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Abstract. Recent work has demonstrated that Clark’s theory of unitary perturbations of the

backward shift restricted to a deBranges-Rovnyak subspace of Hardy space on the disk has a

natural extension to the several variable setting. In the several variable case, the appropriate

generalization of the Schur class of contractive analytic functions is the closed unit ball of the

Drury-Arveson multiplier algebra and the Aleksandrov-Clark measures are necessarily promoted

to positive linear functionals on a symmetrized subsystem of the Cuntz-Toeplitz operator system

A + A∗, where A is the non-commutative disk algebra.

We continue this program for vector-valued Drury-Arveson space by establishing the existence

of a canonical ‘tight’ extension of any Aleksandrov-Clark map to the full Cuntz-Toeplitz operator

system. We apply this tight extension to generalize several earlier results and we characterize all

extensions of the Aleksandrov-Clark maps.
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1. Introduction

The Drury-Arveson space, H2
d , of analytic functions on the open unit ball Bd := (Cd)1 of

d−dimensional complex space is the reproducing kernel Hilbert space (RKHS) H(k) of functions on

Bd corresponding to the positive kernel function k : Bd × Bd → C:

k(z, w) :=
1

1− zw∗
; z, w ∈ Bd.

Here zw∗ := (w, z)Cd = z1w1 + ...+zdwd, all inner products are assumed conjugate linear in the first

argument. In the case where d = 1 we recover the classical Hardy space H2 = H2(D) of analytic

functions on the disk D which have non-tangential boundary values almost everywhere on the unit

circle T with respect to normalized Lebesgue measure m.
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Any reproducing kernel Hilbert space H(k) on a set X is naturally equipped with a multiplier

algebra, Mult(H(k)), the algebra of all functions on X which multiply elements of H(k) into H(k):

Mult(H(k)) := {F : X → C| Fh ∈ H(k) ∀h ∈ H(k)}.

Identifying Mult(H(k)) as linear transformations on H(k), a closed graph theorem argument shows

that Mult(H(k)) ⊂ L (H(k)) consists of bounded linear maps. It is also straightforward to check

that the multiplier algebra is closed in the weak operator topology (WOT).

The Schur-class for Drury-Arveson space is the closed unit ball [H∞d ]1 of the multiplier algebra.

Again in the case where d = 1, we recover the usual Banach algebra H∞ = H∞(D) of bounded

analytic functions on D and the Schur class of contractive analytic functions on the disk.

Given any Schur class b ∈ [H∞d ]1,

kb(z, w) :=
1− b(z)b(w)∗

1− zw∗
,

defines a positive kernel function on Bd and one defines the deBranges-Rovnyak space K(b) := H(kb)

to be the corresponding reproducing kernel Hilbert space (RKHS) of analytic functions on Bd. One

can check that k − kb is again a positive kernel function and standard RKHS theory then implies

that K(b) is contained contractively in H2
d [1, Corollary 5.3]. Recall that multiplication by the

independent variable z defines an isometry S on H2 = H2(D) called the shift. The shift plays a

central role in the theory of Hardy spaces [2]. The adjoint S∗ of the shift is called the backward

shift,

(S∗f)(z) =
f(z)− f(0)

z
; f ∈ H2, z ∈ D.

Every deBranges-Rovnyak subspace of H2 is invariant under S∗, and the restrictions of the backward

shift to deBranges-Rovnyak spaces can be used to construct a functional model (a special case of the

deBranges-Rovnyak functional model) for arbitrary completely non-coisometric (c.n.c) contractions

[3, 4, 5, 6, 7, 8]. (The full deBranges-Rovnyak model is constructed using a two-component RKHS

with K(b) as its (1, 1) entry).) This is one important reason for interest in these spaces from the

point of view of operator theory. The theory we develop in this paper can be applied to extend this

deBranges-Rovnyak model to a class of generally non-commuting row contractions which generalize

c.n.c. contractions with equal defect indices [7, 9]. Standard references for the theory of deBranges-

Rovnyak spaces on the disk are [8, 3], and most of the basic theory we will generalize can be found

in [8].

We are motivated by the theory developed by D.N. Clark in [10] concerning unitary perturbations

of the restriction of the backward shift to a deBranges-Rovnyak space K(b). Clark considered the

case of inner b in which case K(b) is a co-invariant model subspace of H2. We will closely follow the
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extension of this theory to the Schur class of contractive analytic functions on the disk as presented

in [8], and as extended to Drury-Arveson space in [11].

1.1. Clark Theory in the classical (d = 1) case. There is a natural bijection between the Schur

class [H∞]1 of (purely) contractive analytic functions on the unit disk and the Herglotz class of all

analytic functions on the disk with non-negative real part given by

b 7→ Hb :=
1 + b

1− b
; and H 7→ bH :=

H − 1

H + 1
.

(Any Schur class b is either purely contractive, i.e. |b(z)| < 1, ∀ z ∈ D or b is a unimodular

constant.) There is also a natural bijection between Herglotz functions modulo imaginary constants

and non-negative Borel measures on the unit circle given by the Herglotz representation formula:

given any Herglotz function H on the disk, there is a unique non-negative Borel measure µ on the

unit circle so that

(1.1) H(z) = iIm (H(0)) +

∫
T

1 + zζ∗

1− zζ∗
µ(dζ).

In the above ζ∗ := ζ denotes complex conjugate. Conversely, given any non-negative Borel measure

on T (and any imaginary constant), this formula defines a Herglotz function on the disk. It follows

that one can associate a unique non-negative Borel measure µb on the unit circle to any Schur class b.

We will refer to this measure as the Herglotz measure of b. More generally there is a U(1)-parameter

family (the one-dimensional unitary group, identified with the unit circle T) of measures naturally

associated with b, the Aleksandrov-Clark measures. Namely, given any contractive analytic function

b and any α ∈ T, the Aleksandrov-Clark (AC) measure µα is defined to be µbα∗ , the Herglotz

measure of the contractive analytic function bα∗,

1 + b(z)α∗

1− b(z)α∗
= iIm

(
1 + b(0)α∗

1− b(0)α∗

)
+

∫
T

1 + zζ∗

1− zζ∗
µα(dζ).

For any non-negative Borel measure µ on the circle T, let L2(µ) denote the Hilbert space of

µ−square integrable functions on T. Since µ = µb for a unique Schur class b ∈ [H∞]1, we will often

use the notation L2(b) for L2(µ). Let P 2(b) denote the closure of the analytic polynomials in L2(b),

i.e.

P 2(b) :=
∨
n≥0

ζn,

and let P 2
0 (b) be the closed linear span of the non-constant monomials in L2(b),

P 2
0 (b) :=

∨
n≥1

ζn ⊂ P 2(b).
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The Schur class is a convex set and b ∈ [H∞]1 is an extreme point if and only if 1 − |b| fails to

be log-integrable: ∫
T

ln(1− |b(ζ)|) = −∞ ⇔ b is extreme,

[2, Chapter 9]. Since the Radon-Nikodym derivative of any AC measure µα for b with respect to

normalized Lebesgue measure m is [12, Proposition 9.1.14]:

dµα
dm

(ζ) =
1− |b(ζ)|2

|1− b(ζ)α∗|2
,

it follows that b is an extreme point if and only if∫
T

ln

(
dµα
dm

)
dm = −∞,

so that Szegö’s theorem implies that b is an extreme point if and only if P 2(b) = P 2
0 (b), i.e. if and

only if the closed linear span of the non-constant analytic monomials contains all of the analytic

polynomials in L2(b) [2, Chapter 4]. It is not further not hard to show that P 2(b) = P 2
0 (b) if and

only if P 2(b) = L2(b).

In the seminal paper [10], D.N. Clark established the following results for the case of inner b (the

general versions below can be found in [8, Chapter III]).

Theorem 1.2. For any α ∈ T and any b ∈ [H∞]1 the weighted Cauchy or Fantappiè transform

Fα defined by

(Fαf)(z) := (1− b(z)α∗)
∫
T

f(ζ)

1− zζ∗
µα(dζ),

is a unitary transformation from P 2(µα) = P 2(bα∗) onto the deBranges-Rovnyak space K(b).

Given any Schur class b and α ∈ T, let Zα := Zbα
∗

denote the unitary operator of multiplication

by the independent variable in L2(µα) = L2(bα∗). Clearly P 2(bα∗) is an invariant subspace for

Zα. Let Y α := Zα|P 2(µα), an isometry which equals Zα if and only if b is an extreme point. For

simplicity assume b(0) = 0 and let X := S∗|K(b).

Theorem 1.3. Given b ∈ [H∞]1 (assume b(0) = 0), the weighted Cauchy transform Fα intertwines

the co-isometry (Y α)∗ with a rank-one perturbation of X:

Xα := Fα(Y α)∗F∗α = X + 〈·, 1〉S∗bα∗.

The point evaluation vector at 0, kb0 ≡ 1 ∈ K(b) is cyclic for each Xα.
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If b is an extreme point of the Schur class then Y α = Zα is unitary so that each Xα is a rank-one

unitary perturbation of the restricted backward shift X. In this case if Pα denotes the projection-

valued measure of Xα then µα(Ω) = 〈Pα(Ω)1, 1〉.

Remark 1.4. In the case where b is an extreme point, the inverse of the weighted Cauchy transform

Fα implements a spectral realization for the unitary operator Xα.

1.5. The several variable case. These and other related results were recently generalized to

the several variable case of Drury-Arveson space H2
d by the first author [11]. The several variable

generalizations of Clark’s results as presented in [8] demonstrate that many of the proofs are algebraic

and dimension-free. Fascinatingly, as soon as d > 1, this theory applied to the commutative operator

algebra H∞d reveals fundamental connections to non-commutative operator algebra theory, namely

to Popescu’s noncommutative Hardy space theory, and free semigroup algebra theory [11, 13, 14].

In contrast with the d = 1 case, it is well known that not every bounded analytic function on the

ball Bd is an element of H∞d . It is not difficult to show that a contractive analytic function b on the

unit ball Bd belongs to the Schur class [H∞d ]1 if and only if the deBranges-Rovnyak kernel:

kb(z, w) :=
1− b(z)b(w)∗

1− zw∗
,

defines a positive kernel function on Bd [15]. Similarly, not every analytic function H with non-

negative real part on the ball can be realized as Hb := (1− b)−1(1 + b) for a Schur class b ∈ [H∞d ]1

[16, 17]. If H = Hb for some Schur class b ∈ [H∞d ]1 we say that H belongs to the Herglotz-Schur

class. Perhaps even more remarkably, and again in contrast with the d = 1 case, the direct analogue

of the classical Herglotz representation formula does not hold in the several variable setting: not

every H in the Herglotz-Schur class can be realized as the integral of the Herglotz integral kernel
1+zζ∗

1−zζ∗ with respect to a non-negative Borel measure µ on the boundary of the ball ∂Bd. Instead,

as shown in [16, 17, 11], one needs to replace the Herglotz integral kernel with a ‘non-commutative

kernel’ which takes values in a certain operator subsystem of the Cuntz-Toeplitz operator system,

and the measure µ with a positive linear functional on this operator system [16, 11].

Beginning with this observation, natural analogues of the above theorems of Clark and related

results were obtained in the several variable case of b ∈ [H∞d ]1 [11]. To obtain a suitable gener-

alization of the unitary perturbation theorem it was assumed that the Schur class function b was

quasi-extreme, a property generalizing the Szegö approximation property: L2(b) = P 2(b) = P 2
0 (b)

from the classical single variable case. An open problem that made further generalization difficult in

the several variable setting was whether or not any AC functional µb had a canonical tight extension

to the full Cuntz-Toeplitz operator system [11, Question 3.6].

Instead of providing a full summary of the results of [11], we will proceed with developing the

theory for the multiplier algebra of vector-valued Drury-Arveson space H2
d ⊗ H. In this setting
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the AC maps are promoted to completely positive maps into L (H). This does not significantly

complicate the analysis from the scalar-valued case, for the most part.

