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Abstract. This article focuses on the study of an age-structured two-strain
model with super-infection. The explicit expression of basic reproduction num-
bers and the invasion reproduction numbers corresponding to strain one and
strain two are obtained. It is shown that the infection-free steady state is
globally stable if the basic reproductive number R0 is below one. Existence of
strain one and strain two exclusive equilibria is established. Conditions for lo-
cal stability or instability of the exclusive equilibria of the strain one and strain
two are established. Existence of coexistence equilibrium is also obtained under
the condition that both invasion reproduction numbers are larger than one.

1. Introduction. Understanding pathogens’ ability to respond to selective pres-
sures and change their genetic make-up is the key to combating numerous infectious
diseases. Mathematical modeling can aid that process by providing insight into the
mechanisms that sustain microorganisms’ genetic diversity. Mechanisms allowing a
strain that would normally be excluded to coexist with a competitively dominant
strain are called trade-off mechanisms. Trade-off mechanisms have been widely
investigated in the literature, particularly through ordinary differential equation
models. Super-infection (one of the strains takes over immediately a host infected
with another strain) [23, 20], co-infection (a host can be infected with two strains
for prolonged period of time) [21], cross-immunity (infection with one strain in
part protects against infection with another, after recovery from the first) [8, 9],
mutation (one of the strains mutates into the other) [4], host density-dependent
mortality [3] have all been identified to support coexistence of pathogen variants.
More recently Dhirasakdanon and Thieme establish that a vertically transmitted
strain may coexist with a more virulent horizontally transmitted strain either in
a coexistence equilibrium or in an oscillatory regime [10, 11]. Because of their
paramount importance in biology and public health, multi-strain models attract
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significant attention. Results of these research efforts have been summarized in
three topical reviews [15, 19, 26].

Biological theory postulates that multiple competitors cannot coexist on a sin-
gle resourse unless that resourse is heterogenous in some respect. Horst Thieme,
whose profound contributions to theory and modeling in biology we celebrate on
occasion of his 60th birthday, has been intrumental in the early justification of this
principle in mathematical epidemiology. The main result on competitive exclusion
of pathogen strains, established by Bremmerman and Thieme [5], shows that in the
simplest epidemiological ordinary differential equation model with multiple strains,
the strain with the largest reproduction number will persist and eliminate the re-
maining strains. Heterogeneity of the resourse may allow multiple competitors to
coexist, if they can partition the resourse and persist in different niches. Conse-
quently, heterogeneity of the host in age or space can be expected to allow for the
coexistence of multiple pathogen variants. This hypothesis has been justified in the
case of age heterogeneity of the host [18].

One of the important problems in development of infectious disease theory is the
impact of host and pathogen heterogeneity on the dynamics of the disease. There
is extensive research on the development and analysis of age-structured epidemic
models in the study of the dynamics of the deseases in humans [2, 12, 31, 14].
The main question addressed through age-structured epidemic models is whether
host age-structure, chronological or disease-induced, may lead to loss of stability
of the endemic equilibrium and sustained oscillations. The question stems from
the observation that the incidence of some childhood diseases follow seasonal pat-
tern (see Fig. 6.3 in [2]). Several articles, all of which authored or co-authored by
Horst Thieme, contribute significantly to the study of this question, particularly in
the one-strain case. The first key result establishes (using the tools of semigroup
theory) that in the most basic S-I-S age-structured single-strain epidemic model
the unique endemic equilibrium is globally stable and sustained oscillations do not
occur [6]. Thus, host age-structure by itself is not sufficient for sustained oscilla-
tions. However, Horst Thieme showed that in a simple age-structured S-I-R model
sustained oscillations may occur [25]. Furthermore, Thieme and Castillo-Chavez
[29, 30] showed that age-since-infection structure may also destabilize the endemic
equilibrium and lead to oscillations in an HIV/AIDS epidemic model. Their results
were numerically confirmed by Milner and Pugliese [22].

To acknowledge and celabrate Horst Thieme’s contributions to mathematical
biology, in this paper we introduce a two-strain version of the model discussed by
Busenberg, Iannelli and Thieme in [6]. We include super-infection, as the most
straight-forward extention of the single-strain S-I-S model in [6] is a model, nested
in the one considered in this article. Our two-strain age-structured S-I-S model
with super-infection is introduced in Section 2. As in [6] the total population size is
modeled by a linear age-structured McKendrick-von Foerster model whose growth
rate is assumed to be zero. Section 2 also contains rescaling and recasting of the
original model. Section 3 introduces the disease-free equilibrium, and establishes its
local and global stability. Section 4 determines the local stability of the single strain
equilibria. Section 5 establishes rigorously the presence of a coexistence equilibrium.
The mathematical tools, necessary for this task are somewhat different than the ones
previously used in the age-since-infection structured multi-strain models. Section 6
summarizes our results and outlines our goals for future work on the present model.
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2. The model formulation. In this section, we introduce an age-structured two-
strain model with super-infection. The total population P (a, t) is divided into three
classes: susceptible S(a, t), infected with strain one I(a, t), and infected with strain
two J(a, t). Susceptible individuals can become infected by strain one and move
to the class I(a, t), or infected by strain two and move to the class J(a, t). We
assume that those infected with strain two can come into a contact with infectious
individuals with strain one and become super-infected with the first strain. This
process is referred to as super-infection. We take the transmission rate λ1(a, t) in
the separable intercohort constitutive form for the force of infection generated by
I(a, t):

λ1(a, t) = k(a)

∫

∞

0

h1(a)I(a, t)da,

where h1(a) is the age-specific infectiousness for strain one, and k(a), the age-specific
susceptibility of susceptible individuals. We note that in essence what we have as-
sumed is that the age-specific contact rate of individuals age a with individuals age
b c(a, b) = c1(a)c2(b) is separable. The assumption for separability of the contact
rates is important part of our results. Without it different techniques may be nec-
essary to treat the problem. The term c1(a) can be absorbed in the coefficient k(a),
while the term c2(b) is absorbed into the function h1(a). Similarly, we take λ2(a, t)
in the separable intercohort constitutive form for the force of infection generated
by J(a, t):

λ2(a, t) = k(a)

∫

∞

0

h2(a)J(a, t)da,

where h2(a) is the age-specific infectiousness for strain two. In this article we assume
that the susceptibilities for the two strains are the same and given by k(a) but our
results can be easily and trivially extended to the case when they are different, that
is k1(a) 6= k2(a). The functions hi(a), k(a) have compact support and satisfy:

k(a), hi(a) ∈ L1(0,∞), k(a), hi(a) ≥ 0 on [0, A]

and k(a), hi(a) = 0 for a > A where i = 1, 2.

Furthermore, we assume that these functions are bounded with:

k̄ = sup
a∈[0,∞)

k(a), h̄i = sup
a∈[0,∞)

hi(a), for i = 1, 2.

