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Abstract. In this paper, a predator-prey-disease model with immune response in

the infected prey is formulated. The basic reproduction number of the within-host

model is defined and it is found that there are three equilibria: extinction equilibrium,

infection-free equilibrium and infection-persistent equilibrium. The stabilities of these

equilibria are completely determined by the reproduction number of the within-host

model. Furthermore, we define a basic reproduction number of the between-host model

and two predator invasion numbers: predator invasion number in the absence of dis-

ease and predator invasion number in the presence of disease. We have predator and

infection-free equilibrium, infection-free equilibrium, predator-free equilibrium and a

coexistence equilibrium. We determine the local stabilities of these equilibria with con-

ditions on the reproduction and invasion reproduction numbers. Finally, we show that

the predator-free equilibrium is globally stable.
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1. Introduction

Mathematical biologists have been working on merging two major areas of interest

Ecology [1, 2, 3] and Epidemiology [4] for a long time. Diseases that affect the prey in

particular may affect the entire predator-prey system [5, 6, 7]. The pathogen may not

infect the predator but it creates a differential pressure on the predator-prey dynamics,

causing destabilization of equilibria or reducing natural oscillations. A key objective of

these models is to investigate the correlation between the disease and the predator-prey

system.

Predator-prey-pathogen models have been a topic of significant interest since the early

1980s. Anderson and May [9] in 1982 paved the way of merging ecological predator-prey

models, which were initiated by Lotka and Volterra, and the epidemiological models,
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introduced by Kermack and McKendrick. Hethcote et. al [10] showed how the parasite

population could affect the demographic behavior of the host population. The fusion

of ecology and epidemiology is a comparatively new branch of study, now with a 30

year history, known as eco-epidemiology. Eco-epidemiological models could also address

scenarios, such as the ones presented by Getz and Pickering in 1983 [11], where a parasitic

disease has been found to regulate the host population density. Furthermore Bairagi et.

al [12] showed that a disease might be the sole reason for co-existence of the species.

They established that by combining an SI (Susceptible-Infected) disease model with a

regular predator-prey N-P(Prey-Predator) model to obtain a eco-epidemiological ODE

model.

In the paper [23] the author was successful in showing the effect of a predator on the

prevalence of the disease in the prey. The simulations in the article show that existence

of predator abundance creates oscillations in the SIR model of the prey population.

Another scenario proposed by Bairagi et. al [12], suggests that predator may avoid

infected prey and predate only on healthy susceptible ones which may lead to prey

extinction. Their simulations show the existence of a bifurcation in the model.

Since then the field of eco-epidemiology has been attracting significant attention and

many studies have been completed using eco-epidemiological modeling ([13] - [22]). All

the studies mentioned above clearly demonstrate the volume of work going at present on

the predator-prey dynamics where the prey population is infected. The infection in the

prey population has many consequences for predator-prey dynamics and these models

need more attention to elucidate the complex dynamics of predator-prey and disease.

Researchers interested in epidemiology have known for a long time that an intrinsic

connection exists between the within-host status of the pathogen, its interaction with

the immune system, and between-host ability of the pathogen to transmit and invade

the host population. Even though there is a large body of literature treating within-

host models and epidemiological models separately, it wasn’t until the seminal work of

Gilhrist and Sasaki [25] that the two fields were connected with an ODE within-host

model nested in an epidemiological time-since-infection structured model. Since then

the interest toward models linking within-host dynamics with epidemiological dynamics

has been rising. Linked models have been also termed immuno-epidemiological models.

Bridging the gap between the two fields [26] is now of primary interest not only for models

of macro-parasitic infections, but also for micro-parasitic infections, such as HIV.
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One area that has not been addressed this far is the impact of within-host dynamical

interaction of a pathogen with the immune system and the between host distribution

of the disease in the presence of a predator or a competition between species. There is

still a lot to be learned on how ecological interaction of predation or competition affect

the within-host dynamics of the pathogen with the immune system, how within-host

interactions affect the distribution of disease on population level, and ultimately the

predator-prey interaction.

In the present article we discuss a predator-prey PDE model where the prey population

is infected by a pathogen. An immunological S-I model has been designed to represent

the dynamics of the disease inside a host in the prey population. The major goal of

this paper is to identify the probable characteristic of the disease and its major role

in determining the dynamics of the predator-prey system. We investigate the long

term behavior of the predator-prey dynamics in the light of the disease in the prey

population. In the next section we introduce a predator-prey model with infected prey

structured by immune status. We term these linked models immuno-eco-epidemiological

models. In section 3 we present analysis of the within-host model. In section 4 we define

the equilibria of the immuno-eco-epidemiological model and we investigate their local

stabilities. In section 5 we obtain the global stability of the predator-free equilibrium.

Section 6 contains a summary of our results.

2. Model

We consider the following model to represent the predator-prey interaction with the

prey in the population being infected. We use an ODE model to describe the within-

host-parasite dynamics. The virus particles present in a single infected prey over the

infection period, plays an important role that decides the rate of infection among the

prey population in a general epidemiological model. The following age-structured PDE

model explains the prey-predator interaction in the epidemiological environment. Here

S(t) denotes the number of susceptible prey population at time t, P (t) is the number

of predators in the population. We use the variable i(τ, t) to represent the density of

infected prey population at time t where τ is the age of infection in the prey population.
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The model is given as follows.

(2.1)



















































dS(t)

dt
= Λ− S(t)

∫

∞

0

β(τ)i(τ, t)dτ −
a1S(t)P (t)

1 + cS(t)
−m0S(t),

∂i(τ, t)

∂τ
+

∂i(τ, t)

∂t
= −m0i(τ, t)−mV (τ)i(τ, t)− α(τ)P (t)i(τ, t),

i(0, t) = S(t)

∫

∞

0

β(τ)i(τ, t)dτ,

dP (t)

dt
=

a2S(t)P (t)

1 + cS(t)
− dP (t) + kP (t)

∫

∞

0

α(τ)i(τ, t)dτ,

where Λ is the birth rate of the susceptible prey population and m0 is the death rate of

the prey population. β(τ) represents the infection rate in prey population with age of

infection τ and is related to the number of virus particles V (τ) by the relation β(τ) =

cV (τ). We use a Holling function of Type II to represent the predation rate for the

susceptible population, where a1 is called the attack rate and the average time spent

on processing a food item is called the handling time, given by c/a1. α denotes the

predation rate in the infected class, a2/a1 is the conversion efficiency of the prey into

the body mass of the predator and d is the natural death rate of the predator; k is the

conversion efficiency of the prey mass into the predator body mass, m is a scaling factor

such that mV (τ) is the disease induced death rate.

