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Theorem

Let f be holomorphic in the disk. TFAE:

1) |f (z)| ≤ 1 for all z ∈ D.

2) The Hermitian kernel

1− f (z)f (w)

1− zw

is positive semidefinite. (Schur, Nevanlinna)

3) ‖f (T )‖ ≤ 1 for all n × n matrices T with ‖T‖ < 1, for all n.
(von Neumann)
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Fix d ≥ 1.
A (strict) n × n row contraction is a d-tuple of commuting
matrices

T = (T1, . . . ,Td)

such that

‖T1v1 + · · ·Tdvd‖2 < ‖v1‖2 + · · · ‖vd‖2

for all d-tuples of vectors v1, . . . vd in Cn.

That is, the mapping

(T1 T2 . . .Td) :


v1
v2
...

vd

→ T1v1 + · · ·Tdvd

is contractive from Cdn to Cn.
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Theorem (Drury, 1978)

Let f be holomorphic in the ball Bd . TFAE:

1’) |f (z)| ≤ 1 for all z ∈ Bd .

2’) The Hermitian kernel

1− f (z)f (w)

1− 〈z ,w〉

is positive semidefinite.

3’) ‖f (T )‖ ≤ 1 for all strict row contractions T .

Trivially both (2’) and (3’) imply (1’) as before, but now (1’)
implies neither of the others.

Definition

Say f belongs to the Schur class if it satisfies the conditions of the
theorem.
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Why are (2’) and (3’) equivalent?

(2’) implies (3’): Write the kernel as a “sum of squares”
(Aronszajn/Bergman):

1− f (z)f (w)

1− 〈z ,w〉
=
∑
j

gj(z)gj(w)

Now
1− f (z)f (w) =

∑
j

gj(z)(1− 〈z ,w〉)gj(w)

Functional calculus:

I − f (T )f (T )∗ =
∑
j

gj(T )
[
1−

∑
TiT

∗
i

]
gj(T )∗

≥ 0

(3’) implies (2’): Hahn-Banach theorem and GNS construction.
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Q: What’s the point?

A: Being a “sum of squares” is a much more rigid (and tractable)
condition than mere pointwise positivity (cf. Hilbert’s seventeenth
problem).

Example:

Theorem (Uniqueness in the Schwarz lemma in Bd)

If f is Schur class, f (0) = 0 and Df (0) = ζ with |ζ| = 1, then
f (z) =

∑
zjζj .

No uniqueness if we assume only ‖f ‖∞ ≤ 1 (Rudin):

f (z1, z2) = z1, z1 +
1

2
z2
2 , z1 + 1−

√
1− z2

2 etc.

all have f (0) = 0,Df (0) = (1, 0).
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Let H(ϕ) denote the reproducing kernel Hilbert space in Bd whose
kernel is kϕ(z ,w). So each f ∈ H(ϕ) is holomorphic in D and

〈f , kϕz 〉H(ϕ) = f (z)

(the de Branges-Rovnyak spaces)
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Idea:

[Sarason, 1990s, d = 1] Use the Hilbert space geometry of H(ϕ)
to study the complex geometry of ϕ.

Example: The norm of kϕw is

‖kϕw‖2 = 〈kϕw , kw (ϕ)〉 =
1− |ϕ(w)|2

1− |w |2

Cauchy-Schwarz on kw , kz gives∣∣∣∣∣1− ϕ(z)ϕ(w)

1− zw

∣∣∣∣∣
2

≤ 1− |ϕ(z)|2

1− |z |2
1− |ϕ(w)2

1− |w |2

...precisely the invariant form of the Schwartz lemma.
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A number of classical results that are true in the disk, but false in
the ball, become true again if we restrict to the Schur class:

Example 1: Littlewood subordination (L2 case):

Theorem (J., 2007)

Let ϕ be a Schur class mapping of Bd and ϕ(0) = 0. Then for all
f holomorphic in Bd and all r < 1,∫

Sr

|f ◦ ϕ|2 dσ ≤
∫
Sr

|f |2 dσ

(σ = surface measure on ∂Bd)

This can fail if ϕ is not Schur class.
E.g. ϕ(z1, z2) = (2z1z2, 0) (More examples: Cima-Wogen et al.)
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Example 2: Julia-Caratheodory theorem

Definition

Given a point ζ ∈ ∂Bd and a real number c > 0, the Koranyi
region Dc(ζ) is the set

Dc(ζ) =
{

z ∈ Bd : |1− 〈z , ζ〉| ≤ c

2
(1− |z |2)

}
A function f has K-limit equal to L at ζ if

lim
z→ζ

f (z) = L

whenever z → ζ within a Koranyi region.

When d = 1 (the disk), K-limit is the same as non-tangential limit.
Not so in the ball...
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Slice of a Koranyi region with vertex at (1, 0) in B2:

z2 = 0
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Slice of a Koranyi region with vertex at (1, 0) in B2:

Imz1 = Imz2 = 0
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α = lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
<∞. (C)

Theorem (Rudin, 1980)

Suppose ϕ = (ϕ1, . . . ϕd) is a holomorphic mapping from Bd to
itself satisfying condition (C)at e1. The following functions are
then bounded in every Koranyi region with vertex at e1:

(i) 1−ϕ1(z)
1−z1

(ii) (D1ϕ1)(z)

(iii) 1−|ϕ1(z)|2
1−|z1|2

(iv) 1−|ϕ(z)|2
1−|z|2

Moreover, each of these functions has restricted K-limit α at e1.

