Problems marked with * are to be turned in for grading.

1. Let $f_n, f, g_n, g \in L^1$. Suppose $f_n \to f$ and $g_n \to g$ a.e., $|f_n| \leq g_n$, and $\int g_n \to \int g$. Prove that $\int f_n \to \int f$. (Rework the proof of the dominated convergence theorem.)

2. Suppose $f_n, f \in L^1$ and $f_n \to f$ a.e. Prove that $\int |f_n - f| \to 0$ if and only if $\int |f_n| \to \int |f|$. (Use Problem 1.)

3. Let E be a measurable subset of \mathbb{R}, let I be an open interval of \mathbb{R}, and let $f : I \times E \to \mathbb{R}$ be a function. Suppose that:
 - for each $t \in E$, the function $x \to f(x, t)$ is continuous on I,
 - for each $x \in I$, the function $t \to f(x, t)$ is measurable on E, and
 - there is a function $g \in L^1(E)$ such that for all $(x, t) \in I \times E$ we have $|f(x, t)| \leq g(t)$.

 Prove that the expression
 $$F(x) = \int_E f(x, t) \, dt$$
 defines a continuous function of x on I.

*4. Let E be a measurable subset of \mathbb{R}, let I be an open interval of \mathbb{R}, and let $f : I \times E \to \mathbb{R}$ be a function. Suppose that:
 - for each $t \in E$, the function $x \to f(x, t)$ is differentiable on I,
 - for each $x \in I$, the function $t \to f(x, t)$ is absolutely integrable on E, and
 - there is a function $g \in L^1(E)$ such that for all $(x, t) \in I \times E$, we have $\left| \frac{\partial f}{\partial x}(x, t) \right| \leq g(t)$.

 Prove that the expression
 $$F(x) = \int_E f(x, t) \, dt$$
 defines a differentiable function of x on I, with
 $$F'(x) = \int_E \frac{\partial f}{\partial x}(x, t) \, dt$$
 for all $x \in I$.

*5. (The Laplace transform.) Let $f : [0, +\infty) \to \mathbb{R}$ be a measurable function, and suppose there exist constants $a, M > 0$ so that
 $$|f(t)| \leq Me^{at} \quad \text{for all } t \geq 0.$$
(1)
The Laplace transform of f is the function $F(s)$ defined by the expression

$$F(s) = \int_0^\infty e^{-st} f(t) \, dt$$

for those values of $s \in \mathbb{R}$ for which the integral makes sense. Prove the following:

a) $F(s)$ is defined for all $s > a$.

b) $\lim_{s \to +\infty} F(s) = 0$.

c) $F(s)$ is infinitely differentiable for all $s > a$.

6. Evaluate each of the following limits. Carefully justify your answers.

a) $\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin \left(\frac{x}{n} \right) \, dx$

b) $\lim_{n \to \infty} \int_0^\infty \frac{1 + nx^2}{(1 + x^2)^n} \, dx$

c) $\lim_{y \to 0^+} \int_{-\infty}^{\infty} \frac{y}{y^2 + x^2} \, dx$

d) $\lim_{s \to 0^+} \int_0^\infty e^{-st} \sin t \, \frac{dt}{t}$