

if Rd
0 > 1,R2

1 > 1,R1
2 > 1.

Since Rd
0 > 1, we can choose η1 > 0 small enough such that

Rd
0Φ(3η1

∫ a+

0
r(σ)dσ)e

−η1

2
∑

j=1

∫ a+

0 Kj(a)da
∫ a+

0 qj(a)da

> 1. (5.10)

Assume that W s(E00) ∩ Γ 6= ∅. Then there exists a positive solution (ŝ(a, t), î1(a, t), î2(a, t))

with the initial conditions ŝ(·, 0) = ψ1, î1(·, 0) = ϕ1, î2(·, 0) = φ1, (ψ1, ϕ1, φ1) ∈ Γ such that

(ŝ(a, t), î1(a, t), î2(a, t)) → E00 as t → +∞. Thus there exists T1 > 0 such that for t > T1 we

have 0 < ŝ(·, t) < η1, 0 < î1(·, t) < η1, 0 < î2(a, t) < η1, (ŝ(·, T1), î1(·, T1), î2(·, T1)) ∈ Γ, and


































∂ŝ(a, t)

∂t
+
∂ŝ(a, t)

∂a
> −(µ(a) + η1

2
∑

j=1

Kj(a)

∫ a+

0
qj(σ)dσ)ŝ(a, t),

ŝ(a, 0) = ψ1(a),

ŝ(0, t) > Rd
0Φ(3η1

∫ a+

0
r(σ)dσ)

∫ a+

0
β(a)ŝ(a, t)da.

Consider the following auxiliary system


































∂~(a, t)

∂t
+
∂~(a, t)

∂a
= −(µ(a) + η1

2
∑

j=1

Kj(a)

∫ a+

0
qj(σ)dσ)~(a, t),

~(a, T ) = ŝ(a, T1),

~(0, t) = Rd
0Φ(3η1

∫ a+

0
r(σ)dσ)

∫ a+

0
β(a)~(a, t)da.

(5.11)
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By the comparison principle we have ŝ(·, t) ≥ ~(·, t) for all t > T1. By the theory of linear systems,

it is easy to see that ~(·, t) → +∞ as t tends to infinity if (5.10) holds. This contradicts ŝ(·, t) → 0

as t→ +∞. This contradiction implies that we have W s(E00) ∩ Γ = ∅.

Now we show that W s(E0) ∩ Γ = ∅. Since R2
1 > 1,R1

2 > 1 imply Rj > 1, j = 1, 2, we can

choose η2 > 0 small enough such that

∫ a+

0
K1(a)(n

∗(a) − η2)

∫ a+

a

q1(σ)e−
∫ σ

a
(µ(θ)+γ1(θ))dθdσda > 1,

∫ a+

0
K2(a)(n

∗(a) − η2)

∫ a+

a

q2(σ)e−
∫ σ

a
(µ(θ)+γ2(θ))dθdσda > 1.

Assume that W s(E0) ∩ Γ 6= ∅. Then there exists a positive solution (s̃(a, t), ĩ1(a, t)), ĩ2(a, t))

with initial conditions s̃(·, 0) = ψ2, ĩ1(·, 0) = ϕ2, ĩ2(·, 0) = φ2, (ψ2, ϕ2, φ2) ∈ Γ such that

(s̃(a, t), ĩ1(a, t), ĩ2(a, t)) → E0 as t → +∞. Thus there exists T2 > 0 such that for t > T2

we have

n∗(·) − η2 < s̃(·, t) < n∗(·) + η2, 0 < ĩ1(·, t) < η2, 0 < ĩ2(a, t) < η2,

for (s̃(·, T2), ĩ1(·, T2), ĩ2(a, T2)) ∈ Γ, and










































































∂ĩ1(a, t)

∂t
+
∂ĩ1(a, t)

∂a
> K1(a)

∫ a+

0
q1(σ)̃i1(σ, t)dσ(n∗(a) − η2) − (µ(a) + γ1(a))̃i1(a, t),

∂ĩ2(a, t)

∂t
+
∂ĩ2(a, t)

∂a
> K2(a)

∫ a+

0
q2(σ)̃i2(σ, t)dσ(n∗(a) − η2) − (µ(a) + γ2(a))̃i2(a, t),

ĩ1(a, 0) = ϕ2(a),

ĩ2(a, 0) = φ2(a),

ĩ1(0, t) = 0

ĩ2(0, t) = 0.

