Show all work for full credit.
I have neither given nor received aid on this test. Pledged:

Grade:

1. (4 points) Find the domain of $g(t)=\sqrt{6+t-t^{2}}$
2. (3 points) Complete the square: $x^{2}+6 x+7$
3. (8 points) Express the area of an equilateral triangle as a function of the length of one of the sides.
4. (8 points) Find all θ in $[0,2 \pi]$ such that $\sin (2 \theta)=\cos (\theta)$
5. (6 points) Given $f(x)=\frac{1-x}{3 x}$ and $g(x)=\frac{1}{1+3 x}$, find and simplify $f \circ g$ and state its domain.
6. (8 points) Find $\lim _{x \rightarrow 0}\left(\sqrt{x^{4}+x^{2}}\right) \sin \left(\frac{\pi}{x}\right)$
7. (12 points) Evaluate the following limits.
(a) $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$
(b) $\lim _{x \rightarrow 0} a$
(c) $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}$
(d) $\lim _{x \rightarrow 0} \frac{x+3}{x^{2}}$
(e) $\lim _{u \rightarrow 1} \frac{u^{4}-1}{u^{3}-1}$
(f) $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{|x|}$
8. (10 points) Use the $\delta-\epsilon$ definition of a limit to prove that $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$
9. (8 points) Let

$$
f(x)= \begin{cases}\cos (x)-1 & x<0 \\ 0 & x=0 \\ x-x^{2} & x>0\end{cases}
$$

Explain why f is continuous on $(-\infty, \infty)$.
10. (8 points)
(a) State the Intermediate Value Theorem.
(b) Show there exists a number in $[1,2]$ that is exactly one less then its cube.
11. (10 points) Let $f(x)=\sqrt{1-2 x}$.
(a) Find a formula for $f^{\prime}(x)$, using the limit definition of the derivative.
(b) Give the equation of the line tangent to f at $(-4,3)$.
12. (15 points) Let $f(x)$ be the function with the graph:

(a) At which points is f not continuous? State which type of discontinuity occurs at each point.
(b) At which points is f not differentiable?
(c) Sketch the graph of $f^{\prime}(x)$

