PROOF WRITING
LINEAR ALGEBRA

(1) (Due 9/4) Prove that if W is a subspace of a vector space V and w_1, w_2, \ldots, w_n are in W, then $a_1w_1 + a_2w_2 + \ldots + a_nw_n \in W$ for any scalars a_1, a_2, \ldots, a_n.

(2) (Due 9/11) Let $\{u, v, w\}$ be a basis for a vector space V. Prove that $\{u - w, v - w, w\}$ is also a basis for V.

(3) (Due 9/18) Let $T: \mathbb{R} \to \mathbb{R}$ be a linear transformation. Prove that there exists $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $T(x) = mx$.

(4) (Due 9/25) Let V and W be vector spaces, and let T and U be non-zero linear transformations from V to W. If $\text{Range}(T) \cap \text{Range}(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.

(5) (Due 10/2) Let $T: F^n \to F^m$ be a function. Prove that T is a linear transformation if and only if there exists $a_{ij} \in F$ for $1 \leq i \leq m$, $1 \leq j \leq n$, such that for all $(x_1, \ldots, x_n) \in F^n$,

$$T(x_1, \ldots, x_n) = (a_{11}x_1 + \ldots + a_{1n}x_n, \ldots, a_{m1}x_1 + \ldots + a_{mn}x_n).$$

(6) (Due 10/9) Let $A, B \in \mathcal{M}_{n \times n}(F)$ be similar matrices. Prove that there exists a linear transformation $T: F^n \to F^n$ and basis β_1, β_2 of F^n such that $[T]_{\beta_1} = A$ and $[T]_{\beta_2} = B$.

(7) (Due 10/23) Let A be an $n \times n$ matrix which is not invertible. Prove that there exists a non-zero $n \times n$ matrix B such that BA is equal to the zero matrix.