1.6. Outline. In the following section, Section 2, we develop the noncommutative Cauchy or Fan-

tappiè transform and Herglotz representation formulas for the vector-valued case. Our approach is

slightly modified from that of [16, 11] and makes use of a partial d-isometry V b acting on a repro-

ducing kernel Hilbert space L (b) which we call the Herglotz space associated to b ∈ [H∞d ⊗L (H)]1.

In Section 3 we apply our Herglotz space framework and the partial isometry V b to construct

a natural completely positive (CP) extension νb of the Aleksandrov-Clark CP map µb to the full

Cuntz-Toeplitz operator system, and we prove that this extension is the unique tight extension in the

sense of [11, Definition 3.2]. We then show that the set of all extensions of µb can be parametrized

by cyclic isometric extensions of this partial isometry V b and several equivalent characterizations

of the quasi-extreme Szegö approximation property are developed.

Section 4 contains our results on the Gleason problem for K(b) and our generalization of Clark’s

unitary perturbation results [8]. Solutions to the Gleason problem are the appropriate several

variable analogue of the restriction of the backward shift to a deBranges-Rovnyak space in the single

variable case. We show that the set of all contractive Gleason solutions for K(b) is parametrized by

the set of all contractive extensions of the partial d−isometry V b on the Herglotz space L (b). The

equivalent characterizations of quasi-extremity are summarized in Theorem 4.19.

Finally, Section 5 gives some examples of the foregoing constructions in the case of inner b.

1.7. Vector-valued RKHS. We will be working with vector-valued reproducing kernel Hilbert

spaces (RKHS) of analytic functions on the unit ball Bd = (Cd)1. Recall the following basic facts

from RKHS theory:

Given a set X ⊂ Cd, and an auxiliary Hilbert space H, a vector-valued RKHS K on X is a

Hilbert space of H-valued functions on X so that for any x ∈ X the linear point evaluation maps

K∗x ∈ L (K,H) defined by

K∗xF = F (x) ∈ H; F,∈ K

are bounded. We write Kx := (K∗x)∗ ∈ L (H,K) for the Hilbert space adjoint. The operator-valued

function K : X ×X → L (H):

K(x, y) := K∗xKy ∈ L (H); x, y ∈ X,

is called the reproducing kernel of K. One usually writes K = H(K). The reproducing kernel K of

any vector-valued RKHS on X is a positive kernel function on X: A function K : X ×X → L (H)
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is an operator-valued positive kernel function on X if for any finite set {xk}Nk=1 ⊂ X, the matrix

[K(xi, xj)] ∈ L (H)⊗ CN×N ,

is non-negative. The (vector-valued extension of the) theory of RKHS developed by Aronszajn and

Moore (see e.g. [1]) shows that there is a bijection between positive L (H)-valued kernel functions

on X ×X and RKHS of H-valued functions on X. Namely, given any positive kernel K on X there

is a RKHS K on X so that K is its reproducing kernel, K = H(K). If F : X → H is a function in

K, then the kernel K reproduces the value F (x) ∈ H at the point x ∈ X in the sense that for all

h ∈ H,

〈F (x), h〉H = 〈F,Kxh〉H(K).

1.8. Drury-Arveson, deBranges-Rovnyak and Herglotz spaces. This paper takes place in

the setting of vector-valued Drury-Arveson space H2
d⊗H, where H is finite dimensional or separable.

This is the vector-valued reproducing kernel Hilbert space H(k) of H-valued functions on the ball

X = Bd = (Cd)1 corresponding to the several variable operator-valued Szegö kernel:

k(z, w) :=
1

1− zw∗
IH.

We will use the notation H∞d ⊗L (H) := Mult(H2
d ⊗H) (the multiplier algebra is the closure of

this algebraic tensor product in the weak operator topology on H2
d ⊗H). The Schur class is the

closed unit ball of this multiplier algebra, [H∞d ⊗L (H)]1.

Recall that not every contractive analytic L (H)-valued function b belongs to [H∞d ⊗ L (H)]1.

Given such a b, it is not hard to check that b belongs to the Schur class of vector-valued Drury-

Arveson space if and only if

kb(z, w) :=
I − b(z)b(w)∗

1− zw∗
∈ L (H); z, w ∈ Bd

defines a positive L (H)-valued kernel function on Bd × Bd [18, 15]. The deBranges-Rovnyak space

K(b) := H(kb) is defined as the corresponding RKHS of H-valued analytic functions on Bd. As in

the classical case it is straightforward to verify that k− kb (where k is the Szegö kernel for H2
d ⊗H)

is again a positive L (H)-valued kernel function on Bd so that vector-valued RKHS theory implies

that K(b) is contained contractively in H2
d ⊗H [1, Theorem 10.20]. That is, K(b) ⊂ H2

d ⊗H as

vector spaces, and the injection is a contraction.
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The Herglotz-Schur class is the set of all L (H)-valued functions H on Bd with non-negative real

part so that

K(z, w) :=
1

2

H(z) +H(w)∗

1− zw∗
∈ L (H),

defines a positive kernel function on Bd. A similar argument to [19, Proposition 2.1, Chapter V]

shows that any b ∈ [H∞d ⊗L (H)]1 decomposes as b = b0 + b1 on H = H0 ⊕H1 where ‖b0(z)‖ < 1,

∀z ∈ Bd is purely contractive, or pure, and b1 is a constant isometry on Bd from H1 onto its range in

H. We assume throughout that b = b0 is purely contractive so that I − b(z) is invertible for z ∈ Bd.
As before, there is a bijection between purely contractive Schur class functions b ∈ [H∞d ⊗L (H)]1

and pure Herglotz-Schur functions H (Herglotz-Schur functions for which H(z) + I is invertible on

Bd) given by:

H(z) = Hb(z) := (I − b(z))−1(I + b(z)); b ∈ [H∞d ⊗L (H)]1,

and

b(z) = bH(z) := (H(z) + I)−1(H(z)− I).

If H = Hb is a pure Herglotz-Schur function, then the kernel Kb can be expressed as

(1.2) Kb(z, w) =
1

2

Hb(z) +Hb(w)∗

1− zw∗
= (I − b(z))−1kb(z, w)(I − b(w)∗)−1.

In this case where H = Hb, for a purely contractive Schur class b ∈ [H∞d ⊗L (H)]1, we define the

Herglotz space of b to be L (b) := H(Kb), the RKHS of H-valued functions on Bd with reproducing

kernel Kb. The above relationship between the kernels kb of K(b) and Kb of L (b) (for purely

contractive b) implies that there is an isometric multiplier Ub : K(b)→ L (b):

Lemma 1.9. The map Ub : K(b)→ L (b) defined by multiplication by

(1.3) Ub(z) := (I − b(z))−1,

is an onto isometry. The action of Ub on point evaluation kernels is

Ubk
b
z = Kb

z(I − b(z)∗).

We will omit the superscript and subscript b when this is clear from context.
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2. Herglotz representation formula and Fantappiè transform

A bit of straightforward algebra using the formula (1.2) above for the Herglotz reproducing kernel

K = Kb, shows

(Kz −K0)∗(Kw −K0) = zw∗K∗zKw

= (z∗Kz)
∗(w∗Kw); z, w ∈ Bd.

In the above, z is viewed as a strict contraction from L (b) ⊗ Cd into L (b) so that z∗Kz ∈
L (H,L (b)⊗ Cd) obeys

z∗Kzh :=


z1Kzh
...

zdKzh

 =


z1

...

zd

Kzh ∈ L (b)⊗ Cd.

It follows that one can define a partial d−isometry on L (b) as follows: Set

Dom(V̌ ) :=
∨

w∈Bd; h∈H

w∗Kwh ⊂ L (b)⊗ Cd,

and

Ran
(
V̌
)

:=
∨

w∈Bd; h∈H

(Kw −K0)h ⊂ L (b).

Here and throughout
∨

denotes closed linear span. The above calculations show that the linear

map V̌ : Dom(V̌ )→ Ran
(
V̌
)

defined by

w∗Kwh 7→ (Kw −K0)h,

is an isometry from its domain, Dom(V̌ ) onto its range, Ran
(
V̌
)
. Let V = V b be the partial

isometric extension of V̌ to all of L (b) ⊗ Cd (which is zero on the orthogonal complement of

Dom(V̌ ) in L (b)⊗ Cd). Then V is a partial d-isometry on the H-valued RKHS L (b).

It will be helpful to describe the orthogonal complements of the initial and final spaces of V :

First observe that F ∈ L (b) is orthogonal to Ran (V ) = ∩z∈BdKer((Kz −K0)∗) if and only if for

all w ∈ Bd,

0 = (K∗w −K∗0 )F = F (w)− F (0),

in other words, F (w) = F (0) for all w and thus F : Bd → H is constant. Note that V may be that

V is surjective in which case L (b) contains no non-zero constant functions.
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Similarly, a d-tuple F = (F1, . . . Fd)
T ∈ L (b)⊗Cd (the superscript T denotes transpose) belongs

to Ker(V ) = Dom(V̌ )⊥ if and only if

0 = (w∗Kw)∗F =

d∑
j=1

wjFj(w).

When d = 1 this condition can only hold if F ≡ 0, so that Ker(V )⊥ = L (b). On the other hand

when d > 1 there can exist nontrivial solutions (F1, . . . Fd) to
∑d
j=1 wjFj(w) = 0 in L (b). One can

show that Ker(V b) is never trivial when d > 1, see Remark 3.18.

2.1. A CP map on a symmetrized Cuntz-Toeplitz operator subsystem. Recall that the

full Fock space F 2
d over Cd is the direct sum of all powers of tensor products of Cd with itself:

F 2
d := C⊕ Cd ⊕

(
Cd ⊗ Cd

)
⊕
(
Cd ⊗ Cd ⊗ Cd

)
⊕ ...

=

∞⊕
k=0

(
Cd
)k·⊗

.

Given a fixed orthonormal basis {ek} of Cd, the left creation operators Lk ∈ L (F 2
d ) are defined by

tensoring on the left with ek:

Lkf := ek ⊗ f ; f ∈ F 2
d .

Each Lk is an isometry, the Lk have orthogonal ranges (L∗kLj = δkjI) and L := (L1, ..., Ld) : F 2
d ⊗

Cd → F 2
d defines a non-commuting row-isometry on F 2

d which we call the free or non-commutative

shift. The non-commutative disk algebra A := Ad is the unital norm-closed algebra generated by

the left creation operators,

A :=
∨
α∈Fd

Lα.

Here Fd denotes the unital free semigroup on d letters (the unit is the empty word ∅ and one defines

L∅ = I). We call the corresponding operator system (A + A∗)−‖·‖ the Cuntz-Toeplitz operator

system (we will simply write A + A∗ for this norm-closure).

By the Bunce-Frazho-Popescu dilation theorem [20], V = V b has a minimal isometric dilation

W = W b on Kb ⊃ L (b) obeying W ∗|L (b) = V ∗. This shows that W ∗ is a d−contractive extension

of V ∗ in the sense that W ∗ agrees with V ∗ on the final space of V : W ∗(V V ∗) = V ∗. We use the

notation D ⊇ V for any d−contractive extension of V on J ⊃ L (b). The following is a general fact

that holds for contractive extensions of any partial isometry between Hilbert spaces:

Lemma 2.2. If D is a d−contraction on J ⊃ L (b) then V ⊆ D if and only if V ∗ ⊆ D∗.
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Proof. Suppose that V ⊆ D. Since D(V ∗V ) = V (V ∗V ) it follows that (V V ∗)D(V ∗V ) = D(V ∗V ) =

V (V ∗V ) = (V V ∗)V . Taking adjoints shows V ∗(V V ∗) = (V ∗V )D∗(V V ∗). It follows that if f =

V V ∗f is a unit norm element in Ran (V ) then

1 ≥ ‖D∗f‖2 = ‖(V ∗V )D∗f‖2 + ‖(I − V ∗V )D∗f‖2

= ‖V ∗f‖2 + ‖(I − V ∗V )D∗f‖2

= 1 + ‖(I − V ∗V )D∗f‖2.

This proves that D∗(V V ∗) = (V ∗V )D(V V ∗) = V ∗(V V ∗) and V ∗ ⊆ D∗. The converse is similarly

easy to prove. �

It follows that when J = L (b), any d−contractive extension D of V has the form V (Y ) = V +Y

where Y : Ker(V )→ Ran (V )
⊥

is a contraction.