The transmission coefficient in the case of super-infection is δλ1(a, t), where δ is the
coefficient of reduction or enhancement of infection at super-infection. In particular,
if δ > 1 then super-infection is more likely than the regular infection while if 0 <

δ < 1 then super-infection is less likely than the regular infection. If δ = 0 there
is no super-infection. We assume that all newborns are susceptible and that an
individual may become infected only through contact with an infectious individual.
We also assume that the disease-induced death rate can be neglected. With these
assumptions and δ = 0 our model is a straight-forward two-strain extension of the
model in [6], while with δ > 0 our model is a two-strain extension with super-
infection. The joint dynamics of the age-structured epidemiological SIS model are
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governed by the following partial differential equation problem:
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∂S(a, t)

∂a
+

∂S(a, t)

∂t
= −µ(a)S(a, t) − λ1(a, t)S(a, t) − λ2(a, t)S(a, t)

+γ1(a)I(a, t) + γ2(a)J(a, t),

∂I(a, t)

∂a
+

∂I(a, t)

∂t
= −(µ(a) + γ1(a))I(a, t) + λ1(a, t)S(a, t) + δλ1(a, t)J(a, t),

∂J(a, t)

∂a
+

∂J(a, t)

∂t
= −(µ(a) + γ2(a))J(a, t) + λ2(a, t)S(a, t) − δλ1(a, t)J(a, t),

S(0, t) =

∫

∞

0

b(a)P (a, t)da, I(0, t) = J(0, t) = 0,

S(a, 0) = S0(a), I(a, 0) = I0(a), J(a, 0) = J0(a),

(1)
where b(a) is the age-specific per capita birth rate and γi(a) is the age-specific re-
covery rate from strain i. Summing these equations we obtain the following problem
for the total population density P (a, t) = S(a, t) + I(a, t) + J(a, t):



























∂P (a, t)

∂a
+

∂P (a, t)

∂t
= −µ(a)P (a, t),

P (0, t) =

∫

∞

0

b(a)P (a, t)da,

P (a, 0) = P0(a).

This is the standard age-structured Mckendrick-Von Forester equation [12]. Thus,
the disease does not affect the population dynamics. The following hypotheses are
typical for this problem:

b(a) ∈ L∞[0,∞), b(a) ≥ 0 in [0,∞), b̄ = sup
a∈[0,∞)

b(a).

µ(a) ∈ L1
loc[0,∞), µ(a) ≥ 0 in [0,∞),
∫

∞

0

µ(a)da = ∞,

and b(a) is assumed to be zero beyond some maximum age. Since the standard
age-structured Mckendrick-Von Forester equation is linear, a steady state (time
independent solution) exists only if the population growth rate is zero. Therefore,
we assume that the net reproductive rate of the population is equal to unity and
that the total population is at an equilibrium. This means that:

∫

∞

0

b(a)e−
R

a

0
µ(τ)dτda = 1.

Therefore,

P (a, t) = P∞(a) = b0e
−

R

a

0
µ(τ)dτ for all t.

This condition also implies that, in order to deal with model (1), we have to take
the initial data so that:

S0(a) ≥ 0, I0(a) ≥ 0, J0(a) ≥ 0,

S0(a) + I0(a) + J0(a) = P∞(a),
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which forces the relation:

b0 =

∫

∞

0
P∞(a)da

∫

∞

0 e−
R

a

0
µ(τ)dτda

.

Instead of system (1) throughout this article we will work with the normalized
system. We introduce the following fractions:

s(a, t) =
S(a, t)

P∞(a)
, i(a, t) =

I(a, t)

P∞(a)
, j(a, t) =

J(a, t)

P∞(a)
.

We note that the proportions do not exceed one for any value of a and t. We can
rewrite system (1) as follows:

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





























∂s(a, t)

∂a
+

∂s(a, t)

∂t
= −λ1(a, t)s(a, t) − λ2(a, t)s(a, t) + γ1(a)i(a, t) + γ2(a)j(a, t),

∂i(a, t)

∂a
+

∂i(a, t)

∂t
= −γ1(a)i(a, t) + λ1(a, t)s(a, t) + δλ1(a, t)j(a, t),

∂j(a, t)

∂a
+

∂j(a, t)

∂t
= −γ2(a)j(a, t) + λ2(a, t)s(a, t) − δλ1(a, t)j(a, t),

s(0, t) = 1, i(0, t) = j(0, t) = 0,

s(a, 0) = s0(a), i(a, 0) = i0(a), j(a, 0) = j0(a),

λ1(a, t) = k(a)

∫ +∞

0

h1(a)P∞(a)i(a, t)da,

λ2(a, t) = k(a)

∫ +∞

0

h2(a)P∞(a)j(a, t)da,

s(a, t) + i(a, t) + j(a, t) = 1.

Furthermore, we eliminate s from the second and third equation above, and obtain
a system in i and j only. Thus, since s(a, t) = 1 − i(a, t) − j(a, t), we obtain the
final form of the system that we will consider in this article:
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








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


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




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




































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

∂i(a, t)

∂a
+

∂i(a, t)

∂t
= −γ1(a)i(a, t) + λ1(a, t)(1 − i(a, t) − j(a, t))

+δλ1(a, t)j(a, t),

∂j(a, t)

∂a
+

∂j(a, t)

∂t
= −γ2(a)j(a, t) + λ2(a, t)(1 − i(a, t) − j(a, t))

−δλ1(a, t)j(a, t),

i(0, t) = j(0, t) = 0,

i(a, 0) = i0(a), j(a, 0) = j0(a),

λ1(a, t) = k(a)

∫ +∞

0

h1(a)P∞(a)i(a, t)da,

λ2(a, t) = k(a)

∫ +∞

0

h2(a)P∞(a)j(a, t)da.

(2)
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In the next section, we discuss the stability of the disease-free equilibrium and derive
an explicit expression for R0, the basic reproduction number of the infection.

3. Stability of the disease-free equilibrium. The system (2) clearly has an
infection-free steady state: E0 = (0, 0). In this case s(a) = 1. To study the local
stability of this steady state we linearize the equations of system (2) about E0 =
(0, 0) and consider exponential solutions of the form:

i(a, t) = i(a)eλt, j(a, t) = j(a)eλt

where λ is a real or a complex number. Then the linear part of the first equation
of system (2) is of the form:

λi(a) +
d

da
i(a) = −γ1(a)i(a) + k(a)V 1

0 , i(0) = 0, (3)

where

V 1
0 =

∫

∞

0

h1(a)P∞(a)i(a)da. (4)

Solving problem (3) we obtain:

i(a) =

∫ a

0

k(ξ)V 1
0 e

−
R

a

ξ
[λ+γ1(τ)]dτ

dξ. (5)

Substituting (5) into (4) we get:

V 1
0 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)V 1
0 e

−
R

a

ξ
[λ+γ1(τ)]dτ

dξda,

= V 1
0

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
[λ+γ1(τ)]dτ

dξda.

Dividing both sides by V 1
0 (since V 1

0 6= 0) we get the first characteristic equation,
corresponding to strain one:

1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
[λ+γ1(τ)]dτ

dξda = G(λ). (6)

Similarly as for i(a) we have for j(a):

λj(a) +
d

da
j(a) = −γ2(a)j(a) + k(a)V 2

0 , j(0) = 0, (7)

where

V 2
0 =

∫

∞

0

h2(a)P∞(a)j(a)da. (8)

Solving (7) we obtain:

j(a) =

∫ a

0

k(ξ)V 2
0 e

−
R

a

ξ
[λ+γ2(τ)]dτ

dξ. (9)

Substituting (9) into (8) we get:

V 2
0 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)V 2
0 e

−
R

a

ξ
[λ+γ2(τ)]dτ

dξda,

= V 2
0

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
[λ+γ2(τ)]dτ

dξda.
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Dividing both sides by V 2
0 (since V 2

0 6= 0) we get the second characteristic equa-
tion, corresponding to strain two:

1 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
[λ+γ2(τ)]dτ

dξda = H(λ). (10)

We define the reproduction number of strain one as R1
0 = G(0), and the reproduction

number of strain two as R2
0 = H(0). Therefore,

R1
0 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

dξda,

R2
0 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ2(τ)dτ

dξda.

One can also define a reproduction number of the infection as R0 = max{R1
0, R

2
0}.

With these notations the following result holds:

Theorem 3.1. The disease-free equilibrium E0 = (0, 0) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof. First, notice that if λ is real we have:

G′(λ) < 0, H ′(λ) < 0,

G(0) = R1
0, H(0) = R2

0,

lim
λ→∞

G(λ) = 0,

lim
λ→∞

H(λ) = 0.

