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Abstract. Motivated by the work of McCullough and Trent, we investigate
the z{invariant subspaces of the Hilbert function spaces associated to the Szeg}o
kernels on the open unit disk. In particular, we characterize those kernels for
which the the z{invariant subspaces are hyperinvariant, and (partially) those
for which the so-called BLH subspaces are cyclic, obtaining counterexamples
to two questions posed by McCullough and Trent.

1. Introduction

Fix a set 
 and a point ! 2 
. Let k(y; x) be a positive de�nite kernel on 
,
normalized so that k(�; !) � 1. We say that k is a complete Pick kernel if there
exists a positive semide�nite function b : 
 �
 ! C with jb(x; y)j < 1 such that

1�
1

k(y; x)
= b(y; x)

for all x and y in 
. Since b(y; x) is positive semide�nite, there exists an index set
B and functions bj : 
 ! C , j 2 B, such that

b(y; x) =
X
j2B

bj(y)bj(x):

McCullough and Trent show in [10] that in this case each function bj de�nes a
multiplier Mbj of the associated Hilbert function space H(k) and they prove the
following analogue of the Beurling-Lax-Halmos theorem:

Theorem 1. Let k be a complete Pick kernel on 
, and for a Hilbert space E let

HE(k) denote the Hilbert space of E-valued functions H(k)
E. Let M be a closed

subspace of HE(k). Then the following are equivalent:

(i) M is invariant for each Mbj .

(ii) There exists an auxiliary Hilbert space F and an inner multiplier � : 
 !
L(F ; E) such that

M = �HF (k):

(iii) M is invariant for every multiplier M� of H(k).

Consider now 
 = D (the open unit disk) and let s be the Szeg}o kernel

s(z; w) =
1

1� zw
:
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The kernel s is a complete Pick kernel, and the space H(s) is the usual Hardy space
H2, the space of analytic functions on D with square-summable power series. In
this case it is possible to show that one may always choose F to be a subspace of
E , recovering the usual Beurling-Lax-Halmos theorem. Additionally, in the Hardy
space the multiplier �(�) is a coisometry almost everywhere on the unit circle. W.
Arveson proved a special case of Theorem 1 in [4], and showed that in quite general
circumstances dim F must be in�nite even when dim E = 1; nonetheless if dim E is
�nite andM has �nite codimension, we can choose F to be �nite dimensional. See
[4] for details. Greene, Richter, and Sundberg [7] have shown that when 
 = B d

(the unit ball of C d ) and the kernel k satis�es some mild additional assumptions, the
vector-valued multiplier �(�) is a coisometry almost everywhere on the boundary
of B d , strengthening the analogy with the usual Beurling theorem.

In the case of the Szeg}o kernel, the function b is b(z; w) = zw. Thus the theorem
says in particular that every Mz-invariant subspace of H2 is hyperinvariant (i.e.
invariant for every bounded operator on H2 that commutes with Mz|here, the
multipliers M�, � 2 H1). McCullough and Trent ask in [10] if every Mz-invariant
subspace of H(k) is hyperinvariant whenever k is a complete analytic Pick kernel
on D and multiplication by z is bounded on H(k). We show that this is not true
in general, and give necessary and suÆcient conditions for this to hold when the
function b has the form

b(z; w) = f(z)f(w)

for a univalent analytic function f : D ! D .
McCullough and Trent also investigate the cyclicity of the subspaces described

by Theorem 1 (hereafter called BLH subspaces). They show that if k is a complete
Pick kernel on D , Mz is bounded above and below, andM is a BLH subspace, then
the spaceM	zM is one{dimensional (i.e. Mz has the codimension one property).
When k is the Szeg}o kernel, a nonzero vector in M	 zM is cyclic for Mz (the
unilateral shift) restricted to M. They ask if Mz is cyclic on the BLH subspaces
for more general k, at least when k is a total Pick kernel (de�ned later) and Mz

is bounded above and below. Again, by appropriate choice of the function f , we
provide a counterexample. However, a complete description of the kernels for which
Mz is cyclic on the BLH subspaces, even for this special case, seems elusive.