Lemma 2.3. A d-contraction D acting in a Hilbert space J ⊃ L (b) is an extension of V if and

only if

Kzh = (I − z∗D)−1K0h.

In particular this holds for D = V or D = W , the minimal isometric dilation of V .

Proof. Since the initial space of V is spanned by vectors of the form z∗Kzh and D extends V , it

follows that for any z ∈ Bd and h ∈ h,

D(z∗Kzh) = V (z∗Kzh) = (Kz −K0)h.

Writing this out then shows:

(D1z1 + ...+Ddzd)Kzh = (Kz −K0)h.

Solving for K0h yields

K0h = (I −Dz∗)Kzh,

and since Dz∗ is a strict contraction, one can invert this expression to obtain

Kzh = (I −Dz∗)−1K0h.

On the other hand, if Kzh = (I − Dz∗)−1K0h for all z and h, then the above steps reverse to

show that D(z∗Kzh) = (Kz −K0)h = V (z∗Kzh), and thus D extends V . �
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Lemma 2.4. Let W be a d−isometry on a Hilbert space H. The map πW : A → L (H) defined

by πW (Lα) := Wα is a completely isometric unital homomorphism which obeys πW ((Lα)∗Lβ) =

(Wα)∗W β, for all α, β ∈ Fd. Moreover πW extends to a completely contractive unital ∗−homomorphism

ΠW : E = C∗(A)→ L (H) defined by ΠW (Lα(Lβ)∗) := πW (Lα)πW (Lβ)∗.

Any such map πW is the restriction of a ∗-representation ΠW of E, and is hence ∗-extendible in

the sense of [21].

Proof. Since W is a row-isometry it follows that (Wk)∗Wj = δijIH, and the relation π((Lα)∗Lβ) =

(Wα)∗W β follows from this. The remaining assertions are standard results of Popescu [13, 22] �

Note here that by results of [11],∨
z∈Bd

(I − z∗L)−1 =
∨

n∈Nd
Ln =: S

is the norm-closed operator subspace of A spanned by the symmetrized monomials Ln. Here recall

that Nd is the unital additive semigroup of all d-tuples of non-negative integers, and if λ : (Fd, ·)→
(Nd,+) is the letter counting map,

Ln :=
∑

λ(α)=n

Lα.

For example, if d = 2,

L(1,2) := L1L
2
2 + L2

2L1 + L2L1L2.

Also if n = (n1, ..., nd) ∈ Nd define |n| := n1 + ...+nd. The symmetrized operator system S+S∗, as

well as the full Cuntz-Toeplitz operator system A + A∗ enjoy the semi-Dirichlet property [23, 11]:

S∗S ⊂ (S + S∗)−‖·‖ and A∗A ⊂ (A + A∗)−‖·‖.

To simplify notation we will simply write S + S∗ and A + A∗ in place of the norm-closed operator

systems S + S∗
‖·‖

and A + A∗
‖·‖

. We will use the notations CP (S,H) and CP (A,H) for the sets

of all completely positive maps from S + S∗ and A + A∗ into L (H).

Proposition 2.5. Define µb : S + S∗ → L (H) by

µb
(
(I − zL∗)−1(I − Lw∗)−1

)
:= Kb(z, w).

Then µb is a completely positive map obeying

µb
(
(I − zL∗)−1(I − Lw∗)−1

)
= K∗0 (I − zV ∗)−1(I − V w∗)−1K0,
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and µb(L
n) = K∗0V

nK0.

Proof. Given any d−contraction T on a separable Hilbert space H the map φT (Lα) := Tα, α ∈ Fd

defines a completely contractive unital map and so extends to a CPU map on A+A∗ [13, Corollary

2.2]. It follows that µb(L
n) := K∗0V

nK0 belongs to CP (S,H). However, since V is not an isometry,

it is not obvious that µb
(
(I − zL∗)−1(I − Lw∗)−1

)
= K∗0 (I−zV ∗)−1(I−V w∗)−1K0. Indeed, given

any d-contraction T on H, the relation φT ((Lα)∗Lβ) = (Tα)∗T β holds for all α, β ∈ Fd if and only

if T is an isometry.

Let W be the minimal isometric dilation of V = V b on Kb ⊃ L (b). Then for any n ∈ Nd,
µb(L

n) = K∗0W
nK0. Since W ⊇ V extends V , we have that for any z, w ∈ Bd,

µb
(
(I − zL∗)−1(I − Lw∗)−1

)
= K∗0 (I − zW ∗)−1(I −Ww∗)−1K0

= K∗zKw by Lemma 2.3

= Kb(z, w)

= K∗0 (I − zV ∗)−1(I − V w∗)−1K0; by Lemma 2.3 again.

The first line in the above equation can be verified using that both W and L are row isometries so

that their component operators obey L∗kLj = δkjI and δkjI = W ∗kWj . �

Observe that

2K(z, 0) = H(z) +H(0)∗ = Hb(z) + Re (Hb(0))− iIm (Hb(0))

= Hb(z) +K(0, 0)− iIm (Hb(0)) .

One can then express the Herglotz-Schur function Hb(z) as

H(z) = 2K(z, 0)−K(0, 0) + iIm (H(0))

= K∗0
(
2(I − zV ∗)−1 − I

)
K0 + iIm (H(0))

= K∗0 (I − zV ∗)−1(I + zV ∗)K0 + iIm (H(0))

= µb
(
(I − zL∗)−1(I + zL∗)

)
+ iIm (H(0)) .

The span of all (I − Lz∗)−1(I + Lz∗) for z ∈ Bd is dense in S so that µb is uniquely defined by

this formula. Moreover, given any µ ∈ CP (S,H), it is not hard to see that

H(z) := µ
(
(I − zL∗)−1(I + Lz∗)

)
∈ L (H),
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defines a pure Herglotz-Schur function so that the map b 7→ µb is bijective (modulo imaginary

constants).

We then have:

Theorem 2.6. (Noncommutative Herglotz formula) For any b ∈ [H∞d ⊗L (H)]1 there is a unique

CP map µb : S + S∗ → L (H) such that

(2.1) Hb(z) = (1 + b(z))(1− b(z))−1 = µb
(
(I + zL∗)(I − zL∗)−1

)
+ iIm (Hb(0)) .

The map b 7→ µb is a bijection (modulo Im (Hb(0)) ∈ L (H)).

Observe that (I − zL∗)−1(I + zL∗) is a direct analogue of the Herglotz integral kernel appearing

in the classical Herglotz representation formula (1.1). The above defines bijections between:

(1) purely contractive elements in the closed unit ball of H∞d ⊗L (H).

(2) the (purely contractive) Herglotz-Schur class of L (H) valued functions H on Bd.
(3) completely positive maps from the operator system S + S∗ into L (H) (modulo imaginary

constants).

2.7. Noncommutative Fantappiè transform. Given µ ∈ CP(S,H), we have by the previous

section that µ = µb for some b ∈ [H∞d ⊗L (H)]1.

We can use µ to construct a Stinespring-GNS type Hilbert space which (following [11]) we will

call P 2(µ). This space will play the role of the ‘closure of the analytic polynomials in the measure

space L2(µ)’ in this several variable case. First consider the algebraic tensor product S⊗H equipped

with the sesquilinear form:

〈p⊗ h, q ⊗ g〉µ := 〈h, µ(p∗q)g〉,

for any p, q ∈ S and any h, g ∈ H. This is well-defined since the operator space S has the semi-

Dirichlet property S∗S ⊂ S + S∗
‖·‖

[11]. As in the usual proof of Stinespring’s dilation theorem, the

fact that µ is completely positive ensures that 〈·, ·〉µ is a pre-inner product on S⊗H. If Nµ is the

set of all elements r ∈ S ⊗H which have zero length, 〈r, r〉µ = 0, then Nµ is a subspace of S ⊗H

and 〈·, ·〉µ defines an inner product on the quotient

S⊗H

Nµ
.

Let P 2(µ) be the Hilbert space completion of this inner product space. We will also use the notation

P 2(b) for P 2(µ) when µ = µb.
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We will define unweighted and weighted versions of a Cauchy (Fantappié) transform, imple-

menting a unitary equlivalence between P 2(b) and L (b),K(b) respectively. For z ∈ Bd define the

non-commutative Cauchy kernel

Cz(L) := (I − Lz∗)−1 ∈ S.

Then for any h, g ∈ H,

〈Cz(L)⊗ h,Cw(L)⊗ g〉µ = 〈h, µ
(
(I − zL∗)−1(I − Lw∗)−1

)
g〉H

= 〈h,Kb(z, w)g〉H by Proposition 2.5

= 〈Kb
zh,K

b
wg〉L (b).

Thus, the Cauchy transform on P 2(µ), defined by

(2.2) (Cb(p⊗ h)(z) := µ(Cz(L)∗p(L))h,

is unitary from P 2(b) onto L (b).

Since the multiplication F (z) 7→ (I − b(z))F (z) = Ub(z)
−1F (z) is a unitary map from L (b) onto

K(b) (Lemma 1.9), we obtain the weighted Cauchy transform by composition

p⊗ h 7→ (I − b(z))µ(Cz(L)∗p(L))h.

This defines a unitary from P 2(b) onto K(b).

Theorem 2.8. (Noncommutative Fantappiè transform) Given any CP map µ = µb : S + S∗ →
L (H), the formula

(2.3) (Fb(p⊗ h)) (z) = (I − b(z))µ
(
(I − L∗z)−1p(L)

)
h,

defines a unitary transformation of P 2(b) onto K(b).

Comparison to Theorem 1.2 shows this is a natural generalization of the single variable fact. For

this reason we view P 2(b) as the several-variable analogue of the ‘closure of the analytic polynomials’.

Under the unitary transformation induced by Cb, the partial isometry V : L (b) ⊗ Cd → L (b) is

conjugate to the map V̂ : P 2(µ)⊗ Cd → P 2(µ) defined by

(2.4) V̂ (w∗(I − w∗L)−1 ⊗ h+Nµ) = w∗L(I − w∗L)−1 ⊗ h+Nµ,

and extended to be 0 on C∗Ker(V ).
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3. Extensions to the Cuntz-Toeplitz operator system

Let µ : S + S∗ → L (H) be a CP map. Recall that we use the notation CP (S,H) for the set

of all completely positive maps from S + S∗ into L (H) and CP (A,H) for all CP maps on A + A∗

into L (H). Further recall that any such CP map µ ∈ CP (S,H) is equal to µb for a unique b in the

operator-valued Schur class of H2
d ⊗H.

It will be convenient to briefly review the Stinespring dilation of a CP map φ : A + A∗ → L (H)

to a unital completely isometric isomorphism of the operator algebra A into L (H). First, the

Stinespring GNS Hilbert space Q2(φ) is constructed in the same way that we constructed P 2(µ).

As before, the construction of Q2(φ) relies on the semi-Dirichlet property of A: A∗A ⊂ A + A∗
‖·‖

.

Consider the algebraic tensor product A⊗H, and the sesquilinear form 〈·, ·〉φ on A⊗H defined

on elementary tensors by

〈a⊗ h, b⊗ g〉φ := 〈h, φ(a∗b)g〉H.

and extend linearly. Again, the facts that φ is CP and A has the semi-Dirichlet property implies

that this is a well-defined pre-inner product obeying the Cauchy-Schwarz inequality. Taking the

quotient of A⊗H by the subspace

Nφ := {x ∈ A⊗H| 〈x, x〉φ = 0},

yields an inner product space whose completion is denoted by Q2(φ).

Remark 3.1. Since φ extends µ, the map p ⊗ h + Nµ 7→ p ⊗ h + Nφ from P 2(µ) into Q2(φ) is a

well-defined isometry, and hence one can view P 2(µ) as a subspace of Q2(φ). We will often identify

P 2(µ) with its image under this isometry in Q2(φ), and we will sometimes write P 2(φ) for the

embedding of P 2(µ) in Q2(φ).