Thus, if R0 > 1, the characteristic equation (6) or (10) has a unique positive real
solution. Therefore, the disease-free equilibrium E0 = (0, 0) is unstable. If R0 < 1,
both characteristic equations (6) and (10) have a unique negative real solution
λ∗

1 < 0, λ∗

2 < 0. We will show that λ∗

1 is the dominant root of G(λ) = 1, that is, all
other roots have real part smaller than λ∗

1. Similarly, λ∗

2 is the dominant real root
of H(λ) = 1. To show that λ∗

1 is the dominant root of G(λ) = 1, let λ = x + iy be
an arbitrary complex solution to the characteristic equation G(λ) = 1. Note that:

G(λ∗

1) = 1 = G(λ)

= G(x + iy)

=

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)eλ(ξ−a)e−
R

a

ξ
γ1(τ)dτdξda

=

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

ex(ξ−a)[cos y(ξ − a)

+i siny(ξ − a)]dξda

=

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

ex(ξ−a) cos y(ξ − a)dξda

≤

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
[γ1(τ)+x]dτ

dξda

= G(x) = G(ℜλ).
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Since G(λ) is a decreasing function of λ, the inequality G(λ∗

1) ≤ G(ℜλ) implies that
ℜλ ≤ λ∗

1. Similarly, we can prove that λ∗

2 is dominant real root of H(λ). It follows
that the infection-free steady state is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1. This completes the proof.

Theorem 3.2. Assume 0 ≤ δ ≤ 1. Then, the disease-free equilibrium is globally
asymptotically stable if R0 < 1.

Proof. To see the global stability we let:

L(a, t) = k(a)V1(t)[(1 − i(a, t) − j(a, t)) + δj(a, t)]

≤ k(a)V1(t),
(11)

where

V1(t) =

∫

∞

0

h1(a)P∞(a)i(a, t)da. (12)

Here we have used the fact that (1−i(a, t)−j(a, t))+δj(a, t) ≤ 1, and the assumption
0 ≤ δ ≤ 1. Integrating the first equation of system (2) along the characteristic lines
we get:

i(a, t) =

∫ a

0

e
−

R

a

ξ
γ1(τ)dτ

L(ξ, t − a + ξ)dξ, a < t. (13)

Hence, by (11), (12) and (13) we obtain the inequality:

L(a, t) ≤ k(a)V1(t)

= k(a)

∫

∞

0

h1(a)P∞(a)

∫ a

0

e
−

R

a

ξ
γ1(τ)dτ

L(ξ, t − a + ξ)dξda.
(14)

Let

W (a) = lim
t→∞

supL(a, t) ≤ k(a)

∫

∞

0

h1(a)P∞(a)da.

The last inequality implies that W (a) is integrable. Taking the lim sup when t → ∞
of both sides of inequality (14) and using Fatou’s Lemma we get:

W (a) ≤ k(a)

∫

∞

0

h1(a)P∞(a)

∫ a

0

e−
R

a

ξ
γ1(τ)dτW (ξ)dξda. (15)

Let C denote the constant:

C =

∫

∞

0

h1(a)P∞(a)

∫ a

0

e−
R

a

ξ
γ1(τ)dτW (ξ)dξda. (16)

Since the function W (a) is integrable, the constant C is finite. Then inequality (15)
can be written as:

W (a) ≤ Ck(a),

and equation (16) yields:

C ≤ C

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

dξda

= CR1
0.

(17)

From (17) it follows that C = 0 if R0 < 1 (since R1
0 < 1). This implies that

W (a) = 0 a.e. and therefore

lim sup
t→∞

L(a, t) = 0.
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From equation (13) we see that

lim
t→∞

i(a, t) = 0.

Since the model is not completely symmetric, we also consider the case of strain
two. In a similar way we set

M(a, t) = λ2(a, t)[1 − i(a, t)]

≤ λ2(a, t) = k(a)V2(t)

≤ k(a)

∫

∞

0

h2(a)P∞(a)da,

where

V2(t) =

∫

∞

0

h2(a)P∞(a)j(a, t)da.

The second equation of system (2) can be written as:

∂j(a, t)

∂a
+

∂j(a, t)

∂t
= −[γ2(a) + δλ1(a, t) + λ2(a, t)]j(a, t) + λ2(a, t)[1 − i(a, t)].

We integrate this equation along the characteristic lines to get:

j(a, t) =

∫ a

0

e
−

R

a

ξ
[γ2(τ)+δλ1(τ,t)+λ2(τ,t)]dτ

M(ξ, t − a + ξ)dξ, a < t.

Hence, we obtain the inequality

M(a, t) ≤ k(a)V2(t)

= k(a)

∫

∞

0

h2(a)P∞(a)

∫ a

0

e
−

R

a

ξ
[γ2(τ)+δλ1(τ,t)+λ2(τ,t)]dτ

M(ξ, t − a + ξ)dξda

≤ k(a)

∫

∞

0

h2(a)P∞(a)

∫ a

0

e
−

R

a

ξ
γ2(τ)dτ

M(ξ, t − a + ξ)dξda.

Let

N(a) = lim sup
t→∞

M(a, t).

As before, the function N(a) is integrable. Taking the lim sup when t → ∞ on both
sides of the inequality for M(a, t), and using Fatou’s Lemma we get

N(a) ≤ k(a)

∫

∞

0

h2(a)P∞(a)

∫ a

0

e
−

R

a

ξ
γ2(τ)dτ

N(ξ)dξda. (18)

Let D denote the constant

D =

∫

∞

0

h2(a)P∞(a)

∫ a

0

e
−

R

a

ξ
γ2(τ)dτ

N(ξ)dξda. (19)

Since N(a) is integrable, the constant D is finite. Then (18) can be rewritten as

N(a) ≤ Dk(a).

It follows from (19) that

D ≤ D

∫

∞

0

h2(a)P∞(a)

∫ a

0

e
−

R

a

ξ
γ2(τ)dτ

k(ξ)dξda

= DR2
0.
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From this we get that D = 0 if R0 < 1 (that is R2
0 < 1). Which implies that

N(a) = 0 a.e., that is,
lim sup

t→∞

M(a, t) = 0.

Therefore,
lim

t→∞

j(a, t) = 0.

Since s(a, t) = 1 − i(a, t) − j(a, t), taking the limit when t → ∞ on both sides we
get:

lim
t→∞

s(a, t) = 1.

This completes the proof.

4. Exclusive equilibria and their stabilities. The system (2) has, besides E0,
the following strain exclusive equilibria which are feasible under some conditions on
R1

0 and R2
0. Namely, we have

Theorem 4.1. (1) There exists a unique strain one exclusive equilibrium E1 =
(i∗1, 0) if and only if R1

0 > 1;
(2) There exists a unique strain two exclusive equilibrium E2 = (0, j∗2 ) if and only

of R2
0 > 1.

The method commonly used to find a steady state for age-structured models
consists of obtaining explicit expressions for a time independent solution of system
(2). To find the strain one exclusive equilibrium E1 = (i∗1, 0) we solve the system:







di∗1(a)

da
= λ∗

1(a)(1 − i∗1(a)) − γ1(a)i∗1(a)

i∗1(0) = 0

(20)

where

λ∗

1(a) = k(a)

∫

∞

0

h1(a)P∞(a)i∗1(a)da = k(a)V ∗

1 ,

V ∗

1 =

∫

∞

0

h1(a)P∞(a)i∗1(a)da.

(21)

Proof. Solving the first equation in (20) we have that

i∗1(a) = V ∗

1

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

e
−V ∗

1

R

a

ξ
k(τ)dτ

dξ. (22)

Substituting in the expression for V ∗

1 we get:

V ∗

1 = V ∗

1

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

e
−V ∗

1

R

a

ξ
k(τ)dτ

dξda.