Consider the auxiliary system







































































∂`1(a, t)

∂t
+
∂`1(a, t)

∂a
= K1(a)

∫ a+

0
q1(σ)`1(σ, t)dσ(n∗(a) − η2) − (µ(a) + γ1(a))`1(a, t),

∂`2(a, t)

∂t
+
∂`2(a, t)

∂a
= K2(a)

∫ a+

0
q2(σ)`2(σ, t)dσ(n∗(a) − η2) − (µ(a) + γ2(a))`2(a, t),

`1(a, T2) = ĩ1(a, T2),

`2(a, T2) = ĩ2(a, T2),

`1(0, t) = 0,

`2(0, t) = 0.
(5.12)
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By the comparison principle, we can prove that ĩj(·, t) ≥ `j(·, t), j = 1, 2 for all t > T2. From

the theory of linear systems it is easy to see that `j(·, t) → +∞, j = 1, 2 as t tends to infin-

ity if
∫ a+
0 Kj(a)(n

∗(a) − η2)
∫ a+

a
qj(σ)e−

∫ σ

a
(µ(θ)+γj (θ))dθdσda > 1, j = 1, 2. This contradicts

ĩj(·, t) → 0, j = 1, 2 as t→ +∞. This contradiction implies that we have W s(E0) ∩ Γ = ∅.

In the following, we show that W s(E1) ∩ Γ = ∅,W s(E2) ∩ Γ = ∅. Here we only show that

W s(E1) ∩ Γ = ∅ if R2
1 > 1. If R1

2 > 1, W s(E2) ∩ Γ = ∅ can be proved in a similar way. Since

R2
1 > 1, we can choose η3 > 0 small enough such that

∫ a+

0
K2(a)(s

∗
1(a) − η3)

∫ a+

0
q2(σ)e−

∫ σ

a
(µ(θ)+γ2(θ))dθdσda > 1.

Assume that W s(E1) ∩ Γ 6= ∅. Then there exists a positive solution (š(a, t), ǐ1(a, t), ǐ2(a, t))

with initial conditions š(·, 0) = ψ3, ǐ1(·, 0) = ϕ3, ǐ2(·, 0) = φ3, (ψ3, ϕ3, φ3) ∈ Γ such that

(š(a, t), ǐ1(a, t), ǐ2(a, t)) → E1 as t → +∞. Thus there exists a T3 > 0 such that for t > T3

we have
s∗1(·) − η3 < š(·, t) < s∗1(·) + η3,

i∗1(·) − η3 < ǐ1(·, t) < i∗1(·) + η3,

0 < ǐ2(a, t) < η3,

(š(·, T3), ǐ1(·, T3), ǐ2(·, T3)) ∈ Γ,

and






















∂ǐ2(a, t)

∂t
+
∂ǐ2(a, t)

∂a
> K2(a)

∫ a+

0
q2(σ)̌i2(σ, t)dσ(s∗1(a) − η3) − (µ(a) + γ2(a))̌i2(a, t),

ǐ2(a, 0) = ϕ2(a),

ǐ2(0, t) = 0.

Consider the auxiliary system






















∂`2(a, t)

∂t
+
∂`2(a, t)

∂a
= K2(a)

∫ a+

0
q2(σ)`2(σ, t)dσ(s∗1(a) − η3) − (µ(a) + γ2(a))`2(a, t),

`2(a, T3) = ǐ2(a, T3),

`2(0, t) = 0.
(5.13)

By the comparison principle, we can prove that ǐ2(·, t) ≥ `2(·, t) for all t > T3. From the

theory of linear systems it is easy to see that
∫ a+

0 `2(a, t)da → +∞ as t tends to infinity if
∫ a+
0 K2(a)(s

∗
1(a) − η3)

∫ a+

0 q2(σ)e−
∫ σ

a
(µ(θ)+γ2(θ))dθdσda > 1. This contradicts ǐ2(·, t) → 0 as

t→ +∞. This contradiction implies that we have W s(E1) ∩ Γ = ∅.

