Elementary Differential Equations

Exam 3

Name: \qquad

UFID:

Instructions:

- Read each problem carefully.
- Show all your work; you will not get credit for answers with no work even if they are correct.
- The proctor will not answer questions about the material on the exam or give hints to any of the problems; do your best to answer each question as written.
- Students should not have calculators, phones, or paper on their desk and they should not wear headphones. No student writing should be in a position where it is visible.
- All numerical answers should be left in exact form (i.e. use $\ln (2)$, not $\approx .7$).
- The proctor will have additional scratch paper if needed.

1. Three identical springs with spring constant $k=3 \mathrm{~N} / \mathrm{m}$ and two objects of identical mass $m=1 \mathrm{~kg}$ are attached in a straight line with the ends of the outside springs fixed. If $x(t)$ denotes the position of the first object at time t and $y(t)$ denotes the position of the second object, then this system is governed by the equations

$$
\begin{aligned}
& m x^{\prime \prime}=-k x+k(y-x) \\
& m y^{\prime \prime}=-k(y-x)-k y
\end{aligned}
$$

Suppose $x(0)=6, y(0)=2$, and $x^{\prime}(0)=y^{\prime}(0)=0$. Solve for $x(t)$ and $y(t)$.
2. Give a fundamental solution set for the homogeneous equation

$$
\left(D^{2}-2 D+3\right)^{3}\left(D^{4}+2 D^{3}-15 D^{2}\right)[y]=0 .
$$

3. Find a differential operator A such that A annhilates $e^{x}+3 e^{2 x}$. Then determine a particular solution to

$$
y^{\prime \prime \prime}-y^{\prime}=e^{x}+3 e^{2 x} .
$$

4. Given that $\left\{1, x^{2}, x^{-2}\right\}$ is a fundamental solution set for $y^{\prime \prime \prime}+3 x^{-1} y^{\prime \prime}-3 x^{-2} y^{\prime}=0$ on the interval $x>0$, determine a particular solution on this interval to

$$
y^{\prime \prime \prime}+3 x^{-1} y^{\prime \prime}-3 x^{-2} y^{\prime}=x^{-1} .
$$