Let 
 be a set. We say a function k : 
 �
 ! C is a positive de�nite kernel on


 if for each �nite set fx1; : : : xng � 
, the matrix

(k(xi; xj))
n
i;j=1

is positive de�nite. For each x 2 
, de�ne a function k(�; x) on 
 by k(�; x)(y) =
k(y; x). De�ne an inner product on the linear span of these functions by

h
X
i

aik(�; xi);
X
j

bjk(�; xj)i =
X
i;j

aibjk(xj ; xi)

Let H(k) denote the Hilbert space obtained by completing the linear span of the
functions k(�; x) with respect to the inner product h� ; �i. We may regard vectors f
in H(k) as functions on 
, with f(x) = hf; k(�; x)i.

A function � in H(k) is called a multiplier of H(k) if �g 2 H(k) for every
g 2 H(k). We then de�ne the operatorM� : H(k)! H(k) byM�g = �g; g 2 H(k);
boundedness ofM� follows from the closed graph theorem. Mult(H(k)) will denote
the algebra of multipliers fM�: � is a multiplier of H(k)g: The Pick problem is
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to determine, given points x1; : : : xn in 
 and complex numbers �1; : : : �n, if there
exists a multiplier � on H(k) with kM�k � 1 such that �(xi) = �i for each i. We
may also formulate a matrix-valued version of this problem: for a positive integer
m, a multiplier on the Hilbert space H(k)
Cm is an m�m-matrix valued function
� on 
 such that

�

0
B@
f1
...
fm

1
CA 2 H(k)
 C

m

As in the scalar case, we de�ne the operatorM� of \multiplication by �". Now,
given points x1; : : : xn and m�m matrices �1; : : :�n, we ask whether or not there
exists a multiplier � on H(k)
 Cm with kM�k � 1 such that �(xi) = �i.

De�nition 1. A kernel k on 
 has the m �m Pick property if, for any �nite set
of points x1; : : : xn in 
 and any choice of m�m matrices �1; : : :�n, the following
are equivalent:

(1) There exists a multiplier � on H(k)
Cm such that kM�k � 1 and �(xi) =
�i for each i.

(2) The mn�mn matrix (1� ��j�i)k(xj ; xi) is positive semide�nite.

A kernel k has the complete Pick property if it has the m �m Pick property for
every m.

Fix a set 
 and a point ! 2 
, as before we assume k is normalized so that
k(�; !) � 1. k has the complete Pick property if and only if there exists a positive
semide�nite function b : 
 �
 ! C with jb(x; y)j < 1 such that

1�
1

k(y; x)
= b(y; x)(1)

for all x and y in 
. (See [11], [12], [9]; see also [2]). Since b(y; x) is positive
semide�nite, there is an index set B and functions bj : 
 ! C , j 2 B, such that

b(y; x) =
X

bj(y)bj(x):

Following [10], a complete Pick kernel k is called total if wheneverM and N are
BLH subspaces with M�N � H(k), the kernel

PMk(z; w)

PN k(z; w)

is positive semide�nite. (Here PM denotes orthogonal projection onto M.) For
example, the Szeg}o kernel is a total Pick kernel, as is shown in the next section
using Beurling's theorem and the divisibility properties of inner functions.

2. Main Results

From now on we restrict ourselves to the following situation: f will be a univalent
analytic function from D into itself, and we will assume for convenience that f(0) =
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0. Let G denote the image of D under the conformal mapping f . De�ne a positive
de�nite kernel kf : D � D ! C by

kf (z; w) =
1

1� f(z)f(w)
:

Choosing the base point ! = 0 (so that kf (�; 0) � 1), (1) is easily seen to hold

with b(z; w) = f(z)f(w). The kernels kf are called Szeg}o kernels, because they
may be regarded as restrictions of the Szeg}o kernel s to the subset G = f(D ) � D

