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ABSTRACT
This paper introduces a time-since-recovery structured, multi-strain,
multi-population model of avian influenza. Influenza A viruses infect
many species of wild and domestic birds and are classified into
two groups based on their ability to cause disease: low pathogenic
avian influenza (LPAI) and high pathogenic avian influenza (HPAI).
Prior infection with LPAI provides partial immunity towards HPAI.
The model introduced in this paper structures LPAI-recovered birds
(wild and domestic) with time-since-recovery and includes cross-
immunity towards HPAI that can fade with time. The model has a
unique disease-free equilibrium (DFE), unique LPAI-only and HPAI-
only equilibria and at least one coexistence equilibrium.We compute
the reproduction numbers of LPAI (RL) andHPAI (RH) and show that
the DFE is locally asymptotically stable whenRL < 1 andRH < 1. A
unique LPAI-only (HPAI-only) equilibrium exists whenRL > 1 (RH >
1) and it is locally asymptotically stable if HPAI (LPAI) cannot invade
the equilibrium, that is, if the invasion number R̂H

L < 1 (R̂L
H < 1). We

showusing numerical simulations that theODE version of themodel,
which is obtained by discarding the time-since-recovery structures
(making cross-immunity constant), can exhibit oscillations, and also
that the pathogens LPAI and HPAI can coexist with sustained oscilla-
tions in both populations. Through simulations, we show that even if
both populations (wild and domestic) are sinkswhen alone, LPAI and
HPAI can persist in both populations combined. Thus, reducing the
reproduction numbers of LPAI and HPAI in each population to below
unity is not enough to eradicate the disease. The pathogens can con-
tinue to coexist in both populations unless transmission between the
populations is reduced.
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1. Introduction

Infectious disease dynamics often occur within the context of complex ecological com-
munities [9]. Moreover, many important host–pathogen systems consist of multiple
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pathogen strains, circulating among multiple species of hosts [7]. Understanding how
multi-species transmission affects the persistence of a given pathogen strain can help
inform prediction and management of infectious disease outbreaks, and understanding
how such transmission among hosts modulates the coexistence of pathogen strains and
thus the maintenance of genetic variation within pathogens is essential for gauging how
pathogens are likely to evolve. This community dimension of epidemiology is widely rec-
ognized as being a significant frontier in quantitative epidemiology and the public health
sciences [10].

These issues arise with particular urgency in the case of the avian influenza viruses
(AIVs), which present a global economic problem in the poultry industry costing annually
hundreds ofmillions of dollars [16] and pose a serious public health risk due to the threat of
emergence of a novel pathogen strain circulating amonghumanhosts, with potentially dev-
astating consequences [24]. Influenza A viruses can infect many species of warm-blooded
vertebrates [26], but the great majority of viral strains appear to be found in wild water-
birds, such as shorebirds and gulls (Charadriiformes) and ducks and geese (Anseriformes)
[12]. These species can come into contact with domestic poultry, which can pose a direct
threat to the poultry industry, and also provide a conduit for potential transmission to
humans.

Mathematical models can provide essential tools for understanding many aspects of
infectious disease dynamics [10], and become particularly important when grappling with
the complexities of multi-pathogen, multi-host systems, for instance when hosts them-
selvesmaymount strain-specific immune responses to infection. A realistic model of avian
influenza (AI) would be highly complex, since it would have to account for transmission
within and among multiple potential species of wild hosts, many of which are migratory
[21] and occupy seasonally forced environments [24]. As a way station towards such a
realistic model, here we consider a system in which there are two host populations, which
we call domestic and wild bird populations, each of which has relatively simple intrinsic
dynamics. These two host populations are in turn infected by two strains of AI A, one of
which is a strain of low pathogenic avian influenza (LPAI), and the other a strain of high
pathogenic avian influenza (HPAI). HPAI viruses are defined by the fact that they cause at
least 75% mortality in 4–8 week chickens, infected intravenously [20]. HPAI strains are of
influenza A subtypes H5 and H7 (e.g. H5N1, H7N9).

The basic dynamics of each host consists of a steady flow of fresh susceptibles into each
host population, and a constant rate of intrinsic mortality. In the absence of the virus, the
hosts have very stable dynamics. (This assumption would need to be relaxed when consid-
ering the detailed dynamics of natural populations, which fluctuate seasonally and among
years.) Transmission of the virus occurs in a density-dependent fashion, both within and
between these two populations. Hosts can recover from infection with LPAI, and when
they do recover, are immune for life from further infection by this viral strain. However,
LPAI-recovered birds can be infected by HPAI. Consistent with empirical evidence, there
is a degree of cross-protection in the immune response, so infection by LPAI can pro-
tect against HPAI. However, this cross-immunity fades with time, and incorporating the
dynamics of such time-dependent fade-out in immune protection is one of the mathe-
matical complexities of our model. By contrast, infection with HPAI is assumed to always
lead to death (possibly by culling) in domestic birds; in wild birds, HPAI leads to death or
recovery with permanent immunity to both strains.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
3:

46
 1

5 
D

ec
em

be
r 

20
15

 



106 N. TUNCER ET AL.

Our focus will be on the implications of partial cross-immunity, but to put our results
into context, it is useful to consider what might be expected when cross-immunity is
complete. If cross-immunity is complete, then LPAI and HPAI simply compete for sus-
ceptible hosts. If there is only one population, within which each strain could persist alone,
whichever strain can persist at the lowest level of susceptibleswill eliminate the other strain.
With two populations, there are two resources (the susceptibles in the two populations),
so there are other possibilities. One is that the two strains coexist, for example if LPAI is
better at exploiting wild susceptibles and HPAI is better at exploiting domestic suscep-
tibles. Another possibility is that each strain can exclude the other, in which case the first
strain to arrive persists and the second strain cannot invade (alternative equilibria). If cross-
immunity is not complete, HPAI can infect at least some LPAI-recovered birds, and so it
has an additional resource. Therefore, coexistence is possible in a single population if LPAI
is better at exploiting susceptibles; with complete cross-immunity, LPAI would eliminate
HPAI, but with partial cross-immunity, it is sometimes possible for HPAI to invade and
persist by infecting LPAI-recovered birds. With two populations, of course, there is addi-
tional scope for coexistence. The analyses and simulations presented below help illuminate
the conditions that permit such coexistence.

We first present the basic model (for a flow chart of the model, see Figure 1). Then, we
characterize the conditions for each viral strain to be able to increase when rare and alone.
We derive expressions for the basic reproduction number for each strain, which are func-
tions of the joint densities of the domestic and wild bird populations. Next, we consider the
conditions for the increase of each strain when rare, when the other strain is present, and
aim at characterizing conditions for the coexistence of the two strains. Such coexistence
is not guaranteed. The two viral strains can be viewed as interacting in two distinct ways.
Firstly, they compete exploitatively for healthy hosts. Given that there are two host popu-
lations, as noted above, there is the potential for a degree of niche partitioning that could
facilitate viral strain coexistence [9]. Secondly, the loss of partial immunity means there is
a partial, time-lagged facilitation of the dynamics of HPAI, emerging from hosts who get
infected with LPAI, but recover. This means that even if all hosts have been infected by
LPAI (so no fully susceptible hosts are available at all), some hosts can become available
for infection by HPAI.

This replenishment of hosts for HPAI involves a lag, relative to LPAI infection. We will
use numerical simulations to demonstrate that this permits the entire system to persist, but
at times with sustained, large-scale oscillations in infection by each viral strain. Such oscil-
lations can emerge even if each viral strain on its own tends towards a stable equilibrium
when it alone is infecting the two host populations.

2. Themodel

We consider a time-since-recovery structured model to study the dynamics of LPAI and
HPAI (indicated by L and H subscripts or superscripts, respectively) in wild and domes-
tic bird populations (indicated by w or 1 subscripts for wild birds and d or 2 subscripts
for domestic birds). The wild bird population is divided into nonintersecting classes of
susceptible (Sw ), infected with HPAI (IHw ), infected with LPAI (ILw ), recovered from
LPAI (rLw ), and recovered from HPAI (RHw ). Similarly, the domestic bird population
is divided into susceptible (Sd ), infected with HPAI (IHd ), infected with LPAI (ILd) and
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JOURNAL OF BIOLOGICAL DYNAMICS 107

Figure 1. Flow chart of model (1).

recovered from LPAI (rLd) classes. Since the detection of even one HPAI-infected domes-
tic bird results in culling the entire farm and the death of the infected bird, we do not
include an HPAI-recovered class for the domestic bird population. The LPAI-recovered
classes rLw(τ , t), rLd(τ , t) denote the density of (per unit τ ) recovered birds at time t with
time-since-recovery equal to τ .

The susceptible bird populations are generated by the recruitment/birth rates (�w and
�d) and reduced by the natural death rates (μw and μd) and by infection with HPAI or
LPAI. The new infections with LPAI and HPAI, respectively, per unit time per susceptible
host aremodelled by λLw and λHw in wild birds. The forces of infection for LPAI andHPAI,
respectively, in the wild bird population are given by

λLw = βL
11ILw + βL

12ILd , λHw = βH
11IHw + βH

12IHd.
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108 N. TUNCER ET AL.

Similarly, the forces of infection for LPAI and HPAI, respectively, in the domestic bird
population are given by

λLd = βL
21ILw + βL

22ILd , λHd = βH
21IHw + βH

22IHd.

The aggregateβ parameters can be interpreted as the product of rate of contacts between
a susceptible (wild or domestic) bird and an infected (LPAI orHPAI) bird and the probabil-
ity that the contact resulted in transmission. For instance, βH

12 is theHPAI transmission rate
to wild birds from domestic birds; similarly, βL

21 is the LPAI transmission rate to domestic
birds from wild birds (per susceptible bird per infected bird). Thus, the rate of change of
the population of susceptible wild and domestic bird populations is given by

dSw
dt

= �w − λLwSw − λHwSw − μwSw,

dSd
dt

= �d − λLdSd − λHdSd − μdSd.

The infected wild birds recover from LPAI infection at a rate αLw and the domestic birds
recover at a rateαd. LPAI causesmild infection in domestic andwild birds (http://www.cdc.
gov/flu/avianflu/avian-in-birds.htm), hence we neglect the LPAI-induced death rate. The
LPAI-infected wild and domestic bird populations increase by the new incidences λLwSw
and λLdSd, respectively. Thus, the wild and domestic bird populations infected with LPAI
satisfy the following equations:

dILw
dt

= λLwSw − (μw + αLw)ILw ,

dILd
dt

= λLdSd − (μd + αd)ILd .

