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Abstract. This article introduces a novel model that studies the major factors jeop-

ardizing the TB control programme in China. A previously developed two strain TB

model is augmented with a class of individuals not registered under the TB control

programme. The paper investigates the basic reproduction number and proves the

global stability of the disease free equilibrium. The presence of three endemic equilib-

ria is established in the model. With the help of numerical simulations a comparative

study has been performed to test the validity of the model presented here to the real

data available from the Ministry of Health of the People’s Republic of China. Sensi-

tivity and elasticity analysis gives the key parameters that would govern the successful

tuberculosis control in China.
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1. Introduction

Tuberculosis or TB (short for tubercles bacillus) is a common and, if left untreated,

often deadly infectious disease in humans. This disease is caused by various strains

of mycobacteria. The strain, responsible for most cases of the disease in humans, is

Mycobacterium Tuberculosis [1]. TB is mainly a pulmonary disease but can also infect

other parts of the human body. It is an aerosol carrier disease which spreads when people

cough, sneeze or spit. It is mainly asymptomatic in humans, but a certain percentage of

latent TB patients progress towards active TB. Individuals with active TB are infectious.

Nearly a third of the world population is affected by this disease [2]. The 13th annual

report published by World Health Organization (WHO) estimated about 9.27 million

cases of TB in 2007, 55% [3] of which are in Asia. The top two leading countries in the

number of TB cases are India (2.0 million ) and China (1.3 million) [3].

In 1990s WHO established a new wing of the Stop TB Strategy, called DOTS (directly

observed treatment, short course) to monitor the spread of Tuberculosis in the world.
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The primary components of DOTS include government commitment in TB control, diag-

nosis based on sputum-smear microscopy tests done on patients who actively report TB

symptoms, direct observation short-course chemotherapy treatments, a definite supply

of drugs, and standardized reporting and recording of cases and treatment outcomes [4].

Many countries are now ready to accept DOTS to control the spread of TB. Short-course

chemotherapy is the most effective treatment strategy available at present. According

to a study performed in [5] the potential effects of DOTS in developing countries are

much higher, compared to the results attained in the industrialized countries where

drugs became available in 1940’s. The success of chemotherapy in controlling TB lies

in decreasing the number of deaths due to TB [6]. In spite of all the control strategies,

appearance of drug resistant strains is of significant concern due to treatment failure or

long exposure to the treatment[7]. WHO has undertaken a number of steps to stop the

conversion of wild strains into drug-resistant strains. Measures include reforming the

strategies undertaken by DOTS in TB control programmes[8]. Geographical distribu-

tion of multi-drug resistant (MDR) strains is higher in Russia, Israel, Ecuador and some

provinces of China [9].

Tuberculosis has always been a significant problem in China. China ranks second in

the number of TB cases in the world. Detection rate increased very slowly in 1990s. At

the same time a high conversion rate to MDR was observed. The outbreak of severe

acute respiratory syndrome (SARS) in 2003, exposed China’s malfunctioning health

care system. Several reforms have been applied following the 2003 SARS outbreak.

In 2004 and 2005, country’s 64% and 80% respectively of the tuberculosis cases have

been diagnosed and treated under the Tuberculosis control programmes [21]. A new

five-year initiative program was announced on 1 April 2009 which primarily aims to use

innovative technologies to improve the detection and treatment of tuberculosis (TB) in

China. Apart from all the programmes undertaken by the government there are still

inherent problems in the country which are yet to be resolved. This includes the low

case detection rate of TB for a group of individuals who are not registered in the TB

control programme [10]. Poverty plays a big role in governing this fact. Rural migrants

working in urban areas lack proper conditions to have medical insurance and they often

fail to visit the health care institutions [11, 12, 13, 14]. They are termed as ”floating”

population [10]. There is no record or any data in the government register of the TB

control programme of these population. They continue to move around with acute TB

infections without receiving any proper treatment. It is also hard to distinguish them

from the general mass, since they lack any kind of records. They develop an acute

MDR due to lack of treatment. In this paper we identify this class as a distinct part of
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our model. It is expected that proper control of TB cannot be achieved if this class is

neglected, as it serves as a source of TB infection.

We structure our discussion in this paper in the following way. Section 2 discusses

the TB model in China. In Section 3 basic reproduction number R0 has been calculated

along with identification of different equilibria and their stability. Section 4 - sensitivity

analysis of some parameters have been performed. In section 5 we compare the model

presented in this paper with the real data available from Ministry of Heath in China. In

section 6 we extend our model to include other factors which affect TB in China. Figure

1 presents an overview of the incidence TB infected cases in China over the years. It

is clear from the graph, that TB incidence declines in the period 2003-2007 after the

outbreak of SARS. Effectiveness of government in controlling TB resulted in a steady

decline of the incidence since then.
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Figure 1. (Left)(Fig.a) Data showing the number of infected persons out of
every 105 persons in the population from 2003-2007; (Right)(Fig.b) Graph of
the number of reported incidence per year (out of every 105 persons in the

population).

2. A Tuberculosis Model With Application To TB Spread In China

This paper discusses a Tuberculosis transmission model based on the conditions preva-

lent in China. As discussed in the Introduction, a huge percentage of the population

in China does not go through the proper TB control programme offered by the Chinese

government and other world organizations. This leads to a large pool of undetected

infectious TB cases which are recognized as unregistered TB cases. In our paper we

consider both registered and unregistered TB cases; prioritizing the unregistered ones,

which jeopardize the effectiveness of TB control measures in China and other countries

where this problem exists.



4 X.Z. Li, S.Bhattacharya, J.Y.Yang, M.Martcheva

S

Ls Lr Lu

Is I r Iu

 

 
(

)
s
s

u
u

I
I

φ
σ

β
β

+

  (1 )
s

γ τ−

 
(

)
r
r

u
r
u

I
I

φ
β

β
+

 
(

)

r
r

ur
u

I

I

φ
σ
β

β
+

 (1 ) ( )
r r ur u
I Iφ σ β β− +

  
r
τ

 
(

)
r
r

s
s

t
u

I
I

I
φ
σ

β
β

β
+

+

 
s

γτ

 

 
u u

p Iβ

 (1

)
u
u

p

I
β

−

 (1 )( )
r r ur u
I Iφ β β− +

 (1

)(

)

s
s

us
u

I

I

φ
β

β

−

+

 ( )
s s us u
I Iφ β β+

b

 δ  δ  δ

undetecteddetected

q
ω ω

Figure 2. TB model in China. The dotted line separates the detected com-
partment from the undetected compartment.