One can construct a Stinespring dilation of φ, πφ : A→ L (Q2(φ)) as in the usual proof of Stine-

spring’s theorem. Namely, for any a ∈ A, let πφ(a) ∈ L (Q2(φ)) be defined by left multiplication:

πφ(a)(b⊗ h+Nφ) := (La ⊗ I)(b⊗ h+Nφ)

:= ab⊗ h+Nφ.

It is easy to check this is a well-defined, contractive and unital linear map. Repeating the construc-

tion of Q2(φ) for the matrix operator algebras A⊗ Ck×k,

Q2(φ)⊗ Ck '

[(
A⊗ Ck×k

)
⊗
(
H ⊗ Ck

)
Nφ(k)

]
,
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where φ(k) : A ⊗ Ck×k + A∗ ⊗ Ck×k → L (H ⊗ Ck) is the k-fold ampliation of φ, shows that πφ

is a completely contractive unital homomorphism of A into L (Q2(φ)). The square brackets in the

above formula denote completion. Recall here that for [aij ] ∈ A⊗ Ck×k one defines the ampliation

φ(k) by φ(k) ([aij ]) = [φ(aij)]. The map πφ is a dilation of φ: if [I⊗]φ : H → Q2(φ), is the linear

map defined by [I⊗]φh = I ⊗ h+Nφ, then

φ(a) = [I⊗]∗φπφ(a)[I⊗]φ; a ∈ A,

and [I⊗]φ has norm

‖[I⊗]φ‖2 = ‖φ(I)‖.

The bounded linear map [I⊗]φ is an isometry if and only if φ is unital (if and only if µ is unital).

Remark 3.2. By definition, πφ(Lk)∗πφ(Lj) = δkjI so that πφ(L) is a row-isometry, and Lemma

2.4 implies that πφ : A → L (Q2(φ)) is a completely isometric unital homomorphism which obeys

πφ(a∗c) = πφ(a)∗πφ(c) for all a, c ∈ A, and is ∗-extendible to a representation Πφ of the Cuntz-

Toeplitz C∗-algebra E = C∗(A).

3.3. Tight extensions. Given any CP µ : S + S∗ → L (H) as above, let φ : A + A∗ → L (H) be

a CP extension of µ. In this section we will show that one can construct an extension φ of µ which

is tight in the sense of [11].

Recall that P 2(µ) can be viewed as a subspace P 2(φ) of Q2(φ). Let P denote the orthogonal

projection onto this subspace. Also define the spaces

P 2
0 (φ) :=

∨
n6=0

Ln ⊗ h ⊂ P 2(φ),

with projection P0 and

Q2
0(φ) :=

∨
α 6=∅

Lα ⊗ h ⊂ Q2(φ),

with orthogonal projection Q0 and note that P 2
0 (φ) ⊂ Q2

0(φ) so that P0 ≤ Q0. The space P 2
0 (φ) is

our analogue of the closed linear span of the non-constant analytic monomials in the single variable

theory. Also note that Q2
0(φ) is invariant for πφ(L) =: R.

Define the d-contraction S on P 2
0 (φ) by compression of πφ(L):

S = P0πφ(L)P0 = P0RP0.

Similarly let

T := πφ(L)|Q2
0(φ) = R|Q2

0(φ),
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this is a d-isometry using that Q2
0(φ) is invariant for πφ(L).

Definition 3.4. The extension φ of µ is tight if T is a dilation of S [11, Definition 3.2].

Since P0 ≤ Q0, it will follow that φ is tight if we can show that P0 is semi-invariant for πφ [24],

that is, if for any k, j ∈ {1, ..., d},

P0RkP0RjP0 = P0πφ(Lk)P0πφ(Lj)P0

= P0πφ(LkLj)P0 = P0RkRjP0.

We now define a natural CP extension ν : A + A∗ → L (H) of µ: By Theorem 2.1 there is a

unique b ∈ [H∞d ⊗L (H)]1 such that µ = µb. Recall that by Proposition 2.5,

µb
(
(I − zL∗)−1(I − Lw∗)−1

)
= (Kb

0)∗(I − zV ∗)−1(I − V w∗)−1Kb
0

= Kb(z, w),

and

µb(L
n) = (Kb

0)∗V nKb
0; n ∈ Nd.

Definition 3.5. Define ν ∈ CP (A,H) by

ν(Lα) := K∗0V
αK0; α ∈ Fd.

We will show that this ν is always the (unique) tight extension of µ. If µ = µb we will often write

νb for the (tight) extension defined above. Similarly we will often write Q2(b) for Q2(ν) and πb for

πν .

Remark 3.6. As before, let (W,Kb) be the minimal isometric dilation of V = V b on Kb ⊃ L (b).

The space

K =
∨
α∈Fd

WαK0h,

is equal to Kb since Lemma 2.3 implies the right hand side contains L (b), and L (b) is cyclic for

the minimal isometric dilation of V .

Proposition 3.7. (Extended Cauchy Transform) Consider the linear map Cb : Q2(b) → K = Kb

defined by

Cb(L
α ⊗ h) = WαK0h.

Then Cb is unitary and intertwines R = πb(L); that is, Cbπb(L) = WCb.
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The restriction of Cb to P 2(b) is the Cauchy transform onto L (b) from Section 2, P 2(b) is

co-invariant for R = πb(L) and R∗|P 2(b) = V̂ ∗ = C∗bV
∗Cb is a partial isometry.

Proof. This is a straightforward computation: If Lα ⊗ h, Lβ ⊗ g belong to Q2(ν) then

〈Lα ⊗ h, Lβ ⊗ g〉ν = 〈h, ν
(
(Lα)∗Lβ

)
g〉H

= 〈WαK0h,W
βK0g〉K.

since W dilates πb. The intertwining relation is also easily verified:

Cπb(L
γ)(Lα ⊗ h) = C(Lγ+α ⊗ h) = W γC(Lα ⊗ h).

The map C is onto K = Kb by Remark 3.6, and it is clear that its restriction to P 2(b) is the Cauchy

transform onto L (b) defined in equation (2.2).

Since L (b) is co-invariant for W , the minimal isometric dilation of V , the intertwining relation

shows P 2(b) is co-invariant for R = πb(L). By the intertwining relationship, the fact that W ∗|L (b) =

V ∗, and co-invariance, R∗|P 2(b) = C∗W ∗C|P 2(b) = C∗V ∗C = V̂ ∗, as defined in equation (2.4). �

The above result also shows that Pb = CPC∗, where Pb projects the space K = Kb of the minimal

isometric dilation W onto L (b) so that P : Q2(b)→ P 2(b) is a co-invariant projection for πb(L).

The next lemma records the relationships between the projections P0 and Q0 in P 2(b) ⊂ Q2(b).

Lemma 3.8. With notations as above,

i) Q0 = RR∗,

ii) P0 = C∗bV V
∗Cb,

iii) P0 = Q0P = PQ0.

Proof. First Ran (Q0) = Q2
0(b) :=

∨
α 6=∅ L

α ⊗ H = Ran (πb(L)) = Ran (R). (Actually this holds

not only for Q2(b) := Q2(ν), but for any Q2(φ) where φ is a CP extension of µ. ) Since R is an

isometry, we conclude Q0 = RR∗. This proves (i).

Items (ii) and (iii) will be proven simultaneously. Consider first Q̃0 := CQ0C
∗ = CRR∗C = WW ∗,

the projection onto Ran (W ). Then,

Q̃0Pb = WW ∗Pb = WV ∗Pb

= W (V ∗V )V ∗Pb = V (V ∗V )V ∗Pb

= V V ∗Pb = V V ∗.
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In the above, the identity W (V ∗V ) = V (V ∗V ) holds since W ∗ is a contractive extension of V ∗

(and hence W is a contractive extension of the partial d−isometry V , see Lemma 2.2). This

shows that Q̃0Pb and hence Q0P is a projection. By the von Neumann alternating projection

formula Q0P is the projection onto Q2
0(b) ∩ P 2(b). Now clearly P 2

0 (b) ⊂ Q2
0(b) ∩ P 2(b) so that

P0 ≤ Q0P . Conversely Q0P = C∗bV V
∗Cb = V̂ V̂ ∗ is unitarily equivalent to V V ∗, the projection onto

Ran (V ) =
∨
z∈Bd(Kz −K0)H. For any h ∈ H, Lemma 2.3 implies

(Kz −K0)h =
(
(I − V z∗)−1 − I

)
K0h

=
(
(I −Wz∗)−1 − I

)
K0h

=

∞∑
k=1

(Wz∗)kK0h.

Since Q0P projects onto C∗bRan (V ) and

C∗b

∞∑
k=1

(Wz∗)kK0h =

∞∑
k=1

(Lz∗)k ⊗ h ∈ P 2
0 (ν),

it follows that Q0P ≤ P0. We conclude that P0 = Q0P . �

Corollary 3.9. The projection P0 of Q2(b) onto P 2
0 (b) is semi-invariant for R = πb(L) and ν =

νb ∈ CP (A,H) is a tight extension of µ = µb ∈ CP (S,H).

Proof. As before, let R := πν(L). Then,

P0RkP0RjP0 = Q0PRkPQ0RjQ0P

= Q0PRkQ0RjQ0P (By co-invariance of P)

= Q0PRkRjQ0P (By invariance of Q0)

= P0RkRjP0.

To see that T := πν(L)Q0 = RQ0 is a dilation of S := P0RP0, apply the semi-invariance of P0.

SkSj = P0TkP0TjP0

= P0RkP0RjP0 = P0RkRjP0

= P0RkRjQ0P0 = P0RkQ0RjQ0P0

= P0TkTjP0.(3.1)

This proves that ν is tight. �
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Remark 3.10. The tight extension of any µ ∈ CP (S,H) is necessarily unique [11, Theorem 3.5].

(The result there is stated and proved only for scalar-valued µ, but the proof works mutatis mutandis

for general CP maps.)

Corollary 3.11. If µ : S + S∗ → L (H) has a unique extension φ : A + A∗ → L (H) then φ = νb

is tight.

3.12. Extensions of µ and cyclic isometric extensions of V . In this subsection we show

that given µ ∈ CP (S,H), the set of all φ ∈ CP (A,H) extending µ is naturally parametrized by

equivalence classes of cyclic isometric extensions of the partial d−isometry V = V b acting on the

Herglotz space L (b).

Definition 3.13. Let Ext(V ) be the set of all d−isometric extensions D ⊇ V acting on a Hilbert

space J ⊃ L (b) so that K0H is cyclic for D. Given D1, D2 ∈ Ext(V ), we say D1 'b D2 if D1, D2

are unitarily equivalent via an isometry which restricts to the identity on L (b).

Lemma 3.14. Given any row contractive extension D ⊇ V on J ⊃ L (b), the CP map φD ∈
CP (A,H) defined by φD(Lα) := K∗0D

αK0 is an extension of µ.

Proof. For any D ⊇ V , we can define a CP map by the formula in the statement above:

φD(Lα) := K∗0D
αK0.

Recall that S =
∨
z∈Bd(I − z∗L)−1. Then,

φD
(
(I − z∗L)−1

)
= K∗0 (I − z∗D)−1K0

= Kb(0, z)

= µb
(
(I − z∗L)−1

)
(3.2)

where we used Lemma 2.3 in the first line and Proposition 2.5 in the third line above. �

Proposition 3.15. Given any D1, D2 ∈ Ext(V ) defined on Jk ⊃ L (b) we have that φ1 := φD1
=

φD2
=: φ2 ∈ CP (A,H) if and only if D1 'b D2.

Proof. If D1 'b D2, it is obvious that φ1 = φ2. Conversely if φ = φ1 = φ2 suppose that Dk are

d−isometries on Jk ⊃ L (b). By assumption, K0H is cyclic for each Dk so that

Jk =
∨
α∈Fd

Dα
kK0H.
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Define a linear map U : J1 → J2 by UDα
1K0h := Dα

2K0h. This is onto and it is an isometry:

〈UDα
1K0h, UD

β
1K0g〉J2

= 〈h,K∗0 (Dα
2 )∗Dβ

2K0g〉H

= 〈h, φ((Lα)∗Lβ)g〉H

= 〈h,K∗0 (Dα
1 )∗Dβ

1K0g〉H

= 〈Dα
1K0h,D

β
1K0g〉J1

.