The HPAI-infected wild and domestic bird populations increase by the new incidences
λHwSw and λHdSd, respectively. Wild birds infected with HPAI can recover at a rate αHw;
domestic birds do not recover from HPAI. Studies show that an earlier infection with
LPAI provides temporary immunity towards HPAI and this immunity fades with time-
since-recovery from LPAI [8, 18]. As τ is the time elapsed since the recovery from the last
LPAI infection, the additional newHPAI infections per unit time fromwild birds that have
recovered from LPAI are given by the following term:

λHw

∫ ∞

0
qw(τ )rLw(τ , t) dτ ,

where qw(τ ) is the susceptibility to HPAI of a wild bird that recovered from LPAI τ time
units ago relative to that of a naive wild bird. Similarly, the new HPAI infections per unit
time of the domestic birds recovered from LPAI infections are given by the following term:

λHd

∫ ∞

0
qd(τ )rd(τ , t) dτ ,

where qd(τ ) is the relative susceptibility to HPAI of an LPAI-recovered domestic bird.
Thus, the wild and domestic bird populations infected with HPAI satisfy the following
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equations:

dIHw

dt
= λHwSw + λHw

∫ ∞

0
qw(τ )rLw(τ , t) dτ − (μw + αHw + νHw)IHw,

dIHd

dt
= λHdSd + λHd

∫ ∞

0
qd(τ )rd(τ , t) dτ − (μd + νHd)IHd,

where νHw and νHd are disease death rates induced by HPAI in wild and domestic
birds, respectively. We combine these differential equations with those for LPAI-recovered
classes, rLw(τ , t) and rLd(τ , t), which have relative susceptibilities to HPAI of qw(τ ) and
qd(τ ), respectively, where 0 ≤ qw(τ ) ≤ 1, 0 ≤ qd(τ ) ≤ 1 for every τ > 0. Thus, the
differential equations modelling the recovered classes are

∂rLw
∂t

+ ∂rLw
∂τ

= −qw(τ )λHwrLw − μwrLw ,

rLw(0, t) = αLw ILw ,

∂rd
∂t

+ ∂rd
∂τ

= −qd(τ )λHdrd − μdrd,

rd(0, t) = αdILd .

We note that in the above equations, we have assumed mass-action incidence. Since the
contacts in influenza (avian or human) scale with the total population size, most influenza
models are built with mass-action incidence [1]. With the above notation, we have the
following time-since-recovery structured, multi-strain, multi-population model:

dSw
dt

= �w − λLwSw − λHwSw − μwSw,

dILw
dt

= λLwSw − (μw + αLw)ILw ,

∂rLw
∂t

+ ∂rLw
∂τ

= −qw(τ )λHwrLw − μwrLw ,

rLw(0, t) = αLw ILw ,

dIHw

dt
= λHwSw + λHw

∫ ∞

0
qw(τ )rLw(τ , t) dτ − (μw + αHw + νHw)IHw,

dRHw

dt
= αHw IHw − μwRHw,

dSd
dt

= �d − λLdSd − λHdSd − μdSd,

dILd
dt

= λLdSd − (μd + αd)ILd ,

∂rd
∂t

+ ∂rd
∂τ

= −qd(τ )λHdrd − μdrd,

rd(0, t) = αdILd ,

dIHd

dt
= λHdSd + λHd

∫ ∞

0
qd(τ )rd(τ , t) dτ − (μd + νHd)IHd.

(1)
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110 N. TUNCER ET AL.

Table 1. Definition of the variables of model (1).

Variable Meaning Variable Meaning

Sw Population of susceptible wild birds Sd Population of susceptible domestic
birds

ILw Population of LPAI-infected wild birds ILd Population of LPAI-infected domestic
birds

IHw Population of HPAI-infected wild birds IHd Population of HPAI-infected domestic
birds

rLw Density of wild birds that have
recovered from LPAI

rd Density of domestic birds that have
recovered from LPAI

RHw Population of wild birds that have
recovered from HPAI

Table 2. Definition of the parameters of model (1).

Parameter Meaning

�d Birth/recruitment rate of domestic birds
�w Birth/recruitment rate of wild birds
μd Natural death rate of domestic birds
μw Natural death rate of wild birds
νHd HPAI-induced mortality rate for domestic birds
νHw HPAI-induced mortality rate for wild birds
αd Recovery rate of domestic birds from LPAI
αLw Recovery rate of wild birds from LPAI
αHw Recovery rate of wild birds from HPAI
βL
11/β

H
11 LPAI/HPAI transmission rate to susceptible wild birds from infected wild birds

βL
12/β

H
12 LPAI/HPAI transmission rate to susceptible wild birds from infected domestic birds

βL
22/β

H
22 LPAI/HPAI transmission rate to susceptible domestic birds from infected domestic birds

βL
21/β

H
21 LPAI/HPAI transmission rate to susceptible domestic birds from infected wild birds

qw(τ ) Relative susceptibility of LPAI-recovered wild birds towards HPAI
qd(τ ) Relative susceptibility of LPAI-recovered domestic birds towards HPAI

A schematic flow diagram of model (1) is given in Figure 1, and the associated model
variables and parameters are defined in Tables 1 and 2, respectively.

3. LPAI–HPAI dynamics in wild and domestic bird populations

We first examine the existence and stability of equilibria of system (1). Model (1) has four
equilibria: the disease-free equilibrium (DFE); two boundary equilibria, LPAI-only and
HPAI-only; and the coexistence equilibrium.

3.1. Disease-free equilibrium

System (1) has a DFE ε0 given by ε0 = (S∗
w, 0, 0, 0, 0, S∗

d, 0, 0, 0), where S
∗
w = �w/μw, and

S∗
d = �d/μd.
The LPAI and HPAI basic reproduction numbers for the wild bird population are

denoted byRL
11 andRH

11, respectively, and are given by

RL
11 = βL

11�w

μw(μw + αLw)
, RH

11 = βH
11�w

μw(μw + αHw + νHw)
.
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The epidemiological meaning of basic reproduction numberRL
11 (RH

11) is the number of
secondary cases produced by one LPAI (HPAI)-infected wild bird during its infectious
period in an entirely susceptible population of wild birds. Similarly, the basic reproduction
numbers for LPAI and HPAI in the domestic bird population are denoted byRL

22 andRH
22,

respectively, and are given by

RL
22 = βL

22�d

μd(μd + αd)
, RH

22 = βH
22�d

μd(μd + νHd)
.

We also define the reproduction numbers between populations. In particular, the LPAI and
HPAI reproduction numbers of domestic birds in the wild bird population are denoted by
RL

12 andRH
12, respectively, and are given by

RL
12 = βL

12�w

μw(μd + αd)
, RH

12 = βH
12�w

μw(μd + νHd)
.

The reproduction number RL
12 (RH

12) gives the number of secondary cases one LPAI
(HPAI)-infected domestic bird will produce during its lifetime as infectious in an entirely
susceptible wild bird population. Similarly, we denote the LPAI and HPAI reproduction
number of wild birds in the domestic bird population asRL

21 andRH
21, respectively, which

are given by

RL
21 = βL

21�d

μd(μw + αLw)
, RH

21 = βH
21�d

μd(μw + αHw + νHw)

.

The reproduction number RL
21 (RH

21) gives the number of secondary cases one LPAI
(HPAI)-infected wild bird will produce during its lifetime as infectious in an entirely
susceptible domestic bird population.

We call the reproduction numbers RL
11, . . . ,RH

22 population-specific reproduction
numbers and the reproduction numbers RL

12, . . . ,RH
21 cross-population reproduction

numbers.
We denote the basic reproduction number of LPAI for the full system (1) asRL, which

is given by

RL =
RL

11 + RL
22 +

√
(RL

11 − RL
22)

2 + 4RL
12RL

21

2
.

Similarly, the basic reproduction number of HPAI for the full system (1) is given by

RH =
RH

11 + RH
22 +

√
(RH

11 − RH
22)

2 + 4RH
12RH

21

2
.

These basic reproduction numbersRL,RH are threshold values which determine whether
LPAI or HPAI can invade the DFE. The basic reproduction number R0 of the full
system (1) is the maximum of the LPAI and HPAI reproduction numbers: that is,

R0 = max{RL,RH}.
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112 N. TUNCER ET AL.

Theorem 3.1: IfRL < 1 andRH < 1, then the DFE, ε0, is locally asymptotically stable.

Proof: Let (uw, vw, xw, yw, zw, ud, vd, xd, yd) = (Sw, ILw , rLw , IHw,RHw, Sd, ILd , rd, IHd) − ε0

denote the perturbations around the DFE; then, we obtain the following linearized system:

duw
dt

= −βL
11S

∗
wvw − βL

12S
∗
wvd − βH

11S
∗
wyw − βH

12S
∗
wyd − μwuw,

dvw
dt

= βL
11S

∗
wvw + βL

12S
∗
wvd − (μw + αLw)vw,

∂xw
∂t

+ ∂xw
∂τ

= −μwxw,

xw(0, t) = αLwvw,

dyw
dt

= βH
11S

∗
wyw + βH

12S
∗
wyd − (μw + αHw + νHw)yw,

dzw
dt

= αHwyw − μwzw,

dud
dt

= −βL
21S

∗
dvw − βL

22S
∗
dvd − βH

21S
∗
dyw − βH

22S
∗
dyd − μdud,

dvd
dt

= βL
21S

∗
dvw + βL

22S
∗
dvd − (μd + αd)vd,

∂xd
∂t

+ ∂xd
∂τ

= −μdxd,

xd(0, t) = αdvd,

dyd
dt

= βH
21S

∗
dyw + βH

22S
∗
dyd − (μd + νHd)yd.

(2)

Suppose that the perturbations xw(t, τ) and xd(t, τ) have exponential forms such
as xw = eλt x̄w(τ ) and xd = eλt x̄d(τ ). After dropping the bars, we obtain the following
first-order ODEs:

λxw + dxw
dτ

= −μwxw, xw(0) = αLwvw, and λxd + dxd
dτ

= −μdxd, xd(0) = αdvd.

Solving these differential equations, we obtain

xw(τ ) = αLwvwe−(λ+μw)τ , xd(τ ) = αdvde−(λ+μd)τ .

The infected compartments x = (vw, vd, yw, yd) of the linearized system (2) are decoupled
from the remaining equations. Using the next generation matrix approach, the linearized
system for the infected compartment x = (vw, vd, yw, yd) can be rewritten as

x′ = (F − V)x,
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where

F =

⎛
⎜⎜⎜⎜⎝

βL
11S

∗
w βL

12S
∗
w 0 0

βL
21S

∗
d βL

22S
∗
d 0 0

0 0 βH
11S

∗
w βH

12S
∗
w

0 0 βH
21S

∗
d βH

22S
∗
d

⎞
⎟⎟⎟⎟⎠ ,

V =

⎛
⎜⎜⎜⎜⎝

μw + αLw 0 0 0

0 μd + αd 0 0

0 0 μw + αHw + νHw 0

0 0 0 μd + νHd

⎞
⎟⎟⎟⎟⎠ .

The next generation matrix K = FV−1 is a matrix of reproduction numbers:

K =

⎛
⎜⎜⎝
RL

11 RL
12 0 0

RL
21 RL

22 0 0
0 0 RH

11 RH
12

0 0 RH
21 RH

22

⎞
⎟⎟⎠ .

The LPAI basic reproduction number RL is the principal eigenvalue of the matrix KL =(RL
11 RL

12
RL

21 RL
22

)
:

RL =
RL

11 + RL
22 +

√
(RL

11 − RL
22)

2 + 4RL
12RL

21

2
.

Similarly, the HPAI reproduction number RH is the principal eigenvalue of the matrix
KH =

(RH
11 RH

12
RH

21 RH
22

)
:

RH =
RH

11 + RH
22 +

√
(RH

11 − RH
22)

2 + 4RH
12RH

21

2
.