We divide the TB transmission framework in two compartments named ”Detected”

and ”Undetected”. The detected compartment represents the TB cases which are regis-

tered under TB Control programmes and receive proper treatment. We take advantage

of the model proposed in [9] to model this compartment. We follow their procedure

and discuss the effect of both sensitive and resistant strains in the model. Population

size in the absence of TB has been assumed to be asymptotically constant. Five ma-

jor classes comprise the host population in the detected compartment – Susceptible (S),

who have never been exposed to any strain of the Mycobacterium tuberculosis and hence

they do not have any antibodies against the bacteria. The susceptible are infected at

a rate proportional to the existent cases of infectious TB individuals both from the

compartment where they are detected under TB control programmes and also from the

undetected compartment. It is not possible to distinguish an infectious TB individual

in the undetected compartment from the host population. Thus, we include infection

by infectious individuals in the undetected compartment; however, the newly infected
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individuals may be detected as infected, and enter the infected classes in the detected

compartment. A person may be identified to have latent or infectious TB, under suitable

tests when the bacteria invades the host cells. A part of the newly infected individuals

move to the latent class upon infection and the other part immediately develops active

TB. The latent class (L) represents the percentage of hosts who have been infected by

the bacteria but have not developed active tuberculosis. Bacteria is present inside the

host cell in an inactive state. Latent TB represents the state of TB which is not symp-

tomatic or contagious. But latent individuals have the risk of developing active TB. A

percentage of latent individuals develops active TB and moves to the infected (I) class

due to endogenous reactivation (ω) or exogenous reinfection. Infected class consists of

individuals with active TB who are capable of infecting others. Both the latent and

infected class have been subdivided into two subclasses: drug resistant and drug sen-

sitive class. The drug resistant class represents the form of TB which is resistant to

most anti-TB drugs available. Some believe that they emerge from the ”mismanage-

ment of multidrug-resistant TB (MDR-TB)” [15]. Drug sensitive class consists of the

cases which have not developed MDR-TB yet. It is assumed that a portion of latent

individuals infected with the drug sensitive strain (Ls) may develop latent drug resistant

TB (Lr) or may be superinfected by an infectious individual with a drug-resistant TB

(Ir). A fraction (γ) of the class infected by the sensitive strain may develop active TB

due to treatment failure of non-resistant strains.

The other compartment in our model named as ”Undetected” compartment repre-

sents the percentage of individuals who are unregistered in the TB control programmes.

As a first step we assume the infection in this class results from the interaction of indi-

viduals in this compartment only. All secondary cases caused by an infected individual

registered under TB control programme are assumed to be monitored by the authorities

and hence they do not fall into the unregistered compartment. In section 6 we propose

an extension of baseline model that lifts that restriction and allows individuals infected

by an infectious individual in the detected compartment to remain undetected. To build

our baseline model we use a simple TB model proposed in [16] to design the TB frame-

work in the undetected compartment. It comprises of three main groups; susceptible

(S), latent (Lu) and infected (Iu) classes. A fraction (p) of the susceptible individuals

infected by TB develop active TB whereas the rest have latent TB. TB individuals in the

latent stage develop active TB by endogenous reactivation at a constant rate (q). There

is no treatment since they are not detected. We do not separate them into drug sensitive

and drug resistant strain since they are not verified by any TB control agency and data

for such a distinction do not exist. One part of them may develop drug sensitive strain



6 X.Z. Li, S.Bhattacharya, J.Y.Yang, M.Martcheva

and the other part drug resistant. The infected with sensitive or drug-resistant TB enter

the respective classes in the detected compartment.

The detected-undetected compartmental model describing TB in China is presented

as the system of differential equations as follows.

dS

dt
= b− [βsIs + βrIr + (βus + βur + βu)Iu + µ]S,

dLs

dt
= (1− ϕ)(βsIs + βusIu)S + (1− γ)τsIs

−[ω + σϕ(βsIs + βusIu) + σ(βrIr + βurIu) + µ]Ls,

dLr

dt
= (1− ϕ)(βrIr + βurIu)(S + σLs)

−[ω + σϕ(βsIs + βusIu + βrIr + βurIu) + µ]Lr + τrIr,

dIs
dt

= ϕ(βsIs + βusIu)S + [ω + ϕσ(βsIs + βusIu)]Ls − (τs + µ+ δ)Is,

dIr
dt

= ϕ(βrIr + βurIu)[S + σ(Ls + Lr)] + [ω + ϕσ(βsIs + βusIu)]Lr

+γτsIs − (τr + µ+ δ)Ir,

dLu

dt
= (1− p)βuIuS − (q + µ)Lu,

dIu
dt

= pβuIuS + qLu − (δ + µ)Iu.

(1)

The parameters have been defined and their approximate values have been presented in

Table 1. Some of the parameter values were estimated using simulation results and the

rest were obtained from the reference cited in the table.

Table 1 Two-strain model parameters

Symbol Definition Value Cite

βs, βr Detected transmission coefficient 0.01,0.008 Estimated
b, µ birth/recruitment rate and natural death rate 0.2, 1

65
[9]

ϕ Rate of detected individuals that develop active TB 0.1 [9]
σ Superinfection rate 0.25 [9]
δ Death rate due to TB 0.01 [9]
ω Rate of endogenous reactivation of latent TB 0.0002 [9]
τs, τr Rate of treatment of active sensitive and resistant TB 2,1.5 [9]
γ Sensitive TB treatment failure acquiring resistance 0.0003(or γ = 0) [9]
βu, βus, βur Undetected transmission coefficient 0.07,0.01,0.01 Estimated
p Proportion of undetected individuals that develop active TB 0.2 Estimated
q Rate of endogenous reactivation of undetected latent TB 0.0002 Estimated

3. Equilibria and their stability

In this section we investigate the equilibria and study their stability.
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It is easy to observe from the model presented in Section 2 that N = S+Ls+Lr+Is+

Ir+Lu+Iu ≤ b
µ
. We can normalize this factor and call N̂ = Ŝ+L̂s+L̂r+Îs+Îr+L̂u+Îu ≤

1 where Ŝ = µS
b
, L̂s = µLs

b
, L̂r = µLr

b
, Îs = µIs

b
, Îr = µIr

b
, L̂u = µLu

b
, Îu = µIu

b
. We can

replace the terms in the model presented in (1) and have the following set of equations.

dŜ

dt
= b′ − [β′

sÎs + β′
rÎr + (β′

us + β′
ur + β′

u)Îu + µ]Ŝ,

dL̂s

dt
= (1− ϕ)(β′

sÎs + β′
usÎu)Ŝ + (1− γ)τsÎs

−[ω + σϕ(β′
sÎs + β′

usÎu) + σ(β′
rÎr + β′

urÎu) + µ]L̂s,

dL̂r

dt
= (1− ϕ)(β′

rÎr + β′
urÎu)(Ŝ + σL̂s)

−[ω + σϕ(β′
sÎs + β′

usÎu + β′
rÎr + β′

urÎu) + µ]L̂r + τrÎr,

dÎs
dt

= ϕ(β′
sÎs + β′

usÎu)Ŝ + [ω + ϕσ(β′
sÎs + β′

usÎu)]L̂s − (τs + µ+ δ)Îs,

dÎr
dt

= ϕ(β′
rÎr + β′

urÎu)[Ŝ + σ(L̂s + L̂r)] + [ω + ϕσ(β′
sÎs + β′

usÎu)]L̂r

+γτsÎs − (τr + µ+ δ)Îr,

dL̂u

dt
= (1− p)β′

uÎuŜ − (q + µ)Lu,

dÎu
dt

= pβ′
uÎuŜ + qL̂u − (δ + µ)Îu.

where b′ = µ, β′
s = bβs

µ
, β′

r = bβr

µ
, β′

u = bβu

µ
, β′

us = bβus

µ
, β′

ur = bβur

µ
. Without loss of

generality we can replace the prime terms and the hat functions and use the same set of

equations as defined in (1) under section 2. As a result we may assume in our analysis

that b = µ without loss of generality. So we can consider our solution in the set defined

by

S := {(S, Ls, Lr, Is, Ir, Lu, Iu) ∈ (R+)7 : S + Ls + Lr + Is + Ir + Lu + Iu ≤ 1}.