(see [2]).
In this situation, we show that Mz is a multiplier of H(kf ) if and only if there

exists a function  2 H1(D ) such that  jG = f�1, and that every Mz-invariant
subspace of H(kf ) is hyperinvariant (i.e. left invariant by every bounded operator
on H(kf ) that commutes with Mz) if and only if this function  is a weak-star
generator of H1(D ). (A function � is called a weak-star generator of H1(D ) if the
polynomials in � are weak-star dense in H1(D ).) Furthermore, we show that Mz

is cyclic when restricted to the BLH subspaces if and only if the analytic Toeplitz
operator T is cyclic on H2.

To prove these results, we make use of the following propositions which describe
the multipliers of H(kf ):

Proposition 1. A bounded analytic function � on D is a multiplier of H(kf ) if

and only if there exists a function  2 H1 such that � Æ f�1 =  jG:

Proof. We exploit the fact that the kernel kf and the Szeg}o kernel s have the Pick
property. Suppose � is a multiplier of H(kf ) with kM�k =M , and let z1; : : : zn be
points in D . By computing the Gramian ofM2 � I�M�M�� with respect to the set
of vectors fkf (�; zj)g, we see that the matrix (Aij)

n
i;j=1 with (i; j) entry given by

Aij = (M2 � �(zi)�(zj))kf (zi; zj)

is positive semide�nite. Let �i = f(zi). Then

Aij = (M2 � ((� Æ f�1)(�i)(� Æ f�1)(�j))kf (f
�1(�i); f

�1(�j))

= (M2 � ((� Æ f�1)(�i)(� Æ f�1)(�j))
1

(1� �i�j)

= (M2 � ((� Æ f�1)(�i)(� Æ f�1)(�j))s(�i; �j)

Thus, by the Pick property for s, there exists a function h 2 H1, khk1 � M ,
such that h(�i) = (� Æ f�1)(�i). Now let � = f�i : i 2 Ng be a set of uniqueness
for analytic functions on G, and let hN be the function obtained in the manner
above with �i = �i; i = 1; : : :N . Since khNk1 � M for each N , by the Banach-
Alaoglu theorem there exists a subsequence (hNj

)1j=1 of (hN )
1
N=1 which is weak-star

convergent in H1 to a function  . We have k k1 �M , and  (�i) = (�Æf�1)(�i)
for each �i 2 �. Since � is a set of uniqueness for G,  jG = � Æ f�1. The reverse
implication is proved by similar reasoning, reversing the roles of kf and s and using
the fact that kf is a Pick kernel.

�

The preceding argument is standard in spaces possessing complete Pick kernels;
a more general form of this proposition can be found in [5].

For  2 H1(D ), the operator T : H2 ! H2 de�ned by T f =  f is called
the analytic Toeplitz operator with symbol  . The map  ! T is an isometric
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Banach algebra isomorphism and a weak-star homeomorphism (see Ho�man [8]).
We now show that each multiplierM� ofH(kf ) is unitarily equivalent to an analytic
Toeplitz operator.

Proposition 2. Let � be a multiplier of H(kf ) and let  be the analytic continu-

ation of � Æ f�1 to D , as in Proposition 1. Then M�
�= T .

Proof. The linear span of the functions fs(�; �) : � 2 Gg is dense in H2, for if
f(�) = hf; s(�; �)iH2 = 0 for all � in G, then f � 0 on G and hence on D , since G
is open.

De�ne a map V from _fs(�; �) : � 2 Gg to _fkf (�; w) : w 2 D g by setting
V s(�; �) = kf (�; f�1(�)) and extending linearly. Since

hV s(�; �); V s(�; �)iH(kf ) = hkf (�; f
�1(�)); kf (�; f

�1(�))i

= kf (f
�1(�); f�1(�))

=
1

1� ��

= hs(�; �); s(�; �)iH2 ;

V is an isometry from a dense subset of H2 onto a dense subset of H(kf ), so it
extends to a unitary operator (which we also denote by V ) from H2 onto H(kf ).
It is now easy to verify that T = V �M�V:

�

The proof shows that every function in H(kf ) has the form g Æ f , with g 2 H2,
and kg ÆfkH(kf ) = kgkH2 (this is evident for kernel functions and follows in general
by taking limits). The Proposition also shows that every analytic Toeplitz operator
gives rise to a multiplier of H(kf ):

Corollary 1. Let V be as in the Proposition. For any  2 H1,  Æf is a multiplier
of H(kf ) and V T V

� =M Æf .

