PROOFS
LINEAR ALGEBRA

(1) (Due 8/29) Let W be a subset of a vector space V such that $W \neq \emptyset$ and for all $a \in F$ and $x, y \in W$, $ax + y \in W$. Prove that W is a subspace of V.

(2) (Due 9/5) Let S_1 and S_2 be subsets of a vector space V. Prove that $\text{Span}(S_1 \cap S_2) \subseteq \text{Span}(S_1) \cap \text{Span}(S_2)$.

(3) (Due 9/19) Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. Prove that if S_2 is linearly independent, then S_1 is linearly independent.

(4) (Due 9/26) Let $\{u, v, w\}$ be a basis for a vector space V. Prove that $\{u - w, v - w, w\}$ is also a basis for V.

(5) (Due 10/3) Let $T: \mathbb{R} \to \mathbb{R}$ be a linear transformation. Prove that there exists $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $T(x) = mx$.

(6) (Due 10/17) Let V and W be vector spaces, and let T and U be non-zero linear transformations from V to W. If $\text{Range}(T) \cap \text{Range}(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V,W)$.

(7) (Due 10/24/17) Let V be a finite dimensional vector space, and let $T: V \to V$ be a linear transformation which is not invertible. Prove that there exists a non-zero linear transformation $U: V \to V$ such that UT is the zero transformation.

(8) (Due 10/31/17) Let $A \in \mathcal{M}_{m \times n}(F)$ and $B \in \mathcal{M}_{n \times m}(F)$. Suppose $n < m$. Prove that AB is not invertible. Does the same result hold if $m < n$?