PROOFS LINEAR ALGEBRA

(1) (Due 8/29) Let W be a subset of a vector space V such that $W \neq \emptyset$ and for all $a \in F$ and $x, y \in W, a x+y \in W$. Prove that W is a subspace of V.
(2) (Due 9/5) Let S_{1} and S_{2} be subsets of a vector space V. Prove that $\operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$.
(3) (Due 9/19) Let V be a vector space, and let $S_{1} \subseteq S_{2} \subseteq V$. Prove that if S_{2} is linearly independent, then S_{1} is linearly independent.
(4) (Due 9/26) Let $\{u, v, w\}$ be a basis for a vector space V. Prove that $\{u-w, v-w, w\}$ is also a basis for V.
(5) (Due 10/3) Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be a linear transformation. Prove that there exists $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}, T(x)=m x$.
(6) (Due 10/17) Let V and W be vector spaces, and let T and U be non-zero linear transformations from V to W. If Range $(T) \cap$ Range $(U)=\{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
(7) (Due 10/24/17) Let V be a finite dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation which is not invertible. Prove that there exists a non-zero linear transformation $U: V \rightarrow V$ such that $U T$ is the zero transformation.
(8) (Due $10 / 31 / 17$) Let $A \in \mathcal{M}_{m \times n}(F)$ and $B \in \mathcal{M}_{n \times m}(F)$. Suppose $n<m$. Prove that $A B$ is not invertible. Does the same result hold if $m<n$?
(9) (Due $11 / 7 / 17$) Let $\delta: \mathcal{M}_{2 \times 2}(F) \rightarrow F$ be a function such that $\delta\left(I_{2}\right)=1$ and δ satisfes the following conditions with respect to elementary row operations:
(a) If $A \xrightarrow{r_{i} \leftrightarrow r_{j}} B$, then $\delta(B)=-\delta(A)$.
(b) If $A \xrightarrow{r_{i} \rightarrow c r_{i}} B$, then $\delta(B)=c \delta(A)$.
(c) If $A \xrightarrow{r_{i} \rightarrow r_{i}+c r_{j}} B$, then $\delta(B)=\delta(A)$.

Prove that $\delta(A)=\operatorname{det}(A)$ for all $A \in \mathcal{M}_{2 \times 2}(F)$.
(10) (Due $11 / 21 / 17$) Let V be a finite dimensional vector space over \mathbb{C} and let $T: V \rightarrow V$ be a linear transformation. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T and let m_{i} be the algebraic multiplicity of λ_{i}. Prove that $\operatorname{det}(T)=\lambda_{1}^{m_{1}} \lambda_{2}^{m_{2}} \ldots \lambda_{k}^{m_{k}}$.
(11) (Due $12 / 5 / 17$) Let V be a vector space over either \mathbb{R} or \mathbb{C} and let β be a basis of V. Prove that there exists an inner product on V such that β is an orthonormal basis.