Proof. This is an immediate consequence of the preceding remark; alternatively we
could observe that ( Æ f) Æ f�1 =  jG and apply Propositions 1 and 2. �

From now on we assume that f is such thatMz is bounded on H(kf ); by Propo-
sition 1 this means that there exists an H1 function  on D such that  jG = f�1.
The next proposition deals with the set of bounded operators that commute with
Mz (here fTg0 denotes the set of bounded operators that commute with the oper-
ator T ):

Proposition 3. Suppose Mz is bounded on H(kf ) with Mz
�= T . If  is univalent

as an analytic function on D , then fMzg0 =Mult(H(kf )).

Proof. Since every multiplier commutes withMz, it is enough to show that fMzg0 �
Mult(H(kf )); by Proposition 2 and its corollary, this is equivalent to fT g

0 �
Mult(H2). So suppose A is a bounded operator on H2 that commutes with T .

Then A� commutes with T � , and hence with T � �  (�)I for every � 2 D . Thus

ker(T � � (�)I) is invariant for A
�. Since  was assumed univalent, ker(T � � (�)I)

is the one{dimensional space spanned by s(�; �). Thus A�s(�; �) = a(�)s(�; �) for

some complex number a(�). Now for every g 2 H2 and every � 2 D , we have

hAg; s(�; �)i = hg;A�s(�; �)i = a(�)g(�):
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So ag = Ag is in H2 and A = Ta.
�

The fact that fT g0 = Mult(H2) when  is univalent is actually a special case
of a much more general theorem about the commutant of an analytic Toeplitz
operator|see [17]. The proof also shows that in this situation,M�

z is in the Cowen-
Douglas class (see [6]).

Our �rst result will invoke the following theorem of D. Sarason [13] :

Theorem 2. Let  2 H1: Then T has the same invariant subspaces as Tz if and

only if  is a weak-star generator of H1.

We can now describe those kernels kf for which every Mz{invariant subspace is
hyperinvariant:

Theorem 3. With notations as above, the following are equivalent:

(1) Every Mz-invariant subspace of H(kf ) is hyperinvariant.

(2) Every Mz-invariant subspace of H(kf ) is Mf -invariant.

(3) Every T -invariant subspace of H2 is Tz-invariant.
(4)  is a weak-star generator of H1.

Proof. (1) ) (2) is trivial. By Proposition 2, Mz
�= T and Mf

�= Tz; the equiva-
lence of (2) and (3) follows. (3) , (4) is just an application of Theorem 2 above,
together with the fact that Tz-invariant subspaces are invariant for every analytic
Toeplitz operator, the consequence of Beurling's theorem discussed earlier.

It remains to show (2) ) (1). Since (2) , (4), the function  is a weak-star
generator of H1 and hence is univalent in D (see [14]), so by Proposition 3, the
only bounded operators on H(kf ) that commute with Mz are the multipliers. By
Theorem 1, each Mf -invariant subspace is invariant for every multiplier, and (1)
follows. �

Turning now to cyclic vectors, we show that the kernels kf are total Pick kernels,
and describe the cyclicity of Mz on BLH subspaces in terms of the cyclicity of
analytic Toeplitz operators.

Proposition 4. The kernels kf are total Pick kernels.