The immunological model describing the dynamics of the host-parasite system which

causes the disease in the prey population is given by the following ODE model.

(2.2)















dV (τ)

dt
= rV (τ)(1−

V (τ)

K
)− ηV (τ)z(τ),

dz(τ)

dz
=

ρV (τ)z(τ)

A+ V (τ)
− µz(τ),

where V (τ) represents the number of virus particles. The growth of the virus population

has been modeled with a logistic equation, where K is the carrying capacity and r is

the intrinsic growth rate. η is the elimination rate of the virus particles by the healthy

immune system of the host. Holling function of Type II has been used to reflect the

growth rate of the healthy immune cells z(τ) where µ is the death rate, A is the half

saturation constant and ρ is maximum saturation constant.

3. Analysis of the Immune ODE Model.

In this section we set to investigate the equilibria of the model.
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Definition 3.1. We define the basic reproduction number in the immunological model

as R0 =
ρK

µ(A+K)
.

Theorem 3.1. System 2.2 always has an extinction equilibrium E0 = (0, 0) and immune-

response free equilibrium E1 = (K, 0). If R0 > 1 then there is a unique infection equilib-

rium

E2 = (
µA

ρ− µ
,
r

η
(1−

µA

K(ρ− µ)
)).

Proof. The equilibrium points are those where the solution does not change with time.

We set the derivative equal to zero in order to investigate the equilibrium values. The

equilibria in the ODE model are obtained by solving the following sets of equation.

(3.1)















rV (1−
V

K
)− ηV z = 0,

ρV z

A+ V
− µz = 0.

The above sets of equations lead to three sets of solutions. These solutions represent

corresponding equilibrium states , viz. virus-free immune-response free equilibrium or

the extinction equilibrium (E0 = (0, 0)), immune-response free equilibrium (E1 = (K, 0))

and co-existence equilibrium (E2 = ( µA

ρ−µ
, r
η
(1 − µA

K(ρ−µ)
))). From the structure of the

equilibrium points, it is clear that the extinction equilibrium and the immune response

free equilibrium always exist. For the existence of the co-existence equilibrium, it is

essential that 1 − µA

K(ρ−µ)
> 0. This is true if and only if R0 > 1. This completes the

proof. �

Now we investigate the local stability of the model at the different equilibrium points.

Theorem 3.2. The extinction equilibrium E0 is always unstable, the immune-response

free equilibrium E1 is unstable if and only if R0 > 1 and the co-existence equilibrium E2

is globally stable whenever it exists.

Proof. Stability at E0: In order to investigate the stability of the model, the ODE was

linearized about the equilibrium points to obtain the following Jacobian.

J(E0) =

(

r 0

0 −µ

)

,

The stability of the equilibrium is obtained by evaluating the eigenvalues of the Jacobian.

We observe that det(J(E0)) < 0. This means there is always an eigenvalue which is

positive. Hence E0 is always unstable.
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Stability at E1: In the same way we investigate the previous equilibrium we obtain the

Jacobian corresponding to E1 as follows.

J(E1) =

(

−r −ηK

0 µ(R0 − 1)

)

,

We observe that det(J(E1)) = −rµ(R0 − 1). For R0 > 1 determinant is negative and

with the argument presented in the previous case we can state that this equilibrium

is unstable. For R0 < 1 determinant is positive. Observe that tr(J(E1)) < 0 always.

From Routh-Hurwitz criterion, all eigen values are negative or have negative real parts.

Hence, we have local stability of this equilibrium when R0 < 1.

Stability at E2:

Theorem 3.3. The system [2.2] do not have any periodic solutions.

Proof. Let us rewrite the system [2.2] as

dV

dτ
= f(V, z)(3.2)

dz

dτ
= g(V, z)(3.3)

where f(V, z) = rV (τ)(1− V (τ)
K

)− ηV (τ)z(τ) and g(V, z) = z′(τ) = ρV (τ)z(τ)
A+V (τ)

− µz(τ).

Let φ = 1
V z

. We observe that ∂
∂V

(fφ) + ∂
∂z
(gφ) = − r

zK
,

which is always negative in the positive quadrant. Using BendixsonDulac theorem

[14], the system [2.2] do not have any periodic solutions.

�

The theorem above excludes the possibility of a limit cycle.

Let us denote E2 = (V ∗, z∗). The Jacobian matrix obtained from the linearized model

at the co-existent equilibrium point is given as follows.

J(E2) =









−
rV ∗

K
−ηV ∗

ρz∗
A

(A+ V ∗)2
0









,

which clearly has a negative trace and a positive determinant. From Routh-Hurwitz

criterion it follows that all eigenvalues of this matrix are negative or have negative real

parts. Hence this equilibrium is always stable when it exists i.e. when R0 > 1.

Note that for R0 > 1 the other two equilibrium are both unstable. Hence, it can be

shown that this equilibrium is globally Stable for R0 > 1.



A predator-prey model with immune response in infected-prey 7

�

4. Analysis of the predator-prey PDE Model.

Before we proceed to explore the equilibrium values of the PDE model, we use the

following definition to describe the reproduction numbers associated with this system.

Definition 4.1. We define the basic reproduction number

R0 =
Λ(a2 − cd)

m0d
,

the disease invasion number as

RP
0 =

Λ
∫

∞

0
β(τ)e−µ(τ)dτ

m0
, where µ(τ) =

∫ τ

0

(m0 +mV (s))ds,

and the predator invasion number as

RP
i =

a2Λ

d(RP
0 m0 + cΛ)

+
k

d
Λ

(

1−
1

RP
0

)∫

∞

0

α(τ)e−
∫
τ

0
(m0+mV (s))dsdτ.

Theorem 4.1. There always exist a disease-free predator-free equilibrium E1 = ( Λ
m0

, 0, 0).