The reproduction number R0 is given by the principal eigenvalue of the next gen-
eration matrix K. Thus, the basic reproduction number of the full system (1) is R0 =
max{RL,RH}. Note that if R0 < 1, then all eigenvalues of the subsystem involving
infected compartments (vw, vd, yw, yd) have negative real parts [6] (Theorem 2, p. 33).
For values of λ different from the eigenvalues of the subsystem, we have (vw, vd, yw, yd) =
(0, 0, 0, 0), which leads to xw(τ ) = xd(τ ) = 0. The remaining eigenvalues of the full system
are λ5 = −μw, λ6 = −μw and λ7 = −μd. Hence, all the eigenvalues are negative or have
negative real parts. Thus, the DFE is locally asymptotically stable whenR0 < 1. IfR0 > 1,
then the (vw, vd, yw, yd) subsystem has an eigenvalue with a positive real part, thus the DFE
is unstable. �

Furthermore, we can show the global stability of the DFE.

Theorem 3.2: AssumeR0 < 1. Then, the DFE is globally stable.
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114 N. TUNCER ET AL.

Proof: Integrating the PDEs and adding all equations for wild birds in system (1), we have
the following inequality for the total population size Nw of wild birds:

dNw

dt
≤ �w − μwNw.

Hence, lim supt Nw ≤ �w/μw. Similarly, we have for the total domestic bird population
Nd the inequality lim supt Nd ≤ �d/μd. That means that the set


 =
{
(Nw,Nd) : Nw ≤ �w

μw
,Nd ≤ �d

μd

}

is invariant. For initial conditions in the set 
, we have

dILw
dt

≤ (βL
11ILw + βL

12ILd)S
∗
w − (μw + αLw)ILw ,

dILd
dt

≤ (βL
21ILw + βL

22ILd)S
∗
d − (μd + αd)ILd ,

dIHw

dt
≤ (βH

11IHw + βH
12IHd)S

∗
w − (μw + αHw + νHw)IHw,

dIHd

dt
≤ (βH

21IHw + βH
22IHd)S

∗
d − (μd + νHd)IHd,

(3)

where we recall that S∗
w = �w/μw and S∗

d = �d/μd. We note also that since qw(τ ) ≤ 1
and qd(τ ) ≤ 1, the integral is no larger than the total population size of recovered individ-
uals, and the sum of the susceptible and recovered individuals is no larger than S∗

w and S∗
d,

respectively. The right-hand side of the above system is linear. Furthermore, ifR0 < 1, that
implies [6] that the matrix of the right-hand side above has only eigenvalues with negative
real parts. Therefore,

ILw → 0 as t → ∞,

ILd → 0 as t → ∞,

IHw → 0 as t → ∞,

IHd → 0 as t → ∞.

(4)

Thus, the DFE is globally stable. This completes the proof. �

The global stability of the DFE means that the model does not exhibit backward
bifurcation.

3.2. LPAI-only and HPAI-only equilibria

System (1) has two boundary equilibria: the LPAI-only equilibrium denoted by εL =
(S∗L

w , I∗LLw , r
∗L
Lw , 0, 0, S

∗L
d , I∗LLd , r

∗L
d , 0) and the HPAI-only equilibrium denoted by εH =

(S∗H
w , 0, 0, I∗HHw

,R∗H
Hw

, S∗H
d , 0, 0, I∗HHd

).
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The invasion number of HPAI when the system is at the LPAI-only equilibrium is R̂H
L

and it is given by

R̂H
L =

aRH
11 + bRH

22 +
√

(aRH
11 − bRH

22)
2 + 4abRH

12RH
21

2
, (5)

where

a = μw(S∗L
w + Bw)

�w
, b = μd(S∗L

d + Bd)
�d

,

Bw =
∫ ∞

0
qw(τ )r∗LLw(τ ) dτ , Bd =

∫ ∞

0
qd(τ )r∗Ld (τ ) dτ . (6)

Similarly, the invasion number of LPAIwhen the system is at theHPAI-only equilibrium
is R̂L

H and

R̂L
H =

cRL
11 + dRL

22 +
√

(cRL
11 − dRL

22)
2 + 4cdRL

12RL
21

2
, (7)

where

c = μwS∗H
w

�w
, d = μdS∗H

d
�d

. (8)

As with the reproduction numbers, the invasion reproduction numbers are also obtained
through the next generation approach [6], where the next generation operator of HPAI
invading the equilibrium of LPAI is given by

KH
L =

(
aRH

11 aRH
12

bRH
21 bRH

22

)
.

Correspondingly, the next generation operator of LPAI invading the equilibrium of HPAI
is given by

KL
H =

(
cRL

11 cRL
12

dRL
21 dRL

22

)
.

We call the main diagonal entries of the next generation matrices the population-specific
invasion numbers, and denote them by R̂L

11,H, . . . , R̂H
22,L, where

R̂H
11,L = aRH

11, R̂H
22,L = bRH

22, R̂L
11,H = cRL

11, R̂L
22,H = dRL

22.

We call the off diagonal entries the cross-population invasion numbers, and denote them
by R̂L

12,H, . . . , R̂H
21,L, where

R̂H
12,L = aRH

12, R̂H
21,L = bRH

21, R̂L
12,H = cRL

12, R̂L
21,H = dRL

21.

We denote the forces of infection of LPAI when wild and domestic bird populations are at
the εL equilibrium by λ∗L

Lw and λ∗L
Ld , respectively:

λ∗L
Lw = βL

11I
∗L
Lw + βL

12I
∗L
Ld , λ∗L

Ld = βL
21I

∗L
Lw + βL

22I
∗L
Ld . (9)
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116 N. TUNCER ET AL.

Substituting LPAI-only equilibrium εL into system (1) and setting the time derivatives
to zero, we can show that

r∗LLw(τ ) = αLw I
∗L
Lwe

−μwτ and r∗Ld (τ ) = αdI∗LLd e
−μdτ .

Furthermore, we have

S∗L
w = �w

λ∗L
Lw + μw

, I∗LLw = �wλ∗L
Lw

(λ∗L
Lw + μw)(μw + αLw)

,

S∗L
d = �d

λ∗L
Ld + μd

, I∗LLd = �dλ
∗L
Ld

(λ∗L
Ld + μd)(μd + αd)

.

We show the existence and uniqueness of an LPAI-only equilibrium by showing the exis-
tence and uniqueness of λ∗L

Lw and λ∗L
Ld . Solving Equations (9) for I

∗L
Lw and I∗LLd , we see that if

λ∗L
Lw andλ∗L

Ld are unique, so are I
∗L
Lw and I

∗L
Ld if and only ifβ

L
11β

L
22 �= βL

12β
L
21.We then substitute

the expressions for I∗LLw and I∗LLd into Equation (9) and obtain

λ∗L
Lw = κ1

λ∗L
Lw

λ∗L
Lw + μw

+ κ2
λ∗L
Ld

λ∗L
Ld + μd

, λ∗L
Ld = κ3

λ∗L
Lw

λ∗L
Lw + μw

+ κ4
λ∗L
Ld

λ∗L
Ld + μd

, (10)

where κ1 = RL
11μw, κ2 = RL

12μw�d/�w, κ3 = RL
21μd�w/�d and κ4 = RL

22μd. Based
on Equations (10), setting u1 = λ∗L

Lw and u2 = λ∗L
Ld , we define a nonlinear operator P in

the following way. Let u = (u1, u2); then

P(u) =
(

κ1
u1

u1 + μw
+ κ2

u2
u2 + μd

, κ3
u1

u1 + μw
+ κ4

u2
u2 + μd

)
= u.

For any two u = (u1, u2) and v = (v1, v2), we say that u > v provided that u1 > v1 and
u2 > v2. Then, K = {u ∈ R

2 s.t. u > 0} is a positive cone in R
2. If we set C = [0, κ1 +

κ2] × [0, κ3 + κ4], then the operator Pmaps C into itself.

Theorem 3.3: There exists a unique LPAI-only equilibrium, εL, ifRL > 1.

Proof: Let u = (u1, u2) and v = (v1, v2) s.t. u > v, then by the mean value theorem we
obtain the following for the first component of the nonlinear operator P,

P1(u1, u2) − P1(v1, v2) = κ1
μw

(ū1 + μw)2
(u1 − v1) + κ2

μd

(ū2 + μd)2
(u2 − v2) > 0,

where u1 ≤ ū1 ≤ v1 and u2 ≤ ū2 ≤ v2.
Hence, P is monotone in K. If u1 and u2 are less than ε > 0, then the operator P(u)

satisfies P(u) > Aεu, where

Aε =

⎛
⎜⎝

κ1

ε + μw

κ2

ε + μd
κ3

ε + μw

κ4

ε + μd

⎞
⎟⎠ .

Notice that when ε = 0, the principal eigenvalue of the matrix Aε=0 is RL > 1. Deter-
mine ε > 0 such that the principal eigenvalue of Aε is Rε

L = 1. Let v be the eigenvector
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corresponding to the principal eigenvalueRε
L of Aε . Therefore, Aεv = v, such that v > 0.

Rescale v so that its components are less than ε, that is v = (v1, v2), where v1 < ε and
v2 < ε. Then, it is clear that P(v) > v. To show the existence of LPAI-only equilibrium, we
define an increasing sequence; v0 = v and vj = P(vj−1). Note that ‖vj‖ < κ , where κ <

κ1 + κ2 + κ3 + κ4. Since {vj}nj=1 is a increasing bounded sequence, it converges. Namely
vj → v̂ as j → ∞. Since P(v̂) = v̂, v̂ is a fixed point for P.

Suppose there are two fixed points u1 and u2 which are ordered, that is u1 < u2, then

u2 − u1 = P(u2) − P(u1) = DP(ξ)(u2 − u1),

whereDP(u) is the derivative of P with respect to u (Appendix 1) and u1 ≤ ξ ≤ u2. Notice
that if w ≤ v and u > 0, then DP(v)u ≤ DP(w)u. Thus, we have

DP(u2)(u2 − u1) ≤ DP(ξ)(u2 − u1) ≤ DP(u1)(u2 − u1).

Repeating n times, we obtain

(DP(u2))n(u2 − u1) ≤ u2 − u1 ≤ (DP(u1))n(u2 − u1),

sinceDP(ξ)(u2 − u1) = u2 − u1. Since ρ(DP(u1)) < 1 and ρ(DP(u2)) < 1 (Appendix 1),
therefore (DP(u2))n → 0 and (DP(u1))n → 0. Thus, we have u1 = u2. Now, suppose that
there are two fixed points u1 and u2 ordered as u1 ≤K u2, which means u11 ≤ u21 and u12 ≥
u22. Then,

u = u1 − u2 = P(u1) − P(u2) = DP(ξ)(u1 − u2) = DP(ξ)u,

where u = (u1, u2)with u1 < 0 and u2 > 0, and u1 ≤K ξ ≤K u2. Notice that for anyw ≤K
v, we have DP(w)u ≤ DP(v)u since u1 < 0 and u2 > 0. That is we have,

DP(u1)(u2 − u1) ≤ DP(ξ)(u2 − u1) ≤ DP(u2)(u2 − u1).

Applying the same steps as before, we arrive at u1 = u2. So in either order, there exists a
unique fixed point, and therefore a unique equilibrium. �

Theorem 3.4: Assume RL > 1. Then, the LPAI-only equilibrium is locally asymptotically
stable iff R̂H

L < 1.