This is clearly a positively invariant set and the solutions with initial conditions in this set

do not leave the set. We observe that system (1) has four steady states, more precisely,

one disease free equilibrium E0 = (S0, 0, 0, 0, 0, 0, 0), and three endemic equilibria

Er = (Sr, 0, Lr
r, 0, I

r
r , 0, 0), Ers = (S+, L+

s , L
+
r , I

+
s , I

+
r , 0, 0)

and

Ersu = (S∗, L∗
s, L

∗
r, I

∗
s , I

∗
r , L

∗
u, I

∗
u).

First we calculate the basic reproduction number and analyze the stability of disease

free equilibrium.
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3.1. Disease free equilibrium. The disease free equilibrium is given by

E0 = (S0, 0, 0, 0, 0, 0, 0).

Since we restrict our solution to the set S without loss of gentility we can assume our

S0 = 1. The basic reproduction number R0, in general, is defined to be the expected

number of secondary cases produced, in a completely susceptible population, by a typical

infected individual during its entire period of infection. Here,we follow the recipe of [17]

to calculate the basic reproduction number which may not give the expected number of

secondary cases. O. Diekmann et al in [18] have shown that R0 is the spectral radius of

the next generation matrix. The basic reproduction number for the model presented in

system (1) is given by the following expression.

R0 = max{R0s, R0r, R0u},

where

R0s =
βs(ω + ϕµ)

(µ+ ω)(µ+ δ + τs)− (1− γ)τsω
,

R0r =
βr(ω + ϕµ)

(µ+ ω)(µ+ δ + τr)− τrω
,

R0u =
βu(q + µp)

(µ+ δ)(µ+ q)
.

(2)

Detail calculations have been provided in the Appendix A1. Following the recipe of [17]

we have shown that disease free equilibrium is locally asymptotically stable, i.e. the

disease become extinct when R0 < 1. The existence of endemic equilibria is possible

only when R0 > 1. This leads us to the following theorem.

Theorem 3.1. The disease free equilibrium (E0) is locally stable for R0 < 1 (i.e. all

R0s < 1, Ror < 1 and R0u < 1) and unstable for R0 > 1 (at least one or more of R0s > 1

, R0r > 1 or R0u > 1 is true).

The proof of this theorem is provided in Appendix A2.

Now we proceed to prove the global stability of the disease free equilibrium.

Theorem 3.2. If R0 < 1 then the disease free equilibrium is globally asymptotically

stable in the set S.

Proof. First we prove the global stability of the decoupled system represented by the

following equations
dLu

dt
= (1− p)βuIuS − (q + µ)Lu,

dIu
dt

= pβuIuS + qLu − (δ + µ)Iu.

(3)
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We consider the following Lyapunov function.

L = qLu + (q + µ)Iu.

Hence

˙L(t) = βuIu[(q(1− p) + p(q + µ))S − (q + µ)(δ + µ)].

Note that since R0 < 1 we have R0u < 1, and since we restrict our solution to the set S
we have S ≤ 1. Then

S ≤ 1 ⇒ [q(1− p)βu + p(q + µ)βu]S − (q + µ)(δ + µ)

≤ [(q + µp)βu − (q + µ)(δ + µ)]

= (q + µ)(δ + µ)[R0u − 1],

This proves

˙L(t) ≤ Iu(q + µ)(δ + µ)[R0u − 1] ≤ 0,

in the set S. Also note that L̇ = 0 if and only if Iu = 0. The largest invariant

is {L̇ = 0|Lu = 0, Iu = 0}. By Lassale’s Invariance principal system (3) is globally

asymptotically stable.

The global stability of the system defined by (S, Lr, Ls, Ir, Is) has been argued in [9]

by the use of numerical results when R0 < 1. We prove here this global stability for a

special case.

Proof of global stability in a particular case

We assume here ϕ = 0, γ = 0, (1− p)q + pβu(q+µp)
δ+µ

< 1. In this particular case we can

show global stability of the disease free equilibrium without treating the compartments

separately. We find a single Lyapunov function to prove this result.

For ϕ = 0, γ = 0, (1−p)q
(q+µp)

+ pβu

δ+µ
< 1, then the system reduces to the following form.

dS

dt
= b− [βsIs + βrIr + (βus + βur + βu)Iu + µ]S,

dLs

dt
= (βsIs + βusIu)S + τsIs − [ω + σ(βrIr + βurIu) + µ]Ls,

dLr

dt
= (βrIr + βurIu)(S + σLs)− (ω + µ)Lr + τrIr,

dIs
dt

= ωLs − (τs + µ+ δ)Is,

dIr
dt

= ωLr − (τr + µ+ δ)Ir,

dLu

dt
= (1− p)βuIuS − (q + µ)Lu,

dIu
dt

= pβuIuS + qLu − (δ + µ)Iu.

(4)
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We choose k such that qk < (δ + µ)(q + µp)− pβu(q + µp)− (δ + µ)(1− p)q. Note that

our last assumption is the case considered says that k may be chosen positive. We have:

qk + (δ + µ)(1− p)q + pβu(q + µp)

(δ + µ)(q + µp)
< 1.

We consider the following Lyapunov function,

L =
kβu

ω(βus + βur)
[ω(Ls + Lr) + (µ+ ω)(Is + Ir)] + (δ + µ)Lu +

βu(q + µp)

q
Iu.

Clearly L is positive. Hence

L̇ =
kβu

ω(βus + βur)
[((τs + µ+ δ)(µ+ ω)− ωτs)Is(R0sS − 1)

+((τr + µ+ δ)(µ+ ω)− ωτr)Ir(R0rS − 1)]

+Iu
βu

q
[(qk + (δ + µ)(1− p)q + pβu(q + µp))S

−(q + µp)(δ + µ)] + Lu(q + µ)(δ + µ)(R0u − 1)

Using the value for k we can have the following form of L̇,

L̇ =
kβu

ω(βus + βur)
[((τs + µ+ δ)(µ+ ω)− ωτs)Is(R0sS − 1)

+((τr + µ+ δ)(µ+ ω)− ωτr)Ir(R0rS − 1)

−µω(Ls + Lr)] + Lu(q + µ)(δ + µ)[R0u − 1]

+βu

q
Iu(q + µp)(δ + µ)[

qk + (δ + µ)(1− p)q + pβu(q + µp)

(δ + µ)(q + µp)
S − 1].

Since

S ≤ 1, R0 < 1 ⇒ R0s < 1, R0r < 1, R0u < 1,

and from the way k was chosen, we can see that L̇ ≤ 0. Also L̇ = 0 if and only if

Ls, Is, Ls, Ir, Lu, Iu are all zero. Note that the largest invariant set when (Ls, Is, Lr, Ir, Lu, Iu) =

(0, 0, 0, 0, 0, 0) is (S0, 0, 0, 0, 0, 0, 0).

Hence the set {x | L̇ = 0} is the singleton given by E0. By Lassale’s invariance

principle global stability can be established in this case. �

Note: In S solutions cannot be unbounded.

From the above statement it is clear that R0 < 1 implies the existence of disease free

equilibrium only, at least in the case when the additional assumptions are statisfied.

Now we discuss the situation when R0 > 1. Since we know, R0 = max(R0s, R0r, R0u),

R0 > 1 implies any one or more of R0r, R0s, R0u is greater than one. In this case one

can establish the existence of the endemic equilibria which we discuss in the following

section.
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3.2. Endemic Equilibria. Case 1. (Boundary Equilibria)

Investigating the existence of boundary equilibria we observed that this type of equi-

libria is attained in system (1) only when Iu = 0, Lu = 0. This simplifies the model to

the structure presented in [9]. We are not going to repeat the work by the authors of [9].