When R0 > 1 there exist a unique disease-free predator-prey equilibria E2 = (S2, 0, P2)

and when RP
0 > 1 there is a unique predator-free infection equilibrium E3 = (S3, i3(τ), 0).

Proof. We begin our proof by tracing the equilibrium points. The equilibria of the model

is of the form (S∗, i∗(τ), P ∗) which are solution of the sets of PDE equation and is always

constant over time. The points are obtained by solving the following sets of equations.

(4.1)



















































Λ− S∗

∫

∞

0

β(τ)i∗(τ)dτ −
a1S

∗P ∗

1 + cS∗
−m0S

∗ = 0,

di∗(τ)

dτ
= −m0i

∗(τ)−mV (τ)i∗(τ)− α(τ)P ∗i∗(τ),

i∗(0) = S∗

∫

∞

0

β(τ)i∗(τ)dτ,

a2S
∗P ∗

1 + cS∗
− dP ∗ + kP ∗

∫

∞

0

α(τ)i∗(τ)dτ = 0,

There are four sets of solution to the above array of equations. This proves the exis-

tence of four different equilibria in the model. The disease-free predator-free equilibrium

which is given by E1 = ( Λ
m0

, 0, 0) is always present as a solution to the equations (4.1).
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The second equilibrium is given by E2 = (S2, 0, P2). This is a regular predator-prey

equilibrium without any diseased prey in the population. This is what we call disease-

free, predator-prey equilibrium is obtained as follows,

E2 = (
d

a2 − cd
, 0,

(Λ−m0S2)(1 + cS2)

a1S2
).

The equilibria exists if and only if the basic reproduction number for this immune ODE

model, R0 as defined above is greater than one (> 1).

We obtain the third equilibrium point, where the healthy and diseased prey population

co-exists, but there is no predator. This is called predator-free infection equilibrium,

given by P3 = (S3, i3(τ), 0). The component of this equilibrium are obtained to be of

the following form,

S3 =
1

∫

∞

0
β(τ)e−µ(τ)dτ

, where µ(τ) =

∫ τ

0

(m0 +mV (s))ds,

i3(τ) = i3(0)e
−µ(τ), where i3(0) = m0(

Λ

m0S3
− 1).

This equilibrium exists if and only if the disease invasion number RP
0 > 1.

�

Theorem 4.2. If RP
0 > 1 and kcΛ

d
> R0 > RP

0 then there exists a non-trivial co-existence

equilibrium to the system of equations (2.2).

Proof. Finally we have the equilibrium solution where all the variables are present to-

gether. This is a solution where the diseased prey and healthy prey co-exits in the pop-

ulation together with the predator. This equilibrium is termed as disease-prey-predator

coexistence equilibrium given by E4 = (S∗, i∗(τ), P ∗). The existence of a solution of this

form has been explained in details below.

This equilibrium is obtained by solving the following set of equations.

(4.2)



































S∗

∫

∞

0

β(τ)e−µ(τ,P ∗)dτ = 1,

a2S
∗

1 + cS∗
− d+ ki∗(0)

∫

∞

0

α(τ)e−µ(τ,P ∗)dτ = 0,

i∗(0) = Λ−
a1S

∗

1 + cS∗
−m0S

∗,

where

µ(τ, P ∗) =

∫ τ

0

(m0 +mV (s) + α(s)P ∗)ds.
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Solving the first equation in (4.2) we can express S∗ in terms of the P ∗ with the following

relation,

S∗ = f(P ∗) =
1

∫

∞

0
β(τ)e−µ(τ,P ∗)dτ

.

Substituting the above solution in the second equation in (4.2) we have the following

equation in P ∗. G(P ∗) = 0 where

G(P ) =
a2f(P )

1 + cf(P )
− d+ k

(

Λ−
a1Pf(P )

1 + cf(P )
−m0f(P )

)∫

∞

0

α(τ)eµ(τ,P
∗)dτ.

The existence of a solution P ∗ in the above equation will automatically lead to the

existence of the equilibrium point.

We observe that f(0) = Λ
m0R

P

0

and hence we have

G(0) =

(a2 − cd)
Λ

m0RP
0

− d

1 + cf(0)
+ kΛ

(

1−
1

RP
0

)
∫

∞

0

α(τ)e−µ(τ)dτ,

=
d( R0

RP

0

− 1)

1 + cf(0)
+ kΛ

(

1−
1

RP
0

)
∫

∞

0

α(τ)e−µ(τ)dτ.

Since RP
0 > 1 and kcΛ

d
> R0 > RP

0 , where R0, R
P
0 are the basic reproduction number

and the prey invasion number as defined before. This implies G(0) > 0. Also if we make

P in the equation of G(P ) very large as compared to other variables we observe that as

P → ∞ we have G(P ) → a negative number. From the Intermediate Value Theorem

we can claim that there is a positive solution of P = P ∗ such that G(P ∗) = 0. This

positive solution of P ∗ proves the existence of a solution of the above equation. Hence,

there exists a positive solution for the system and we have the existence of coexistent

equilibrium. �

4.1. Stability Analysis.

4.1.1. Stability of disease free predator free equilibrium. In this section we shall proceed

to investigate the stability of the corresponding equilibrium points. We begin with

analyzing the equilibrium E1 = ( Λ
m0

, 0, 0).

Theorem 4.3. If RP
0 > 1 or R0 > 1 the equilibrium E1 is unstable. For RP

0 < 1 and

R0 < 1 the equilibrium E1 is locally asymptotically stable.

Proof. We investigate the local stability of the model. The idea is to expand the variables

about the equilibrium point using Taylor expansion. The following sets of equations show
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the expansion of the variables about the equilibrium point E1.

(4.3) S(t) =
Λ

m0
+ ξ(t), i(τ, t) = η(τ, t), P (t) = n(t).

We substitute the above expansion of the variables in the PDE model (2.1) to obtain

the following equations.