Proof: We obtain the following linear system for perturbations.

duw
dt

= −(λ∗L
Lw + μw)uw − βL

11S
∗L
w vw − βL

12S
∗L
w vd − βH

11S
∗L
w yw − βH

12S
∗L
w yd,

dvw
dt

= λ∗L
Lwuw + (βL

11S
∗L
w − (μw + αLw))vw + βL

12S
∗L
w vd,

∂xw
∂t

+ ∂xw
∂τ

= −qw(τ )(βH
11yw + βH

12yd)r
∗L
Lw − μwxw,

xw(0, t) = αLwvw,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
3:

46
 1

5 
D

ec
em

be
r 

20
15

 



118 N. TUNCER ET AL.

dyw
dt

= βH
11S

∗L
w yw + βH

12S
∗L
w yd + (βH

11yw + βH
12yd)Bw − (μw + αHw + νHw)yw,

dzw
dt

= αHwyw − μwzw,

dud
dt

= −(λ∗L
Ld + μd)ud − βL

21S
∗L
d vw − βL

22S
∗L
d vd − βH

21S
∗L
d yw − βH

22S
∗L
d yd,

dvd
dt

= λ∗L
Ldud + βL

21S
∗L
d vw + (βL

22S
∗L
d − (μd + αd))vd,

∂xd
∂t

+ ∂xd
∂τ

= −qd(τ )(βH
21yw + βH

22yd)r
∗L
d − μdxd,

xd(0, t) = αdvd,

dyd
dt

= βH
21S

∗L
d yw + βH

22S
∗L
d yd + (βH

21yw + βH
22yd)Bd − (μd + νHd)yd, (11)

where Bw and Bd are as defined in Equation (6). Considering the exponential solutions
such as xw(τ , t) = eλtx̄w(τ ), xd(τ , t) = eλt x̄d(τ ), yw = eλt ȳw and yd = eλt ȳd, we obtain
two non-homogeneous linear first-order differential equations. Solving them, we obtain

x̄w(τ ) = αLw v̄we−(λ+μw)τ − (βH
11ȳw + βH

12ȳd)
∫ τ

0
qw(s)r∗LLw(s)e−(λ+μw)(τ−s) ds,

x̄d(τ ) = αdv̄de−(λ+μd)τ − (βH
21ȳw + βH

22ȳd)
∫ τ

0
qd(s)r∗LLd (s)e

−(λ+μd)(τ−s) ds.

For the remaining equations, which do not depend on x̄w(τ ) and x̄d(τ ), we suppose
that the perturbations are exponential functions of the form uw = eλtūw, ud = eλtūd, vw =
eλtv̄w, vd = eλtv̄d, zw = eλt z̄w.We get the following eigenvalue problem after dropping the
bars, (

A B
0 C

)
= λ

(
x
y

)
, (12)

where x = (uw, ud, vw, vd, zw), y = (yw, yd),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(λ∗L
Lw + μw) 0 −βL

11S
∗L
w −βL

12S
∗L
w 0

0 −(λ∗L
Ld + μd) −βL

21S
∗L
d −βL

22S
∗L
d 0

λ∗L
Lw 0 βL

11S
∗L
w − (μw + αLw) βL

12S
∗L
w 0

0 λ∗L
Ld βL

21S
∗L
d βL

22S
∗L
d − (μd + αd) 0

0 0 0 0 −μw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

−βH
11S

∗L
w −βH

12S
∗L
w

−βH
21S

∗L
d −βH

22S
∗L
d

0 0
0 0

αHw 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

C =
(

βH
11(S

∗L
w + Bw) − (μw + αHw + νHw ) βH

12(S
∗L
w + Bw)

βH
21(S

∗L
d + Bd) βH

22(S
∗L
d + Bd) − (μd + νHd)

)
.
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The equations involving HPAI, that is yw and yd in the above eigenvalue problem, decou-
ple. Thus, two eigenvalues of the system will be determined by the subsystem involving
equations of yw and yd (matrix C; the other eigenvalues are the eigenvalues of A). The
eigenvalues of the Jacobian matrix C have negative real parts if and only if the spectral
radius of the next generationmatrix is less than 1 [6] (Theorem 2, p. 33). Following the next
generation matrix approach, we obtain the next generation matrix KH

L = FV−1, where

F =
(

βH
11(S

∗L
w + Bw) βH

12(S
∗L
w + Bw)

βH
21(S

∗L
d + Bd) βH

22(S
∗L
d + Bd)

)
and

V =
(

μw + αHw + νHw 0
0 μd + νHd

)
.

The principal eigenvalue of the next generation matrix KH
L gives the invasion number

of HPAI which is denoted by R̂H
L ; if this is greater than or equal to 1, then at least one

eigenvalue of C has a positive real part, so the LPAI-only equilibrium is unstable.
Thus, the eigenvalues ofC have negative real parts if R̂H

L < 1. By contradiction, we show
that if R̂H

L < 1, then the eigenvalues of the matrix A do not have non-negative real parts.
The characteristic equation of A is as follows:

− βL
12S

∗L
w βL

21S
∗L
d (μw + λ)(μd + λ) + [(μd + αd + λ)(λ∗L

Ld + μd + λ) − βL
22S

∗L
d (μd + λ)]

[(μw + αLw + λ)(λ∗L
Lw + μw + λ) − βL

11S
∗L
w (μw + λ)] = 0. (13)

We rewrite Equation (13) as follows:

(μd + αd + λ)(λ∗L
Ld + μd + λ) − βL

22S
∗L
d (μd + λ)

μd + λ

(μw + αLw + λ)(λ∗L
Lw + μw + λ) − βL

11S
∗L
w (μw + λ)

μw + λ
= βL

12S
∗L
w βL

21S
∗L
d . (14)

If �(λ) ≥ 0, then∣∣∣∣∣
(μd + αd + λ)(λ∗L

Ld + μd + λ) − βL
22S

∗L
d (μd + λ)

μd + λ

∣∣∣∣∣
=
∣∣∣∣∣
(μd + αd + λ)(λ∗L

Ld + μd + λ)

(μd + λ)
− βL

22S
∗L
d

∣∣∣∣∣
≥ |μd + αd + λ||λ∗L

Ld + μd + λ|
|μd + λ| − βL

22S
∗L
d > |μd + αd + λ| − βL

22S
∗L
d

≥ μd + αd − βL
22S

∗L
d . (15)

Similar analysis yields

|μw + αLw + λ||λ∗L
Lw + μw + λ|

μw + λ
− βL

11S
∗L
w ≥ μw + αLw − βL

11S
∗L
w . (16)
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So the characteristic equation (14) leads the following inequality:

βL
12S

∗L
w βL

21S
∗L
d > (μd + αd − βL

22S
∗L
d )(μw + αLw − βL

11S
∗L
w ). (17)

From the equations for the LPAI-only equilibrium, we obtain μw + αLw − βL
11S

∗L
w =

βL
12I

∗L
Ld S

∗L
w /I∗LLw andμd + αd − βL

22S
∗L
d = βL

21I
∗L
LwS

∗L
d /I∗LLd . Thus, the inequality (17) becomes

βL
12S

∗L
w βL

21S
∗L
d >

βL
21I

∗L
LwS

∗L
d

I∗LLd

βL
12I

∗L
Ld S

∗L
w

I∗LLw
= βL

12S
∗L
w βL

21S
∗L
d . (18)

This contradiction completes the proof. Hence, the characteristic equation (13) cannot
have roots with non-negative real parts. �

Theorem 3.5: Assume RH > 1. Then, there exists a unique HPAI-only equilibrium. The
HPAI-only equilibrium is locally asymptotically stable if R̂L

H < 1 and unstable if R̂L
H > 1.

Proof: Proof of Theorem 3.5 is very similar to the proof of Theorems 3.3 and 3.4, and will
be omitted. �

3.3. Coexistence equilibrium

In this section, we investigate the existence of the coexistence equilibrium (i.e. interior
equilibrium), that is, the equilibrium in which both LPAI and HPAI are present in wild
and domestic bird populations.We suppose that all the β parameters, βL

11,β
L
12, . . . ,β

H
21,β

H
22

are positive. Special cases can be obtained by setting some or all the cross-coefficients to
zero. For instance, the LPAI and HPAI might coexist only in the wild bird population, and
only HPAI persist in the domestic bird population. In this paper, we will only consider the
case when both pathogens coexist in both populations. Thus, the coexistence equilibrium
is given by ε∗∗ = (S∗∗

w , I∗∗
Lw , r

∗∗
Lw , I

∗∗
Hw

,R∗∗
Hw

, S∗∗
d , I∗∗

Ld , r
∗∗
d , I∗∗

Hd
). We study the existence of the

interior equilibrium by showing the existence of the forces of infections λ∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw

, and
λ∗∗
Hd
. We solve equations of the equilibrium for S∗∗

w , I∗∗
Lw , r

∗∗
Lw , I

∗∗
Hw

, S∗∗
d , I∗∗

Ld , r
∗∗
Ld , and I∗∗

Hd
, and

obtain

S∗∗
w = �w

λ∗∗
Lw + λ∗∗

Hw
+ μw

, I∗∗
Lw = λ∗∗

LwS
∗∗
w

μw + αLw
,

I∗∗
Hw = λ∗∗

Hw
S∗∗
w

μw + αHw + νHw

+ λ∗∗
Hw

∫∞
0 qw(τ )r∗∗

Lw(τ ) dτ
μw + αHw + νHw

,

S∗∗
d = �d

λ∗∗
Ld + λ∗∗

Hd
+ μd

, I∗∗
Ld = λ∗∗

LdS
∗∗
d

μd + αd
, I∗∗

Hd
= λ∗∗

Hd
S∗∗
d

μd + νHd

+ λ∗∗
Hd

∫∞
0 qd(τ )r∗∗

d (τ )dτ
μd+νHd

.

Setting, �w(τ ) = e−λ∗∗
Hw

∫ τ
0 qw(s) ds−μwτ and �d(τ ) = e−λ∗∗

Hd

∫ τ
0 qd(s) ds−μdτ , we obtain

r∗∗
Lw(τ ) = αLw I

∗∗
Lw�w(τ ), r∗∗

Ld (τ ) = αdI∗∗
Ld�d(τ ).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
3:

46
 1

5 
D

ec
em

be
r 

20
15

 



JOURNAL OF BIOLOGICAL DYNAMICS 121

Using above expressions and the definitions of forces of infections, we arrive at the
following equations:

λ∗∗
Lw = �dβ

L
12λ

∗∗
Ld

(αd + μd)(μd + λ∗∗
Hd

+ λ∗∗
Ld )

+ �wβL
11λ

∗∗
Lw

(αLw + μw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)

, (19)

λ∗∗
Ld = �dβ

L
22λ

∗∗
Ld

(αd + μd)(μd + λ∗∗
Hd

+ λ∗∗
Ld )

+ �wβL
21λ

∗∗
Lw

(αLw + μw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)

, (20)

λ∗∗
Hw = �wβH

11λ
∗∗
Hw

(μw + αHw + νHw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)

(
1 + αLwλ∗∗

Lw
μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)

+ �dβ
H
12λ

∗∗
Hd

(μd + νHd)(μd + λ∗∗
Hd

+ λ∗∗
Ld )

(
1 + αdλ

∗∗
Ld

μd + αd

∫ ∞

0
qd(τ )�d(τ ) dτ

)
, (21)

λ∗∗
Hd

= �wβH
21λ

∗∗
Hw

(μw + αHw + νHw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)

(
1 + αLwλ∗∗

Lw
μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)

+ �dβ
H
22λ

∗∗
Hd

(μd + νHd)(μd + λ∗∗
Hd

+ λ∗∗
Ld )

(
1 + αdλ

∗∗
Ld

μd + αd

∫ ∞

0
qd(τ )�d(τ ) dτ

)
. (22)

Note that �w(τ ) and �d(τ ) depend on λ∗∗
Hw

, λ∗∗
Hd
. Using Equations (19)– (22), we define a

nonlinear operator T in the following way. Let u = (λ∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw

, λ∗∗
Hd

), then

T(u) = (T1(u),T2(u),T3(u),T4(u)) = u. (23)

For vectors, u1 = (λ1Lw , λ
1
Ld , λ

1
Hw

, λ1Hd
) and u2 = (λ2Lw , λ

2
Ld , λ

2
Hw

, λ2Hd
), we define a par-

tial order and say that u1 ≤K u2 if and only if

λ1Lw ≤ λ2Lw , λ1Ld ≤ λ2Ld , λ1Hw
≥ λ2Hw

, λ1Hd
≥ λ2Hd

.