We merely state the following theorems that give conditions for existence of equilibria

in the case Iu = 0, Lu = 0. Detailed proof has been given in [9].

Theorem 3.3. There exists a unique non-trivial equilibrium of the form Er = (Sr, 0, Lr
r,

0, Irr , 0, 0) in system (1), for R0r > 1.

Theorem 3.4. The equilibrium Er is stable for R0s(Er) < 1 and unstable for R0s(Er) >

1, where

R0s(Er) =
Srβs(ϕ(µ+ σβrI

r
r ) + ω)

(µ+ σβrIrr + ω)(µ+ δ + τs)− ωτs(1− γ)
.

is the invasion reproduction number of the sensitive strain at the equilibrium of the

resistant strain.

Theorem 3.5. The existence of the region of boundary equilibrium where both the re-

sistant and sensitive strains persists, i.e. Ers = (S+, L+
s , L

+
r , I

+
s , I

+
r , 0, 0), is given by the

curve R0s(Er) > 1.

Case 2. (Co-existence Equilibria)

Now we verify the condition for the existence of co-existence equilibrium represented

as

Ersu = (S∗, L∗
s, L

∗
r, I

∗
s , I

∗
r , L

∗
u, I

∗
u).

In this paper we present analytical results for the case ϕ = 0 and p = 0. We use

numerical simulations to explain the existence in the general case when ϕ ̸= 0. We show

in this text the existence of these equilibria in a specific region of the three dimensional

(R0s, R0r, R0u) space. We present the following theorem which explains the existence of

Ersu.

Theorem 3.6. Assume R0u > 1. In the region of the three-dimensional space {R0s, R0r, R0u}
enclosed by the planes which satisfy the following conditions,

(A1) R0u > R0r,

(A2) b > µ+βs+βr

R0u
,

(A3) βu

βtR0u
− 1

R0s
> βurR0u

σβk
( 1
R0r

− βu

βtR0u
),

where

βt = βur + βus + βu, βk = βus + βu

a co-existence equilibrium exists.
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Proof. Detailed proof has been given in the Appendix A3. We provide a few simplifica-

tions of some terms here. If we call

A =

ω
τs+µ+δ

(S
∗βsβu

βt
+ (1− γ)τs) +

ωγτs
(τs+µ+δ)(τr+µ+δ)

(S
∗βsβu

βt
+ τr)− (µ+ ω)

(µ+ ω)− ω
τr+µ+δ

(S
∗βrβu

βt
+ τr)

.

Note that A as defined above can be expressed as

A =

ωγτs
(τs+µ+δ)(τr+µ+δ)

(S
∗βsβu

βt
+ τr) +

ωβs

τs+µ+δ
( βu

βtR0u
− 1

R0s
)

ωβr

τr+µ+δ
( 1
R0r

− βu

βtR0u
)

.

We prove that both the top and the bottom of this fraction are positive. The four surfaces

in assumptions (A1)-(A3) enclose an area in the three dimensional space (R0s, R0r, R0u)

where there is possibility of existence of co-existence equilibria. Note that if a1 denotes

the following expression

a1 = σ(βrβk
ω

βt(τr + µ+ δ)
[A+

γτs
τs + µ+ δ

])− βurβs

βtS∗
ω

τs + µ+ δ
,

we show below that a1 > 0. Consider

P = σβrβk
ω

βt(τr + µ+ δ)
A− βurβs

βtS∗
ω

τs + µ+ δ
.

P can be simplified as follows:

P = σβrβk
ω

βt(τr + µ+ δ)
A− βurβs

βtS∗
ω

τs + µ+ δ

= σβrβk
ω

βt

[
A

(τr + µ+ δ)
− βurβs

σS∗
1

βrβk(τs + µ+ δ)

]
.

We denote by H the term inside the bracket, i.e.

H =
A

(τr + µ+ δ)
− βurβs

σS∗
1

βrβk(τs + µ+ δ)
.

H can be rewritten in the following form

H =
1

(τs + µ+ δ)

[ γτs
(τr+µ+δ)

(S
∗βsβu

βt
+ τr) + βs(

βu

βtR0u
− 1

R0s
)− βurβs

σS∗
1

βrβk
D]

D
,

where

D = βr(
1

R0r

− βu

βtR0u

).

From assumption (A3),

βs(
βu

βtR0u

− 1

R0s

)− βurβs

σS∗
1

βrβk

D

is positive. Hence, H is positive. This in turn implies that P is positive and a1 is positive.

We derive a quadratic equation in terms of Ls as a1L
2
s + a2Ls + a3 = 0, where a1 is the

same as above. We already showed that a1 is positive. We prove in the appendix that a3

is negative. Therefore, Ls is the unique positive solution of the quadratic equation. �
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Hence the co-existence equilibrium region is given by the region enclosed by the three

planes mentioned above.

Note: We observe that the expression for S∗ is given by 1
R0u

. Since S∗ belongs to

S, this is only possible when R0u > 1. Otherwise the last two equations of system 1

will only result in a trivial solution for (Lu, Iu) and hence only boundary equilibrium or

disease free equilibrium exists.

Figure 3 and Figure 4 show a simulated result for the existence of the coexistence

equilibrium using randomly chosen parameters. b = 0.75, βr = 0.001, βs = 0.10, βus =

0.10, βur = 0.05, βu = 0.05, δ = 0.2, µ = 0.01, τs = 2.0, q = 0.01, ω = 0.002, ϕ = 0.10, γ =

0.003, σ = 0.25, τr = 1.5.

Figure 3. (Left) Shows co-existence of S∗, L∗
s, L

∗
r , L

∗
u; (Right) Existence of Ir.

Figure 4. (Left) Existence of Is; (Right) Existence of Iu.

4. Sensitivity Analysis

A major role in governing the control of sensitive and resistant strains is played by

τs, τr, which represent the treatment rates of the TB individuals infected with drug

sensitive strains or drug resistant strains of the bacteria respectively. Over the years it

has been observed that due to the failure in the treatment of TB cases, a large proportion
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of TB infected individuals move to the drug-resistant class from the drug-sensitive class.

In epidemiological terms it signifies that these individuals develop a MDR strains as

a result of failure in TB treatment. This has a huge significance in China (see [10]

for discussion). The fraction of latent individuals infected by the drug-sensitive strain

that develop active TB, γ, also plays an important role in governing the number of

individuals in the two infected classes which are detected by TB control programme. In

Figure 5 we present a comparative study of the treatment of both drug resistant and

the drug sensitive strains for different treatment rates. Figure 5 shows an increase in

the proportion of individuals infected with MDR strains of virus; an increase, caused

primarily by treatment failure. On the other hand, the proportion of individuals infected

with drug sensitive strains decreases. Furthermore, Figure 5 also suggests that if the rate

of treatment for the sensitive strain increases, there is a greater possibility of controlling

the conversion rate of sensitive strains to drug resistant strains. This fact is supported by

Figure 6, which suggests that a 10 time increase in the value of γ reduces the proportion

of individuals with drug sensitive strain more than 20%. Data available from [10] give

that the MDR rate among the relapse TB cases in China is 17.1% which is significantly

higher compared to the new TB cases (calculated to be 7.6%). More recent surveys

in China show that the MDR rate is 5.7% among new TB patients and 25.6% among

previously treated cases [19]. The survey suggests that there is an annual emergence of

100,000 cases of MDR-TB in China only [19].