ξ′(t) = Λ− (
Λ

m0

+ ξ(t))

∫

∞

0

β(τ)η(τ, t)dτ −
a1(

Λ
m0

+ ξ(t))n(t)

1 + c( Λ
m0

+ ξ(t))
−m0(

Λ

m0

+ ξ(t)).(4.4)

Since we are investigating the local stability of the model we neglect the higher order

terms to obtain the following linearized version

ξ′(t) = −
Λ

m0

∫

∞

0

β(τ)η(τ, t)dτ −m0ξ(t)− a1
Λ

m0(1 + c Λ
m0

)
n(t).(4.5)

We continue the same idea for other variables as well. We substitute i(τ, t) and P (t) in

the given PDE equations and neglect the higher ordered terms to obtain the following

sets of linear equations,

(4.6)



































∂η(τ, t)

∂τ
+

η(τ, t)

∂t
= −m0η −mV η,

η(0, t) =
Λ

m0

∫

∞

0

β(τ)η(τ, t)dτ,

dn(t)

dt
= a2

Λ

m0(1 + c Λ
m0

)
n(t)− dn(t).

We transform the problem into an eigenvalue problem. We investigate solutions of the

form

ξ(t) = ξ̄eλt, η(τ, t) = η̄(τ)eλt, n(t) = n̄eλt.

We substitute these expressions in the linearized system and look for solutions of the

eigenvalue λ. We observe here that if λ is negative or has negative real parts, then the

perturbations η, n, ξ will asymptotically go to zero and the system will be locally stable

and if the value is positive or have positive real part, then the system will diverge away

from the equilibrium point. In this case we say that the equilibrium is unstable. The

equation for η was found to be separable.

η̄′(τ) = −(λ+m0 +mV (τ))η̄(τ)(4.7)

Solving the above equation we have

η(τ) = η(0)e−λτ−µ(τ),



A predator-prey model with immune response in infected-prey 11

where the definitions of µ(τ) is as defined before in the text. Substituting this in the

boundary condition we have the following characteristic equation

G(λ) = 1, where G(λ) =
Λ

m0

∫

∞

0

β(τ)e−λτ−µ(τ)dτ.

Solution of λ in this equation gives eigen values of the system (4.6). Observe that

G(0) = RP
0 . Also G(λ) → 0 as λ → ∞. Hence if RP

0 > 1 there is a positive real λ such

that G(λ) = 1 and hence the equilibrium is unstable.

If RP
0 < 1 , let λ = a + ib be a solution of the characteristic equation with a ≥ 0.

Then we have |G(λ)| ≤ G(0) = RP
0 < 1. Hence, any λ with positive real part cannot be

a solution to the characteristic equation G(λ) = 1.

We look for other eigen values in the linearized model when RP
0 < 1. Using the same

strategy as explained we obtain the following expression for λ

λ =
d

1 + cΛ
m0

(

R0 − 1
)

.(4.8)

This clearly shows that if R0 > 1 we have a positive eigenvalue and the equilibrium

is unstable. For R0 < 1, all eigenvalues from this present model are negative or have

negative real parts. Hence, this proves that the equilibrium is locally asymptotically

stable in the case when R0 < 1. �

4.1.2. Stability of disease free predator -prey equilibrium. We are now looking for the

stability of the equilibrium E2 = (S2, 0, P2).

Theorem 4.4. When RP
0 < R0 the equilibrium is locally asymptotically stable.

Proof. As explained above, this equilibrium represents the state when the number of

infected prey population does not exist, but the healthy prey and the predator coexists

in the environment. The equilibrium point satisfy the following sets of equations.

Λ−
a1S2P2

1 + cS2
−m0S2 = 0,

a2S2P2

1 + cS2
− d = 0.

(4.9)

We use our already defined technique to look for the local stability of this equilibrium

point. As explained in the case of the disease free, predator free equilibrium before

we expand the variables along the equilibrium values and linearize the model as given

below. We set,

S(t) = S2 + ξ(t), i(τ, t) = η(τ, t), P (t) = P2 + n(t).
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In order to expand the terms linearly about the equilibrium point, we replace this above

mentioned expansion in the given model to obtain the following sets of equations.

ξ′(t) = Λ− (S2 + ξ(t))

∫

∞

0

β(τ)η(τ, t)dτ −
a1(S2 + ξ(t))(P2 + n(t))

1 + c(S2 + ξ(t))
−m0(S2 + ξ(t)).

Since we are looking for the local stability of the equilibrium point, i.e. we are looking

if the initial value is very close to the equilibrium point, whether it will converge to the

equilibrium point asymptotically or it will diverge away from it, we can neglect the non-

linear terms. Hence, we are interested in the linear expansion and we ignore the higher

order terms. Substituting the equilibrium values, we obtain the following expression

ξ′(t) = −S2

∫

∞

0

β(τ)η(τ, t)dτ −
(a1P2ξ(t) + a1S2n(t))

1 + cS2
+

ca1S2P2ξ(t)

(1 + cS2)2
−m0(S2 + ξ(t)).

Linearizing the terms, using the equilibrium conditions and removing the higher order

terms we have the following form.

(4.10)















∂η(τ, t)

∂τ
+

∂η(τ, t)

∂t
= −(m0 +mV (τ) + αP2)η(τ, t),

η(0, t) = S2

∫

∞

0

β(τ)η(τ, t)dτ.

Using the techniques of differential equations, the solutions of a linear system are ob-

tained by substituting functions of the form η(τ, t) = η̄(τ)eλt and investigating the values

of λ, which results in a characteristic equation. The solutions of this characteristic equa-

tion gives the value of λ. Substituting in (4.10) we have,

(4.11)







dη̄

dτ
= −(λ+m0 +mV (τ) + αP2)η̄,

η̄(τ) = η̄(0)exp(−λτ − µ(τ, P2)),

where

µ(τ, P2) =

∫ τ

0

(m0 +mV (s) + α(s)P2)ds,

as defined before.

We substitute the above equation in the boundary condition of the linearized PDE

model to obtain the following characteristic equation H(λ) = 1 where

H(λ) = S2

∫

∞

0

β(τ)e−λτ−µ(τ,P2)dτ.

If λ is positive or has positive real part, then the solution blows up and hence the

equilibrium is unstable. If it is negative, the perturbed term in the expansion asymptot-

ically goes to zero and hence the equilibrium is locally asymptotically stable. Here, we
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have assumed that the eigenvalues completely determine the local behavior of the PDE

model.

We observe that

H(0) =
Λ

m0R0

∫

∞

0

β(τ)e−µ(τ,P2)dτ.

Hence

H(0) ≤
Λ

m0R0

∫

∞

0

β(τ)e−µ(τ)dτ =
Λ

m0R0S3
=

RP
0

R0
.