With this partial order≥K ,KT = {u ∈ R
4 s.t.u ≥K 0} is a positive cone inR

4.Wedefine
the set CT to be CT := [0,K1] × [0,K2] × [0,K3] × [0,K4], where

K1 = βL
11

�w

μw
+ βL

12
�d

μd
, K2 = βL

21
�w

μw
+ βL

22
�d

μd
, K3 = 2

(
βH
11

�w

μw
+ βH

12
�d

μd

)
,

K4 = 2
(

βH
21

�w

μw
+ βH

22
�d

μd

)
.

The nonlinear operator T maps CT into itself, and it is monotone in the cone KT
(Proposition A.2 in Appendix 2).

Let εL = (λ∗L
Lw , λ

∗L
Ld , 0, 0) denote the LPAI-only equilibrium, εH = (0, 0, λ∗H

Hw
, λ∗H

Hd
)

denote the HPAI-only equilibrium and ε∗∗ = (λ∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw

, λ∗∗
Hd

) denote the coexistence
equilibrium. In the previous section, we showed that if both invasion numbers are greater
than unity, then both LPAI-only andHPAI-only equilibria are unstable. Next, we show that
in such a situation, there exists a coexistence equilibrium, ε∗∗.

We first linearize the nonlinear operator T around the LPAI-only and the HPAI-
only equilibria, and denote the linearization by DT(εj) for j = L,H. For any
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u = (λLw , λLd , λHw, λHd), we have

T(εj + u) = εj + DT(εj)u + N(u) j = L,H. (24)

Let ρj be the spectral radius ofDT(εj) for j = L,H, then by the Perron–Frobenius theorem
ρj is an eigenvalue of the linear operator DT(εj). By Proposition A.2, DT(εj) is a positive
matrix in the order created by the cone KT . Thus, the spectral radius is a simple eigenvalue
to which there corresponds a ‘positive’ eigenvector in the cone KT . In particular,

DT(εL)v = ρLv,

DT(εH)u = ρHu,

where v ≥K 0 and u ≥K 0.

Theorem 3.6: Assume R̂L
H > 1 and R̂H

L > 1, then there exists at least one coexistence
equilibrium ε = (λ∗∗

Lw , λ
∗∗
Ld , λ

∗∗
Hw

, λ∗∗
Hd

).

Proof: Since R̂L
H > 1 and R̂H

L > 1, Proposition A.3 (Appendix 2) implies that ρL > 1 and
ρH > 1. Note that we also have

εH <K εL.

For given u ≥K 0 and v ≥K 0, there exist small positive numbers ξ > 0 and η > 0 s.t.

εH + ηu <K εL − ξv.

We apply the operator T to the above inequality to obtain

T(εH + ηu) = T(εH) + ηDT(εH)u + η2N(u)

= εH + ηu + η(ρH − 1)u + η2N(u).

Note that η(ρH − 1)u ≥K 0 and (ρH − 1)u + ηN(u) ≥K 0 for η small enough. Thus,
T(εH + ηu) ≥K εH + ηu. Similarly, T(εL − ξv) = εL − ξv − ξ(ρL − 1)v + ξ 2N(v). For
small enough ξ , we have −(ρL − 1)v + ξN(u) ≤K 0. Thus, we have

T(εL − ξv) ≤K εL − ξv.

T is a monotone operator, so we apply the operator T to the above inequality repeatedly
and obtain

Tn(εL − ξv) ≤K Tn−1(εL − ξv) ≤K · · · ≤K εL − ξv.

Hence, Tn(εL − ξv) is a decreasing sequence. In addition, we have

εH + ηu ≤K T(εH + ηu) ≤K T(εL − ξv).

Similarly, applying the nonlinear operator T n times, we have

εH + ηu ≤K Tn(εL − ξv).
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Hence, Tn(εL − ξv) is a decreasing sequence bounded below by something strictly larger
than εH. Thus, the sequence converges to something with strictly positive components.

Tn(εL − ξv) → ε∗∗ ≥K εH + ηu as n → ∞.

Thus, ε∗∗ = (λ∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw

, λ∗∗
Hd

) is such that λ∗∗
Lw > 0, λ∗∗

Ld > 0, λ∗∗
Hw

> 0, and λ∗∗
Hd

> 0.
Hence, there exists a coexistence equilibrium.Our numerical simulations have not revealed
alternative equilibria. �

4. Simulations

Understanding how LPAI and HPAI compete and coexist in wild and domestic bird pop-
ulations can further be approached through simulations. To do so, it is necessary to assess
some reasonable values for parameters in the models. The parameter values we choose
are for illustrative purposes, grounded in empirical studies, but to ascertain more accurate
values requires more detailed empirical studies in the future.

4.1. Estimating parameter values

Determining realistic or at least plausible parameter values is obstructed by the enormous
diversity of wild and domestic bird species that can be affected by AI and the lack of time-
series data. AI A LPAI viruses have been isolated from more than 100 different species of
wild birds. AI A viruses are predominantly found in gulls, terns, and shorebirds or water-
fowl such as ducks, geese and swans (http://www.cdc.gov/flu/avianflu/avian-in-birds.htm).
These wild birds are considered as reservoirs (hosts) for LPAI viruses. HPAI viruses
also infect these species predominantly, killing some species within days and infecting
others without symptoms. Average lifespan varies dramatically from species to species.
Mallards have a lifespan of 3 years (http://en.wikipedia.org/wiki/Mallard) while alba-
trosses can live up to 38 years. A table of various birds’ maximum lifespan is given
in http://web.stanford.edu/group/stanfordbirds/text/essays/How_Long.html. We assume
that LPAI is not virulent to wild birds [11]. We further take wild birds to be infected
with LPAI for a range of 2–21 days. We assume the same duration for HPAI infection.
Hence, αLw , αHw, and νHw range from 365/2 to 365 /21. The recruitment rate of wild
birds is unknown. We take �w in the range 1000–3000 birds per year. This implies a car-
rying capacity of wild birds from 500 to 15,000. We use a similar parameter range for
domestic fowl. This might literally pertain to say the wild waterfowl populations found
in a single small lake in China, interacting with a local population of domestic waterfowl.
Alternatively, this could refer to population ‘units’, and thus larger spatial areas.

Poultry is infected with LPAI viruses mainly through contact with infected wild birds
or contaminated surfaces and/or water. LPAI is a mild illness in poultry typically lead-
ing to recovery. We assume an infection period for LPAI of 2–21 days in poultry. HPAI
is extremely virulent in poultry and causes severe illness and death, typically within 48 h.
We assume no recovery from HPAI in poultry since affected individuals either die or are
destroyed for security reasons. Poultry is usually kept for 2 years [14]; we take a range 0.5–5
years, so that μd = 0.2 to 2 year−1. There are 20.4 billion poultry units in the world [14].
We take �d in the range 1000–3000 with an average value of 1500. This is consistent with
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Table 3. Parameter ranges.

Parameter Range Average

μw 0.027–1 year−1 0.1
�w 1000–3000 birds/year 1500
αLw 365/21–365/2 year−1 36.5
αHw 365/21–365/2 year−1 36.5
νHw 365/21–365/2 year−1 36.5
qw 0 − 1 0.5
μd 0.2–2 year−1 0.5
�d 1000–3000 birds/year 1500
αLd 365/21–365/2 year−1 36.5
νHd 365/5–365/2 year−1 80.0
qd 0–1 0.5

the number of poultry units estimated from literature values if they are measured in units
of 107. Parameter ranges are given in Table 3.

4.2. Main questions

AI’s rich ecology and evolution is a source of novel mathematical models capable of
addressing new questions in biology. Theoretically, each population may be a source for
a pathogen, where the intra-population transmission of the pathogen allows the pathogen
to sustain itself within the focal population, or a sink, where the intra-population trans-
mission is not sufficient to sustain the pathogen but transmission in the sink population
is maintained by spillover infection from a source population [5]. Naturally, the pathogen
persists if at least one of the host populations is a source. However, a single pathogenmight
also persist if both host populations are sinks (basically because cross-transmission in effect
increases the number of available hosts). In the case when two host populations and two
pathogens are present, the situation is more complex. We will call population A a sink for
pathogen p if pathogen p cannot persist in population A if population A is isolated from
population B. Could a pathogen persist in sink–sink host populations when under competi-
tion from another pathogen? If ‘yes’, under what conditions? Could two pathogens persist if
both host populations are sink populations for each one of them? The status of wild birds and
domestic birds as source–sinks for LPAI and HPAI viruses in some cases is known. Wild
birds are a source host population for LPAI viruses, as some species of wild birds are a natu-
ral reservoir for them. There is little discussion in the literature about whether LPAI viruses
are endemic in domestic bird populations. Based on the data, however, our results in [13]
concluded that domestic birds are a sink host population for the LPAI viruses. Although
we estimated the LPAI virus reproduction number to be above one, LPAI cannot persist on
its own in poultry because it is out-competed by HPAI. On the other hand, HPAI viruses
are now endemic in domestic bird populations in some countries in Asia and Africa [17],
and our model captures that scenario [13]. The source–sink status of wild and domestic
birds for HPAI and LPAI are summarized in Table 4.

The source–sink status of wild birds for HPAI viruses is an open question of significant
interest [19, 20]. Is the HPAI virus capable of sustained transmission in the wild bird popula-
tion?What is the role of cross-immunity?We address these questions as well as the question
of oscillatory coexistence of LPAI and HPAI through the ODE version of model (1) (in
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Table 4. Source-sink status of birds to AI viruses.

LPAI HPAI

Wild birds Source ?
Domestic birds Sink Source

which qw and qd are constants rather than functions of time-since-infection) in the next
section.

4.3. Simulations with the full ODE system

We explored conditions for coexistence by conducting simulations of the ordinary dif-
ferential equation (ODE) system corresponding to model (1). In the ODE system, the
relative susceptibilities of LPAI-recovered birds, which in Equation (1) were qw(τ ) and
qd(τ ), are set to constants qw and qd, meaning that cross-immunity does not fade with
time. Therefore, all LPAI-recovered birds in each population are the same, and so can
be combined into variables RLw and RLd , with the rate of change for the wild population
given by

dRLw
dt

= αLw ILw − qwλHwRLw − μwRLw

(and an analogous equation for the domestic population). In the HPAI-infected equations,
the integrals are replaced by qwRLw or qdRLd , giving a system of nine ODEs.