It is clear that UD1 = D2U and U restricts to the identity on L (b) since D1, D2 ∈ Ext(V ) implies

that

UKzh = U(I −D1z
∗)−1K0h

= (I −D2z
∗)−1K0h

= Kzh,

by Lemma 2.3. �

Corollary 3.16. There is a bijection between CP extensions φ of µb ∈ CP (S,H) to A + A∗ and

'b equivalence classes of Ext(V b).

Proof. It remains to show that the map D ∈ Ext(V ) 7→ φD is onto the set of all CP extensions

of µb. If φ ∈ CP (A,H) extends µb ∈ CP (S,H) then we can identify (using the inverse Cauchy

transform) V = V b with the partial d−isometry V̂ acting on P 2(φ) with initial and final spaces:

Ker(V̂ )⊥ =
∨
z∗(I − Lz∗)−1 ⊗H, Ran

(
V̂
)

:=
∨

(Lz∗)(I − Lz∗)−1 ⊗H,

and

V̂
(
z∗(I − Lz∗)−1 ⊗ h

)
= (Lz∗)(I − Lz∗)−1 ⊗ h.

Since φ extends µ, P 2(µ) embeds isometrically as P 2(φ) into Q2(φ), and is clear from the definition

of V̂ that πφ(L) is d−isometric extension of V̂ with cyclic space [I⊗]φH = I ⊗ H + Nφ. Since

the Cauchy transform C : P 2(µ) → L (b) obeys C(I ⊗ h + Nµ) = K0h, it follows that we can

construct a d−isometric extension D ' πφ(L) of V b ' V̂ with cyclic subspace K0H so that φ(Lα) =

K∗0D
αK0. �

Theorem 3.17. Assume that d > 1. A CP map µ = µb : S + S∗ → L (H) has a unique extension

to A + A∗ if and only if V is a co-isometry.

Proof. If V is a co-isometry, then given any D ∈ Ext(V ) we have that V ∗ ⊆ D∗, and since Ran (V ) =

L (b) it follows that L (b) is co-invariant for D and V ∗Kzh = D∗Kzh for all z ∈ Bd and h ∈ H. By
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Corollary 3.16, any CP extension φ of µ = µb has the form φ = φD for some D ∈ Ext(V ). Namely

φ(Lα) = K∗0D
αK0. Since D∗|L (b) = V ∗, it follows that φ = φV = νb, the tight extension of µb.

Conversely suppose that V = V b is not co-isometric so that Ran (V ) 6= L (b). In this case (using

the assumption that d > 1) one can construct a non-trivial d−contractive extension D ⊇ V acting

on L (b). This relies on the fact that for d > 1, and any b ∈ [H∞d ⊗ L (H)]1, Ker(V b) 6= {0} is

never trivial (see Remark 3.18 below). Even though D is generally not an isometry, we can define

a completely positive map φD(Lα) := K∗0D
αK0 extending µb as in Lemma 3.14.

We claim that there exists an h ∈ H such that D∗K0h 6= V ∗K0h. Otherwise since V ∗ ⊆ D∗

it would follow that D∗(Kz − K0)h = V ∗(Kz − K0)h for all h ∈ H (recall here that Ran (V ) =∨
(Kz −K0)H). Hence if D∗K0h = V ∗K0h for all h ∈ H it follows that D∗Kzh = V ∗Kzh for all

h ∈ H and all z ∈ Bd. This would prove that D = V (since D∗ acts on L (b)).

It follows that if D 6= V , then there is an h ∈ H such that D∗K0h 6= V ∗K0h, so that there is a

1 ≤ k ≤ d, z ∈ Bd and g ∈ H such that

〈D∗kK0h,Kzg〉b 6= 〈V ∗k K0h,Kzg〉b.

By Lemma 2.3,

〈D∗kK0h,Kzg〉 = 〈h,K∗0Dk(I − z∗D)−1K0g〉

= 〈h, φD
(
Lk(I − z∗L)−1

)
g〉.

Similarly,

〈V ∗k K0h,Kzg〉 = 〈h, φV
(
Lk(I − z∗L)−1

)
g〉.

This shows φD 6= φV = νb. �

Remark 3.18. When d > 1, the kernel of the partial d−isometry V b on the Herglotz space L (b)

is never trivial. We will present two (partial) proofs using the theory of solutions to the Gleason

problem in K(b) that will be developed in Section 4, see Proposition 4.14 and Proposition 4.17. The

first proof shows that V b has non-trivial kernel if there is a contractive solution B to the Gleason

problem in K(b), B ∈ L (H,K(b) ⊗ Cd) such that the closed span of the ranges of its component

operators is not all of K(b)⊗Cd. Although this condition is very restrictive, a proof that this is not

possible in the general vector-valued case remains elusive at this time. The second proof, an abstract

argument using the Cuntz relations, shows that Ker(V b) 6= {0} whenever b ∈ [H∞d ⊗L (H)]1 and

H is finite dimensional (and of course d > 1).

There is a third argument that works in full generality. This proof uses the non-commutative

or free analogue of the theory developed here for the free multiplier algebra F∞d ⊗ L (H) of the

vector-valued full Fock space F 2
d ⊗ H over Cd. Here the full Fock space F 2

d can be viewed as a
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non-commutative or free formal reproducing kernel Hilbert space, and the weak operator topology

closed unital operator algebra, F∞d , generated by the non-commutative or free shift L (the left

creation d-isometry) can be viewed as the formal multiplier algebra of this free formal RKHS F 2
d

[25, 26]. This proof is beyond the scope of this paper and will be presented in forthcoming work.

3.19. Quasi-extreme maps.

Definition 3.20. Following [11, Definition 3.7], a CP map µ : S + S∗ → L (H) is called quasi-

extreme if P 2
0 (µ) = P 2(µ). Any CP map φ : A + A∗ → L (H) is called quasi-extreme if its

restriction to S+ S∗ is quasi-extreme. An element b ∈ [H∞d ⊗L (H)]1 is said to be quasi-extreme if

µ = µb ∈ CP (S,H) is quasi-extreme.

This concept of quasi-extremity is a natural analogue of the Szegö approximation or analytic

polynomial density property L2(µ) = P 2(µ) = P 2
0 (µ) from the single variable, scalar-valued case.

Corollary 3.21. A CP map µ : S + S∗ → L (H) is quasi-extreme if and only if R = πν(L) is a

Cuntz unitary. Here ν is the tight extension of µ.

Recall that a row isometry W ∈ L (H ⊗ Cd,H) is a Cuntz unitary if it is also co-isometric,

WW ∗ = IH.

Proof. One direction is already proven in [11, Proposition 3.10], namely if µ := ν|S+S∗ and µ = µb

is quasi-extreme then R is a row unitary. (Again the result there is stated only in the scalar case

but the proof holds generally.) Conversely suppose that R = πb(L) is a Cuntz unitary. Then since

Q2
0(b) = Ran (R) it follows that Q2

0(b) = Q2(b) so that Q0 = Q. By Lemma 3.8, we then have that

P0 = PQ0 = PQ = P so that P 2
0 (b) = P 2(b). �

Corollary 3.22. A CP map µ ∈ CP (S,H) has a unique extension φ ∈ CP (A,H) if and only if µ

is quasi-extreme. In this case φ = ν, the tight extension of µ. Equivalently b ∈ [H∞d ⊗L (H)]1 is

quasi-extreme if and only if V b is a row co-isometry on L (b).

Proof. As shown in [11, Theorem 3.8], if µ is quasi-extreme, it has a unique extension. Since CP 2
0 (b)

is Ran
(
V b
)
, the converse follows immediately from Theorem 3.17. �

Theorem 3.23. An element b ∈ [H∞d ⊗ L (H)]1 is not quasi-extreme if and only if there is a

non-zero h ∈ H so that bh ∈ K(b).

This is a direct analogue of a classical fact [8, IV-4,V-3], and generalizes [11, Theorem 3.13].

Proof. If b is not quasi-extreme then the partial d−isometry V on L (b) is not a co-isometry so

that Ran (V ) 6= L (b). As discussed in Section 2, if F ∈ L (b) is orthogonal to Ran (V ) then F is a
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constant function, F (z) = F (0) =: f ∈ H for all z ∈ Bd. Using the canonical unitary multiplier of

L (b) onto K(b) it follows that (I − b)f ∈ K(b). However we also have that kb0f ∈ K(b) and

kb0f = (I − bb(0)∗)f.

It follows that b(I − b(0)∗)f ∈ K(b). Since we assume b is purely contractive, b(0) is a strict

contraction and h := (I − b(0)∗)f ∈ H is non-zero and bh ∈ K(b). (Here bh = Mbk0h, where k0 is

the Szegö kernel map, could be zero if k0h is in the kernel of Mb.)

The above argument is reversible: If h ∈ H is non-zero and bh ∈ K(b) then since b(0) is a strict

contraction we have 0 6= f := (I − b(0)∗)−1h ∈ H and 0 6= kb0f = f − bb(0)∗f ∈ K(b). Then,

kb0f = (I − b(0)∗)−1h− bb(0)∗(I − b(0)∗)−1h

= (I − b(0)∗)−1h− b(I − b(0)∗)−1h+ bh

= (I − b)f + bh ∈ K(b).

It follows that 0 6= (I − b)f ∈ K(b) for a non-zero f ∈ H so that the constant function F (z) = f

is such that F ∈ L (b) and necessarily F ⊥ Ran (V ). Hence V is not co-isometric and b is not

quasi-extreme. �

Corollary 3.24. If b is quasi-extreme then so is bα∗ for any unitary α ∈ L (H). That is, µb ∈
CP (S,H) is quasi-extreme, if and only if all of the Aleksandrov-Clark CP maps µα = µbα∗ are

quasi-extreme.

Proposition 3.25. Let µ1, µ2 ∈ CP (S,H) be such that µ2 is quasi-extreme and µ2 ≥ µ1. Then µ1

is also quasi-extreme.

Proof. Since µ2 ≥ µ1, P 2(µ2) is contractively contained in P 2(µ1). Also since µ2 is quasi-extreme

P 2
0 (µ2) = P 2(µ2). For any I ⊗ h + N2 ∈ P 2(µ2) choose a sequence Hn ∈

∨
n6=0 L

n ⊗ H (here∨
is just linear span, not norm closed) so that Hn → I ⊗ h + N2 in the norm of P 2(µ2). If

E : P 2(µ2)→ P 2(µ1) is the contractive embedding then

E :
∨
n6=0

(Ln ⊗H +N2) 7→ P 2
0 (µ1),

so that Gn := EHn ∈ P 2
0 (µ1). Hence

‖Gn − (I ⊗ h+N1)‖µ1
= ‖E (Hn − (I ⊗ h+N2)) ‖µ1

≤ ‖Hn − (I ⊗ h+N2)‖µ2
→ 0,

and it follows that P 2
0 (µ1) = P 2(µ1). �
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4. The Gleason Problem in K(b)

This section studies the Gleason problem in a deBranges-Rovnyak subspace of vector-valued

Drury-Arveson space. A solution to the Gleason problem in a deBranges-Rovnyak space K(b) is the

appropriate generalization of (the adjoint of) the restriction of the backward shift to K(b) in the

classical single variable theory. Our results here refine and extend those of [11, Section 4] obtained

in the scalar-valued setting.

Given b ∈ [H∞d ⊗L (H)]1, consider the deBranges-Rovnyak space K(b) = H(kb), the reproducing

kernel Hilbert space of H-valued functions on Bd with kernel function

kb(z, w) :=
I − b(z)b(w)∗

1− w∗z
∈ L (H); z, w ∈ Bd.

When d > 1, the appropriate analogue of the shift operator is Arveson’s d−shift S : H2
d ⊗ Cd →

H2
d , a partial isometry from d copies of Drury-Arveson space into itself whose component operators

commute and act as multiplication by the independent variables, [27]:

(SF)(z) = S


F1

...

Fd

 (z) = zF(z) = z1F1(z) + ...zdFd(z).