Figure 7 through Figure 9 explain the behavior of the reproduction number of the

resistant, sensitive, and the undetected class with respect to different parameters. Our

aim is to make the basic reproduction number R0 less than one, so that the disease be-

comes extinct. Since the basic reproduction number is the maximum of the reproduction

number of the three different classes (sensitive, resistant and undetected), we want all

of them below one. We first observe the behavior of these three reproduction numbers

separately and with respect to different parameters. The main factors governing TB

epidemiology is the treatment rate and the transmission rate. The left graph in Figure

7 and Figure 8 illustrate the behavior of the drug resistant strain reproduction number

and drug sensitive strain reproduction number, respectively. For a fixed treatment rate,

the reproduction number increases sharply with an increase in the transmission rate.

The rate is faster in the case of sensitive strain as compared to the resistant strain. As

expected, the reproduction numbers can be controlled with an increase of the successful

treatment rate as discussed in the above paragraph. The graphs on the right side of Fig-

ure 7 and Figure 8 discuss the behavior of the reproduction numbers in the respective

classes with death rate due to TB and transmission rate. It is observed that in both the
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classes with an increase in transmission rate the value of reproduction number increases.

For a fixed death rate due to TB, the reproduction number increases almost linearly

with the transmission coefficient. In Figure 9 we observe that either for a fixed natural

death rate or for death rate due to TB, reproduction number increases at an exponential

rate with transmission coefficient in this class. The increase is faster for lower values of

death rate, which from epidemiological perspective can be explained with much lower

social distancing within the population when the death rate is lower. From the above

discussion we can conclude that decrease in the transmission rate may result in lowering

the reproduction number below one, which may result in the extinction of the disease.

To understand how the reproduction number of the undetected class can be lowered,

2003 2004 2005 2006 2007 2008 2009
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(y)

P
ro

po
rt

io
n 

of
 d

ru
g−

re
si

st
en

t i
nf

ec
tio

ns

Different resistent treatment rate τ
r

τ
r
=1.5

τ
r
=6

2003 2004 2005 2006 2007 2008 2009

0.145

0.15

0.155

0.16

0.165

0.17

Time (y)

P
ro

po
rt

io
n 

of
 d

ru
g−

se
nt

iti
ve

 in
fe

ct
io

ns

Different sensitive treatment τ
s

τ
s
=2

τ
s
=4

Figure 5. (Left) Proportion of drug-resistant infections over the time for
different treatment rate τr; (Right) Proportion of drug-sensitive infections over
the time for different treatment rate τs.
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Figure 6. (Left) Proportions of drug-sensitive infections for different pro-
portion acquired resistance γ due to failure in treatment of sensitive strains
infected TB individuals; (Right) Proportions of drug-resistant infections for
different proportion acquired resistance γ from class Is.

we consider its elasticity with respect to key parameters that can be affected by control
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Figure 7. (Left) Drug resistant reproduction number (R0r) plotted with re-
spect to different treatment rate (τr) and transmission coefficient (βr); (Right)
R0r plotted with death rate due to TB (δ) and transmission coefficient (βr).
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Figure 8. (Left) Drug sensitive reproduction number R0s plotted with dif-
ferent treatment rate (τs) and transmission coefficient (βs); (Right) R0s plotted
with death rate due to TB (δ) and transmission coefficient (βs).
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R0u plotted with death rate due to TB (δ) and transmission coefficient (βu).

measures. In particular, we define elasticity of quantity Q with respect to parameter ν
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as

εQν =
∂Q

∂ν

ν

Q
.

Improving economic conditions and lifestyle in China lead to lowering the rate of en-

dogenous reactivation q. Various lifestyle changes, such as social distancing, can impact

the transmission rate βu. The elasticities of these two quantities are given as

(4.1) εR0u
βu

= 1 εR0u
q = 0.004

Elasticity of βu means that 10% decrease in βu will result in 10% decrease in R0u. As we

see from the elasticities, control measures that impact the transmission coefficient are

far more efficient than changes that affect the endogenous reactivation rate q. Improving

lifestyle and reducing contact rate in the general population may be such measures.

5. Comparison of our model to TB transmission in China

In this section we compare our results to the real data available from the Ministry

of Health Department of China [20]. We use the parameter values as stated in table 1

of this paper. We observe some difference between the data obtained from Ministry of

Health in China and the simulated result in the initial phase. This may be caused due

to overestimation of some parameter values. But in the later phase nearly from 2004

onwards it almost coincides with the actual data obtained from [20]. The graph shows

a decline in the infectious cases from 2003 onwards. The trend in the later years shows

that TB is gradually stabilizing. It is attaining its equilibrium value. Due to availability

of data on total infected cases only, we cannot analyze in this text the proportion of

sensitive and drug resistant strain separately. We merely compare the total infected

cases given by (Ls + Is + Lr + Ir) with the given data. Please consult Figure 10 (a) for

the comparisson between the data and the simulation.

As discussed in the sensitivity analysis, for a better control of this disease, which in

technical terms means lowering the reproduction number below one, it is essential to pri-

oritize the parameters that primarily determine the transmission of TB. As we discussed

in the previous section, these parameters govern the control of the basic reproduction

number. The most important parameter seems to be the contact rate which is a part

of the three respective transmission rates βs, βr and βu. In epidemiological terms the

transmission rate can be controlled by control of the interaction of the infected individ-

uals with the susceptible individuals. We have seen, that even with proper and efficient

treatment, if the contact rate increases (increasing the respective transmission rates),

the basic reproduction increases sharply, almost exponentially. If it is possible to control

the transmission parameter, even with lower treatment rate, TB can be controlled to a
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larger extent. It is particularly important to control this parameter in the undetected

class. We have seen, from the graphs presented in the previous section, that the basic

reproduction number for the undetected class rises at an exponential rate, which is faster

as compared to the detected class. This is mainly due to the unavailability of treatment

in this class. As discussed in [10], this class tends to jeopardize the effective control

strategies in mainland China undertaken by the Chinese government and other health

organizations in the world. Hence success of TB control programme lies in lowering

the transmission rate of the disease. An increase in successful treatment rate, which

means increasing τs and τr and lowering γ also may result in controlling TB. Treatment

without success, results in the increase of γ which at a later stage decreases the number

of infected individuals with drug sensitive strain and increases the number of infected

individuals with drug resistant strain. Increase in the proportion of individuals affected

with the drug resistant strain should be avoided, despite that increase in γ has the pos-

itive effect of decreasing the reproduction number of the drug sensitive class. Increase

in τs and increase in γ both decrease the reproduction number of the sensitive strain,

which is evident from Figure 10 (b). It is interesting to note that the increase in τs and

γ does not directly affect the reproduction number of the resistant strain. However,

it may lower the invasion reproduction number of the sensitive strain, thus effectively

strengtening the invasion capabilities of the resistant strain essentially leading to the

population being infected by resistant TB only. Hence the best method which we can

infer from all the discussion made in the text is to control the transmission rate in all

the three classes and adopt mixed treatment at the same time.
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6. Extension of the model

The TB model presented in section 2 of this paper assumed that the spread of TB in

the undetected class is mainly due to the number of infections caused by the infected

under the class classified as undetected. We can relax this assumption and include the

infections in this class caused by the infected who are detected under the TB control

program. The extension helps us to look at our scenario from a more general perspective.