Since we are looking for a non-zero solution, V ∗

1 6= 0. Canceling V ∗

1 from both sides
of the equation above, we obtain an equation for V ∗

1 :

1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)e−
R

a

ξ
γ1(τ)dτ

e
−V ∗

1

R

a

ξ
k(τ)dτ

dξda = Q(V ∗

1 ). (23)

The function Q(V ∗

1 ) is a decreasing function of V ∗

1 , approaching zero as V ∗

1 get
large. Since Q(0) = R1

0, the equation Q(V ∗

1 ) = 1 has a positive solution V ∗

1 if and
only if R1

0 > 1. This solution is unique. Once we have determined V ∗

1 from (23),
we can obtain i∗1(a) from (22). This completes the proof of (1).

The proof of (2) is the same as the proof of (1). This completes the proof of the
Theorem.
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To study the local stability of the strain one dominant equilibrium, we linearize
system (2) about E1 = (i∗1(a), 0) and consider exponential solutions of the form:

i(a, t) = i∗1(a) + i(a)eλt, j(a, t) = j(a)eλt.

Then the linear part of the second equation of system (2) takes the form:

λj(a) +
d

da
j(a) = −γ2(a)j(a) + k(a)V 1

2 (1 − i∗1(a)) − δk(a)V ∗

1 j(a), (24)

where

V ∗

1 =

∫

∞

0

h1(a)P∞(a)i∗1(a)da,

V 1
2 =

∫

∞

0

h2(a)P∞(a)j(a)da.

Solving (24) we obtain

j(a) =

∫ a

0

k(ξ)V 1
2 (1 − i∗1(ξ))e

−
R

a

ξ
[λ+γ2(τ)+δV ∗

1
k(τ)]dτ

dξ. (25)

Substituting (25) into V 1
2 we obtain

V 1
2 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)V 1
2 (1 − i∗1(ξ))e

−
R

a

ξ
[λ+γ2(τ)+δV ∗

1
k(τ)]dτ

dξda,

= V 1
2

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[λ+γ2(τ)+δV ∗

1
k(τ)]dτ

dξda.

(26)
Dividing both sides of (26) by V 1

2 (since V 1
2 6= 0) we get the first characteristic

equation of the strain one exclusive equilibrium E1:

1 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[λ+γ2(τ)+δV ∗

1
k(τ)]dτ

dξda = E(λ).

(27)
We define the invasion reproduction number of strain two at the equilibrium of

strain one as R1
2 = E(0), that is as:

R1
2 =

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[γ2(τ)+δV ∗

1
k(τ)]dτ

dξda.

We are now ready to establish the following theorem:

Theorem 4.2. Let R1
0 > 1. Then the strain one exclusive equilibrium E1 = (i∗1, 0)

is locally asymptotically stable if R1
2 < 1, and unstable if R1

2 > 1.

Proof. If we consider E(λ) as function of the real variable λ, we can note that:

E′(λ) < 0, E(0) = R1
2, lim

λ→∞

E(λ) = 0.

Then, if R1
2 > 1, the characteristic equation (27) has a unique positive real solution

λ∗ > 0. Thus, the strain one exclusive equilibrium E1 = (i∗1, 0) is unstable. If
R1

2 < 1, characteristic equation (27) has a unique negative real solution λ∗ < 0.
Moreover, we can prove that λ∗ is the dominant real root of E(λ) = 1, that is
all other roots of the characteristic equation E(λ) = 1 are complex with real part
smaller than λ∗.
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To see that, let λ = x + iy be an arbitrary complex solution to the characteristic
equation E(λ) = 1. We have that:

E(λ∗) = 1 = E(λ) = E(x + iy)

=

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))

e
−

R

a

ξ
[γ2(τ)+δV ∗

1
k(τ)]dτ

ex(ξ−a)[cos y(ξ − a) + i sin y(ξ − a)]dξda

=

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[γ2(τ)+δV ∗

1
k(τ)]dτ

ex(ξ−a)

cos y(ξ − a)dξda

≤

∫

∞

0

h2(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[γ2(τ)+δV ∗

1
k(τ)]dτ

ex(ξ−a)dadξ

= E(x) = E(ℜλ).

Since E(λ) is a decreasing function of it argument, the inequality E(λ∗) ≤ E(ℜλ)
indicates that ℜλ ≤ λ∗. In the case when R1

2 < 1, to see that the strain one
exclusive equilibrium is locally asymptotically stable, we consider the linearization
of the first equation in system (2) around E1 = (i∗1, 0). Similarly to (24) we have:

λi(a)+
d

da
i(a) = −γ1(a)i(a)+k(a)V 1

1 (1−i∗1(a))−k(a)V ∗

1 (i(a)+j(a))+δk(a)V ∗

1 j(a),

(28)
where

V ∗

1 =

∫

∞

0

h1(a)P∞(a)i∗1(a)da,

V 1
1 =

∫

∞

0

h1(a)P∞(a)i(a)da.

For values of λ that solve the equation E(λ) = 1, we find a non-zero j(a) from (25),
and a corresponding value of i(a) from (28). However, equation (28) may have
non-trivial solutions even if j(a) = 0. To find those we look for non-zero solutions
of

λi(a) +
d

da
i(a) = −γ1(a)i(a) + k(a)V 1

1 (1 − i∗1(a)) − k(a)V ∗

1 i(a). (29)

Solving (29) we obtain

i(a) =

∫ a

0

k(ξ)V 1
1 (1 − i∗1(ξ))e

−
R

a

ξ
[λ+γ1(τ)+V ∗

1
k(τ)]dτ

dξ. (30)

Substituting (30) into V 1
1 we obtain

V 1
1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)V 1
1 (1 − i∗1(ξ))e

−
R

a

ξ
[λ+γ1(τ)+V ∗

1
k(τ)]dτ

dξda,

= V 1
1

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[λ+γ1(τ)+V ∗

1
k(τ)]dτ

dξda.

(31)

Dividing both sides of (31) by V 1
1 (since V 1

1 6= 0) we get the second characteristic
equation of the strain one exclusive equilibrium E1:

1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)(1 − i∗1(ξ))e
−

R

a

ξ
[λ+γ1(τ)+V ∗

1
k(τ)]dτdξda = D(λ).

(32)
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As before, D(λ) is a decreasing function of the real variable λ satisfying:

D′(λ) < 0, lim
λ→∞

D(λ) = 0.

From (23) it follows that D(0) < 1. Therefore, the unique real solution to the
equation D(λ) = 1 is negative: λ∗ < 0. One can show, as we showed before, that
all other solutions of that equation are complex with real part smaller than λ∗.
Thus, if R1

2 < 1 all characteristic values are negative or have negative real part. We
conclude that the strain one exclusive equilibrium is locally asymptotically stable
if R1

2 < 1 and unstable if R1
2 > 1. This completes the proof.

To study the local stability of the strain two exclusive equilibrium, we linearize
system (2) about the strain two exclusive equilibrium E2 = (0, j∗2 (a)). As before,
we consider exponential solutions of the form:

i(a, t) = i(a)eλt, j(a, t) = j∗2 (a) + j(a)eλt.

Then the linear part of the first equation of system (2) is of the form:

λi(a) +
d

da
i(a) = −γ1(a)i(a) + k(a)V 2

1 (1 − j∗2 (a)) + δk(a)V 2
1 j∗2 (a), (33)

where

V 2
1 =

∫

∞

0

h1(a)P∞(a)i(a)da.