The following theorem gives the local stability of this equilibrium point.

Lemma 4.1. When RP
0 < R0 the characteristic equation H(λ) = 1 cannot have a root

with positive real part.

Proof of Lemma:

Let us assume that H(λ) = 1 for some λ = a + ib where a > 0. Then we have

|H(λ)| ≤ H(0) ≤
RP

0

R0

< 1,

which is a contradiction to our assumption that H(λ) = 1 for some λ = a + ib where

a > 0. Hence no solution exists for roots with positive real part. �

We have already shown that for the case RP
0 < R0 , the model involving η has only

eigenvalues which are negative or with negative real parts.

When RP
0 < R0 we look for other eigenvalues present in the model. We can claim

that the system is locally asymptotically stable, only when all eigenvalues present in

the model are negative or have negative real parts. This involves solving the following

equations.














dξ(t)

dt
= −

(a1P2ξ(t) + a1S2n(t))

1 + cS2
+

ca1S2P2ξ(t)

(1 + cS2)2
−m0ξ(t),

dn(t)

dt
=

(a2P2ξ(t) + a2S2n(t))

1 + cS2

−
ca2S2P2ξ(t)

(1 + cS2)2
− dn(t).

Using the same concept explained above we look for eigenvalues of the equation in the

form, ξ(t) = ξeλt and n(t) = neλt. This leads to solving the following sets of equations.

(4.12)















λξ = −
(a1P2ξ + a1S2n)

1 + cS2

+
ca1S2P2ξ

(1 + cS2)2
−m0ξ,

λn =
(a2P2ξ + a2S2n)

1 + cS2
−

ca2S2P2ξ

(1 + cS2)2
− dn.
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Since this reduces to a linear ODE model, looking for eigen values in the present model

is same as finding the eigenvalues of the following Jacobian.

J =









−m0 −
a1P2

(1 + cS2)2
− a1S2

(1+cS2)

a2P2

(1 + cS2)2
0









.

Clearly we have Det(J) > 0 and tr(J) < 0. Hence all eigenvalues are negative or

have negative real parts. This proves that when RP
0 < R0, the equilibrium is locally

asymptotically stable. �

4.1.3. Stability of Predator free equilibrium. Now we turn to the third equilibrium, where

the predator goes to extinction, but the prey population co-exists in both the healthy

and diseased individuals. The equilibrium is given by E3 = (S3, i3(τ), 0) where the

variables satisfy the following equations.

(4.13)



































Λ− S3

∫

∞

0

β(τ)i3(τ)dτ −m0S3 = 0,

di3(τ)

dτ
= −(m0 +mV (τ))i3(τ),

i3(0) = S3

∫

∞

0

β(τ)i3(τ)dτ.

Theorem 4.5. The equilibrium E3 defined above is locally asymptotically if and only if

the predator invasion reproduction number Rp
i < 1 and unstable if and only if RP

i > 1.

Proof. To achieve the local stability of the model, we follow the same technique defined

in the previous part of this article viz. linearizing and analyzing the asymptotic behavior

of the perturbed term. We linearize the system about the equilibrium points as follows,

S(t) = S3 + ξ(t), i(τ, t) = i3(τ) + η(τ, t), P (t) = n(t).

We substitute this expansion in the original equation to observe the behavior. This

reduces the system to the following form.

(4.14)



















































dξ(t)

dt
= Λ− (S3 + ξ(t))

∫

∞

0

β(τ)(i3(τ) + η(τ, t))dτ

−
a1(S2 + ξ(t))n(t)

1 + c(S2 + ξ(t))
−m0(S2 + ξ(t)),

∂η(τ, t)

∂τ
+

∂η(τ, t)

∂t
= −(m0 +mV (τ))η(τ, t)− α(τ)i3(τ)n(t),

η(0, t) = S3

∫

∞

0

β(τ)η(τ, t)dτ + ξ(t)

∫

∞

0

β(τ)i3(τ)dτ
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The predator equation in the similar way reduces to the form given below.

(4.15)

dn(t)

dt
=

(

(a2 − cd) Λ
m0R

P

0

− d

1 + cS3
+ kΛ(1−

1

RP
0

)

∫

∞

0

α(τ)e−µ(τ)dτ

)

n(t)

=

(

d( R0

RP

0

− 1)

1 + cS3
+ kΛ(1−

1

RP
0

)

∫

∞

0

α(τ)e−µ(τ)dτ

)

n(t)

= f1n(t),

where

f1 =
d( R0

RP

0

− 1)

1 + cS3
+ kΛ(1−

1

RP
0

)

∫

∞

0

α(τ)e−µ(τ)dτ.

This shows that the predator equation is a linear ODE and it can be solved using the

methods for solving the linear Ordinary Differential Equations. Solving the equation we

have

n(t) = n(0)ef1t.

Note that RP
i > 1 ⇒ f1 > 0. Since f1 is an eigenvalue of the system, it is clear that the

system is unstable if RP
i > 1.

Also RP
i < 1 ⇒ f1 < 0 and hence we have n(t) → 0 as t → ∞. In the case when

RP
i < 1 we look for the solution of η(τ, t) and ξ(t). To investigate the system we let

η(τ, t) = η(τ)eλt and ξ(t) = ξeλt. This leads to the following set of equations.

(4.16)
dη(τ)

dτ
= −(λ +m0 +mV (τ))η(τ) ⇒ η(τ) = η(0)e−λτ−µ(τ).

Substituting the solution in the boundary condition leads to the following form of the

equation, which will finally lead to the characteristic equation. Details of the computa-

tional work have been explained below,

η(0) = ξ

∫

∞

0

β(τ)i3(τ)dτ + S3

∫

∞

0

β(τ)η(τ)dτ.

From (4.14) we have

ξ =
−η(0)

λ +m0

.

Substituting in the previous equation, we have the following characteristic equation.

R(λ) = 1,

where

R(λ) =
−1

λ+m0

∫

∞

0

β(τ)i3(τ)dτ + S3

∫

∞

0

β(τ)e−µ(τ)−λτdτ.

As we have explained before, the roots of this characteristic equation will give the local

stability of this equilibrium point. The form of the perturbations assumed in the text,



16

tells us that if the root λ is negative or has a negative real part, then local stability can

be established in the model, otherwise the solutions will diverge and the equilibrium will

be unstable. The following Lemma below establishes the result.

