PROOF WRITING LINEAR ALGEBRA

(1) (Due 9/4) Prove that if W is a subspace of a vector space V and $w_{1}, w_{2}, \ldots, w_{n}$ are in W, then $a_{1} w_{1}+a_{2} w_{2}+\ldots+a_{n} w_{n} \in W$ for any scalars $a_{1}, a_{2}, \ldots, a_{n}$.
(2) (Due 9/11) Let $\{u, v, w\}$ be a basis for a vector space V. Prove that $\{u-w, v-w, w\}$ is also a basis for V.
(3) (Due 9/18) Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be a linear transformation. Prove that there exists $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}, T(x)=m x$.
(4) (Due 9/25) Let V and W be vector spaces, and let T and U be non-zero linear transformations from V to W. If Range $(T) \cap$ Range $(U)=\{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
(5) (Due 10/2) Let $T: F^{n} \rightarrow F^{m}$ be a function. Prove that T is a linear transformation if and only if there exists $a_{i j} \in F$ for $1 \leq i \leq m, 1 \leq j \leq n$, such that for all $\left(x_{1}, \ldots, x_{n}\right) \in F^{n}$,

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(a_{11} x_{1}+\ldots+a_{1 n} x_{n}, \ldots, a_{m 1} x_{1}+\ldots+a_{m n} x_{n}\right)
$$

(6) (Due 10/9) Let $A, B \in \mathcal{M}_{n \times n}(F)$ be similar matrices. Prove that there exists a linear transformation $T: F^{n} \rightarrow F^{n}$ and basis β_{1}, β_{2} of F^{n} such that $[T]_{\beta_{1}}=A$ and $[T]_{\beta_{2}}=B$.
(7) (Due 10/23) Let A be an $n \times n$ matrix which is not invertible. Prove that there exists a non-zero $n \times n$ matrix B such that $B A$ is equal to the zero matrix.
(8) (Due $10 / 30$) Let $\delta: \mathcal{M}_{2 \times 2}(F) \rightarrow F$ be a function such that $\delta\left(I_{2}\right)=1$ and δ satisfes the following conditions with respect to elementary row operations:
(a) If $A \xrightarrow{r_{i} \leftrightarrow r_{j}} B$, then $\delta(B)=-\delta(A)$.
(b) If $A \xrightarrow{r_{i} \rightarrow c r_{i}} B$, then $\delta(B)=c \delta(A)$.
(c) If $A \xrightarrow{r_{i} \rightarrow r_{i}+c r_{j}} B$, then $\delta(B)=\delta(A)$.

Prove that $\delta(A)=\operatorname{det}(A)$ for all $A \in \mathcal{M}_{2 \times 2}(F)$.
(9) (Due 11/13) Let V be a finite dimensional vector space over \mathbb{C} and let $T: V \rightarrow V$ be a linear transformation. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T and let m_{i} be the algebraic multiplicity of λ_{i}. Prove that $\operatorname{det}(T)=\lambda_{1}^{m_{1}} \lambda_{2}^{m_{2}} \ldots \lambda_{k}^{m_{k}}$.
(10) (Due 12/4) Let V be an inner product space and let $T: V \rightarrow V$ a linear transformation such that $T^{2}=T$ and $\operatorname{Null}(T)^{\perp}=$ Range (T). Prove that there exists a subspace W such that for all $v \in V, T(v)=\operatorname{Proj}_{W}(v)$.