Solving (33) we obtain:

i(a) =

∫ a

0

k(ξ)V 2
1 [(1 − j∗2 (ξ)) + δj∗2 (ξ)]e−

R

a

ξ
[λ+γ1(τ)]dτ

dξ (34)

Substituting (34) into V 2
1 we obtain:

V 2
1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)V 2
1 [(1 − j∗2 (ξ)) + δj∗2 (ξ)]e−

R

a

ξ
[λ+γ1(τ)]dτ

dξda

= V 2
1

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)[(1 − j∗2 (ξ)) + δj∗2 (ξ)]e−
R

a

ξ
[λ+γ1(τ)]dτ

dξda.

(35)
Dividing both sides by V 2

1 (since V 2
1 6= 0) in (35) we get the first characteristic

equation of the strain two exclusive equilibrium E2:

1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)[(1 − j∗2 (ξ)) + δj∗2 (ξ)]e−
R

a

ξ
[λ+γ1(τ)]dτ

dξda = F (λ).

(36)
Now we are ready to define the invasion reproduction number of strain one at the
equilibrium of strain two as R2

1 = F (0), that is,

R2
1 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(ξ)[(1 − j∗2 (ξ)) + δj∗2 (ξ)]e−
R

a

ξ
γ1(τ)dτ

dξda.

The following theorem holds:

Theorem 4.3. Let R2
0 > 1. Then strain two exclusive equilibrium E2(0, j∗2 ) is

locally asymptotically stable if R2
1 < 1 and unstable if R2

1 > 1.

Proof. Proof of Theorem 4.3 is similar to proof of Theorem 4.2 and is ommitted.
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Example: We conclude this section with a specific example. Consider the following
specific choices for the parameters:

h1(a) = h1ae−α1a, h2(a) = h2ae−α2a,

k(a) = k, µ(a) = µ,

γ1(a) = γ1, γ2(a) = γ2,

where h1, h2, k, µ, γ1 and γ2 are given constants. The reproduction numbers of the
two strains i = 1, 2 in this case are given by:

Ri
0 =

kb0hi(γi + 2αi + 2µ)

(αi + µ)2(αi + µ + γi)2

The system has the disease-free equilibrium E0 = (0, 0). According to Theorem 4.1
if R1

0 > 1 there also exist strain one exclusive equilibrium E1 = (i∗1, 0), where

i∗1(a) =
V ∗

1 k

γ1 + V ∗

1 k

(

1 − e−(γ1+V ∗

1
k)a
)

.

In the expression above V ∗

1 is the unique positive solution of equation (23) which
takes the form

h1kb0(2α1 + 2µ + γ1 + V ∗

1 k)

(α1 + µ)2(α1 + µ + γ1 + V ∗

1 k)2
= 1.

Strain two exclusive equilibrium E2 = (0, j∗2) exists if R2
0 > 1 where j∗2 is given by

the same expression. By Theorem 4.2 the strain one exclusive equilibrium is stable
if R1

2 < 1 where

R1
2 =

h2kb0γ1(2α2 + 2µ + γ2 + δV ∗

1 k)

(γ1 + V ∗

1 k)(α2 + µ)2(α2 + µ + γ2 + δV ∗

1 k)2

+
h2b0V

∗

1 k2(2α2 + 2µ + γ1 + V ∗

1 k + γ2 + δV ∗

1 k)

(γ1 + V ∗

1 k)(α2 + µ + γ2 + δV ∗

1 k)2(α2 + µ + γ1 + V ∗

1 k)2
.

Specific values of the parameters may tell us whether strain one equilibrium is locally
asymptotically stable or not. Similar results can be established for the strain two
exclusive equilibrium.

The next section we discuss the existence of a coexistence equilibrium.

5. Coexistence equilibria. In this section we will establish the existence of a
coexistence equilibrium, that is an equilibrium in which both strains are present.
The method commonly used to find endemic steady states for age-structured models
consists in assuming that the force of infection at equilibrium (a quantity similar
to V ∗

1 ) is given and obtaining explicit expressions for a time independent solution.
Similar approach works for age-since-infection multi-strain models [16, 17], and even
for the somewhat simplified chronological age-structured model considered in [18].

In our case a coexistence equilibrium E∗ = (i∗(a), j∗(a)) is a time independent
solution of equations (2) that satisfies:






















d

da
i∗(a) = λ∗

1(a; i∗)(1 − i∗(a) − j∗(a)) + δλ∗

1(a; i∗)j∗(a) − γ1(a)i∗(a),

d

da
j∗(a) = λ∗

2(a; j∗)(1 − i∗(a) − j∗(a)) − δλ∗

1(a; i∗)j∗(a) − γ2(a)j∗(a),

i∗(0) = 0, j∗(0) = 0,

(44)



AN AGE-STRUCTURED TWO-STRAIN EPIDEMIC MODEL 15

where

λ∗

1(a; i∗) = k(a)

∫ +∞

0

P∞(a)h1(a)i∗(a)da = k(a)V ∗

3 ,

λ∗

2(a; j∗) = k(a)

∫ +∞

0

P∞(a)h2(a)j∗(a)da = k(a)V ∗

4 ,

For models where individuals only move forward it is possible to solve the steady
state equations recurrently. We cannot follow this approach here because system
(44) is a full system in i∗(a) and j∗(a), and consequently, we are unable to obtain an
explicit expression for i∗(a) and j∗(a) in terms of V ∗

3 and V ∗

4 . We need a somewhat
more indirect approach. We adapt the setting and methods employed in [6] where
a one-strain version of our model is considered. This approach only works in the
case 0 ≤ δ ≤ 1, so in this section we will assume δ satisfies these inequalities. As
before, we can find the corresponding equilibrial value of s∗(a) from the equality:
s∗(a) = 1 − i∗(a) − j∗(a).

We will use the following abstract setting. Consider the Banach space X =
L1(0,∞) × L1(0,∞), and the positive cone in it X+ = L1

+(0,∞) × L1
+(0,∞). El-

ements of X are denoted by u = (i, j)T . We introduce the bounded closed convex
subset of the positive cone of X :

C = {u ∈ X+ : i(a) + j(a) ≤ 1 a.e.}.

Furthermore, we define the non-linear operator F [u] = (F1[u], F2[u]) such that
F : C −→ X and is defined as follows:

F [u](a) =







F1[u](a) = λ∗

1(a; i)(1 − i(a) − j(a)) + δλ∗

1(a; i)j(a);

F2[u](a) = λ∗

2(a; j)(1 − i(a) − j(a)) − δλ∗

1(a; i)j(a).
(45)

Since F acts on the bounded closed set C, then it is not hard to see that F is
Lipschitz continuous. Let α > 0 be an arbitrary number to be chosen later. We
rewrite the differential equation model (44) as an integral equation model



















i(a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ1(σ) dσ{i(s) + αF1[u](s)} ds,

j(a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ2(σ) dσ{j(s) + αF2[u](s)} ds,

(46)

where we have omitted the stars. We define a non-linear operator T : C −→ X as
follows:

T [u](a) =



















T1[u](a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ1(σ) dσ{i(s) + αF1[u](s)} ds,

T2[u](a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ2(σ) dσ{j(s) + αF2[u](s)} ds.

(47)

The non-linear operator T has a number of important properties. Before we discuss
them, we introduce a new cone in X . Let

K = L1
+(0,∞) × (−L1

+(0,∞)).

Clearly, K is a cone in X . For u, v ∈ X we write u ≤ v if v − u ∈ X+, and u ≤K v,
if v − u ∈ K. Component-wise, if v = (̄i, j̄)T , then u ≤ v means that i ≤ ī and
j ≤ j̄, while u ≤K v means that i ≤ ī and j ≥ j̄.
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Theorem 5.1. There exists α > 0 such that the non-linear operator T is Lipschitz
continuous, and maps the set C into itself: T : C −→ C. In addition, the non-linear
operator T is a monotone operator in the ordering introduced by the cone K. In
other words,

u ≤K v implies T [u] ≤K T [v].