Proof. We observe that M is a BLH subspace of H(kf ) if and only if V �M is a
BLH subspace (i.e. shift invariant subspace) of H2, where V is the unitary map of
Proposition 2. By Beurling's theorem, V �M = �H2, where � is an inner function,
so

M = V V �M = V �H2 = (� Æ f)H(kf ):

A straightforward calculation then shows that

PMkf (z; w) = �(f(z))�(f(w))kf (z; w):

Recall that if �1 and �2 are inner functions and �1H
2 � �2H

2, then �1=�2 is
inner. Let M and N be BLH subspaces of H(kf ) with M � N , so there exist
inner functions �1 and �2 with �2 dividing �1 so that M = (�1 Æ f)H(kf ) and
N = (�2 Æ f)H(kf ). Then
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PMkf (z; w)

PN kf (z; w)
=
�1(f(z))�1(f(w))kf (z; w)

�2(f(z))�2(f(w))kf (z; w)

=
�1
�2

(f(z))
�1
�2

(f(w))

The last expression is a positive semide�nite function on D � D , so kf is a total
Pick kernel.

�

Theorem 4. Let kf be a complete Pick kernel, and suppose Mz is bounded, so that

Mz
�= T . Then the following are equivalent:

(1) Mz is cyclic on some BLH subspace M� H(kf ).
(2) Mz is cyclic on every BLH subspace M� H(kf ).
(3) T is cyclic on H2.

Proof. In the proof of Proposition 4 we showed that the BLH subspaces of H(kf )
have the form (�Æf)H(kf ) where � is an inner function. From this it follows that a
function g in a BLH subspaceM� H(kf ) is cyclic forMzjM if and only if g=(�Æf)
is cyclic for Mz on H(kf ), from this follows the equivalence of assertions (1) and
(2). Since Mz

�= T , Mz is cyclic on the BLH subspaces if and only if T is cyclic
on H2.

�

3. Examples and Remarks

Using Theorem 3 we can construct an analytic Pick kernel for which Mz is
bounded but for which there exist Mz-invariant subspaces which are not hyperin-
variant. To do this, we need only exhibit a univalent analytic function f : D ! G,
(with G � D ) so that f�1 extends to a function  2 H1 which is not a weak-star
generator of H1.

Consider a bounded, simply connected domain 
 � C , and let  be a Riemann
map from D onto 
. Sarason shows in [14] that  fails to be a weak-star generator
of H1 if and only if 
 has the following property:

(�) There exists a domain B containing 
 properly such that supz2B jf(z)j =
supz2
 jf(z)j for all f bounded and analytic in B.

For example, let B be an open disk, and �x a point z0 2 B (not the center). Let
� = dist(z0; @B) and let D be the closed disk of radius � centered at z0. Then
BnD has property (�), by the maximum modulus principle.

We now let 
 be a domain satisfying (�) with D � 
 and let  : D ! 
 be a
Riemann map. Taking f to be the restriction of  �1 to D does the job.

Regarding cyclic vectors, we can use Theorem 4 to exhibit a total Pick kernel
for which multiplication by z is bounded above and below, but such that Mz is
not cyclic on any of the BLH subspaces. By Theorem 4 it will suÆce to exhibit
an analytic Toeplitz operator which is bounded below but is not cyclic. For this a
Riemann map � of D onto a slit disk which contains D suÆces (see [16]); we then let
f = ��1jD as in the previous example. The cyclicity of analytic Toeplitz operators
is a very subtle problem, which has not been solved completely; it is for this reason
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Figure 1. The domain BnD

that we regard the \characterization" of Theorem 4 as incomplete. We remark,
however, that T is cyclic when  is a weak-star generator of H1, so combining
Theorem 3 and the above remarks tells us that if every Mz{invariant subspace of
H(kf ) is hyperinvariant (and hence a BLH subspace), then Mz is cyclic on each of
these spaces.

In general, we expect the kernels kf to be a good source of counterexamples
for questions regarding multiplication by z on spaces possessing a complete Pick
kernel: as seen in these two examples, one can choose f so that Mz is unitarily
equivalent to an analytic Toeplitz operator with \bad" properties.
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