Since W s(E00) ∩ Γ = ∅,W s(E0) ∩ Γ = ∅,W s(Ej) ∩ Γ = ∅, j = 1, 2, and {E00, E0, E1, E2}

are acyclic in ∂Γ, by Theorem 4.2 in [24] we are able to conclude that the system (2.3) is uniformly

persistent with respect to (Γ, ∂Γ). This completes the proof of Theorem 5.1.
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6 Numerical results

In this section, we present some numerical results that support and extend the analytical results.

Backward Euler and the linearized finite difference method are used to discretize the PDEs, and the

integral is evaluated using trapezoidal rule.

For illustration purposes, we choose a+ = 20, Rd
0 = 20. The functions µ(a), β(a), r(a), γj(a), j =

1, 2 are assumed to be constant. These parameters are chosen as follows:

µ(a) ≡ 0.6, β(a) ≡ 0.6, r(a) ≡ 1, γj(a) ≡ 0, qj(a) ≡ 1, j = 1, 2, a ∈ [0, 20].

The functions Φ(x),K1(a),K2(a) are chosen to have the following forms:

Φ(x) = 1
1+0.3x

;

K1(a) = m1
1+k1a

;

K2(a) = m2 + k2a.

The simulation results are shown in Figure 1. Figure 1 (a) is for the case k1 = 0, k2 = 0,m1 =

0.1,m2 = 0.06. In this case system (2.3) does not depend on the age structure, and it follows from

Theorem 3.1 that the strain with the larger reproduction number, i.e., strain 1, uniformly persists,

and the other strain dies out. Figure 1 (b) is for the casem1 = 0.1, k1 = 1.0,m2 = 0.06, k2 = 0.06.

In this case, we can obtain that R1
2 = 1.2921,R2

1 = 1.0406. Since both invasion numbers are

larger than one, we expect persistence of the strains. Indeed, as Figure 1 (b) demonstrates the two

competing strains coexist in a unique positive equilibrium which as simulations seem to suggest

seems globally attracting. Figure 1 (c) is for the case m1 = 0.1, k1 = 1.0,m2 = 0.03, k2 =

0.06. In the case, the system (2.3) has four boundary equilibria E00, E0, E1, E2. Straight forward

computation yields that R2
1 = 0.628,R1

2 = 1.8304. It follows from Theorem 4.3 that E2 is locally

stable under assumption (H4). Figure 1 (c) is showing that E2 is indeed asymptotically stable.

Figure 1 (d) is for the case m1 = 0.1, k1 = 1.0,m2 = 0.09, k2 = 0.06. In this case, we have that

R2
1 = 1.4586,R1

2 = 0.9431 and the system (2.3) also has four boundary equilibria. In Figure 1

(d), we can easily see that the boundary equilibrium E1 is asymptotically stable. This simulation

results have either confirm or extended our analytical results.

7 Discussion

In this paper, we have studied an age-structured epidemic model with two competing strains.

The main focus of the paper is the proof of persistence of the two strains when both invasion

numbers are greater than one. In our case the coexistence of the strains is induced by the host age-

structure. Although the presence of disease-induced mortality into the age-structured model makes
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Figure 1: Numerical solutions of the system (2.3). I1 and I2 represent the number of the infected
cases with strain one and two, respectively. The values of of mj, kj , j = 1, 2 used in the four
plots are: (a) m1 = 0.1,m2 = 0.06, k1 = k2 = 0 (age independent case); (b) m1 = 0.1,m2 =
0.06, k1 = 1.0, k2 = 0.06; (c) m1 = 0.1,m2 = 0.03, k1 = 1.0, k2 = 0.06; and (d) m1 =
0.1,m2 = 0.09, k1 = 1.0, k2 = 0.06.
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the analysis of the resulting system very difficulty, we are able to carry out systematic analysis of

the model and establish rigorously uniform persistence of both strains.

The basic reproduction numbers Rj for both strains are defined in section 3, and Theorem 4.2

shows the uniform persistence of the single strain j in the case when Rj > 1. We have also obtained

the explicit expression of the invasion reproduction numbers R
j
k, j, k = 1, 2, j 6= k for both strains.

Local stabilities of the boundary equilibria are discussed in Theorem 4.3. By the theory of uniform

persistence of infinite dimensional dynamical systems the coexistence of two competing strains is

rigorously proved under the conditions that both invasion reproduction numbers are lager than one.