Lemma 4.2. R(λ) = 1 cannot have roots with positive real parts.

Proof of Lemma: We begin our proof by the method of contradiction. Let us assume

G(λ) = 1 for some λ = a + ib for some a ≥ 0. This reduces the equation R(λ) = 1 to

the following form,

1 +
1

λ+m0

∫

∞

0

β(τ)i3(τ)dτ = S3

∫

∞

0

β(τ)e−µ(τ)−λτdτ.(4.17)

Since ℜ(λ) > 0 we have

∣

∣S3

∫

∞

0

β(τ)e−µ(τ)−λτdτ
∣

∣ < S3

∫

∞

0

β(τ)e−µ(τ)dτ = 1.

But the LHS of the equation (4.17) is

1 +
1

λ+m0

∫

∞

0

β(τ)i3(τ)dτ = 1 +
k

λ+m0

,

where

k =

∫

∞

0

β(τ)i3(τ)dτ > 0.

Hence we have

|LHS| > ℜ(LHS) = 1 +
k(a+m0)

(a+m0)2 + b2
> 1.

Which is a contradiction. This establishes the theorem.

This result proves that this equilibrium is locally asymptotically stable when RP
i < 1.

�

5. Global stability of the predator-free equilibrium.

In this section we are going to prove the global stability of the equilibrium with

no predator under certain conditions. We first establish the following Proposition and

Lemma before we state the final theorem.

Proposition: The semiflow Ψ defined by the solution of the equation 2.1 is

Ψ(t, S0, i0, P 0) := (S(t), i(., t), P (t)),

is a mapping Ψ : [0,∞)× χ+ → χ+ with Ψ(t,Ψ(s, .)) = Ψ(t+ s, .), ∀t, s ≥ 0. and Ψ(0, .)

being the identity map. A set K in χ+ is called global compact attractor for Ψ, if K is
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a maximal compact invariant set and if for all bounded sets B of χ+, ∃r > 0 such that

Ψ(t, B) ⊂ U, ∀t ≥ r.

Proposition: The semiflow Ψ has a global compact attractor.

Proof. We show that Ψ satisfies the assumptions of the Lemma 3.2.3 and Theorem 3.4.6

in .

We split the function Ψ into two parts given as follows.

Ψ(t, u0) = Ψ̂(t, u0) + Ψ̃(t, u0),

such that Ψ̂(t, u0) → 0 as t → ∞, ∀u0 ∈ χ, where the corresponding functions are

represented by the following form.

Ψ̂(t, u0) = (0, 0, î(., t)) and Ψ̃(t, u0) = (S(t), P (t), ĩ(., t)) where the functions î and ĩ

are solutions of the following system.

(5.1)















(δt + δτ )̂i = −m0î−mV (τ )̂i− α(τ)P î,

î(0, t) = 0,

î(τ, 0) = i0(τ)

and

(5.2)



















(δt + δτ )̃i = −m0ĩ−mV (τ )̃i− α(τ)P ĩ,

ĩ(0, t) = S(t)

∫

∞

0

β(τ)i(τ, t)dτ,

ĩ(τ, 0) = 0.

PDE are not satisfied in a strict, but integral sense. Moreover the functions î, ĩ are

non-negative. First we show that ĩ → 0 as t → ∞.

Let ν(t) =
∫

∞

0
î(τ, t)dτ . Integrating the equation for î, over τ ∈ [0,∞) we obtain,

(5.3)

δtν(t) + î(∞, t)− î(0, t) = −m0 −m

∫

∞

0

V (τ )̂i(τ, t)dτ − P (t)

∫

∞

0

α(τ )̂i(τ, t)dτ,

ν ′ = −î(∞, t)−m0ν −m

∫

∞

0

V (τ)i(τ, t)dτ − P (t)

∫

∞

0

α(τ )̂i(τ, t)dτ

Since î(0, t) = 0. We observe that

ν ′ ≤ −m0ν.

Solving the equation we obtain ν(t) ≤ e−m0tν(0). This implies that
∣

∣

∣

∣

∣

∣
Ψ̂(t, u)

∣

∣

∣

∣

∣

∣
≤

e−m0t ||u||. Let us define a function k(t, r) = eµtr. Since î and ĩ are non-negative

functions, we have

Ψ̂ ≤ Ψ, Ψ̃ ≤ Ψ.
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Note that, if ||Ψ(t, u0)|| = N(t) and m = min(m0, d), then N(t) satisfies the following

equation.

N ′ ≤ Λ−mN ⇒ N(t) ≤ (||u0||+
Λ

m
)e−mt λ

m
.(5.4)

This shows that

a) for every ball with radius r > Λ
m

is invariant and attracts all bounded sets or Ψ is

bounded dissipative.

b) The orbits of all bounded sets are bounded i.e. ∀c1 > 0, ∃c2 > 0 such that

||Ψ(t, u0)|| ≤ c2, ∀t ≥ 0, whenever ||u0|| ≤ c1.

Ψ̂ and Ψ̃ also has these properties.

Next, suppose the initial data are in a bounded set, e.g. a ball, i.e., ||u0|| = |S0| +

|P 0|+ ||i0|| ≤ K, where K is some constant.

We will show that for a fixed time t, the family of functions,

(S(t), P (t), ĩ(., t)) = Ψ̃(t, u0),

is a compact family of functions. Then Ψ will be asymptotically smooth by Lemma

3.2.3 and have a compact attractor by Theorem 3.4.6. Hence by previous observation,

{Ψ(t, u0) : t ≥ 0, ||u0|| ≤ K} is bounded.

To show compactness we use Frechet-Kolmogorov theorem for compactness in L1.

Boundedness is trivial. We need to show that

lim
r→∞

∫

|̃i(τ + h, t)− ĩ(τ + h, t)|dτ = 0,

∫

|̃i(τ + h, t)− ĩ(τ + h, t)|dτ ≤

∫

|π(τ + h)||B(t− τ − h)− B(t− τ)|dτ

+

∫

|B(t− τ)||π(t+ τ − h)− B(τ)|dτ.