In contrast with the classical (d = 1) case, deBranges-Rovnyak subspaces of Drury-Arveson space are

in general not co-invariant for the component operators of the d-shift [28]. Instead, the appropriate

replacement for the restricted backward shift in this setting is a solution to the Gleason problem

[29, 30, 28, 31, 7]:

Definition 4.1. A row-operator X ∈ L (K(b)⊗ Cd,K(b)) solves the Gleason problem in K(b) if

(4.1) z(X∗f)(z) := z1(X∗1f)(z) + ...+ zd(X
∗
df)(z) = f(z)− f(0); ∀f ∈ K(b).

We say that a Gleason solution X is contractive if

XX∗ ≤ I − kb0(kb0)∗,

and is extremal if equality holds in the above.

Solutions to the Gleason problem in the Herglotz space L (b) are defined similarly although we

say that a Gleason solution for L (b) is contractive if it is simply a d−contraction. In the case where

d = 1 the unique solution to equation (4.1) is the adjoint of the restriction of the backward shift S∗

to K(b), so that adjoints of Gleason solutions are natural analogues of the restricted backward shift

in the several variable setting. Many references define a Gleason solution for K(b) as the adjoint
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of our definition above, we prefer to view a Gleason solution as a row contraction. Contractive

solutions X to the Gleason problem in K(b) always exist, although they are in general non-unique

[31].

Definition 4.2. A linear map B ∈ L (H,K(b)⊗ Cd), B =


b1
...

bd

, bj ∈ L (H,K(b)), 1 ≤ j ≤ d, is a

solution to the Gleason problem for b ∈ [H∞d ⊗L (H)]1 provided that

b(z)− b(0) = z ·B(z) :=

d∑
j=1

zjbj(z).

We say that B is a contractive Gleason solution for b if

B∗B ≤ I − b(0)∗b(0),

and an extremal Gleason solution for b if equality holds in the above.

Superscript and subscript b’s will be omitted for the remainder of this section when this is clear

from context.

Lemma 4.3. A d−contraction X solves the Gleason problem in K(b) if and only if

Xz∗kz = kz − k0; or equivalently, kz = (I −Xz∗)−1k0.

An analogous statement holds in L (b) replacing K by k. Note that the analogue of the above

lemma in L (b) implies that D is a contractive solution to the Gleason problem in L (b) if and only

if D ⊇ V is a contractive extension of the partial d−isometry V = V b on L (b). In particular, if b

is quasi-extreme then L (b) has V as its unique contractive Gleason solution.

Theorem 4.4. X is a d-contractive solution to the Gleason problem in K(b) if and only if

X∗kw = w∗kw −Bb(w)∗,

where B ∈ L (H,K(b)⊗Cd) is a contractive Gleason solution for b. This defines a surjection from

contractive Gleason solutions B for b onto contractive Gleason solutions X for K(b), B 7→ X(B).

If B is extremal then so is X(B).
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Proof. First suppose that X has the assumed form. Then,

(zX∗kw)(z) = zw∗kw(z)− zB(z)b(w)∗

= zw∗k(z, w)− (b(z)− b(0))b(w)∗

= zw∗k(z, w) + (1− b(z)b(w)∗)− (1− b(0)b(w)∗)

= k(z, w)− k(0, w) = kw(z)− kw(0).

This proves that X is a solution to the Gleason problem in K(b).

It remains to check that the assumption that B is a contractive Gleason solution for b implies X

is a contractive solution: For any w ∈ Bd,

k∗wXX
∗kw = (k∗ww − b(w)B∗)(w∗kw −Bb(w)∗)

= k∗www
∗kw − wB(w)b(w)∗ − b(w)B(w)∗w∗ + b(w)B(w)∗B(w)b(w)∗.

= ww∗k(w,w)− (b(w)− b(0))b(w)∗ − b(w)(b(w)∗ − b(0)∗) + b(w)B(w)∗B(w)b(w)∗

≤ ww∗k(w,w)− (b(w)− b(0))b(w)∗ − b(w)(b(w)∗ − b(0)∗) + b(w)(I − b(0)∗b(0))b(w)∗(4.2)

= k(w,w)− k(w, 0)k(0, w)

= k∗w (I − k0k
∗
0) kw.

This proves that the contractivity condition

(4.3) XX∗ ≤ I − k0k
∗
0 ,

holds on kernel maps kw. Since the ranges of the kernel maps are dense in K(b), it follows that X

is a contractive Gleason solution. If equality holds in equation (4.2) then it holds in equation (4.3).

It follows that if B is extremal then so is X.

Conversely suppose that X is a contractive Gleason solution and for each w ∈ Bd define the map

Aw ∈ L (H,K(b)⊗ Cd) by

Aw := w∗kw −X∗kw.

Define an L (H)-valued kernel function kA on Bd by

kA(z, w) := A∗zAw.
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Some algebra similar to the first part of the proof shows

A∗zAw = k∗zzw
∗kw − 2k(z, w) + k(z, 0) + k(0, w) + k∗zXX

∗kw

≤ zw∗k(z, w)− 2k(z, w) + k(z, 0) + k(0, w) + k(z, w)− k(z, 0)k(0, w),

= −(I − b(z)b(w)∗) + k(z, 0) + k(0, w)− k(z, 0)k(0, w)

= b(z)(I − b(0)∗b(0))b(w)∗,

as positive kernel functions. Let F (z) := b(z)
√
I − b(0)∗b(0), and kF (z, w) := F (z)F (w)∗, then

kA ≤ kF as positive L (H)−valued kernel functions on Bd. Define the co-isometry UA : K(b)⊗Cd →
H(kA) by

UAAw := kAw .

This is a co-isometry with initial space
∨
z∈Bd AzH since (kAz )∗kAw = kA(z, w) = A∗zAw by definition.

Since H(kA) is contractively contained in H(kF ), let E : H(kA) → H(kF ) be the inclusion map.

Then E∗kFw = kAw and

Aw = U∗E∗kFw ; w ∈ Bd.

Define the constant L (H)-valued kernel function

δ(z, w) := I − b(0)∗b(0); z, w ∈ Bd.

It follows that mb : H(δ)→ H(kF ), multiplication by b(z), is a co-isometric multiplier of H(δ) onto

H(kF ). Since the kernel δ(z, w) is constant, the point evaluation maps obey δz = δ0 for all z ∈ Bd

and

Aw = U∗E∗kFw

= U∗AE
∗mbm

∗
bk
F
w

= U∗AE
∗mbδwb(w)∗

= U∗AE
∗mbδ0b(w)∗.

Define,

B := U∗AE
∗mbδ0 ∈ L (H,K(b)⊗ Cd),

this is independent of w ∈ Bd. By construction

X∗kw = w∗kw −Aw

= w∗kw −Bb(w)∗,
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and

B∗B = δ∗0m
∗
bEUAU

∗
AE
∗mbδ0

≤ δ(0, 0) = I − b(0)∗b(0).

This shows that if B is a Gleason solution for b then it is contractive in the sense of Definition 4.1.

To see that B is a Gleason solution for b, calculate that

zB(z)b(w)∗ = zw∗k(z, w)− k∗zzX∗kw

= zw∗k(z, w)− (kz − k0)∗kw

= k(z, w)− (I − b(z)b(w)∗)− k(z, w) + k(0, w)

= (b(z)− b(0))b(w)∗ ∀z, w ∈ Bd.

If zB(z)− (b(z)− b(0)) 6= 0 then there is a non-zero h,

h ∈

 ∨
w∈Bd

Ran (b(w))
∗

⊥ =
⋂
w∈Bd

Ker(b(w)),

so that

0 6= (zB(z)− (b(z)− b(0)))h = zB(z)h.

However B = U∗AE
∗mbδ0 so that zB(z)h = k∗zzBh. We will show that h is in the kernel of mbδ0.

Recall that mb : H(δ)→ H(kF ) is a co-isometry. Since m∗bk
F
z = δ0b(z)

∗, the initial space of mb is

Ker(mb)
⊥ =

∨
z∈Bd

δ0b(z)
∗H.

If h ∈ ∩w∈BdKer(b(w)) then

〈δ0h, δ0b(z)∗g〉 = 〈h, δ(0, 0)b(z)∗g〉

= 〈h, (I − b(0)∗b(0))b(z)∗g〉 = 0,

since

(I − b(0)∗b(0))b(z)∗g ∈
∨
w∈Bd

b(w)∗H ⊥ h.

This proves that δ0h ∈ Ker(mb) so that zB(z)h = 0 and

zB(z) = b(z)− b(0), ∀z ∈ Bd.
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�

Remark 4.5. One can develop an alternative proof of the above theorem, at least in the scalar

case, using the Douglas factorization lemma and a maximum modulus principle argument.

Lemma 4.6. Let D ⊇ V be a d−contractive extension of V on L (b). Then

BD := U∗D∗Uk0(I − b(0)∗)−1(I − b(0)) = U∗D∗K0(I − b(0)),

defines a contractive Gleason solution for b. If b is quasi-extreme then BV and XV := X(BV ) are

extremal.

Proof. Since D is a d−contractive extension of V ,

Dz∗Kz = Kz −K0.

Consider

K∗z zD
∗K0 = K(z, 0)−K(0, 0)

= (I − b(z))−1(b(z)− b(0))(I − b(0))−1.

This proves that

(zD∗K0)(z) =
∑

zj(D
∗
jK0)(z) = (1− b(z))−1(b(z)− b(0))(1− b(0))−1

Solving for (b(z)− b(0)) in the above equation then yields

b(z)− b(0) = z ((I − b(z))(D∗K0)(z)(I − b(0))) .

It follows that

B(z) := (I − b(z))(D∗K0)(z)(I − b(0)),

defines a solution to the Gleason problem. Alternatively, using the canonical unitary multiplier

U = Ub : K(b)→ L (b) this can be written as

B(z) = (U∗D∗Uk0)(z)(I − b(0)∗)−1(I − b(0)).
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Since D is a d-contraction it follows that

B∗B = (I − b(0)∗)K∗0DD
∗K0(I − b(0))

≤ (I − b(0)∗)K(0, 0)(I − b(0)).(4.4)

=
1

2
(I − b(0)∗)(I + b(0)) + (I + b(0)∗)(I − b(0))

= (I − b(0)∗b(0)),

and B is a contractive Gleason solution for b.

By Theorem 4.4, if BV is extremal, so is XV = X(BV ). If b is quasi-extreme, V = V b is a

co-isometry so that equality holds in the second line, (4.4), of the above equation. This proves that

B = BV and hence XV are extremal if b is quasi-extreme. �

Let XD = X(BD) denote the contractive Gleason solution for K(b) constructed using the con-

tractive extension D ⊇ V b as in the previous lemma.

Theorem 4.7. The map D 7→ BD is a bijection from contractive Gleason solutions for L (b) onto

contractive Gleason solutions for b.

Proof. The previous lemma shows that given any contractive Gleason solution D ⊆ V = V b for

L (b) that

BD := U∗D∗K0(I − b(0)),

is a contractive Gleason solution for b. This map D 7→ BD is clearly injective since if B = BD and

B′ = BC for C,D ⊇ V then

D∗K0 = C∗K0.

Since C∗, D∗ are both extensions of V ∗, we have

D∗(Kz −K0) = V ∗(Kz −K0) = C∗(Kz −K0),

so that D∗Kz = C∗Kz for all z ∈ Bd and D = C.

To prove that this map is surjective, we will show that its inverse can be defined on the set of all

contractive Gleason solutions for b. If B is an arbitrary contractive Gleason solution for b, define a

bounded linear map (DB)∗ =: D∗ : L (b)→ L (b)⊗ Cd by

D∗Kz := z∗Kz + UB(I − b(0))−1; z ∈ Bd.
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This construction is based on the observation that if C ⊇ V and B = BC then

C∗Kz = z∗Kz + C∗K0

= z∗Kz + UBC(I − b(0))−1.