We investigate scenarios of coexistence of LPAI and HPAI in wild and domestic birds in
the form of an equilibrium or in the form of sustained oscillations.We will call the order of
prevalences ‘realistic’ if in the wild birds LPAI prevalence is higher than HPAI prevalence,
and in domestic birds HPAI prevalence is higher than LPAI prevalence. We expect our
prevalences in the simulations to be in this realistic order.

Figure 2 shows a coexistence equilibrium with realistic parameter values and realistic
prevalence order, that is HPAI prevalence in domestic birds is higher than that of LPAI and
LPAI prevalence for wild birds is higher than that of HPAI. The solution stabilizes to an
equilibrium.Wenote that in Figure 2 at equilibrium16.63 domestic birds areHPAI infected
out of a total of 826 domestic birds at equilibrium (both times 107), giving as infection rate
of 1 in 50. Just for a comparison, in a recent outbreak of HPAI in the US poultry industry
approximately 50 million birds were affected out of 2 billion birds [25] which is 1 in 40.
Thus, our figure is a reasonable approximation of reality.

For Figure 2, the LPAI reproduction numbers are RL
11 = 2.05, RL

12 = 0.91, RL
21 =

0.835, and RL
22 = 0.984. In addition, the HPAI reproduction numbers are RH

11 = 0.546,
RH

12 = 0.432, RH21 = 0.0863, and RH
22 = 2.7. The invasion numbers are R̂H

L = 1.75 and
R̂L

H = 1.98. We see that, as we expect, the population-specific reproduction numbers of
LPAI in wild birds and HPAI in domestic birds are higher than one; all other numbers are
lower than one.With these parameters, wild birds are a sink for HPAI with realistic param-
eter values and a realistic order of prevalences. We note that we can obtain with realistic
parameters and realistic prevalence order a case whereHPAI inwild birds is a source. How-
ever, the IHw would be larger and a larger IHw should be more detectable in practice. Thus
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Figure 2. Coexistence with realistic parameter values. The parameter values used in the
figure are as follows: �w = 2000, μw = 0.25, νHw = 36.5, αHw = 36.5, αLw = 73, qw = 0.5,
βL
11 = .018776, βH

11 = 0.005, �d = 1020, μd = 0.5, νHd = 36.5, αd = 52.14, qd = 0.5, βL
22 = .02539,

βH
22 = 0.04897, βL

12 = 0.006, βL
21 = 0.03, βH

12 = 0.002, βH
21 = 0.031. The reproduction numbers are

RL = 2.54 and RH = 2.71. The invasion coefficients are as follows: R̂H
L = 1.75 and R̂L

H = 1.98. The
red line shows HPAI in wild birds, the orange dashed line shows HPAI in domestic birds, the blue line
shows LPAI in wild birds, the green dashed line shows LPAI in domestic birds.

with the available information, we cannot deduce for sure whether HPAI will persist on
its own in wild birds; however, the model suggests that the situation is closest to reality if
HPAI is a sink for wild birds.

Figure 3 shows that the full system can exhibit sustained, complex oscillations. We
note that the prevalences are generally in realistic order and the parameters used in
the examples are biologically reasonable. For wild birds, LPAI is generally higher than
HPAI. The reversed order is observed for domestic birds. The oscillations of LPAI
and HPAI are shifted half a period both in wild and domestic birds. That is, when
LPAI is at high values, HPAI is at low values and vice versa. This is a manifesta-
tion of the competition of LPAI and HPAI for susceptible hosts in both wild and
domestic birds. We note that in the full system oscillations can be obtained for rel-
atively intermediate or low values for qw and qd, which shows that even interme-
diate levels of cross-immunity to HPAI can destabilize the system. The parameters
νHd and νHw change the shape of the oscillations. In general, oscillations, whenever
found, are observed in a moderate neighbourhood of the parameters for which they
occur.

Furthermore, we note that oscillation and persistence of HPAI occurs in the case when
βH
12 = 0, that is when transmission from domestic to wild birds of HPAI does not occur. In

this case, persistence of HPAI is only possible ifRH
11 > 1. We note that HPAI in wild birds

emerges (or is likely detectable) only from time to time.
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Figure 3. Oscillations with realistic parameter values. The parameter values used in the figure are as
follows:�w = 2000,μw = 0.25, νHw = 36.5, αHw = 36.5, αLw = 73, qw = 0.45, βL

11 = .018776, βH
11 =

0.015, �d = 1020, μd = 0.5, νHd = 36.5, αd = 52.14, qd = 0.5, βL
22 = .025, βH

22 = 0.04897, βL
12 =

0.006, βL
21 = 0.03, βH

12 = 0.0, βH
21 = 0.031. The reproduction numbers are RL = 2.54 and RH = 2.7.

The invasion coefficients are as follows: R̂L = 1.37 and R̂H = 1.86. The red line showsHPAI inwild birds,
the orange dashed line shows HPAI in domestic birds, the blue line shows LPAI in wild birds, the green
dashed line shows LPAI in domestic birds.

Figure 4 is an illustration of a sink–sink scenario for both pathogens. A sink–sink
scenario is a scenario where both pathogens are sinks for each of the populations but
they can persist together in a coexistence equilibrium. We say that a sink–sink scenario
occurs if the following is satisfied in each of the populations if they are isolated (no
cross-transmission):

• The reproduction numbers and the invasion numbers of both pathogens are smaller
than one.

We were able to produce an example of this scenario, where all intra- and cross-
population components of the reproduction numbers and invasion reproduction numbers
are smaller than one. The coexistence of LPAI and HPAI under a sink–sink scenario
is shown in Figure 4. All components of the reproduction numbers and the invasion
reproduction numbers are smaller than one:

In this case, if all cross-coefficients β
p
12 = β

p
21 = 0, where p = L,H, then both LPAI and

HPAI will die out. Persistence of both pathogens occurs only through the cross-population
transmission. This scenario is easy to find with no constraints on parameters, but in our
example, the parameters are plausible and we have a realistic prevalence order in wild and
domestic birds.
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Figure 4. Coexistence with realistic parameter values. The parameter values used in the figure are as
follows: �w = 2000, μw = 0.25, νHw = 36.5, αHw = 36.5, αLw = 73, qw = 0.426, βL

11 = .0086, βH
11 =

0.005, �d = 1020, μd = 0.5, νHd = 36.5, αd = 52.14, qd = 1, βL
22 = .02539, βH

22 = 0.0166, βL
12 =

0.0043, βL
21 = 0.0131, βH

12 = 0.0014, βH
21 = 0.0332. The reproduction numbers are RL = 1.45 and

RH = 1.29. The invasion coefficients are as follows: R̂L = 1.17 and R̂H = 1.22. The red line shows HPAI
in wild birds, the orange dashed line shows HPAI in domestic birds, the blue line shows LPAI in wild birds,
the green dashed line shows LPAI in domestic birds.

Reproduction numbers Values Invasion numbers Values

RL
11 0.94 R̂H

11,L 0.46
RL

12 0.65 R̂H
12,L 0.26

RL
21 0.36 R̂H

21,L 0.92
RL

22 0.98 R̂H
22,L 0.91

RH
11 0.55 R̂L

11,H 0.86
RH

12 0.3 R̂L
12,H 0.6

RH
21 0.92 R̂L

21,H 0.26
RH

22 0.91 R̂L
22,H 0.69

4.4. LPAI and HPAI dynamics in the wild bird system only

We saw that the full ODE system corresponding to system (1) can exhibit oscillations
where LPAI and HPAI coexist. An interesting question occurs whether the coexistence
equilibrium can lose stability if restricted to just the wild bird system. This question is of
particular importance in the ODE case as it is well known that alternative ODE models
with cross-immunity do not always lead to oscillations. For instance, Castillo-Chavez et
al. found that age structure or quarantine needs to be introduced for a cross-immunity
model to show oscillations [3, 4]. However, it turns out that this is not the case with sys-
tem (1) with wild birds only. The characteristic equation of the coexistence equilibrium
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looks ‘almost’ stable but for some parameter values the coexistence equilibrium can
be destabilized (the analytical expression giving parameter combinations for which the
system is unstable is too complicated to interpret, so we illustrate instability with numer-
ical examples). Figure 5 shows sustained oscillations for both LPAI and HPAI. The
oscillations in LPAI have much larger amplitude. HPAI peaks follow LPAI peaks by
about 1/4 period which is typical for classical predator–prey dynamics. The parame-
ters chosen including the reproduction numbers and invasion reproduction numbers
have plausible values. To obtain oscillations with these parameter choices, our simula-
tions suggested that we need to choose qw ≈ 1. That suggests that oscillations, which
often mimic outbreaks, occur if the LPAI cross-immunity to HPAI is nearly or com-
pletely non-existent. Figure 6 also shows sustained oscillations. Looking more closely at
the figure, we can see two oscillation patterns superimposed, differing in period. With
the short period oscillations, the peak of LPAI is followed by a peak of HPAI, some-
what resembling predator–prey oscillations. The unstable equilibrium values are given by
(Sw, ILw ,RLw , IHw,RHw) = (5301.83, 38.2707, 12316.7, 16.3273, 26426.1). In the simulation
in Figure 6, the reproduction number of LPAI is somewhat high to be realistic. Decreasing
qw to 0.9 from the parameter listed in Figure 6 allows the oscillations of LPAI and HPAI to
be shifted so they are half the period out of phase, so that the maximum of HPAI occurs
at the same moment as the minimum of LPAI. In this case, we say the the system exhibits
fully competitive oscillation.

It is useful to develop some intuitive understanding for why oscillations arise in this sys-
tem. Biologically, the system is not really analogous to a predator–prey system. Recall that
LPAI andHPAI both attack susceptible hosts. If qw = 0, there is complete cross-immunity,

Figure 5. Sustained oscillations in the wild birds only system. Parameter values are�w = 2000,μw =
0.14, νHw = 49.5, αHw = 51.6, αLw = 73, qw = 0.98, βL

11 = .018776, βH
11 = 0.015, Sw(0) = 3449.72,

ILw(0) = 14.684, RLw(0) = 3366.78, IHw(0) = 7, RHw(0) = 769.5. The reproduction numbers areRL =
3.66 andRH = 2.116. The invasion coefficients are R̂L = 1.73 and R̂H = 2.08. The red line shows HPAI
and the blue line shows LPAI.
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Figure 6. Sustained oscillations in the wild birds only system. Parameter values are �w = 3810,
μw = 0.054, νHw = 87.5,αHw = 87.4,αLw = 69.4, qw = 0.99,βL

11 = .0131,βH
11 = 0.01, Sw(0) = 5000,

ILw(0) = 40, RLw(0) = 12000, IHw(0) = 15, RHw(0) = 25, 000. The reproduction numbers are RL =
13.3 andRH = 4.0. The invasion coefficients are R̂L = 3.3 and R̂H = 4. The red line shows HPAI and
the blue line shows LPAI.

and the relation between LPAI and HPAI is simply that of being competitors for suscepti-
ble hosts. One does not find coexistence in this case in a single population. In this model,
infection by HPAI always gives complete immunity to LPAI. However, if qw > 0, there
is only partial (or no) immunity to HPAI conferred by prior infection by LPAI, so LPAI-
recovered hosts can be infected byHPAI. A direct predation analogue in this systemwould
be if HPAI could infect LPAI-infected hosts and eliminate the LPAI infection, thereby
directly reducing the number of LPAI-infected hosts. In our model, HPAI does not have
this direct effect because it just attacks LPAI-recovered hosts. However, attacking LPAI-
recovered hosts increases the prevalence of HPAI, and allows it to infect more susceptible
hosts, for which it is competing with LPAI. It would, therefore, be analogous to a system
in which one competitor can consume the carcasses of the other. For the parameters of
Figure 6, the number of LPAI-infected hosts increases whenever

Sw > (μw + αLw)/βL
ww = 5302

and decreases otherwise. As ILw increases, it decreases Sw until it is below this value (HPAI
also helps decrease Sw, but it is less common, especially when ILw is near its peak). For
HPAI to increase requires

Sw + qwRLw > (μw + αHw + νHw)/βH
ww = 17, 495.