What is a restricted K-limit?
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Fix a point ζ ∈ ∂Bd and consider a curve Γ : [0, 1)→ Bn such that
Γ(t)→ ζ as t → 1. Let γ(t) = 〈Γ(t), ζ〉ζ be the projection of Γ
onto the complex line through ζ. The curve Γ is called special if

lim
t→1

|Γ− γ|2

1− |γ|2
= 0 (1)

and restricted if it is special and in addition

|ζ − γ|
1− |γ|2

≤ A (2)

for some constant A > 0.

Definition

We say that a function f : Bd → C has restricted K -limit L at ζ if
limz→ζ f (z) = L along every restricted curve.

We have

K-limit =⇒ restricted K-limit =⇒ non-tangential limit
and each implication is strict when d > 1.
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α = lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
<∞. (C)

Theorem (J., 2008)

Let ϕ be a Schur class map and ζ ∈ ∂Bd . Then the following are
equivalent:

1 Condition (C).

2 There exists ξ ∈ ∂Bd such that the function

h(z) =
1− 〈ϕ(z), ξ〉

1− 〈z , ζ〉

belongs to H(ϕ).

3 Every f ∈ H(ϕ) has a finite K -limit at ζ.

d = 1 case: Sarason 1994
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Theorem (J., 2008)

Suppose ϕ = (ϕ1, . . . ϕd) is a holomorphic Schur class mapping
from Bd to itself satisfying condition (C) at e1. The following
functions are then bounded in every Koranyi region with vertex at
e1:

(i) 1−ϕ1(z)
1−z1

(ii) (D1ϕ1)(z)

(iii) 1−|ϕ1(z)|2
1−|z1|2

(iv) 1−|ϕ(z)|2
1−|z|2

Moreover, each of these functions (i)-(iii) has restricted K-limit α
at e1.
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Theorem (MacCluer, 1983)

Let ϕ be a holomorphic self-map of Bd . Then:

1 There exists a unique point ζ ∈ Bd (the Denjoy-Wolff point)
such that

ϕn(z)→ ζ

locally uniformly in Bd .

2 If ζ ∈ ∂Bd , then

0 < lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
= α ≤ 1

If the Denjoy-Wolff point ζ lies in Bd , then ϕ is called elliptic.

If ζ ∈ ∂Bd , the number α is called the dilatation coefficient of ϕ.

The map ϕ is called parabolic if α = 1, and hyperbolic if α < 1.
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Example 3: Valiron’s theorem

For 0 < α < 1, let θα denote the disk automorphism

θα(z) =
z +

(
1−α
1+α

)
1 +

(
1−α
1+α

)
z

Theorem (J., 2009)

Let ϕ be a hyperbolic Schur class self-map of Bd with dilatation
coefficient α. Then there exists a nonconstant Schur class map
σ : Bd → D such that

σ ◦ ϕ = θα ◦ σ

Proof uses strengthened Julia-Caratheodory theorem.

(d = 1: Valiron, 1931; also Pommerenke 1979, C. Cowen 1981)
(d > 1, under different assumptions:

Bracci, Gentili, Poggi-Corradini, 2007)
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Corollary

If ϕ is a hyperbolic Schur class self-map of Bd with dilatation
coefficient α, then for each z0 ∈ Bd

lim
n→∞

(1− |ϕ(z0)|)1/n = α

C. Cowen 1983 (d = 1)

Question: Is this true without the Schur class assumption?
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Theorem

Let ϕ be a hyperbolic, holomorphic self-map of Bd with
Denjoy-Wolff point ζ. Then

ϕn(z0)→ ζ

within a Koranyi region for every z0 ∈ Bd .

C. Cowen 1981 (d = 1)
Bracci, Poggi-Corradini 2003 (d > 1)

If we knew that some orbit {ϕn(z0)} approached the Denjoy-Wolff
point restrictedly, this combined with Rudin’s Julia-Caratheodory
theorem would imply

lim
n→∞

(1− |ϕn(z0)|)−1/2n = α−1/2

It is not known if such orbits always exist. (Yes, if ϕ is an LFT.)
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Example 4: Cowen-Pommerenke inequalites

Say ζ ∈ Bd is a repelling boudnary fixed point (RBFP) if it is a
boundary fixed point with dilatation coefficient τ > 1.
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Theorem

Suppose ϕ : Bd → Bd is Schur class and ϕ(0) = 0. Suppose
ζ1, . . . ζn are RBFP with dilatation coefficients τ1, . . . τn. Then for
every unit vector η ∈ Cd ,

n∑
j=1

|〈(I − ϕ′(0))η, ζj〉|2

τj − 1
≤ 1− |ϕ′(0)η|2, (3)

and thus

n∑
j=1

‖(I − ϕ′(0)∗)ζj‖2

τj − 1
≤ Tr

(
I − ϕ′(0)∗ϕ′(0)

)
. (4)

Cowen-Pommernke 1982 (d=1)
K.Y. Li 1990 (d=1, Hilbert space proof)

Corollary: ϕ has at most countably many RBFPs.

Corollary can fail without Schur class assumption (Ostapyuk)
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