MATH 155A-1 Test 1 N	ame:
----------------------	------

Show all work for full credit. I have neither given nor received aid on this test. *Pledged:______*

Grade:_____

1. (4 points) Find the domain of $g(t) = \sqrt{6 + t - t^2}$

2. (3 points) Complete the square: $x^2 + 6x + 7$

3. (8 points) Express the area of an equilateral triangle as a function of the length of one of the sides.

4. (8 points) Find all θ in $[0, 2\pi]$ such that $\sin(2\theta) = \cos(\theta)$

5. (6 points) Given $f(x) = \frac{1-x}{3x}$ and $g(x) = \frac{1}{1+3x}$, find and simplify $f \circ g$ and state its domain.

6. (8 points) Find $\lim_{x\to 0}(\sqrt{x^4+x^2})\sin\left(\frac{\pi}{x}\right)$

7. (12 points) Evaluate the following limits.

(a)
$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h}$$

(b) $\lim_{x\to 0} a$

(c)
$$\lim_{x \to 2} \sqrt{\frac{2x^2 + 1}{3x - 2}}$$

(d)
$$\lim_{x \to 0} \frac{x+3}{x^2}$$

(e)
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$

(f)
$$\lim_{x\to 0} \frac{1}{x} - \frac{1}{|x|}$$

8. (10 points) Use the δ - ϵ definition of a limit to prove that $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

9. (8 points) Let

$$f(x) = \begin{cases} \cos(x) - 1 & x < 0\\ 0 & x = 0\\ x - x^2 & x > 0 \end{cases}$$

Explain why f is continuous on $(-\infty,\infty)$.

10. (8 points)

(a) State the Intermediate Value Theorem.

(b) Show there exists a number in [1,2] that is exactly one less then its cube.

- 11. (10 points) Let $f(x) = \sqrt{1-2x}$.
 - (a) Find a formula for f'(x), using the limit definition of the derivative.

(b) Give the equation of the line tangent to f at (-4,3).

12. (15 points) Let f(x) be the function with the graph:

(a) At which points is f not continuous? State which type of discontinuity occurs at each point.

(b) At which points is f not differentiable?

(c) Sketch the graph of f'(x)