Even though this threshold is higher (due to the high death rate), it applies to the sum of
susceptible and LPAI-recovered hosts (the latter discounted by qw ). Because most LPAI-
infected birds recover, as the peak in ILw draws down Sw, it also increases RLw , so that the
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condition for HPAI to increase can sometimes continue to be met after LPAI has started
to decrease, as in the figure. For the parameters of the figure, HPAI relies mostly on LPAI-
recovered birds, the peak of which is after the peak in ILw . HPAI, therefore, is increasing
most rapidly after the LPAI peak. Eventually, HPAI depletes the hosts it attacks, and starts
to decrease. By this time, the susceptible hosts have started to increase (because of the low
level of ILw ), but they then increase faster until they are high enough for ILw to start to
increase. So oscillations in this system arise because of a combination of competition, and
a phenomenon analogous to ‘scavenging’ among carnivores.

We next address the question of whether we can reduce qw and still obtain oscillations.
The most influential parameter for that to occur is μw, which needs to be fairly low (0.14
in Figure 5 and 0.054 in Figure 6, both reasonable for wild birds) to produce oscillations
with smaller qw. Raising �w allows oscillations without μw becoming excessively small
and therefore unrealistic for wild bird populations. Raising the sum αHw + νHw also allows
for lowering qw. Still with nearly realistic other parameters, qw needs to stay above 0.9 for
oscillations to occur.

LPAI persists at higher levels than HPAI in Figures 2–4, which is the realistic scenario
for wild bird populations. However, raising qw as in Figures 5 and 6 leads to oscillations
but also increases the prevalence of HPAI at times to levels higher than LPAI which in wild
birds is unrealistic. Lack of cross-immunity from LPAI in domestic birds may explain why
HPAI persists in domestic birds at higher prevalence levels.

For realistic parameter values, it appears that in most cases oscillations of LPAI have
larger amplitude and go to higher values compared to oscillations in HPAI. In the future,
we expect that long-term empirical time-series of AI will become available. There is con-
siderable temporal variability in avian flu prevalence, and the processes we have explored
could help explain some of the drivers of these dynamics. Our model predictions about
phase shifts and differences in amplitude for flu strains differing in pathogenicity and
cross-infectivity should be useful in future studies in interpreting patterns in such data.

5. Discussion

AI continues to be a threat to human health. Recently, strains of HPAI H7N9 have started
infecting humans and hold potential to turn pandemicwith deadly consequences. Studying
AI in birds and humans is of paramount importance if we are to be prepared for the next
deadly pandemic.

In this paper, we introduce an AImodel formultiple bird populations. Themodel incor-
porates two strains, one LPAI and one HPAI. We are interested in studying the dynamics
of LPAI and HPAI in wild and domestic birds. Our model builds on previous work. Sev-
eral models published before have studied the interplay between LPAI andHPAI. Lucchetti
et al. [13] were the first to introduce LPAI and HPAI but the wild bird population in that
article is taken as a periodic source, not as a dynamical variable. Bourouiba et al. [2] stud-
ied the transmission of LPAI and HPAI in wild bird populations only. They assumed no
cross-immunity and that LPAI-recovered birds can get infected by HPAI with the same
transmission coefficients as do susceptible birds. However, reinfected wild birds can show
higher survivability. The results of this article are mostly obtained through simulations
and are specific to the parameters chosen. A model close to the one considered here is
introduced byAugusto andGumel [1]. Thismodel studies LPAI andHPAI in bothwild and
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domestic birds and assumes reinfection byHPAI of exposed and infectious birdswith LPAI.
It assumes that the partial immunity to HPAI conferred by LPAI infection is fixed, whereas
we allow it to wane with time (so their model is a pure ODEmodel, whereas ours includes
PDEs). Also, their model includes exposed (infectious but asymptomatic) classes, and
includes two mechanisms by which LPAI can change into HPAI. One is mutation, which
takes place in LPAI-exposed birds but produces HPAI-exposed and HPAI-infected birds.
In the other process, when LPAI-exposed birds become symptomatic (enter an infected
class), a fraction of them become LPAI-infected and the rest become HPAI-infected birds.
(In addition, birds with LPAI can become infected by HPAI, as in our model.) This arti-
cle finds backward bifurcation and multiple coexistence equilibria which are caused by the
reinfection with HPAI of LPAI-exposed birds and LPAI-infected birds. The article makes
two conjectures which are both true and are explained in the case of wild birds only in [23].
One of our main contributions here relative to article [1] is that we provide rigorous ana-
lytical results for when each strain persists and when it dies out, and when the two strains
coexist for the case when both reproduction numbers are greater than one. These are quan-
tified in terms of the invasion reproduction numbers and are satisfied for all parameter
values. One difference from the model in [1] is that our model does not exhibit backward
bifurcation. Also, of course, we allow cross-immunity to fade with time.

We compute the reproduction numbers RL and RH and the invasion reproduction
numbers R̂H

L and R̂L
H. The model has a unique DFE which is locally and globally sta-

ble if both reproduction numbers are smaller than one. The global stability of the DFE
rules out backward bifurcation. There are also a unique LPAI-only and a unique HPAI-
only equilibria which exist if the LPAI (HPAI) reproduction number is larger than one.
The LPAI-only equilibrium is locally asymptotically stable whenever it exists if R̂H

L < 1.
The HPAI-only equilibrium is locally asymptotically stable whenever it exists if R̂L

H < 1.
We show that if R̂L

H > 1 and R̂H
L > 1, then a coexistence equilibrium exists. The question

about the uniqueness of the coexistence equilibrium remains open.
Simulations suggest that the coexistence equilibrium is not stable for all parameter

regimes. In fact, the coexistence equilibrium can be destabilized even in the corresponding
ODE system in which qw and qd are assumed constant. Since the semi-trivial equilibria are
locally stable, this clearly suggests that the interaction between the strains, that is qw �= 0
and/or qd �= 0, is necessary for the destabilization of the coexistence equilibrium. Next, we
asked whether the presence of both populations and transmission between the populations
were necessary for instability. Investigating the wild bird system only [22], we find numeri-
cally that the ODEmodel of wild birds with LPAI and HPAI also can exhibit oscillations in
which both LPAI andHPAI persist. In thewild bird system, oscillations are foundwith high
values of qw ≈ 1, which means that destabilization of the system occurs if cross-immunity
is very low. In the full system, oscillations can be found for larger ranges of qw and qd.
Thus, transmission between the two populations allows for destabilization of the system
for a variety of cross-immunity levels. For sustained oscillations in a single population con-
sidered alone, LPAI-recovered birds must be almost as susceptible to HPAI infection as are
naive birds.

Simulations suggest that for plausible parameter values, we can also produce realistic
prevalences. In particular, inwild birds, the LPAI prevalence is higher than theHPAI preva-
lence, while in domestic birds, it is vice versa. Of particular interest is the case when a
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population is a sink for a pathogen but persistence in a multi-population multi-pathogen
system is still possible. We call population A a sink for pathogen p, where p = LPAI or
HPAI, if pathogen p cannot persist alone in population A, if isolated. It is well known that,
in a system with two sink habitats, a population can sometimes persist by using both habi-
tats.We have investigated this question in the case of competition of pathogens. In the case
of competition, we say that a population A is a sink for pathogen p if its within-population
reproduction number is less than one, or if its reproduction number is greater than one,
its within-population invasion reproduction number is smaller than one and the other
pathogen is present. We show through simulations that coexistence of both pathogens
is possible, if all their within-population and cross-population reproduction numbers are
smaller than one. This observation is very important since estimates of the reproduction
number of HPAI H5N1 in poultry vary around one [14, 15, 24] but our results imply that
even if the reproduction number is below one, HPAImay persist in the wild-domestic bird
system, even under competition with LPAI. We note that in the sink–sink scenario, even
though the species-specific, strain-specific reproduction and invasion numbers are below
one, the overall strain-specific reproduction and invasion numbers are above one, which
gives persistence.

Future empirical studies will be required to refine parameter estimation and ascer-
tain the likelihood of observing the complex dynamics revealed by this model. Also, in
the future it would be useful to explore alternative models of recruitment instead of the
constant rate of input assumed inmodel (1). Finally, it is likely that spatial dynamics are sig-
nificant in this system. Many wild waterfowl are migratory and can move over large areas.
Some birds may return to the same area each winter, but others may move among regions.
Domestic fowl are concentrated in more discrete locations, with less mobility, one expects.
Dealing with spatial patchiness, migration and heterogeneity will likely be important in
more realistic future characterizations of cross-population transmission in AI.
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Appendix 1. LPAI-only equilibrium

Proposition A.1: Let DP(u) denote the derivative of the operator P; then, the spectral radius of DP(u)
is less than 1.

Proof: The derivative of the operator P is DP(u) =
(

κ1
μw

(u1+μw)2
κ2

μd
(u2+μd)2

κ3
μw

(u1+μw)2
κ4

μd
(u2+μd)2

)
. Note that DP(u) is

a positive matrix, since all its entries are positive. Let A be a 2 × 2 square matrix given as A =( κ1
(u1+μw)

κ2
(u2+μd)

κ3
(u1+μw)

κ4
(u2+μd)

)
. Clearly, DP(u) ≤ A. Since P(u1, u2) = (u1, u2), dividing by u1 we obtain

1 = κ1

u1 + μw
+ κ2

u2 + μd
z,

u2
u1

= κ3

u1 + μw
+ κ4

u2 + μd
z,

where z = u2
u1 . Let v = ( 1

z
)
, then Av = v. Thus, 1 is an eigenvalue of A corresponding to a posi-

tive eigenvector. By Perron–Frobenius theorem, the spectral radius of A is ρ(A) = 1. Furthermore,
ρ(DP(u)) < ρ(A) since DP(u) < A. �

Appendix 2. Coexistence equilibrium

Proposition A.2: (1) Derivatives of the nonlinear operator T satisfy the following inequalities:

∂Ti

∂λ∗∗
Lw

> 0
∂Ti

∂λ∗∗
Ld

> 0
∂Ti

∂λ∗∗
Hw

< 0
∂Ti

∂λ∗∗
Hd

< 0 i = 1, 2,

∂Ti

∂λ∗∗
Lw

< 0
∂Ti

∂λ∗∗
Ld

< 0
∂Ti

∂λ∗∗
Hw

> 0
∂Ti

∂λ∗∗
Hd

> 0 i = 3, 4.

(2) T is monotone in KT, that is u1 ≤K u2 =⇒ T(u1) ≤K T(u2).
(3) T maps the set CT into itself. T : CT → CT.