Theorem 5.1. follows from the proposition below which establishes the above
results for the non-linear operator I + αF .

Proposition 5.2. There exists α > 0 such that the non-linear operator I + αF is
Lipschitz continuous, and maps the set C into itself: I + αF : C −→ C. In addition,
the non-linear operator I + αF is a monotone operator in the ordering introduced
by the cone K. In other words,

u ≤K v implies u + αF [u] ≤K v + αF [v].

Proof. (Proposition 5.2) First we prove the monotonicity of the operator I + αF .
Let u = (i, j)T and v = (̄i, j̄)T with u ≤K v. That is, we have i ≤ ī and j ≥ j̄.
Then, the first component of the operator I + αF satisfies:

(i + α F1[u])(a)
= i(a) + αλ∗

1(a; i)(1 − i(a) − (1 − δ)j(a))

≤ i(a) + αλ∗

1(a; ī)(1 − i(a) − (1 − δ)j̄(a))

= i(a)(1 − αλ∗

1(a; ī)) + αλ∗

1(a; ī)(1 − (1 − δ)j̄)

≤ ī(a)(1 − αλ∗

1(a; ī)) + αλ∗

1(a; ī)(1 − (1 − δ)j̄)

= ī(a) + αλ∗

1(a; ī)(1 − ī(a) − (1 − δ)j̄(a))

= (̄i + αF1[v])(a).

The last inequality is valid since the functions λ∗

1(a; ī) is bounded, say by Λ1. Choos-
ing α so that 1 − αΛ1 > 0, the expression in the parenthesis is positive for all a.
Thus, we can replace i with ī. Next, we consider the second component of I + αF .
We have

(j + α F2[u])(a)
= j(a) + αλ∗

2(a; j)(1 − i(a) − j(j)) − αδλ∗

1(a; i)j(a)

≥ j(a) + αλ∗

2(a; j̄)(1 − ī(a) − j(j)) − αδλ∗

1(a; ī)j(a)

= j(a)(1 − αλ∗

2(a; j̄) − αδλ∗

1(a; ī)) + αλ∗

2(a; j̄)(1 − ī(a))

≥ j̄(a)(1 − αλ∗

2(a; j̄) − αδλ∗

1(a; ī)) + αλ∗

2(a; j̄)(1 − ī(a))

= (j̄ + αF2[v])(a).

As before, the last inequality follows from the boundedness of λ∗

2(a; j̄) by Λ2 and
of λ∗

1(a; ī) by Λ1. We can choose α > 0 but small enough so that 1−αΛ2−αδΛ1 > 0,
as well as 1−αΛ1 > 0. This establishes the monotonicity of I +αF in the ordering,
introduced by the cone K.

Next, we have to show that I + αF maps the set C into itself. First, we notice
that the set C has largest and smallest element in the ordering introduced by the
cone K. The smallest element will be denoted by u while the largest element will
be denoted by ū. These elements are given as follows:

u = (0, 1)T and ū = (1, 0)T .
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Clearly, any element u ∈ C satisfies u ≤K u ≤K ū. The operator I + αF acts on
these two boundary elements as follows:

(u + αF [u])(a) =







0

1

(ū + αF [ū])(a) =







1

0.

Since for any element u ∈ C we have u ≤K u ≤K ū, we may apply the operator
I + αF to this inequality, to get:

u ≤K u + αF [u] ≤K u + αF [u] ≤K ū + αF [ū] ≤K ū.

The above inequalities imply that for any u ∈ C, the output u + αF [u] has com-
ponents that are between zero and one. In order to show that u + αF [u] ∈ C, it
remains to be shown that

i + αF1[u] + j + αF2[u] ≤ 1.

To see that let

h(a) = max{h1(a), h2(a)}.

Denote by λ∗(a; i + j) = k(a)

∫

∞

0

P∞(a)h(a)(i(a) + j(a)) da. As before λ(a; i + j)

is bounded by a constant, say Λ, and we assume that α is such that 1 − αΛ > 0.
Then,

i+ αF1[u] + j + αF2[u]

= i + j + α(λ∗

1(a; i) + λ∗

2(a; j))(1 − i − j) + αδλ∗

1(a; i)j − αδλ∗

1(a; i)j

= i + j + α(λ∗

1(a; i) + λ∗

2(a; j))(1 − i − j)

≤ i + j + αλ∗(a; i + j)(1 − i − j)

≤ i + j + αλ∗(a; 1)(1 − i − j)

≤ (i + j)(1 − αλ∗(a; 1)) + αλ∗(a; 1)

≤ 1 − αλ∗(a; 1) + αλ∗(a; 1)

= 1.

This completes the proof.

In the previous section we established that if R1
2 > 1 the exclusive equilibrium

E1 = (i∗1, 0) is unstable. In addition, if R2
1 > 1 the the exclusive equilibrium E2 =

(0, j∗2) is unstable. Thus, if R1
2 > 1 and R2

1 > 1 then both exclusive equilibria are
unstable. In this section we will show that in this case there exists a coexistence
equilibrium.

To see that, we consider the exclusive equilibria as E1 = (i∗1, 0) and E2 = (0, j∗2 ).
We have to connect the non-linear operator T with its linearizations around each
of the exclusive equilibria. Thus, for any element u = (i, j)T ∈ X one can see that

T [Ej + u] = T [Ej ] + DT (Ej)u + N (u), for j = 1, 2. (48)
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We note that Ej is a fixed point of the operator T . Thus, the first term gives
T [Ej ] = Ej for j = 1, 2. Furthermore, DT (Ej)u is the linearization of the non-linear
operator T around the exclusive equilibrium Ej for j = 1, 2. The linearizations of
the operator F around the equilibria E1 and E2 are given by L(Ej):

(L(E1)u)(a) =







−λ∗

1(a; i∗1)(i + j) + λ∗

1(a; i)(1 − i∗1) + δλ∗

1(a; i∗1)j

λ∗

2(a; j)(1 − i∗1) − δλ∗

1(a; i∗1)j

and

(L(E2)u)(a) =







λ∗

1(a; i)(1 − j∗2 ) + δλ∗

1(a; i)j∗2

−λ∗

2(a; j∗2 )(i + j) + λ∗

2(a; j)(1 − j∗2 ) − δλ∗

1(a; i)j∗2 .

Thus, the linearization of the operator T around the exclusive equilibrium Ej is
given by:

(DT (Ej)u)(a) =











































DT1(Ej)u(a) =

1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ1(σ) dσ{i(s) + αL1(Ej)u(s)} ds,

DT2(Ej)u(a) =

1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ2(σ) dσ{j(s) + αL2(Ej)u(s)} ds.

(49)
Finally, the nonlinear operator N (u) in (48) is given by

N (u)(a) =











































N1(u)(a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ1(σ) dσ{−αλ∗

1(s; i)(i(s) + j(s))

+αδλ∗

1(s; i)j(s)} ds,

N2(u)(a) =
1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ2(σ) dσ{−αλ∗

2(s; j)(i(s) + j(s))

−αδλ∗

1(s; i)j(s)} ds.

(50)
We denote by ρ1 the spectral radius of the linear operator DT (E1) and by ρ2

the spectral radius of the linear operator DT (E2). We want to apply the Krein-
Ruthman Theorem to conclude that ρ1 and ρ2 are eigenvalues. First, it is easy to
see that the cone K is reproducing (that is, every element of X can be represented
as a difference of two elements in K). Next, we need to show that the two linear
operators DT (E1) and DT (E2) are positive, that is, each of them maps the cone
K into itself. We show that for DT (E1). Let u ∈ K. Then if u = (i, j)T we have
i ≥ 0 while j ≤ 0. The sign of the first component of DT (E1)u is given by the sign
of i(a) + αL1(E1)u(a). Consequently, i(a) + αL1(E1)u(a). Consequently,

i(a) +αL1(E1)u(a)
= i(a) − αλ∗

1(a; i∗1)(i + j) + αλ∗

1(a; i)(1 − i∗1) + αδλ∗

1(a; i∗1)j
= i(a)(1 − αλ∗

1(a; i∗1)) − α(1 − δ)λ∗

1(a; i∗1)j + αλ∗

1(a; i)(1 − i∗1).