By construction,

D∗(Kz −K0) = z∗Kz + UB(I − b(0))− UB(I − b(0)) = z∗Kz,

and so if we can prove that D∗ is a contraction, the fact that D∗ ⊇ V ∗ will imply that D ⊇ V is a

contractive Gleason solution for L (b) by Lemma 2.2. Calculate the norm of D∗ on kernel maps:

K∗zDD
∗Kw =

(
K∗z z + (I − b(0)∗)−1B∗U∗

) (
w∗Kw + UB(I − b(0))−1

)
= zw∗K(z, w) + (I − b(0)∗)−1B∗w∗kw(I − b(w)∗)−1

+(I − b(z))−1k∗zzB(I − b(0))−1 + (I − b(0)∗)−1B∗B(I − b(0))−1

≤ zw∗K(z, w) + (I − b(0)∗)−1(b(w)∗ − b(0)∗)(I − b(0)∗)−1

+(I − b(z))−1(b(z)− b(0))(I − b(0))−1 + (I − b(0)∗)−1(I − b(0)∗b(0))(I − b(0))−1

= zw∗K(z, w) + (K(0, w)−K(0, 0)) + (K(z, 0)−K(0, 0)) +K(0, 0)

= K(z, w)− 1

2
(H(z) +H(w)∗) +K(0, w) +K(z, 0)−K(0, 0)

= K(z, w).

This proves that D∗ is a contraction so that D ⊇ V is a contractive Gleason solution for L (b).

This map B 7→ DB is injective since if C = DB1 = D = DB2 for contractive Gleason solutions

B1, B2 for b then necessarily

B1(I − b(0))−1 = B2(I − b(0))−1,

by the definition of DB . Moreover if D′ := DBD then

(D′)∗Kz = z∗Kz + UBD(I − b(0))−1

= z∗Kz +D∗K0(I − b(0))(I − b(0))−1

= D∗(Kz −K0) +D∗K0

= D∗Kz,(4.5)

so that D′ = D. It follows that the maps D 7→ BD and B 7→ DB are inverses to one another and

define bijections. �
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Corollary 4.8. The contractive Gleason solution BV for b is minimal and unique:

(BV )∗BV ≤ B∗B

for all contractive Gleason solutions, B, for b. Equality holds if and only if B = BV . Similarly

(XV )(XV )∗ ≤ XX∗ for all contractive Gleason solutions, X, for K(b), with equality holding if and

only if X = XV .

Proof. Given any d−contractive extension D of V , D = V + C where C : Ker(V )→ Ran (V )
⊥

is a

d-contraction so that DD∗ = V V ∗ + CC∗. By Theorem 4.7, the map D 7→ BD is onto, so that we

can assume B = BD for such a contractive extension D. Recall that

BD = U∗D∗A∗,

where A∗ ∈ L (H,L (b)) is defined by

A∗ = Uk0(I − b(0)∗)−1(I − b(0)) = K0(I − b(0)).

It follows that

(BD)∗BD = ADD∗A∗

= AV V ∗A∗ +ACC∗A∗

≥ AV V ∗A∗

= (BV )∗BV .

Moreover (BD)∗BD = (BV )∗BV if and only if C∗A∗ = 0. Since Ran (A∗) =
∨
K0H and Ran (C) ⊂

Ran (V )
⊥

is spanned by constant functions, it follows that C∗A∗ = 0 if and only if C = 0, which

happens if and only if D = V and BD = BV .

Similarly, and without loss of generality, we can assume that X = XD = X(BD) for some

contractive extension D of V on L (b). Then,

k∗zX
D(XD)∗kz = (z∗kz −BDb(z)∗)∗(z∗kz −BDb(z)∗)

= zz∗k(z, z)− (b(z)− b(0))b(z)∗ − b(z)(b(z)∗ − b(0)∗) + b(z)(BD)∗BDb(z)∗,(4.6)

so that

k∗z
(
XD(XD)∗ −XV (XV )∗

)
kz = b(z)

(
(BD)∗BD − (BV )∗BV

)
b(z)∗ ≥ 0.
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Equality holds if and only if

BV b(z)∗ = BDb(z)∗ ∀z ∈ Bd,

in which case XV = X(BV ) = X(BD) = XD = X. �

Remark 4.9. It follows that if b is not quasi-extreme, then BV is not extremal so that (BV )∗BV <

I − b(0)∗b(0).

Theorem 4.10. Suppose that d > 1. The map B 7→ X(B) is a bijection if and only if
∨
z∈Bd b(z)

∗H =

H or equivalently
⋂
z∈Bd Ker(b(z)) = {0}. If this condition holds then the contractive Gleason solu-

tion X(B) is extremal if and only if B is extremal. In particular this holds if b is quasi-extreme.

The condition
⋂
z∈Bd Ker(b(z)∗) = {0} says that b has no identically ‘zero columns’, and this al-

ways holds in the scalar-valued case where b ∈ [H∞d ]1. One usually defines supp(b) :=
∨
z∈Bd Ran (b(z)∗),

as in [?].

Proof. By Theorem 4.4, given any contractive Gleason solution X for K(b), there is a contractive

Gleason solution B for b so that X = X(B), and the map B 7→ X(B) from contractive Gleason

solutions for B to contractive Gleason solutions for K(b) is onto.

Suppose that
∨
z∈Bd Ran (b(z)∗) = H. If X = X(B) = X(B′) where B,B′ are two contractive

Gleason solutions for b. Then for all z ∈ Bd,

Bb(z)∗ = B′b(z)∗,

and the assumption on the closed span of the ranges of the b(z)∗ implies that B = B′ so that the

map B 7→ X(B) is a bijection.

Recall the notation of the proof of Theorem 4.4. The assumption that
∨
z∈Bd Ran (b(z)∗) = H

implies that mb : H(δ) → H(kF ) (as defined in the proof of Theorem 4.4) is an onto isometric

multiplier: Since δ(z, w) = (I − b(0)∗b(0)) is a positive constant operator, any function G ∈ H(δ) is

a constant, G(z) = G(0) = g ∈ H. Moreover G ∈ Ker(mb) if and only if

b(z)G(z) = b(z)g = 0; ∀z ∈ Bd.

By assumption ∩z∈BdKer(b(z)) = {0} so that G ≡ 0 and m∗bmb = IH(δ).

If X is extremal and b obeys this range condition then kF = kA and Aw = U∗Ak
F
w so that

B = U∗Ambδ0 and

B∗B = δ∗0m
∗
bmbδ0 = δ(0, 0) = I − b(0)∗b(0).

This proves that B is extremal.
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If
∨
z∈Bd b(z)

∗H 6= H then its orthogonal complement
⋂
z∈Bd Ker(b(z)) is non-trivial, so that

there is a non-zero h ∈ H such that b(z)h = 0 for all z ∈ Bd, and

bh = 0 ∈ K(b).

By Theorem 3.23, b is not quasi-extreme in this case.

Now suppose that there is a non-zero h orthogonal to
∨
b(z)∗h. Recall by Remark 3.18 since

d > 1, the kernel of V = V b is non-trivial so that

U∗b Ker(V )⊥ =
∨
z∗kzH,

is not all of K(b)⊗ Cd. Recall by Lemma 4.6 that B := BV is given by the formula

B = U∗b V
∗K0(I − b(0)),

and so by Remark 4.9 above, we can construct a rank-one map B′ from the one-dimensional span

of h into the orthogonal complement of
∨
z∗kzH such that

(B +B′)∗(B +B′) = BB∗ +B′(B′)∗ ≤ I − b(0)∗b(0).

Here we used that B′ takes h into the orthogonal complement of the range of B = BV . Then B+B′

is a contractive Gleason solution for b since

zB′(z) = (z∗kz)
∗B′ = 0,

so that z(B +B′)(z) = zB(z) = b(z)− b(0). Finally,

X(B +B′)kz = z∗kz − (B +B′)b(z)∗

= z∗kz −Bb(z)∗ = X(B).

This proves that the map B 7→ X(B) is not injective. �

Corollary 4.11. The map D 7→ XD := X(BD) is a surjection from contractive Gleason solutions

D ⊆ V for L (b) onto contractive Gleason solutions for K(b). This map is injective if and only if⋂
z∈Bd Ker(b(z)) = {0}.

Corollary 4.12. A Schur class b ∈ [H∞d ⊗L (H)]1 is quasi-extreme if and only if it has a unique

contractive and extremal Gleason solution B = BV . If b is quasi-extreme then K(b) has a unique

contractive extremal Gleason solution X = XV . If K(b) has a unique contractive Gleason solution

X and
⋂
z∈Bd Ker(b(z)) = {0}, then b is quasi-extreme.
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Remark 4.13. Note that it can happen that b is not quasi-extreme but K(b) has a unique con-

tractive Gleason solution if
∨

Ran (b(z)∗) 6= H. For example, if b ∈ [H∞d ]1 is not quasi-extreme

then one can construct an a ∈ [H∞d ]1 that is a several variable analogue of the outer function with

modulus
√

1− |b|2 on the boundary of the circle in the case where d = 1 [8, IV-1]. In this case one

can prove that

c :=

[
b 0

a 0

]
∈ [H∞d ⊗ C2×2]1,

and that any contractive Gleason solution X for K(c) is extremal so that K(c) has a unique con-

tractive Gleason solution by Corollary 4.8 above. In this example
⋂
z∈Bd Ker(c(z)) = {e2}, where

{e1, e2} is the canonical orthonormal basis of C2, so that ce2 = 0 ∈ K(c) and c is not quasi-extreme.

The construction of this ‘outer’ function a will be presented in a future publication where we

analyze the convex (and matrix convex) structure of [H∞d ⊗L (H)]1, and the relationship between

quasi-extreme points and extreme points of this convex set.

Using Gleason solutions, we can prove in most cases that V b has non-trivial kernel when d > 1,

a fact we used in Section 2, see Remark 3.18.

Proposition 4.14. If b ∈ [H∞d ⊗ L (H)]1 where d > 1 has a contractive Gleason solution B =

(b1, ..., bd)
T such that ∨

1≤j≤d

bjH 6= K(b),

then V b has non-trivial kernel.

Proof. Let X = XB be a contractive Gleason solution for K(b). Then B ∈ L (H,K(b) ⊗ Cd).

Choose any F ∈ K(b) orthogonal to the range of the bj ∈ L (H,K(b)) where B =


b1
...

bd

 . It follows

that

〈(XjF ), kzh〉 = 〈F, zjkzh− bjb(z)∗h〉

= 〈zjF (z), h〉H.

This proves that for any 1 ≤ j ≤ d, SjF = Gj ∈ K(b) where Gj(z) = zjF (z). This in turn implies

that Hj := (I− b)−1Gj ∈ L (b) and if we define H := (−H2, H1, 0, ..., 0) ∈ L (b)⊗Cd, we then have
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that

〈H, z∗Kzh〉 = −z1〈H2(z), h〉+ z2〈H1(z), h〉

= (−z1z2 + z2z1)(I − b(z))−1F (z) = 0.

It follows that Ker(V b) is non-trivial. �

4.15. Clark’s perturbations and Intertwining. In this section we verify the intertwining for-

mulas for perturbations of the minimal contractive solution X := XV to the Gleason problem in

K(b) and the compression of R := πνb(L) = πb(L) to P 2(b). Here recall that νb is the tight extension

of µb and if P is the projection onto P 2(b) = P 2(µb) then C∗bV
bCb = V̂ = PRP = PR since P 2(b)

is co-invariant for R.

Let Fb : P 2(b) → K(b) be the weighted Cauchy transform. Recall that Cb = U∗b Fb where

Ub : K(b) → L (b) is the canonical onto isometric multiplier. Also recall that CbR = WCb where

(W,Kb) is the minimal d−isometric dilation of (V,L (b)).

We will obtain the desired intertwining formulas by first calculating intertwining formulas for V

and X via the unitary U = Ub, where X := XV is the minimal Gleason solution corresponding to

V = V b. We have that

X∗kw = w∗kw −Bb(w)∗,

where

B := U∗V ∗K0(I − b(0)).

Compare this to

U∗V ∗Ukw = U∗V ∗Kw(I − b(w)∗)

= U∗V ∗(Kw −K0)(I − b(w)∗) + U∗V ∗K0(I − b(w)∗)

= w∗kw + U∗V ∗K0(I − b(w)∗)

= w∗kw +B(I − b(0))−1(I − b(w)∗).