Detection of TB virus in the undetected compartment is not done due to the difficulties

discussed in [10] and also in the previous sections. But an individual who does not go

for treatment may obtain the infection from an individual who was detected by the TB

control agencies. Hence a more general approach would be to include this scenario in

our model. We follow the model in [9]. The following shows a general model for TB

transmission in China, represented by the system of equations.



dS

dt
= b− [βsIs + βrIr + (βus + βur + βu)Iu + β′

sIs + β′
rIr + µ]S,

dLs

dt
= (1− ϕ)(βsIs + βusIu)S + (1− γ)τsIs

−[ω + σϕ(βsIs + βusIu) + σ(βrIr + βurIu) + µ]Ls,

dLr

dt
= (1− ϕ)(βrIr + βurIu)(S + σLs)

−[ω + σϕ(βsIs + βusIu + βrIr + βurIu) + µ]Lr + τrIr,

dIs
dt

= ϕ(βsIs + βusIu)S + [ω + ϕσ(βsIs + βusIu)]Ls − (τs + µ+ δ)Is,

dIr
dt

= ϕ(βrIr + βurIu)[S + σ(Ls + Lr)] + [ω + ϕσ(βsIs + βusIu+)]Lr

+γτsIs − (τr + µ+ δ)Ir,

dLu

dt
= (1− p)(βuIu + β′

sIs + β′
rIr)S − (q + µ+ σp(β′

sIs + β′
rIr + βuIu))Lu,

dIu
dt

= p(βuIu + β′
sIs + β′

rIr)S + (q + σp(β′
sIs + β′

rIr + βuIu))Lu − (δ + µ)Iu.

(5)

New parameters which have been introduced in this section are β′
s and β′

r. Both these

parameters determine the transmission in the undetected class of TB due to the individ-

uals infected under drug sensitive and drug resistant strain in the detected compartment.

The remaining parameters used in the system of equation (5) have the same meaning as

before.

Figure 11 shows the bifurcation diagram of R0r and R0u. The variation in the treat-

ment rate plays an important role in determining variation in the graph. We obtained

the graph by varying the treatment rate in the sensitive strain class only. It has been
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Figure 11. Bifurcation diagram showing the change of both R0u which is
the reproduction number under undetected compartment and R0u which
is the reproduction number of resistant strain under detected compart-
ment.

observed that with an increase in the rate of treatment in the detected class the rate of

progression of TB shifts towards the undetected class which lacks treatment. We observe

that as the rate of TB increases from 1.6 to 2.5 the slope of the graph increases. γ, which

determines the disease progression rate from the drug sensitive strain to drug resistant

strain, has been assumed to be very small so that we can actually look at the behavior

of TB progression when proper treatment is available in the detected compartment.We

used the following numerical value of the parameters to obtain the graph

ϕ = 0.482, p = 0.64, βu = 0.03174042, βs = 0.085, βus = 0.028, βr = 0.19835,

βur = 0.81, q = 0.02, β′
s = 0.015, β′

r = 0.026, µ = 1/65, ω = 0.2,

γ = 0.001, τr = 2.3, δ = 0.008

The next part of our analysis includes comparing the present model with the one

presented before. The present model is more realistic as far as the progression of disease

is concerned, but due to the complexities involved in the model we restrict our analysis

only to numerical results of this model. It is interesting to observe that with the same

choice of parameters, the model presented in Section 2 shows the asymptotic stability

of the disease free equilibrium whereas the extended model shows the stability of the

coexistent equilibrium. The value of R0 calculated for both the models have been ob-

served to be less than one (0.0253841 for extended model and 0.000137049 for the model

in Section 2). The number of susceptible in the general model decreases whereas that

number in the model of section 2 (restricted model) increases thereby proving the global

stability of the disease free equilibrium. The number of latent and infected sensitive
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individuals behaves almost in a similar fashion. The only difference lies in the fact that

in the general model it stabilizes at a higher value proving the stability of coexistence

equilibrium. The latent and infected resistent individual behave completely opposite

in both models. In the general case these numbers steadily increase whereas in the re-

stricted case they decrease. When we introduce the infection caused in the undetected

compartment by the infected individuals in the detected compartment the behavior of

the general model becomes significantly different. The latent class behaves in the similar

fashion in the early stages but it changes its behavior as time increases. The infected

number of individuals in the undetected compartment increases and then stabilizes at a

higher value which is absolutely different from the behavior in the restricted model where

this number goes to zero eventually. These changes are mainly due to the introduction

of the new factor β′
r and β′

s introduced in this new model. Hence we can infer that the

present model which talks about the general progression of TB can have potentially very

different behavior which needs further investigation to characterize its structure. The

numerical value of the parameter which shows this behavior is given as follows.

b = 67.1782;βs = 0.00248;βus = 0.003;βr = 0.00816;βur = 0.005;µ = 1/80; δ =

0.0149;ϕ = 0.0949;σ = 0.0149;ω = 0.000023; τs = 8.87; τr = 5.891; γ = 0.00003;β′
r =

0.3;βu = 0.00000690489; p = 0.0000901; q = 0.0149;β′
s = 0.234;
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Figure 12. (left) Behavior for susceptible individual in the extended
model (right) Behavior for susceptible individual in the restricted model

7. Discussion

Chinese government has taken the TB control programme seriously after the out-

break of SARS in 2003. But yet the unregistered class of people continues to serve as

a TB-reservoir in the population, possibly destabilizing the disease-free equilibrium and

hampering an effective control of TB in this country. In this paper we provided a detailed

study of this class and also compared projections obtained from the model with real data.
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Figure 13. (left) Behavior for latent sensitive individual in the extended
model (right) Behavior for latent sensitive individual in the restricted
model
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Figure 14. (left) Behavior for latent resistant individual in the extended
model(right) Behavior for latent resistant individual in the restricted
model
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Figure 15. (left) Behavior for infected sensitive individual in the ex-
tended model (right) Behavior for infected sensitive individual in the re-
stricted model

Using the method explained in [17], we calculated the basic reproduction number R0.

The disease free equilibrium is locally stable if R0 < 1 and unstable when R0 > 1. We

find the existence of four equilibria for the model discussed in this paper. For different

situations different types of endemic equilibria are present and locally stable. We also

prove the global stability of the disease-free equilibrium in a particular case which sug-

gests that subthreshold equilibria arising from the interaction of the two subpopulation
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Figure 16. (left) Behavior for infected resistant individual in the ex-
tended model(right) Shows the behavior of Infected resistant population
for the restricted case
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Figure 17. (left)Behavior for latent undetected individual in the ex-
tended model (right) Shows the behavior of latent undetected population
for the restricted case
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Figure 18. (left) Behavior for infected undetected individual in the ex-
tended model(right) Shows the behavior of Infected undetected population
for the restricted case

and the multiple strains do not occur in this particular case. As per the complexity in-

volved in the model, it is hard to explicitly calculate the co-existence equilibrium. Hence

we have analytically proved the existence of this equilibrium in a particular situation

and provided simulation results to show stable co-existence, when parameters do not

satisfy the assumptions in the special case. We use MATLAB to calculate the values

and DEdiscover to draw the simulated graphs.We also used Mathematica for drawing

the graphs in the extended model. A detailed report on the sensitivity analysis has been



24 X.Z. Li, S.Bhattacharya, J.Y.Yang, M.Martcheva

provided in the text which discusses, the behavior of the solutions and R0 with changes

in the parameter values. We also prepare a comparative study of the real data available

from MOHC and the predictions obtained from our model. The model seems to provide

a satisfactory result when compared with the real data. Hence we surmise that this

model is suitable for making predictions on tuberculosis growth in the future. We have

shown, in this text (by simulation results), that TB in China can be controlled to a

greater extent if the health professionals focus more on controlling the transmission rate

of TB and adopt efficient mixed treatments. Although effective treatment undertaken

by the government of China and other world health care organizations would result in

lowering the incidence rate, the presence of the undetected compartment, a class which

is deprived of any treatment, serves as a TB-reservoir and will not allow for easy elim-

ination of the disease in China. Improving economic conditions and lifestyle in China

seem to contribute positively to lowering the prevalence in the undetected class, how-

ever, better methods for identification of TB cases and lowering the transmission rate

need to be implemented in order to achieve the goal. One way of doing that may consist

of screening for TB individuals who move from rural to urban areas.

