Problems marked with * are to be turned in for grading.

1. Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose there exist constants $0 < \alpha \leq 1$ and $C > 0$ such that for all $x, y \in E$,
 \[|f(x) - f(y)| \leq C|x - y|^{\alpha}. \]
 (1)

 a) Prove that f is uniformly continuous on E.

 b) Prove that if $E = (a, b) \subset \mathbb{R}$ and (1) holds for some $\alpha > 1$, then f is constant.

2. Suppose $f'(x) > 0$ on (a, b). Prove that f is strictly increasing (hence one-to-one) on (a, b). Let g be the inverse function to f. Prove that g is differentiable on (a, b) and $g'(f(x)) = \frac{1}{f'(x)}$.

3. Suppose f' is continuous on $[a, b]$ and $\epsilon > 0$. Prove that there exists $\delta > 0$ such that
 \[\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon \]
 whenever $t, x \in [a, b]$ and $0 < |t - x| < \delta$.

4. Recall that a function $f : (a, b) \to \mathbb{R}$ is called convex if for every $a < x < y < b$ and every $0 < t < 1$,
 \[f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y). \]
 (In other words, the graph of f always lies below its secant line). Prove that if f is differentiable on (a, b), then f is convex if and only if f' is increasing. Prove that if f'' exists at every point of (a, b), then f is convex if and only if $f''(x) \geq 0$ for all $x \in (a, b)$.

5. Suppose $f : (0, \infty) \to \mathbb{R}$ is differentiable. a) Give an example of such an f with $f'(x) \to 0$ and $f(x) \to +\infty$ as $x \to +\infty$. b) If f is bounded and $f'(x) \to 0$ as $x \to +\infty$, does this imply that $\lim_{x \to +\infty} f(x)$ exists? Prove, or give a counterexample.

*6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and there exists a constant $C < 1$ so that $|f'(x)| \leq C$ for all $x \in \mathbb{R}$. Prove that f has a fixed point, i.e. there exists at least one $x \in \mathbb{R}$ so that $f(x) = x$. (Hint: pick an arbitrary x_1 and define a sequence x_n recursively by $x_{n+1} = f(x_n)$.)