From the model equation we have S ′ ≤ Λ−B(t)−m0S and iτ + it ≤ −m0i. Integrating

the second equation with respect to τ we have, −B(t) + I ′ ≤ −m0I, where I(t) =
∫

∞

0
i(τ, t)dτ . Adding the two equations and using the notation N = S + I we have

N ′ ≤ Λ−m0N . Integrating leads toN ≤
λ

m0
+Ce−m0t. This proves that S+I is bounded.

Hence P is also bounded. Let each of them is bounded by the total population bound say

M . Let us assume that β, α, V are bounded functions and β(τ) ≤ β, α(τ) ≤ α, V (τ) ≤ V
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From the definition of B(t) = S(t)
∫

∞

0
β(τ)i(τ, t)dτ ≤ MβM since S, I are bounded.

Differentiating the equation we have

B′ = S ′

∫

∞

0

β(τ)i(τ, t)dτ + S

∫

∞

0

β(τ)it(τ, t)dτ

= S ′

∫

∞

0

β(τ)i(τ, t)dτ + S

∫

∞

0

β(τ)[−iτ −mV i+ αPi]dτ

≤ ||S ′||βM +Mβ(0)B(t) +MβM +MmβVM +MβαM

= K + LB ≤ R.

(5.5)

From the previous equation we have

|B(t− τ − h)− B(t− τ)|dτ ≤ |B′(ξ)|h ≤ Rh.

Also note that π(τ + h) is bounded in L1 norm. The second integral can be shown to

be uniformly convergent by using the inequality for 0 ≤ x, y ≤ M ,

|e−x − e−y| ≤
e2M

2M
|x− y|.

The uniform continuity of B implies that the integral can be made arbitrarily small

independent of the family of functions. This proves the compactness of Ψ̃ �

Theorem 5.1. The predator free boundary equilibrium is globally asymptotically stable

when RP
0 > 1 and R0 < RP

0 , under the circumstances that the predator feeds on the prey

selectively, i.e. the predator only feeds on healthy prey and ignore the diseased ones.

Proof. In this section we show the global stability of this equilibrium in the case when

α = 0 i.e. the predator does not feed on diseased prey. The equilibrium is given

as E3 = (S3, i3(τ), 0). We develop the following Lyapunov function, V (t) given by

V (t) = Vs(t) + Vi(t). We set up each of the parts as follows.

Vs(t) =
1

S3

(

a2
1 + cS3

(S − S3 − S3 ln(
S

S3

)) + a1P

)

.(5.6)

Differentiating Vs with respect to time t, we have

(5.7)
dVs

dt
=

1

S3

[

a2
1 + cS3

(

1−
S3

S

)

(

Λ−m0S −
a1SP

1 + cS
− S

∫

∞

0

β(τ)i(τ, t)dτ
)

+ a1
( a2SP

1 + cP
− dP

)

]

=
1

S3

[

a2
1 + cS3

(

1−
S3

S

)

(

m0(S3 − S)−
a1SP

1 + cS

)

+ a1

( a2SP

1 + cS
− dP

)

]

+
1

S3

(

a2
1 + cS3

(1−
S3

S
)

)(

S3

∫

∞

0

β(τ)i∗(τ)dτ − S

∫

∞

0

β(τ)i(τ, t)dτ

)
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which can be rearranged in the form,

dVs

dt
= −

a2m0

SS3(1 + cS3)
(S − S3)

2 +
a1a2P

S3(1 + cS)

(

S −
S − S3

1 + cS3

)

−
a1dP

S3

+(1−
S3

S
)

∫

∞

0

β(τ)i3(τ)

(

1−
Si(τ, t)

S3i3(τ)

)

dτ

= −
a2m0

SS3(1 + cS3)
(S − S3)

2 +
a1P

S3

(

a2S3

1 + cS3

− d

)

+l

∫

∞

0

β(τ)i3(τ)

(

1−
Si(τ, t)

S3i3(τ)
+

i(τ, t)

i3(τ)
−

S3

S

)

dτ

= −
a2m0

SS3(1 + cS3)
(S − S3)

2 +M + lH,

where

M =
a1P

S3

(

a2S3

1 + cS3
− d

)

< 0,

when RP
i < 1 and

H =

∫

∞

0

β(τ)i3(τ)

(

1−
Si(τ, t)

S3i3(τ)
+

i(τ, t)

i3(τ)
−

S3

S

)

dτ

and

l =
a2S3

1 + cS3
.

We define

Vi(t) = l

∫

∞

0

z(τ)g(
i(τ, t)

i3(τ)
)dτ,

where the function

g(x) = x− 1− ln(x), and z(τ) =

∫

∞

τ

β(s)i3(s)ds.

With this formation we have the function changes to

Vi(t) = l

∫

∞

0

z(τ)g(
B(t− τ)

i3(0)
)dτ = l

∫ t

−∞

z(t− s)g(
B(s)

i3(0)
)ds,(5.8)

using the transformation s = t− τ

Differentiating the above form of Vi we have

V ′

i (t) = z(0)g(
B(t)

i3(0)
) +

∫ t

−∞

z′(t− s)g(
B(s)

i3(0)
)ds(5.9)

Using the derivative of z′(τ) = −β(τ)i3(τ) we have

V ′

i (t) = l

∫

∞

0

β(τ)i3(τ)

(

g(
i(0, t)

i3(0)
)− g(

i(τ, t)

i3(τ)
)

)

dτ

= l

∫

∞

0

β(τ)i3(τ)

(

i(0, t)

i3(0)
−

i(τ, t)

i3(τ)
− ln(

i(0, t)

i3(0)
) + ln(

i(τ, t)

i3(τ)
)

)

dτ.

(5.10)
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Since we have V ′ = V ′

s + V ′

i = P + lH + V ′

i . Let us consider the term, lH + V ′

i .

lH + V ′

i =

∫

∞

0

β(τ)i3(τ)
(

1−
Si(τ, t)

S3i3(τ)

−
S

S3
+

i(0, t)

i3(0)
− ln(

i(0, t)

i3(0)
) + ln(

i(τ, t)

i3(τ)
)
)

dτ.

(5.11)

We observe that
∫

∞

0

β(τ)i3(τ)
( i(0, t)

i3(0)
−

Si(τ, t)

S3i3(τ)

)

dτ = 0.