Our original model has some restrictions. According to the assumptions made in the

first half of this paper, the effect of infected individuals, under the detected class, on

the undetected class of TB infected patients has been neglected. There is high chance

of infection spreading to a person in the unrecognized class from the group of registered

individuals under TB programme unless infectious registered individuals are isolated

from the general population. In an extension of the model we incorporate transmission

from the detected to the undetected compartment. Furthermore, we take into account

the recovery of TB patients in this class and reactivation, i.e. we consider the undetected

compartment with reinfection similar to the detected compartment, and explore its

behavior. Comparing the two models we conclude that for very similar parameters,

quite different outcomes are possible. Further studies may be necessary to elucidate the

sensitivity of our results to the model.

8. Appendix

8.1. A1. Reproduction number. We follow the method explained in [17] to derive

the reproduction numbers. First we need to separate the new infections from other

factors. We define F(X) to be the vector which represents the rate of new infections

that appear in the population where X is a vector given by X = (Ls, Lr, Is, Ir, Lu, Iu, S).
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In this model

F(X) = {(1− ϕ)(βsIs + βusIu)S, (1− ϕ)(βrIr + βurIu)S, ϕ(βsIs + βusIu)S,

ϕ(βrIr + βurIu)S, (1− p)βuIu, pβuIu, 0}

and the equilibrium point is represented as E0 = (0, 0, 0, 0, 0, 0, S0). Without loss of

generality we assume S0 = 1. Hence, E0 = (0, 0, 0, 0, 0, 0, 1).

We express our system as Ẋ = F(X) − V(X), where V(X) = V−(X) − V+(X ).

According to the definition used in [17], V+(X) denotes the vector representing rate of

transfer of individuals into each class and V−(X) represents the rate of transfer out of

each class. Note that each of the elements in F ,V+,V− is positive. Following the recipe

presented in [17] we define the derivatives DF(E0) and DV(E0) in the following way.

DF(E0) =

(
F 0
0 0

)
, DV(E0) =

(
V 0
J3 J4

)

where F and V are 6 × 6 matrices defined by F = [∂Fi

∂xj
(E0)] and V = [∂Vi

∂xj
(E0)] with

1 ≤ i, j ≤ 6. We have

F =


0 0 (1− ϕ)βs 0 0 (1− ϕ)βu

0 0 0 (1− ϕ)βr 0 (1− ϕ)βu

0 0 ϕβs 0 0 ϕβu

0 0 0 ϕβr 0 ϕβu

0 0 0 0 0 (1− p)βu

0 0 0 0 0 pβu

 ,

and

V =


µ+ ω 0 −(1− γ)τs 0 0 0
0 µ+ ω 0 −τr 0 0
−ω 0 µ+ δ + τs 0 0 0
0 −ω −γτs µ+ δ + τr 0 0
0 0 0 0 q + µ 0
0 0 0 0 −q (δ + µ)

 .

The basic reproduction number is obtained by calculating the spectral radius of FV −1.

The above form of the matrices F and V clearly shows that FV −1 splits into two

distinct compartments. The first two eigenvalues R0s and R0r are obtained from the

first compartment. As expected it has been verified that they are the same as the ones

obtained by [9] in the case of the two strain model. The third eigenvalue of FV −1

represents the reproduction number for the undetected compartment. Hence we have
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the following values.

R0s =
βs(ω + ϕµ)

(µ+ ω)(µ+ δ + τs)− (1− γ)τsω
,

R0r =
βr(ω + ϕµ)

(µ+ ω)(µ+ δ + τr)− τrω
,

R0u =
βu(q + µp)

(µ+ δ)(µ+ q)
,

R0 = max(R0s, R0r, R0u) gives the basic reproduction number of TB for our model. This

completes the calculation of basic reproduction number.

8.2. A2. Proof of Theorem 3.2.

Proof. F , X and V are as defined in A1. We consider the system represented as Ẋ =

F(X)− V(X).

Define a set Xs = {x ≥ 0|xi = 0, i = 1, 2, ..., 6.}. Following the method explained in

[17] we need to establish the following conditions.

(A1) If x ≥ 0, then F ,V+,V− ≥ 0.

(A2) Let i represent the ith component of the vector then, if xi = 0 then V−
i = 0. In

particular if the first 6 components of the vector X are zero then the first 6 components

of the vector V− are also zero.

(A3) If i > 6 (where 6 is as defined in Xs), Fi = 0, (this corresponds to the uninfected

classes [9]).

(A4) If x ∈ Xs then Fi(x) = 0 and V+
i = 0 for i = 1, 2, ..., 6. This condition proves

the invariance of the disease-free subspace.

(A5) If F is set to zero then all eigenvalues of Df(x0) have negative real parts, where

Df(x0) represents the jacobian matrix about the DFE x0.

It is easy to verify the conditions (A1)-(A4). We prove the validity of (A5) in our

model here.

Note X0 = E0 = (0, 0, 0, 0, 0, 0, 1) and the jacobian matrix Df(x0) is given by

−(µ+ ω) 0 (1− γ)τs 0 0 0 0
0 −(µ+ ω) 0 τr 0 0 0
ω 0 −(µ+ δ + τs) 0 0 0 0
0 ω γτs −(µ+ δ + τr) 0 0 0
0 0 0 0 −(q + µ) 0 0
0 0 0 0 q −(δ + µ) 0
0 0 −βs −βr 0 −βus − βur − βu −µ


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Eigenvalues of the jacobian are −µ,−(δ+µ),−(q+µ) and the eigenvalues of the matrix

given by 
−(µ+ ω) 0 (1− γ)τs 0

0 −(µ+ ω) 0 τr
ω 0 −(µ+ δ + τs) 0
0 ω γτs −(µ+ δ + τr)


[9] has proved that the eigenvalues of this matrix have negative real part. Hence (A5)

is proved. By Theorem 2 in [17] it follows that E0 which represents the disease free

equilibrium in our model is locally asymptotically stable when R0 < 1 and unstable

when R0 > 1. �

8.3. A3. Proof of the existence of Co-existence equilibria.

Proof. We find the co-existence equilibria for the system (1) by solving the following sets

of equations.

0 = b− [βsIs + βrIr + (βus + βur + βu)Iu + µ]S,

0 = (βsIs + βusIu)S + (1− γ)τsIs − [ω + σ(βrIr + βurIu) + µ]Ls,

0 = (βrIr + βurIu)(S + σLs)− (ω + µ)Lr + τrIr,

0 = ωLs − (τs + µ+ δ)Is,

0 = ωLr + γτsIs − (τr + µ+ δ)Ir,

0 = (1− p)βuIuS − (q + µ)Lu,

0 = pβuIuS + qLu − (δ + µ)Iu.