Proof: (1) We only prove the inequalities ∂T1/∂λ∗∗
Lw > 0 and ∂T1/∂λ∗∗

Hw
< 0, since the inequalities

of other derivatives when i = 1, 2 can be derived by applying the same steps. Note that

T1(λ
∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw , λ

∗∗
Hd

) = �dβ
L
12λ

∗∗
Ld

(αd + μd)(μd + λ∗∗
Hd

+ λ∗∗
Ld )

+ �wβL
11λ

∗∗
Lw

(αLw + μw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)

.
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Thus,

∂T1

∂λ∗∗
Lw

= (�wβL
11)(μw + λ∗∗

Hw
)

(αLw + μw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)2

> 0 and
∂T1

∂λ∗∗
Hw

= −�wβL
11λ

∗∗
Lw

(αLw + μw)(μw + λ∗∗
Hw

+ λ∗∗
Lw)2

< 0.

Next, we prove the inequalities ∂T3/∂λ∗∗
Lw < 0 and ∂T3/∂λ∗∗

Hw
> 0. Inequalities for the other

derivatives when i = 3, 4 can be shown in a similar way. Note that

T3(λ
∗∗
Lw , λ

∗∗
Ld , λ

∗∗
Hw , λ

∗∗
Hd

) = λ∗∗
Hw

as in Equation (21). The derivative of T3 with respect to λ∗∗
Lw is

∂T3

∂λ∗∗
Lw

= −�wβH
11λ

∗∗
Hw

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw)2

(
1 + αLwλ∗∗

Lw
μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)

+ �wβH
11λ

∗∗
Hw

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw)

(
αLw

μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)
.

Combining the terms, we obtain

∂T3

∂λ∗∗
Lw

= −�wβH
11λ

∗∗
Hw

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw)2(

1 − αLw(μw + λ∗∗
Hw

)

μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)
.

Clearly, ∂T3/∂λ∗∗
Lw < 0 is negative, provided that

(μw + λ∗∗
Hw )

∫ ∞

0
qw(τ )�w(τ ) dτ < 1. (A1)

Since 0 ≤ qw(τ ) ≤ 1, the left side of Equation (A1) is less than the following integral∫ ∞

0
(λ∗∗

Hwqw(τ ) + μw)�w(τ ) dτ = 1 (note that
∫ ∞

0
qw(s) ds = ∞).

The derivative of T3 with respect to λ∗∗
Hw

is

∂T3

∂λ∗∗
Hw

= �wβH
11(μw + λ∗∗

Lw )

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw )2

(
1 + αLwλ∗∗

Lw
μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

)

− �wβH
11λ

∗∗
Hw

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw )(

αLwλ∗∗
Lw

μw + αLw

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ

)

= �wβH
11(μw + λ∗∗

Lw )

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw )2

(
1 + αLwλ∗∗

Lw
μw + αLw

∫ ∞

0
qw(τ )�w(τ ) dτ

− αLwλ∗∗
Lwλ∗∗

Hw
(μw + λ∗∗

Hw
+ λ∗∗

Lw)

(μw + αLw)(μw + λ∗∗
Lw)

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ

)
.
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Reorganizing the terms, we obtain

∂T3

∂λ∗∗
Hw

= �wβH
11(μw + λ∗∗

Lw)

(μw + αHw + νHw )(μw + λ∗∗
Hw

+ λ∗∗
Lw)2

[
1 + αLwλ∗∗

Lw
μw + αLw

(∫ ∞

0
qw(τ )�w(τ ) dτ

− λ∗∗
Hw

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ

− λ∗∗
Hw

2

μw + λ∗∗
Lw

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ

)]
. (A2)

The derivative ∂T3/∂λ∗∗
Hw

is positive if the term inside the square brackets in Equation (A2) is
positive. Thus, ∂T3/∂λ∗∗

Hw
> 0 if∫ ∞

0
qw(τ )�w(τ ) dτ − λ∗∗

Hw

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ > 0 (A3)

and

1 − αLwλ∗∗
Lw

(μw + αLw)(μw + λ∗∗
Lw )

λ∗∗
Hw

2
∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ > 0. (A4)

Applying integration by parts, Equation (A3) becomes∫ ∞

0
qw(τ )�w(τ ) dτ +

∫ τ

0
qw(s) dse−μwτ�w(τ )

∣∣∣∣
∞

0

−
∫ ∞

0
�w(τ )

(
qw(τ )e−μwτ − μw

∫ τ

0
qw(s) dse−μwτ

)
dτ

= μw

∫ ∞

0

∫ τ

0
qw(s) ds�w(τ ) dτ > 0.

Since αLwλ∗∗
Lw/[(μw + αLw)(μw + λ∗∗

Lw )] < 1, the expression in Equation (A4) is greater than
the following:

1 − λ∗∗
Hw

2
∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ . (A5)

By integration by parts, Equation (A5) becomes

1 − λ∗∗
Hw

∫ ∞

0
qw(τ )�w(τ ) dτ + μwλ∗∗

Hw

∫ ∞

0
qw(τ )

∫ τ

0
qw(s) ds�w(τ ) dτ ,

which is positive, since λ∗∗
Hw

∫∞
0 qw(τ )�w(τ ) dτ < 1.

(2) We prove the monotonicity of the operator T, by showing that T3(u1) ≥ T3(u2) whenever
(u1) ≤K (u2). Because of the symmetry, the steps for proving the rest of the inequalities
T1(u1) ≤ T1(u2), T2(u1) ≤ T2(u2) and T4(u1) ≥ T4(u2) are similar.

T3(u1) − T3(u2) = T3(λ
1
Lw , λ

1
Ld , λ

1
Hw , λ

1
Hd

) − T3(λ
2
Lw , λ

2
Ld , λ

2
Hw , λ

2
Hd

)

= T3(λ
1
Lw , λ

1
Ld , λ

1
Hw , λ

1
Hd

) − T3(λ
2
Lw , λ

1
Ld , λ

1
Hw , λ

1
Hd

)

+ T3(λ
2
Lw , λ

1
Ld , λ

1
Hw , λ

1
Hd

) − T3(λ
2
Lw , λ

2
Ld , λ

1
Hw , λ

1
Hd

)

+ T3(λ
2
Lw , λ

2
Ld , λ

1
Hw , λ

1
Hd

) − T3(λ
2
Lw , λ

2
Ld , λ

2
Hw , λ

1
Hd

)

+ T3(λ
2
Lw , λ

2
Ld , λ

2
Hw , λ

1
Hd

) − T3(λ
2
Lw , λ

2
Ld , λ

2
Hw , λ

2
Hd

).
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Using the mean value theorem, we obtain

T3(u1) − T3(u2) = ∂T3

∂λ∗∗
Lw

(ξ1, λ1Ld , λ
1
Hw , λ

1
Hd

)(λ1Lw − λ2Lw)

+ ∂T3

∂λ∗∗
Ld

(λ2Lw , ξ2, λ
1
Hw , λ

1
Hd

)(λ1Ld − λ2Ld)

+ ∂T3

∂λ∗∗
Hw

(λ2Lw , λ
2
Ld , ξ3, λ

1
Hd

)(λ1Hw − λ2Hw )

+ ∂T3

∂λ∗∗
Hd

(λ2Lw , λ
2
Ld , λ

2
Hw , ξ4)(λ

1
Hd

− λ2Hd
).

We just proved that ∂T3/∂λ∗∗
Lw < 0, ∂T3/∂λ∗∗

Ld < 0, ∂T3/∂λ∗∗
Hw

> 0, ∂T3/∂λ∗∗
Hd

> 0. Since
(u1) ≤K (u2), we have λ1Lw − λ2Lw ≤ 0, λ1Ld − λ2Ld ≤ 0, λ1Hw

− λ2Hw
≥ 0, λ1Hd

− λ2Hd
≥

0. Thus, T3(u1) − T3(u2) ≥ 0.
(3) Next, we show that T maps the set CT into itself by showing it for T1 : CT → CT . Since

λ∗∗
Ld/(μd + λ∗∗

Hd
+ λ∗∗

Ld ) < 1 and λ∗∗
Lw/(μw + λ∗∗

Hw
+ λ∗∗

Lw ) < 1, it is clear that

T1(u) ≤ βL
12

�d

μd
+ βL

11
�w

μw
. �

Proposition A.3: The spectral radius ρL > 1 if and only if R̂H
L > 1, and the spectral radius ρH > 1

if and only if R̂L
H > 1.

Proof: We only show that ρL > 1 iff R̂H
L > 1, since the other case is similar. We have

DT(εL)v = ρLv,

where v is the positive eigenvector, v ≥K 0. The linearization matrix DT(εL) at the LPAI-only
equilibrium is given as follows:

DT(εL) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂T1

∂λ∗∗
Lw

(εL)
∂T1

∂λ∗∗
Ld

(εL)
∂T1

∂λ∗∗
Hw

(εL)
∂T1

∂λ∗∗
Hd

(εL)

∂T2

∂λ∗∗
Lw

(εL)
∂T2

∂λ∗∗
Ld

(εL)
∂T2

∂λ∗∗
Hw

(εL)
∂T2

∂λ∗∗
Hd

(εL)

∂T3

∂λ∗∗
Lw

(εL)
∂T3

∂λ∗∗
Ld

(εL)
∂T3

∂λ∗∗
Hw

(εL)
∂T3

∂λ∗∗
Hd

(εL)

∂T4

∂λ∗∗
Lw

(εL)
∂T4

∂λ∗∗
Ld

(εL)
∂T4

∂λ∗∗
Hw

(εL)
∂T4

∂λ∗∗
Hd

(εL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is equivalent to the following block triangular matrix,

DT(εL) =
(
DTL

1,2 DTH
1,2

0 DTH
3,4

)
.

The 2 × 2 block diagonal matrices are as follows:

DTL
1,2 =

⎛
⎜⎜⎜⎜⎝

�wβL
11μw

(αLw + μw)(μw + λ∗L
Lw)2

�dβ
L
12μd

(αLd + μd)(μd + λ∗L
Ld )

2

�wβL
21μw

(αLw + μw)(μw + λ∗L
Lw)2

�dβ
L
22μd

(αLd + μd)(μd + λ∗L
Ld )

2

⎞
⎟⎟⎟⎟⎠ ,
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DTH
1,2 =

⎛
⎜⎜⎜⎜⎝

−�wβL
11λ

∗L
Lw

(αLw + μw)(μw + λ∗L
Lw)2

−�dβ
L
12λ

∗L
Ld

(αLd + μd)(μd + λ∗L
Ld )

2

−�wβL
21λ

∗L
Lw

(αLw + μw)(μw + λ∗L
Lw)2

−�dβ
L
22λ

∗L
Ld

(αLd + μd)(μd + λ∗L
Ld )

2

⎞
⎟⎟⎟⎟⎠

and the components of the 2 × 2 matrix DTH
3,4 are as follows:

∂T3

∂λ∗∗
Hw

(εL) = aRH
11

∂T3

∂λ∗∗
Hd

(εL) = aRH
12,

∂T4

∂λ∗∗
Hw

(εL) = bRH
21

∂T4

∂λ∗∗
Hd

(εL) = bRH
22.

The principal eigenvalue ofDTH
3,4 is R̂H

L . The eigenvalues ofDT
L
1,2 are smaller than one, as we showed

in Proposition A.1. Therefore, the principal eigenvalue of DT(εL) is greater than 1 if and only if
R̂H

L > 1. �
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