However, results for the corresponding age-independent model are summarized in section 3 and

show that the two competing strains can not coexist. This indicates that age structure leads to the

coexistence of the strains. In section 6 numerical simulations are further conducted to confirm and

extend the analytical results.

Finally, there are still many interesting and challenging mathematical questions that remain

open for system (2.3). For example, we could not present results on the global dynamics of system

(2.3). It seems very difficult to analyze the global dynamics for that system. However, if we neglect

the disease-induced death rates, then system (2.3) can be reduced to a competitive system. We may

use techniques from monotone theory developed in [25, 30] to provide the global behavior of the

reduced model. Numerical simulations suggest that if R1 > 1,R2 > 1 and the invasion numbers

are greater than one, the reduced system (2.3) has a unique positive equilibrium which is globally

asymptotically stable. We conclude the discussion by formulating the following conjecture:

Conjecture: Assume R1 > 1,R2 > 1 and the invasion reproduction numbers are greater than

one. Then system (2.3) with γ1(a) = γ2(a) = 0 has a unique coexistence equilibrium which is

globally asymptotically stable.
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Appendix: Proof of Theorem 4.1

Proof. Using a similar approach we can easily prove the second conclusion of Theorem 4.1 2).

Here we only present the proofs for Theorem 4.1 1) and the first conclusion of Theorem 4.1 2). Let

ñ(a, t) be the solution of the following system






























∂ñ(a, t)

∂t
+
∂ñ(a, t)

∂a
= −µ(a)ñ(a, t),

ñ(a, 0) = n0(a),

ñ(0, t) = Rd
0Φ(0)

∫ a+

0
β(a)ñ(a, t)da.

(7.1)

We claim that n(a, t) ≤ ñ(a, t) for all t ≥ 0 and almost all a ∈ (0, a+).

In order to prove the claim, let us integrate the system (2.1) and (7.1) along the characteristic

lines. Then we get

n(a, t) =







n(0, t− a)e−
∫ a

0 µ(θ)dθ, t > a,

n0(a− t)e−
∫ a

a−t
µ(θ)dθ , t < a.

(7.2)

and

ñ(a, t) =







ñ(0, t − a)e−
∫ a

0 µ(θ)dθ, t > a,

n0(a− t)e−
∫ a

a−t
µ(θ)dθ , t < a.

(7.3)

We now show that n(0, t) ≤ ñ(0, t). Suppose the contrary, that is the inequality does not hold.

Then we can define t0 such that

t0 := inf{t > 0 : n(0, t) > ñ(0, t)}

since n(0, 0) < ñ(0, 0) and n(0, t), ñ(0, t) are both continuous functions with respect to t. Conse-

quently, we have

Rd
0Φ(Q(t0))

∫ a+

0
β(a)n(a, t0)da = R0Φ(0)

∫ a+

0
β(a)ñ(a, t0)da.

Since Φ(Q(t0)) ≤ Φ(0) it follows that there exist ā ∈ (0, t0) such that n(ā, t0) ≥ ñ(ā, t0). It

follows from (7.2) and (7.3) that we have n(0, t0− ā) ≥ ñ(0, t0− ā). This contradicts the definition

of t0. This contradiction implies that n(0, t) ≤ ñ(0, t). From (7.2) and (7.3) we get n(a, t) ≤

ñ(a, t) for all t > a > 0. When a > t > 0, we can easily see that n(a, t) = ñ(a, t). Thus

n(a, t) ≤ ñ(a, t) for all t ≥ 0 and almost all a ∈ (0, a+).

If Rd
0 < 1, it is easy to see that lim

t→+∞
ñ(·, t, n0(a)) = 0 for all n0(a) ∈ L1

+(0, a+). From the

above claim it also follows that we have lim
t→+∞

n(·, t, n0(a)) = 0 for each n0(·) ∈ L1
+(0, a+). This

complete the proof of Theorem 4.1 1).

24



Assume Rd
0 > 1 and n0(a) ∈ L1

+(0, a+). If
∫ ã

0 n0(a)da = 0, it then follows from Theorem 5.1

of paper [25] that we have

lim
t→+∞

ñ(·, t, n0(a)) = 0.

Similarly, we have

lim
t→+∞

n(·, t, n0(a)) = 0.

This completes the proof of Theorem 4.1.
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