The first term in the expression above is positive for appropriate choice of α. The
second term is positive because j is negative. The last term is positive because i is
non-negative. Similarly, the second component can be shown to have the sign of j,
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that is the second component is negative. Thus, the linear operators DT (E1) and
DT (E2) map the cone K into itself, and therefore they are positive operators. Then
Krein-Ruthman Theorem implies that ρ1 is an eigenvalue of the operator DT (E1).
The eigenvector that corresponds to that eigenvalue, say v, is an element of the
cone K, that is,

DT (E1)v = ρ1v.

Similarly, Krein-Ruthman Theorem implies that ρ2 is an eigenvalue of the op-
erator DT (E2). The eigenvector that corresponds to that eigenvalue, say w, is an
element of the cone K, that is,

DT (E2)w = ρ2w.

We would like to connect the spectral radii ρ1 and ρ2 to the invasion reproduction
numbers Ri

j > 1 we computed in the previous section. This connection is established
in the proposition below.

Proposition 5.3. The spectral radius ρi > 1 if and only if Ri
j > 1 for i, j = 1, 2

and i 6= j.

Proof. We show that in one of the cases, the other case is similar. By the Krein-
Ruthman Theorem, we have

DT (E2)w = ρ2w,

where w is the eigenvector corresponding to eigenvalue ρ2. The eigenvector w =
(i, j)T belongs to K. For the first component of the eigenvalue equation above we
have

1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ1(σ) dσ[i(s) + αL1(E2)w(s)] ds = ρ2i(a).

We rewrite this expression in the form

1

α

∫ a

0

e
1

α
se

R

s

0
γ1(σ) dσ[i(s) + αL1(E2)w(s)] ds = ρ2e

1

α
ae

R

a

0
γ1(σ) dσi(a).

Differentiating this equality with respect to a and simplifying:

1

α
[i(a) + αL1(E2)w(a)] = ρ2[

1

α
i(a) + γ1(a)i(a) + i′(a)].

Solving this equation for i(a) we have

i(a) =
1

ρ2

∫ a

0

e−ξ(a−s)e−
R

a

s
γ1(σ) dσL1(E2)w(s) ds,

where

ξ =
1

α

(

1 −
1

ρ2

)

.

We note that ξ = 0 if and only if ρ2 = 1. Furthermore, ξ > 0 if and only if ρ2 > 1.
Substituting i(a) in the definition of V 2

1 (see equation (33)) we obtain an equation
similar to (36):

ρ2 =

∫

∞

0

h1(a)P∞(a)

∫ a

0

k(s)[1 − j∗2 (s) + δj∗2 (s)]e−
R

a

s
[ξ+γ1(τ)]dτdsda.

The right-hand side of the equation above is equal to R2
1 if and only if ξ = 0, that

is ρ2 = 1. Therefore, if ρ2 > 1 we have ρ2 ≤ R2
1. Consequently R2

1 > 1. If ρ2 < 1
we have that R2

1 ≤ ρ2, and therefore R2
1 < 1. Conversely, assume R2

1 > 1. Then
we either have ρ2 ≥ R2

1 in which case ρ2 > 1 or we have ρ2 ≤ R2
1 in which case
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the equation above implies ρ2 > 1. Similar argument implies that if R2
1 < 1 then

ρ2 < 1. This completes the proof of Proposition 5.3.

Before we give the Theorem that establishes the existence of at least one coexis-
tence equilibrium, we consider the following auxiliary Lemma. Let

m(a) =

∫ a

0

k(σ)dσ.

Lemma 5.4. There exist constants K1 and K2, with K1 < K2 such that the first
component of E1 and the second component of E2 satisfy:

K1m(a) ≤ i∗1(a) ≤ K2m(a)
K1m(a) ≤ j∗2 (a) ≤ K2m(a).

Similar inequalities are valid for the first components of the eigenvectors v = (i1, j1)
T

and w = (i2, j2)
T , if they are non-zero. The second components, if non-zero, satisfy:

K1m(a) ≤ −j1(a) ≤ K2m(a)
K1m(a) ≤ −j2(a) ≤ K2m(a).

Proof. We first establish that for the first component of E1. The result for the
second component of E2 and the first components of the eigenvectors is analogous.
We will later establish the inequality for the second component of v. The first
component of E1 has the form

i∗1(a) = V ∗

1

∫ a

0

k(s)e−
R

a

s
γ1(σ) dσe−V ∗

1

R

a

s
k(σ) dσ ds.

Clearly,
i∗1(a) ≤ V ∗

1 m(a).

Thus K2 should be chosen larger than V ∗

1 . To see the lower bound, notice that

i∗1(a) ≥ V ∗

1 e−
R

A

0
γ1(σ) dσe−V ∗

1

R

A

0
k(σ) dσm(a) ≥ K1m(a)

where we recall that A is the upper bound of the support of k(a), and K1 is an
appropriately chosen constant which depends on V ∗

1 . We note that V ∗

1 6= 0, since if
it were zero, I∗1 (a) would be identically zero. The second component of v satisfies:

1

α

∫ a

0

e−
1

α
(a−s)e−

R

a

s
γ2(σ) dσ{j2(s) + αL2(E1)v(s)}ds = ρ1j1(a).

Rearranging that expression and differentiating we obtain

j′1 + γ2(a)j1 +
1

α
=

1

αρ1
[j1 + αL2(E1)v(a)].

Using the form of L2(E1)v(a) we obtain the following expression for j1(a):

[−j1(a)] = (−V 1
2 )

1

ρ1

∫ a

0

k(s)e−ξ̄(a−s)e−δV ∗

1

R

a

s
k(τ)dτe−

R

a

s
γ2(τ)dτ(1 − i∗1) ds,

where

ξ̄ =
1

α

(

1 −
1

ρ1

)

and

V 1
2 =

∫

∞

0

h2(a)P∞(a)j1(a)da.

If j1(a) 6= 0 then V 1
2 < 0, and it is a given non-zero constant. We can proceed as

in the case with i∗1(a) to establish the inequalities. Finally, we have chosen as K1
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the smallest of all lower bound constants, and as K2 the largest of all upper bound
constants.

Theorem 5.5. Assume R2
1 > 1 and R1

2 > 1. Then, there is at least one coexistence
equilibrium E∗ = (i∗, j∗).

Proof. From Proposition 5.3. it follows that R2
1 > 1 and R1

2 > 1 imply that ρ1 > 1
and ρ2 > 1. We recall that v is an eigenvector corresponding to the eigenvalue ρ1,
and w is the eigenvector corresponding to eigenvalue ρ2. Both v and w belong to
the cone K. That means that if v = (i1, j1)

T and w = (i2, j2)
T , then i1 ≥ 0, i2 ≥ 0

while j1 ≤ 0, j2 ≤ 0. Since E2 ≤K E1, Lemma 5.4 implies that for ǫ > 0 and η > 0
but small enough we still have

E2 + ηw ≤K E1 − ǫv. (51)

We will apply the operator T to this inequality. Using equality (48) we have

T [E2 + ηw] =

= T [E2] + ηDT (E2)w + η2N (w)

= E2 + ηρ2w + η2N (w)

= E2 + ηw + η(ρ2 − 1)w + η2N (w)

≥K E2 + ηw.