(5)

Since there exist positive values of Lu and Iu, we get the value of S∗ by solving the last

two equations of system (5). Note the last two equation are a set of linear homogeneous

equations in terms of (Lu, Iu) given as,

0 = βuIuS − (q + µ)Lu,

0 = qLu − (δ + µ)Iu

From the algebra of equations we know that there exists a non-zero solution if and only

if the determinant of the matrix J (given below) is zero.

J =

(
−(q + µ) βuS

q −(δ + µ)

)
.

This gives the solution for S∗ as

S∗ =
(µ+ δ)(µ+ q)

qβu

.

Note that we can also represent S∗ as 1
R0u

. (Note that we have already assumed p = 0

in this case). Now we are left to solve the five dimensional system in (Ls, Lr, Is, Ir, Iu)
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to find the co-existence solution from following equations

0 = b− [βsIs + βrIr + (βus + βur + βu)Iu + µ]S,

0 = (βsIs + βusIu)S + (1− γ)τsIs − [ω + σ(βrIr + βurIu) + µ]Ls,

0 = (βrIr + βurIu)(S + σLs)− (ω + µ)Lr + τrIr,

0 = ωLs − (τs + µ+ δ)Is,

0 = ωLr + γτsIs − (τr + µ+ δ)Ir.

(6)

Solving the last two equations in (6) we have the following solutions.

Is =
ω

τs + µ+ δ
Ls,

Ir =
ω

τr + µ+ δ
(Lr +

γτs
τs + µ+ δ

Ls).

We can express Iu in terms of Is and Ir as

Iu =
b− (βsIs + βrIr + µ)S∗

βtS∗ .

where we recall that βt = βur + βus + βu. Adding the second and third equations of

system (6) we have the following equation

0 = [βsIs + βusIu + βrIr + βurIu]S + (1− γ)τsIs + τrIr − (µ+ ω)(Ls + Lr)

Substituting the expression for Iu and rearrangin terms, we obtain

0 = Is(
S∗βsβu

βt
+ (1− γ)τs) + Ir(

S∗βrβu

βt
+ τr)− (µ+ ω)(Ls + Lr) +

βus+βur

βt
(b− µS∗).

Expressing Is, Ir in terms of Ls, Lr we have

−Lr

[
ω

τr+µ+δ
(S

∗βrβu

βt
+ τr)− (µ+ ω)

]
= Ls(

ω
τs+µ+δ

(S
∗βsβu

βt
+ (1− γ)τs)+

ωγτs
(τs+µ+δ)(τr+µ+δ)

(S
∗βsβu

βt
+ τr)− (µ+ ω)) + βus+βur

βt
(b− µS∗).

We are now in a position to express Lr in terms of Ls as Lr = ALs +B where

A =

ω
τs+µ+δ

(S
∗βsβu

βt
+ (1− γ)τs) +

ωγτs
(τs+µ+δ)(τr+µ+δ)

(S
∗βsβu

βt
+ τr)− (µ+ ω)

−ω
τr+µ+δ

(S
∗βrβu

βt
+ τr) + (µ+ ω)

,

B =

βus+βur

βt
(b− µS∗)

−ω
τr+µ+δ

(S
∗βrβu

βt
+ τr) + (µ+ ω)

.

Since we assume that b = µ, and R0u > 1, we have

b− µS∗ = b− µ

R0u

> µ

(
1− 1

R0u

)
> 0.

We can rearrange the denominator of B in the following manner.

− ω

τr + µ+ δ
(
S∗βrβu

βt

+ τr) + (µ+ ω) =
ωβr

τr + µ+ δ
(
1

R0r

− βu

βtR0u

).
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Hence it is also a positive number from condition (A1). Therefore, B is a positive

number. Let’s consider A now. The argument above gives that the denominator of A is

positive. The numerator of A can be rearranged as

ω

τs + µ+ δ
(
S∗βsβu

βt

+ (1− γ)τs) +
ωγτs

(τs + µ+ δ)(τr + µ+ δ)
(
S∗βsβu

βt

+ τr)− (µ+ ω)

=
ωγτs

(τs + µ+ δ)(τr + µ+ δ)
(
S∗βsβu

βt

+ τr) +
ωβs

τs + µ+ δ
(

βu

βtR0u

− 1

R0s

),

which is positive from condition (A3). Thus we have shown that A and B are both

positive numbers. Now we proceed to find a positive solution of Ls. We express Lr, Is, Ir

in terms of Ls as explained above and substitute all of them in the third equation of the

system (6). We have the following form

0 = (S∗ + σLs)(βrIr(1− βur

βt
) + βur(b−µS∗)

βtS∗ − βurβs

βt
Is)− (ω + µ)Lr + τrIr,

0 = (S∗ + σLs)(βr
ω

τr+µ+δ
[(ALs +B) + γτs

τs+µ+δ
Ls])(1− βur

βt
) + βur(b−µS∗)

βtS∗

−βurβs

βt

ω
τs+µ+δ

Ls)− (ω + µ)(ALs +B) + τr
ω

τr+µ+δ
(ALs +B + γτs

τs+µ+δ
Ls).

Thus we obtain a quadratic equation in terms of L∗
s. We can rewrite as a quadratic in

Ls as

a1L
2
s + a2Ls + a3 = 0,

where

a1 = σ(βrβk
ω

βt(τr + µ+ δ)
[A+

γτs
τs + µ+ δ

])− βurβs

βt

ω

τs + µ+ δ
,

and

a3 = B[
S∗ωβrβk

βt(τr + µ+ δ)
+

βur(b− µS∗)

βtB
+

τrω

τr + µ+ δ
− (µ+ ω)]
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We can easily show that a3 < 0.

a3 = B[
S∗ωβrβk

βt(τr + µ+ δ)
+

βur(b− µS∗)

βtB
+

τrω

τr + µ+ δ
− (µ+ ω)]

=
βur(b− µS∗)

βt

+
ωβrB

τr + µ+ δ
[

βk

βtR0u

− 1

R0r

]

=
βur(b− µS∗)

βt

+

(βur+βus)(b−µS∗)
βt

−βu

βtR0u
+ 1

R0r

(
βk

βtR0u

− 1

R0r

)

= (b− µS∗)(
βur

βt

− βur + βus

βt

−βk

βtR0u
+ 1

R0r

−βu

βtR0u
+ 1

R0r

)

= (b− µS∗)(
βur + βus

βt

βus

βtR0u

−βu

βtR0u
+ 1

R0r

− βus

βt

)

= (b− µS∗)βus

βt
( βur+βus

βtR0u(
−βu

βtR0u
+ 1

R0r
)
− 1)

= (b− µS∗)
βus

βt

(
− βu

βtR0u
+ 1

R0r

) [ 1

R0u

− 1

R0r

]
,

which is clearly a negative number from condition (A1). Note that βk = βus + βu.

Positivity of a1 has been shown above. Thus there exists a positive real root for Ls.

Since Lr = ALs + B, where we have shown both A and B are positive, Lr is also

positive. From the structure of Is, Ir we can claim that they are also positive.

Iu =
b− (βsIs + βrIr + µ)S∗

βtS∗ >
b− (βs + βr + µ)S∗

βtS∗ ,

since Is, Ir are bounded by 1 in S. Using condition (A2) we can say that Iu is also

positive.

With a positive Iu and S∗, we can find a positive value of Lu from the last equation

of system (6). This proves the existence of Ersu for a special case. �
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