Define T : K(b)→ K(b)⊗ Cd by

T := B(I − b(0))−1k∗0 .
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Then

Tkw = B(I − b(0))−1k∗0kw

= B(I − b(0))−1k(0, w)

= B(I − b(0))−1(I − b(0)b(w)∗)

= B(I − b(0))−1 (I − b(w)∗ + b(w)∗ − b(0)b(w)∗)

= B
(
(I − b(0))−1(I − b(w)∗) + b(w)∗

)
.

It follows that

(X∗ + T )kw = w∗kw −Bb(w)∗ +Bb(w)∗ +B(I − b(0))−1(I − b(w)∗)

= U∗V ∗Ukw.

This proves the intertwining formula:

U∗V ∗ = (X∗ + T )U∗

=
(
X∗ +B(I − b(0))−1k∗0

)
U∗,(4.7)

or equivalently,

(4.8) FbV̂
∗ =

(
X∗j +B(I − b(0))−1k∗0

)
Fb,

where V̂ = Pπb(L)P = C∗bV Cb and P : Q2(b)→ P 2(b) is orthogonal projection.

Recall that for any unitary A on H we define the Aleksandrov-Clark CP map µA := µb·A∗ . It is

clear that K(b ·A∗) = K(b). Let V̂ A be the compression of πνA(L) =: RA to P 2(µA). Recall V̂ A is

a partial isometry which is unitarily equivalent via the Cauchy transform to V bA
∗
. Here νA is the

tight extension of µA. Let V A = V bA
∗

be the partial d−isometry on L (b ·A∗), XA be the minimal

contractive Gleason solution in K(b) corresponding to V A, and BA be the corresponding Gleason

solution for b. We will simply write X = XI and B = BI .

Theorem 4.16. (Partial isometric Clark perturbations) For any b ∈ [H∞d ⊗L (H)]1 and unitary

A ∈ L (H),

(4.9) FbA∗(V̂ A)∗ =
(
X∗ +BA∗(I − b(0)A∗)−1k∗0

)
FbA∗ .

See [11, Theorem 5.1] for the case where b ∈ [H∞d ]1 is quasi-extreme.

Proof. As discussed above, let BA = BV
A

denote the Gleason solution in K(bA∗) = K(b) cor-

responding to the partial isometry V A = V bA
∗

in L (bA∗). By Corollary 4.8, for any unitary
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A ∈ L (H), the Gleason solution BA is the unique minimal contractive Gleason solution for bA∗,

i.e. (BA)∗BA ≤ (B̂A)∗B̂A for any other contractive Gleason solution B̂A for bA∗. Uniqueness

implies that BA · A = BI = B for any unitary A ∈ L (H) where B is the minimal contractive

Gleason solution for b. It follows that for any w ∈ Bd,

(XA)∗kbw = w∗kbw −BA(b(w)A∗)∗

= w∗kbw −Bb(w)∗

= (XI)∗kbw,

so that XA = XI = X, the minimal contractive Gleason solution for K(b). Repeating the arguments

preceding the statement of this theorem then yields the desired intertwining formulas. �

Also recall that if b is quasi-extreme then V is a co-isometry so that each of the FbA∗ V̂ AF∗bA∗ =

U∗b V
AUb are co-isometric perturbations of the (unique) contractive Gleason solution X for K(b).

The Clark-type intertwining formulas can also be used to provide a simple proof that the kernel

of V b is non-trivial in the case where d > 1 and H is finite dimensional:

Proposition 4.17. If b ∈ [H∞d ⊗ L (H)]1, d > 1 and dim (H) < ∞ then the kernel of V b is

non-trivial.

Proof. If H is finite dimensional then the formula of Theorem 4.4 implies that if X = XV is the

contractive Gleason solution corresponding to V = V b then the commutators [Xj , Xk], 1 ≤ j, k ≤
d all have finite rank. By the intertwining formula of Theorem 4.16 above it follows that the

commutators [Vj , Vk] also all have finite rank. If V had trivial kernel then I−V ∗V = 0 and I−V V ∗

both have finite rank (since we assume H is finite dimensional).

Taking the quotient by the compact operators, the image of V is a commutative d-contraction

obeying the Cuntz relations. This is impossible and proves the statement. �

4.18. Summary. The previous sections have developed several equivalent characterizations of the

quasi-extreme Szegö approximation property. These are summarized as follows:

Theorem 4.19. Let b ∈ [H∞d ⊗L (H)]1. The following are equivalent:

(1) b is quasi-extreme, i.e. P 2(b) = P 2
0 (b).

(2) The partial d−isometry V b on L (b) is a co-isometry; equivalently L (b) contains no constant

functions.

(3) The row-isometry πb(L) on Q2(b) is a Cuntz unitary.

(4) The CP map µb : S + S∗ → B(H) has a unique CP extension to A + A∗.

(5) There is no non-zero h ∈ H so that bh ∈ K(b).
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(6) There is a unique contractive solution to the Gleason problem for b, and this solution is

extremal.

(7) There is a unique contractive solution to the Gleason problem in K(b) and⋂
z∈Bd Ker(b(z)) = {0}. Such a solution is extremal.

5. Examples: Inner Sequences

In this section we provide some examples in the case where b is a matrix-valued multiplier

associated to an inner sequence (defined below).

Definition 5.1. We will use the notationH∞d ⊗Cn×m := Mult(H2
d⊗Cm, H2

d⊗Cn) for the multipliers

from H2
d ⊗ Cm into H2

d ⊗ Cn. We write H∞d ⊗ Cm for H∞d ⊗ C1×m.

As is well known, a linear map M ∈ L (H2
d ⊗ Cn, H2

d ⊗ Cm) is a multiplier, if and only if

M(Mϕ⊗ In) = (Mϕ⊗ Im)M for all ϕ ∈ H∞d [15]. In this case M = MΘ for some Θ ∈ H∞d ⊗Cn×m.

Recall that a multiplier Θ ∈ H∞d ⊗ Cn×n is called inner if MΘ is a partial isometry. Any shift

invariant subspace M ⊂ H2
d is the range of an inner θ ∈ H∞d ⊗Cn for some n ∈ N∪{∞} [32, 33, 34].

We embed H∞d ⊗ Cn in H∞d ⊗ C∞ = H∞d ⊗H in the natural way (add zeroes). We can further

embed H∞d ⊗ C∞ into H∞d ⊗ C∞×∞ = H∞d ⊗L (H) via the map

θ(z) := (θ1(z), θ2(z), ...) 7→


θ1(z) θ2(z) · · ·

0 0
...

. . .

0

 =: θ̂(z).

(θk) = (θ1, θ2, ...) is called an inner sequence associated to M. It follows that if θ ∈ H∞d ⊗ Cn is

inner then Θ := θ̂ ∈ [H∞d ⊗ Cn×n]1 is inner and the reproducing kernel for K(Θ) is

kΘ = kθ ⊕ (k ⊗ In−1×n−1) ,

where k is the Szegö kernel. The map θ 7→ Θ = θ̂ is a completely isometric embedding of H∞ ⊗Cn

into H∞ ⊗ Cn×n.

Proposition 5.2. Suppose that Θ ∈ [H∞d ⊗L (H)]1 is inner. Then Θ is quasi-extreme if and only

if Ker(MΘ) ∩
∨
k0H = {0}.

Proof. By Theorem 3.23, Θ is not quasi-extreme if and only if there is a non-zero h ∈ H so that

Θh ∈ K(Θ). However, since Θ is inner, K(Θ) = Ran (MΘ)
⊥

so that Θh ∈ K(Θ) if and only if

k0h ∈ Ker(MΘ). �
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The condition for quasi-extremity just given can be recast in a more elegant form when Θ = θ̂

comes from an inner sequence θ = (θj) ∈ H∞d ⊗Cn. If (θj)j∈J is an inner sequence for some (finite

or countable) index set J , observe that for each z ∈ Bd we have (θj(z)) ∈ `2(J). Say that θ is

minimal if ∨
z∈Bd

(θj(z))j∈J = `2(J).

Proposition 5.3. Let θ ∈ H∞d ⊗ Cn, n ∈ N ∪ {∞}, θ = (θ1, θ2, ..., θn) be an inner sequence. Then

the embedding Θ = θ̂ ∈ H∞d ⊗ Cn×n is quasi-extreme if and only if θ is a minimal inner sequence.

Proof. By the previous corollary Θ is quasi-extreme if and only if Ker(Mθ) ∩
∨
k0Cn = {0}. The

claim follows easily from this fact. �

Remark 5.4. We observe that a finite inner sequence θ = (θ1, . . . θn) is minimal if and only if

the functions θ1, . . . θn are linearly independent (in the space of holomorphic functions on Bd).
Now, it is known [32, 33, 34] that every closed S-invariant subspace M ⊂ H2

d is represented by an

inner sequence, in the sense that the multiplication operator Mθ where θ = (θj)j∈J is a partially

isometric multiplier of H2
d ⊗ `2(J) onto M. It is not difficult to see that θ may always be chosen

minimal: Indeed, if θ is any such multiplier, let H be the closed span of {(θj(z)) : z ∈ Bd} in `2(J).

Identify H with `2(K) for an appropriate index set K; define ψ(z) to be the compression of θ(z)

to H. Expanding ψ(z) in an orthonormal basis for H = `2(K) gives a minimal inner sequence

ψ = (ψk)k∈K which multiplies H2
d ⊗ `2(K) onto M.

Example 5.5. Let d = 2 and let M be the orthogonal complement of the span of {1, z1, z
2
1 , z2} in

H2
2 . One may verify that the 4-tuple

(5.1) (z3
1 , z

2
1z2,
√

2z1z2, z
2
2),

is an inner sequence representing M, and since the monomials are linearly independent this sequence

is minimal, and hence the 4× 4 matrix function

(5.2) Θ(z1, z2) =


z3

1 z2
1z2

√
2z1z2 z2

2

0 0 0 0

0 0 0 0

0 0 0 0


is a quasi-extreme inner multiplier.

If b ∈ [H∞d ⊗ L (H)]1 is inner then by Proposition 5.2, Proposition 5.3 and Remark 5.4 it is

generally quasi-extreme. By Theorem 4.7, there is a unique solution to the Gleason problem in the

co-invariant model space K(b). This solution is given by the compressed shift, Sb = PbS|K(b) where
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Pb projects onto K(b). Indeed, using that Pb is co-invariant,

Sbz
∗kbzh = (z∗Sb)Pbkzh

= (z∗Sb)Pb(I − z∗S)−1kb0h

= (z∗Sb)(Pb − z∗Sb)−1kb0h

= (Pb − z∗Sb)−1kb0h− kb0h

= kbzh− kb0h.

A natural question is the following: what are the contractive Gleason solution components bj

associated to the unique solution Sb? A natural conjecture is

bj(z)h := (S∗j b)(z)h.

For this to be the case it is necessary that S∗j bh ∈ K(b) for all h ∈ H. However, when d > 1, this is

not always so; in particular it fails for the example just considered above in Equation (5.2, b = Θ.

Let θ ∈ H∞d ⊗ C4 be the first row of b = Θ, an inner multiplier. Recall that the components S∗j of

the backward Arveson d−shift act on monomials by

S∗j z
α =

αj
|α|

zα−ej if αj ≥ 1

and S∗j z
α = 0 otherwise [15, 27]. For this b we have

(S∗1b)(z1, z2) =


z2

1
2
3z1z2

1√
2
z2 0

0 0 0 0

0 0 0 0

0 0 0 0


But K(b) = [Ran (Mθ)]

⊥ ⊕ H2
d ⊗ C3, while for the basis vector e2 ∈ C4 we have (S∗j b)e2 =

( 2
3z1z2, 0, 0, 0)T (T denotes transpose) which does not lie in K(b) (since z1z2 lies in Ran (Mθ)).

It is possible to compute that B1 and B2 are in this case given by

B1 =


z2

1 0 1√
2
z2 0

0 0 0 0

0 0 0 0

0 0 0 0

 , B2 =


0 z2

1
1√
2
z1 z2

0 0 0 0

0 0 0 0

0 0 0 0


One may verify readily that z1B1 + z2B2 = b(z) − b(0) = b(z) = Θ(z), and that these satisfy

B∗1B1 +B∗2B2 = I4 (and thus form a contractive solution to the Gleason problem, which is unique

since b = Θ is quasi-extreme).
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