(52)

The last inequality above is valid since ρ2 > 1, and for η small enough (ρ2 − 1)w +
ηN (w) ≥K 0. To see that (ρ2−1)w+ηN (w) ≥K 0 we consider the first component
only. The second component is established similarly. The first component of the
above inequality is given by:

= (ρ2 − 1)i2(a) + η

∫ a

0

e−
1

α e−
R

a

s
γ1(τ)dτ{−k(s)V 1

1 (i2(s) + j2(a))

+δk(s)V 1
1 j2(s)}ds

≥ (ρ2 − 1)i2(a) − ηV 1
1

∫ a

0

k(s)e−
1

α e−
R

a

s
γ1(τ)dτ i(s)ds

≥ (ρ2 − 1)K1m(a) − ηV 1
1

(

∫ A

0

k(s)ds

)

m(a) ≥ 0

for η positive and small enough. In the above system of inequalities V 1
1 denotes

V 1
1 =

∫

∞

0

h1(a)P∞(a)i2(a)da.

Similarly, for the right-hand side of (51) we would have

T [E1 − ǫv] =

= T [E1] − ǫDT (E1)v − ǫ2N (v)

= E1 − ǫρ1v − ǫ2N (v)

= E1 − ǫv − ǫ(ρ1 − 1)v − ǫ2N (v)

≤K E1 − ǫv.

(53)
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As before, since ρ1 > 1, for ǫ > 0 and small enough we have (ρ1−1)v+ǫN (v) ≥K 0.
Therefore, T [E1 − ǫv] ≤K E1 − ǫv. Applying T again, and taking into account its
monotonicity with respect to the order ≤K , we have T 2[E1 − ǫv] ≤K T [E1 − ǫv].
Iterating this step, we obtain

T n[E1 − ǫv] ≤K T n−1[E1 − ǫv].

In other words, the sequence T n[E1− ǫv] is decreasing in the order generated by the
cone K. On the other hand, applying T to inequality (51) and using (52) we have

E2 + ηw ≤K T [E2 + ηw] ≤K T [E1 − ǫv].

Applying T and using (52) iteratively, we have

E2 + ηw ≤K T n[E1 − ǫv].

Thus, the sequence T n[E1− ǫv] for n = 1, 2, . . . is a decreasing sequence of elements
of C. It is bounded from below from an element of C that is larger than E2. Thus,
it converges to an element of C that does not have an identically equal to zero
component, that is (i∗, j∗) with i∗ 6= 0 and j∗ 6= 0. On the other hand, this element
of C is a fixed point for the operator T , in other words, it a coexistence equilibrium,
and a solution to (44). This completes the proof.

6. Summary and future work. This article introduces a two-strain extention
with super-infection of the age-structured S-I-S epidemic model considered in [6].
We compute the reproduction numbers of the two strains as well as the reproduction
number of the whole system R0. We find that there is a unique disease-free equilib-
rium which always exists, and is locally stable if the reproduction number R0 < 1
and unstable if R0 > 1. Furthermore, the disease-free equilibrium is also globally
stable in the case when super-infection is less likely than an original infection with
strain one: 0 ≤ δ ≤ 1. We also establish that to each strain there corresponds
a unique single-strain equilibrium, which exists whenever the corresponding repro-
duction number is larger than one. The single strain equilibrium of strain i is locally
asymptotically stable if and only if the invasion reproduction number of strain j is
smaller than one, that is, if and only if strain j cannot invade the equilibrium of
strain i. Local stability of the single-strain equilibrium in our model is not surpriz-
ing as it agrees with the results of [6]. However, we establish local stability using
different mathematical techniques. Finally, we show that if both invasion numbers
are larger than one, there exists a coexistence equilibrium. This result follows from
the monotonicity of the system with respect to the competitive cone. We rewrite
the system of differential equations for the coexsitence equilibrium as a system of
integral equations. The integral operator T has properties similar to the ones es-
tablished in [6]. A novel critical component that we provide in this article is the
connection between the invasion reroduction numbers and the spectral radii of the
Fréchet derivatives of the integral operator T .

Although system (1) is more complex than most of the structured two-strain
models analyzed so far, we were able to derive in this article all results that are
typically obtained for such systems. However, we believe that there are many
interesting questions pertaining to system (1) which we have not addressed but
could be addressed in the future.

• Persistence. There are multiple different types of persistence (see e.g. [1],
p.221). We are most interested in uniform strong persistence. Horst Thieme’s
results on uniform strong persistence in single strain models will build the
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backbone of our approach [27, 28]. However, these techniques have never
been applied to structured multi-strain models. We expect to establish the
following result, currently stated as conjecture:

Conjecture 1. Assume Ri
0 > 1 and Ri

j > 1. Then, there exists η > 0,
independent of the initial conditions, such that

lim inf
t

Vj(t) ≥ η.

• Competitive exclusion. It is now known that in the simplest multi-strain
ODE models competitive exclusion holds with the strain with the largest
reproduction number dominating-a result to which Horst Thieme has con-
tributed immensely [5]. Such a result has not been established for any struc-
tured epidemic model, although it is conceivable that the tools developed in
[7] could be extended to yield it, at least in the case when no coexistence
occurs. No global results on competitive exclusion seem to exist in an age or
age-since-infection-structured epidemic model where coexistence is also possi-
ble.

We believe that such a result holds for system (1) and can be derived from
conditions on the reproduction numbers and invasion reproduction numbers
only. We include our expected result in the form of a conjecture:

Conjecture 2. Assume R1
0 > 1, R2

0 > 1. Assume also R2
1 > 1 and R1

2 < 1.
Then strain one persists, while strain two goes extinct, that is j(a, t) → 0 as
t → ∞ for almost all a.

Symmetrical result holds where strain one becomes extinct which should
also be possible to be established. Clearly, such results may not hold for
all multi-strain epidemic models but they hold for model (1) and possibly
for many other multi-strain epidemic models. Developing the mathematical
techniques to derive global results for such classes of models is a task for the
future.

Since model (1) is a monotone model, one may like to use results on mono-
tone dynamical systems – an area to which Horst Thieme has also contributed
[24]. Unfortunetely, many of those results are not directly applicable to age-
structured models, as one of the common assumptions in that theory is that
the baseline space has a positive cone with non-empty interior, a requirement
not satisfied by L1.

• Additional open problems with system (1): Besides persistence and
competitive exclusion, there is a number of open and interesting questions re-
garding system (1). Addressing those questions will further our understanding
of age-structured multi-strain epidemic models and their ability to capture key
issues in biology, such as genetic diversity, competition, and oscillations.
1. We have established the global stability of the DFE in the case 0 ≤ δ ≤ 1.

Global stability of the DFE typically fails when subthreshold equilibria
exist. Does system (1) have subthreshold coexistence equilibria? The
presence of subthreshold equilibria in an age-structured two-strain model
has previously been established in [18].

2. A related question is: Does system (1) have a unique coexistence equilib-
rium, or it may have multiple coexistence equilibria? What conditions on
the parameters will guarantee uniqueness of the coexistence equilibrium?
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3. Can the coexistence equilibrium become unstable? Are sustained oscilla-
tions possible? The answer to this question for the ODE version of model
(1) is negative. On the other hand it is known that age-structure in the
single-strain S-I-S model does not lead to oscillation [6]. So, if oscilla-
tions occur in the age-structured two-strain case, they are a result of the
presence of age-structure and the interaction of the strains.

4. The presence of super-infection guarantees that coexistence of the pathogens
will occur even in the ODE version of model (1). However, if super-
infection is “turned off”, that is δ = 0, then in the ODE version of model
(1) coexistence would not occur. If δ = 0 in model (1), would coexistence
occur when age is present? We believe that the answer is “yes” and that
answer can be established similarly as in [18].
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