This reduces the equation to

lH + V ′

i =

∫

∞

0

β(τ)i3(τ)
(

1−
S

S3

− ln(
i(0, t)

i3(0)
) + ln(

i(τ, t)

i3(τ)
)
)

dτ.(5.12)

We also have the relation
∫

∞

0

β(τ)i3(τ)
(

1−
Si(τ, t)

S3i3(τ)

i3(0)

i(0, t)

)

dτ = 0.

Adding this to the equation lH + V ′

i we have the following form

lH + V ′

i =

∫

∞

0

β(τ)i3(τ)C(τ)dτ,

where

C(τ) = 2−
i(τ, t)

i3(τ)

S

S3

i3(0)

i(0, t)
−

S3

S
− ln(

i(0, t)

i3(0)
) + ln(

i(τ, t)

i3(τ)
) + ln(

S

S3

)− ln(
S

S3

)

=
(

1−
S

S3
+ ln(

S

S3
)
)

+
(

1−
i(τ, t)

i3(τ)

S

S3

i3(0)

i(0, t)
+ ln(

i(τ, t)

i3(τ)

S

S3

i3(0)

i(0, t)
)
)

≤ 0.

Hence lH + V ′

i ≤ 0. We have already shown P ≤ 0. This proves that V ′ ≤ 0 although

V ≥ 0. Note that V ′ = 0 if and only if S = S3, i(τ, t) = i3(τ), P = 0. from Lassale’s

invariance principle we can show that the equilibrium is globally stable when RP
0 > 1

and R0 < RP
0 .

�

6. Numerical simulations

In this section we simulate the behavior of the immuno-eco-epidemiological model

(2.2)-(2.1). We use Matlab to solve the model. We use Matlab’s ode23s routine to solve

the ODE model (2.2) and a finite difference numerical scheme to solve the PDE (2.1).

As a first scenario, we simulate the case for which global stability occurs, that is when

RP
0 > 1 and R0 < RP

0 . Figure 1 illustrate the behavior.

Figure 1 gives the time-dependent behavior of three curves. The top panel represents

the growth in the number of virus V . The middle panel shows the total infected prey
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Figure 1. Plots of V (τ), I(t) and P (t) with parameters as in text.

population I(t) where

I(t) =

∫

∞

0

i(τ, t)dτ.

The bottom panel shows the number of predator P (t) with respect to time. The param-

eters for the immune system are r = 10, K = 10000, η = 0.5, ρ = 0.5, A = 5000, µ = 0.1

and the parameters for the epidemiological system are Λ = 1000, m0 = 0.5, a1 = 0.2, a2 =

0.05, m = 0.01, d = 0.1, k = 0.5, c = 0.1. In this case α = 0. The approximate values

of the reproductive numbers computed by the code are R0 = 900, RP
0 ≈ 4.7 ∗ 109, and

RP
i ≈ 2.1 ∗ 10−7. The Figure shows that the number of infected prey population is

globally stable as it approaches a finite non-zero value whereas the number of predator

population dies out eventually. The virus within the prey stabilizes at a positive value.

The numerical simulation clearly demonstrates our result presented in the manuscript

on global stability.

In the second simulation we consider a different scenario, where the disease dies out,

while the predator persists. We simulate this scenario in Figure 2.

Figure 2 shows that when the predator predates on infected individuals, the predator

may persist while the disease is eliminated from the prey population. Panel one in the
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Figure 2. Plots of V (τ), I(t) and P (t) with parameters as in text.

figure again represents the growth in the number of virus V . Panel two shows the total

infected prey population I(t) and panel three demonstrates the number of predator P (t)

with respect to time. The parameters for the immune system are r = 10, K = 10000, η =

0.5, ρ = 0.5, A = 5000, µ = 0.1 and the parameters for the epidemiological system are

Λ = 1000, m0 = 0.5, a1 = 0.2, a2 = 0.1, m = 0.01, d = 0.1, k = 0.5, c = 0.1. In this case

α is not zero and is given by the step function

α(τ) =

{

0 τ < 0.25

2 τ > 0.25.

The values of the reproduction numbers with this choice of parameters are R0 = 1900,

RP
0 ≈ 4.7 ∗ 109 and RP

i ≈ 7.2 ∗ 108. The graph clearly shows that for this particular

choice of parameters the number of infected prey population approaches zero whereas the

number of predator population stabilizes at non-zero values. This numerical simulation

extends the analytical results in the manuscript.

7. Conclusions

This paper is focused on a model merging three separate branches of study namely

ecology, epidemiology and immunology. This model is termed an immuno-eco-epide-
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miological model. The role of the within-host status of the pathogen in the prey has

not been given much attention. Consideration of the number of virus particles and the

status of the immune response inside an infected prey individual in a predator-prey

dynamics gives an entirely different approach to the predator-prey-disease system. How

the predator-prey dynamics impacts the immunological factors in the diseased prey and

conversely, how the within-host pathogen dynamics impacts the predator-prey dynamics

are questions of paramount importance. Significant amount of further study is necessary

to fully understand their mutual interrelation.

In this article we investigate what we believe is the first immuno-eco-epidemiological

model. We define within-host reproduction number and between-host reproduction num-

ber of the diseases as well as two invasion numbers of the predator: one predator invasion

number in the absence of disease and another – in the presence of disease. We find that

the predator-prey-disease system has four equilibria: disease and predator-free equilib-

rium, predator-free equilibrium, predator-prey disease-free equilibrium and coexistence

equilibrium. Furthermore, we find that the predator and disease-free equilibrium is

locally asymptotically stable if both the reproduction number of the disease and the

predator invasion number in the absence of disease are less than one. The disease-free

predator-prey equilibrium is locally stable if the predator invasion number in the ab-

sence of disease is smaller than the disease reproduction number. The predator-free

prey-disease equilibrium is locally stable if the predator invasion number in the presence

of disease is smaller than one, and unstable if the predator invasion number in the pres-

ence of disease is larger than one. Finally we show that the predator-free prey-disease

equilibrium is globally asymptotically stable. We establish the global stability result

using a Lyapunov’s function.

This paper assumes the disease in a prey population only, which can be extended

to include the disease dynamics inside the predator population. The general model

involving both infected predator and prey populations, can be used as a greater measure

how the balance in the eco-system can be maintained.
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